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We analyze the dynamic behavior of a spherical microparticle submerged in a fluid medium,

driven to the node of a standing bulk acoustic wave created by two opposing transducers. We

derive the dynamics of the fluid-particle system taking into account the acoustic radiation force and

the time-dependent and time-independent drag force acting on the particle. Using this dynamic

model, we characterize the transient and steady-state behavior of the fluid-particle system as a func-

tion of the particle and fluid properties and the transducer operating parameters. The results show

that the settling time and percent overshoot of the particle trajectory are dependent on the ratio of

the acoustic radiation force and time-independent damping force. In addition, we show that the par-

ticle oscillates around the node of the standing wave with an amplitude that depends on the ratio of

the time-dependent drag forces and the particle inertia. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4898012]

Non-contact acoustic manipulation of nano- and micro-

scale particles is of critical importance for applications in

biology,1 biomedical devices,2 process control,3 and directed

self-assembly of nano- and microscale particles.4 The acous-

tic radiation force associated with a standing acoustic wave

is used to organize particles dispersed in a fluid medium into

user-defined patterns4 or manipulate particles to specific

locations.5 When the radius a of the particles is significantly

smaller than the wavelength k of the acoustic wave

(Rayleigh regime) the acoustic radiation force associated

with the standing wave drives particles to the nodes (U> 0)

or antinodes (U< 0) of the standing wave, depending on the

sign of the acoustic contrast factor for a standing wave,6

U ¼
qp � qf

2qp þ qf

�
qf cf

3qp c2
pc � 4=3c2

ps

� � : (1)

qf and cf are the density and sound speed of the fluid me-

dium, and qp, cpc, and cps are the density and the compres-

sion and shear sound speeds of the particle, respectively. In

this article, unless otherwise specified, U> 0. The acoustic

radiation force points toward the nodes of the standing wave,

trapping the particles in those locations. Hence, particles can

be displaced by changing the location of the nodes through

adjustment of the frequency7,8 or phase5,9,10 of the trans-

ducers that create the standing acoustic wave. We consider

particle manipulation through adjustment of the transducer

phases only, which is typically performed in small incre-

ments, while giving the particle sufficient time to reach the

new location of the node after each incremental adjustment.5

While propagating wave fronts exist within the reservoir, the

acoustic radiation force is dominated by the standing waves.

As a result, the position of the particle after each phase

adjustment is determined as the location where the acoustic

pressure amplitude and acoustic radiation force are locally

minimum.5,6,9–12 While this method is sufficient for deter-

mining the steady-state location of the particles, most indus-

trial and scientific processes require optimizing an objective

function, for instance minimizing the time or maximizing the

accuracy of the process. Thus, the dynamic characteristics of

the fluid-particle system must be identified. The objective of

this work is to analyze the trajectory of a spherical particle

submerged in fluid, as it is driven to the node of a standing

acoustic wave. The transient and steady-state behavior is

determined as a function of the particle and fluid properties

and the operating parameters of the transducers.

Figure 1 shows a schematic of the set-up. A one-

dimensional (1D) reservoir of length L with opposing trans-

ducers contains a fluid medium with one particle of radius a,

initially located at a node of a standing wave u(X,t). At t¼ 0,

a step input to the transducer phases displaces the node over

a distance smaller than k/4.5,9,10 This exposes the particle to

a non-zero acoustic radiation force, driving it from its initial

position x0 towards the new node located at xf, expressed in a

local Cartesian coordinate system with origin at the node to

which the particle is driven (X¼ xf¼ 0). Hence, the displace-

ment of the particle Dx¼ jxf – x0j is identical to the

FIG. 1. Cross-sectional view of a fluid reservoir with two opposing trans-

ducers, creating a standing acoustic wave u(X,t). The inset image shows a

magnified view of the particle located at X¼ x, with respect to the node to

which it is driven, located at X¼ xf¼ 0. The initial position of the particle

X¼ x0 and the spherical coordinates (r,h) originating at the center of the par-

ticle are defined.a)bart.raeymaekers@utah.edu

0003-6951/2014/105(14)/144105/5/$30.00 VC 2014 AIP Publishing LLC105, 144105-1
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displacement of the node. x* indicates the position of the

node to which the particle is driven, relative to the transducer

rather than the local coordinate system. The inset of Fig. 1

shows the particle located at X¼ x, the initial and final posi-

tions of the particle, and the spherical coordinate system

(r, h) with origin at the center of the particle.

The dynamics of the fluid-particle system are expressed as

m€x � FrðxÞ � Fdðx; tÞ ¼ 0; (2)

where m is the mass and €x ¼ d2x=dt2 is the acceleration of

the particle. Fr is the acoustic radiation force and Fd is the

drag force acting on the particle. To calculate Fr and Fd, we

first define the acoustic wave in the reservoir. The acoustic

wave incident to the particle for the case of a standing plane

acoustic wave is written in terms of a velocity potential as

uinðX; tÞ ¼ <eð�u0eixtiðeikX � e�ikXÞÞ; (3)

where u0 is the amplitude of the standing wave, x is the

operating frequency, and k¼ 2p/k is the wave number. <eð�Þ
refers to the real part of Eq. (3). Defining X¼ r cos hþ x,

with x the location of the particle, Eq. (3) is rewritten in the

spherical particle coordinate system as11

uinðr; h; tÞ ¼ <e
X1
n¼0

AnjnðkrÞPnðcos hÞ
 !

: (4)

Here jn(�) is the nth order spherical Bessel function of the first

kind, Pn(�) is the nth order Legendre polynomial, and

An ¼ �u0eixtðeikx � ð�1Þne�ikxÞð2nþ 1Þinþ1: (5)

The scattered wave resulting from the interaction between

the acoustic wave and the particle is written as6,11,12

uscðr; h; tÞ ¼ <e
X1
n¼0

AnBnhnðkrÞPnðcos hÞ
 !

: (6)

Here, hn (�) is the nth order Hankel function of the first kind,

and Bn¼ anþ ibn is the complex scattering coefficient calcu-

lated from the boundary conditions at the fluid-particle inter-

face. The following conditions hold: (i) the fluid pressure is

equal to the normal stress at the surface of the particle, (ii)

no fluid penetration in the particle occurs, and (iii) the shear

stress is zero at the surface of the particle.6,11 A complete

derivation of the scattering coefficient Bn is given by

Faran.11 The resulting acoustic wave in the reservoir is the

sum of the incident and scattered wave, u¼uinþusc. The

acoustic radiation force Fr acting on the particle is calculated

from the rate of momentum within a control volume V
enclosing the particle,

Fr ¼
þ

V

@

@t
qf uð ÞdV; (7)

where u ¼ �ru is the 3D velocity vector of the fluid. Chen

and Apfel6 showed that for the case of a standing wave

(Eq. (3)) the acoustic radiation force acting on a spherical

particle in the direction of wave propagation (X-direction) is

written as

Fr ¼ �Cr sin 2kx; (8)

with

Cr ¼ 4qf pju0j2
X1
n¼0

ð�bnþ bnþ1þ 2anbnþ1� 2bnanþ1Þ: (9)

Since ka � 1 (Rayleigh regime), Eq. (9) can be approxi-

mated by its low-frequency expansion6

Cr ¼ 4qf pju0j2ðUðkaÞ3 þ OðkaÞ5Þ; (10)

where O(ka)5 represents the fifth and higher order terms. In

addition, Westervelt13 showed that a particle in a standing

acoustic wave is subject to Stokes and Oseen forces, i.e., the

drag force on the particle caused by velocity difference

between the particle surface and the surrounding fluid, given

as

Fd ¼ Csð�u � _xÞ þ Coð�u � _xÞj�u � _xj: (11)

Here _x ¼ dx=dt is the particle velocity, Cs¼ 6pla and

Co¼ 9/4pqf a2 are the Stokes and Oseen coefficients, respec-

tively, and l is the dynamic viscosity of the fluid. �u is the

fluid velocity at the particle surface in the X-direction, aver-

aged over h 2 ½0; p�, i.e.,

�u ¼ � 1

p

ðp

0

@u
@r

cos h� 1

a

@u
@h

sin h

� �
dh: (12)

Thus, using u¼uinþusc and Eqs. (4) and (6) we find that

�uðtÞ ¼ <eðu0eixt cos kxÞ; (13)

where x is the position of the particle and u0 is the fluid ve-

locity amplitude, i.e.,

u0 ¼ <e

�
�u0

p

X1
n¼0

AnGn

�
k jn

0 kað Þ þ Bnhn
0 kað Þ

� �

þ 1

a
jn kað Þ þ Bnhn kað Þ
� ���

: (14)

The prime denotes the first derivative of jn(�) and hn(�) with

respect to ka. Gn is defined as

Gn ¼
0; even n

C n=2ð ÞC n=2þ 1ð Þ
n� 1ð Þ=2

� �
! nþ 1ð Þ=2
� �

!
; odd n;

8><
>: (15)

where C(�) is the Gamma function. Combining Eqs. (2) and

(8)–(15) yields the dynamics of the fluid-particle system,

m€x þ Cr sin 2kx�Csð�u � _xÞ � Coð�u � _xÞj�u � _xj ¼ 0: (16)

Assuming small fluid velocity amplitude u0 and particle dis-

placement Dx, we linearize Eq. (16), i.e.,

€x þ 2fxn _x þ x2
nx� Cs�u ¼ 0; (17)

with the damping coefficient f ¼ Cs=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8kmCr

p
, and the natural

frequency xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kCr=m

p
. Increasing the amplitude of the

standing wave u0 increases the fluid velocity amplitude u0,

144105-2 Greenhall, Guevara Vasquez, and Raeymaekers Appl. Phys. Lett. 105, 144105 (2014)
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causing the solution of the linearized system to diverge from

that of Eq. (16), resulting in a nonlinear response. The particle

will approach the node and then oscillate. The response of the

linear system (Eq. (17)) can be solved given the initial condi-

tions (xðt ¼ 0Þ ¼ x0; _xðt ¼ 0Þ ¼ 0) and is a function of Dx.

However, no closed-form solution has been documented in

the literature describing the response of the nonlinear system

(Eq. (16)). Hence, we numerically simulate the trajectory of a

particle while it is driven to the node of the standing wave

using a second order Runge-Kutta scheme.

Equation (16) shows that the particle trajectory is defined

by a time-independent acoustic radiation force that drives the

particle towards the node, and a time-independent Stokes drag

force and time-dependent Stokes and Oseen drag forces that

resist the particle motion. Once the particle reaches the node of

the standing wave, the amplitude of the radiation force and the

average velocity of the particle is zero, causing the time-

independent Stokes drag force to be zero. Thus, the time-

dependent Stokes and Oseen drag force and the particle inertia

dominate the dynamics of the fluid-particle system and the par-

ticle enters into a stable periodic oscillation with amplitude ~x
around the node. Because the time-dependent terms in Eq. (16)

are oscillatory and quasi-reversible over one period T of the

standing wave, their effect on the average position of the parti-

cle over T is negligible, and the average particle position is dic-

tated by the time-independent radiation force Fr and time-

independent Stokes drag force Cs _x. We define the nondimen-

sional variable K1 as the ratio of the maximum acoustic radia-

tion force that the particle can experience, i.e., when it is

located halfway between the node and antinode, and the maxi-

mum possible time-independent Stokes drag force, i.e., the

drag force when the particle travels at cf. Hence,

K1 ¼
qf u

2
0U kað Þ3

lacf
: (18)

Adjusting K1 simultaneously changes xn and f as K1�xn
2

and K1� 1/f2. In most applications, it is necessary for a par-

ticle to be stationary at a desired location and to minimize

oscillation amplitude ~x around the desired location. To char-

acterize ~x we define the dimensionless variable K2 as the ra-

tio of the time-dependent Stokes and Oseen drag forces and

the particle inertia for the maximum steady-state particle ve-

locity _x ¼ ��u. Hence,

K2 ¼
lþ u0qf ka

xqpa2
: (19)

The transient and steady-state response of the system is

controlled by altering the forces acting on the particle, through

adjustment of K1 and K2. The transient response is character-

ized by the settling time Ts and the percent overshoot Mp,

while the steady-state behavior is characterized by the oscilla-

tion amplitude ~x of the particle around the node of the standing

wave. We define Ts as the time for which the average position

of the particle over one period of the acoustic wave remains

within xf 6 0.01Dx, and the percent overshoot Mp as the ratio

of the maximum particle overshoot beyond x¼ xf and k.

Figures 2(a)–2(c) show the nondimensional settling time

Tsx, the percent overshoot, and the nondimensional

oscillation amplitude ~x/k, each as a function of K1, for

U1¼ 0.74, U2¼ 0.12, and U3¼�27.56, which represent a

304 stainless steel, polystyrene, and cork particle in water,

respectively. The results are shown for Dx¼ k/10. However,

Ts, Mp, and ~x are almost independent of Dx. From Figs. 2(a)

and 2(b), we observe that the settling time decreases with

increasing K1 in the overdamped region, while Mp remains

zero. The radiation force is small relative to the time-

independent Stokes drag force, causing the particle to

approach the node slowly, without overshooting it.

Increasing K1 either increases the magnitude of the acoustic

radiation force or reduces the time-independent Stokes drag

force. This increases the particle velocity as it travels to the

node, thus reducing Ts while maintaining Mp¼ 0.

Alternatively, in the underdamped region, the magnitude of

the acoustic radiation force is large compared to the time-

independent Stokes drag force, which causes the particle to

overshoot and then oscillate around the node until settling

into the steady-state periodic oscillation. Increasing K1 and,

thus, the acoustic radiation force compared to the time-

independent Stokes drag force, drives the particle further

past the node, increasing Mp while Ts remains constant.

While for a second order linear system Ts should remain

strictly constant in the underdamped region, Fig. 2(a) indi-

cates a slight decrease in Ts with increasing K1. As K1

increases in the underdamped region, the natural frequency

of the fluid-particle system xn approaches the operating fre-

quency x, used to calculate the time averaged particle posi-

tion. As a result, the time-averaging covers a full period of

the harmonic response, filtering out the overshoots and

undershoots, and causing the settling time to decrease. From

Fig. 2(c), we observe that ~x increases with K1, as expected

FIG. 2. (a) Nondimensional settling time, (b) percent overshoot, and (c) non-

dimensional oscillation amplitude, as a function of K1, for U1¼ 0.74,

U2¼ 0.12, and U3¼�27.56, and for Dx¼ k/10.
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for a harmonically forced linear system (Eq. (17)). As K1

increases, xn increases and approaches the operating fre-

quency x, which results in resonance as the particle absorbs

more energy from the oscillating fluid. Hence, increasing K1

results in a faster particle displacement, at the cost of

increasing Mp and ~x.

Figure 3 shows typical particle trajectories x(t) for the

(a) overdamped, (b) critically damped, (c) underdamped,

and (d) nonlinear cases, for a 304 stainless steel sphere

in water (U1¼ 0.74), and for Dx¼ k/10 and x¼ 2.1

� 106 rad/s. The solid-line inset shows a magnified section

of the underdamped response, illustrating the harmonic

oscillations while the average position of the particle

approaches the desired node position. The dashed-line inset

shows an enlarged view of the particle trajectory, after it

settles into the steady-state oscillation around the node of

the standing wave. We observe the steady-state oscillations

of the particle due to the oscillating fluid velocity, which

applies drag force to the particle surface (see Eq. (11)). In

the dashed-line inset, the response is underdamped, and the

linear terms in the forcing function dominate, resulting in

particle oscillations at the operating frequency x.

Alternatively, the nonlinear response, illustrated in Fig.

3(d) and obtained for high values of K1, consists of steady-

state oscillations vibrating at multiple frequencies, includ-

ing x and its higher harmonic frequencies.

Figure 4 shows the nondimensional amplitude of the

steady-state particle oscillation as a function of K2, which is

the ratio of the total time-dependent drag force (Stokes and

Oseen) that drives the particle oscillation, and the particle

inertia that resists the oscillation. For small values of K2 the

fluid-particle system behaves linearly. Increasing K2

increases the amplitude of the standing acoustic wave u0,

which in turn increases the amplitude of the fluid velocity,

thereby increasing the drag force acting on the particle and

increasing the natural frequency xn of the system. As xn

approaches the operating frequency x of the standing wave,

the system approaches resonance, which increases the steady-

state oscillation amplitude. Increasing K2 further reduces the

oscillation amplitude because xn diverges from x. For large

values of K2, and therefore large velocity differences between

the particle and surrounding fluid, the time-dependent Oseen

drag force dominates the total time-dependent drag force (Eq.

(11)), resulting in nonlinear behavior of the fluid-particle sys-

tem. Rather than oscillating at a single frequency, the particle

oscillates at multiple frequencies (Fig. 3(d)), the amplitude of

which increase with increasing K2.

In conclusion, we have analyzed the dynamics of a parti-

cle submerged in a fluid medium, driven to the node of a

standing bulk acoustic wave by an acoustic radiation force.

We have simulated the particle trajectory, and have charac-

terized the transient and steady-state behavior of the fluid-

particle system as a function of the particle and fluid proper-

ties and the operating parameters of the transducers. When

the dynamic behavior of the fluid-particle system is over-

damped, the settling time decreases and the percent over-

shoot remains zero, with increasing ratio of acoustic radiation

force and time-independent Stokes drag force (K1). When the

dynamic behavior of the fluid-particle system is underdamped,

the settling time is constant while the percent overshoot

increases with increasing K1. We find that the particle oscil-

lates around the node of the acoustic standing wave. Near the

node, the amplitude of these oscillations and the natural fre-

quency of the fluid-particle system xn are dependent on the ra-

tio of the time-dependent Stokes and Oseen damping forces

and the particle inertia (K2). For small K2, the fluid-particle

system behaves linearly, oscillating at the operating frequency

x, and resonating as the natural frequency of the system

approaches x. However, for large K2 the system behaved non-

linearly, oscillating at multiple frequencies, including the oper-

ating frequency as well as its higher order harmonics.
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