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A new cloaking method is presented for 2D quasistatics and the 2D Helmholtz equation that we

speculate extends to other linear wave equations. For 2D quasistatics it is proven how a single active

exterior cloaking device can be used to shield an object from surrounding fields, yet produce very small

scattered fields. The problem is reduced to finding a polynomial which is close to 1 in a disk and close to 0

in another disk, and such a polynomial is constructed. For the 2D Helmholtz equation it is numerically

shown that three exterior cloaking devices placed around the object suffice to hide it.
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Making a body truly invisible, in the sense of preventing
it from absorbing radiation or scattering radiation in any
direction, has long been regarded as the domain of science
fiction rather than science, with a few exceptions [1,2].
This perspective has changed in recent years due to fasci-
nating advances in our understanding of how electromag-
netic fields can be manipulated. Recent proposals for
invisibility, as reviewed in [3,4], can be broadly placed in
two main groups: interior cloaking, where the cloaking
device surrounds the object to be cloaked, and exterior
cloaking, where the cloaking region is, surprisingly, out-
side the cloaking device.

Interior cloaking methods include plasmonic cloaking
due to scattering cancellation [5], transformation based
cloaking [6–9], and active cloaking [10]. Transformation
based cloaking has gained particular attention, being sup-
ported by experiment [11–15] and rigorous mathematics
[16–18]. While difficult to exactly achieve, various ap-
proximate schemes make it more practical [9,15,19,20].

Exterior cloaking methods include cloaking due to
anomalous resonance [21–24] where polarizable dipoles,
and polarizable line quadrupoles, and clusters of arbitrarily
many polarizable line dipoles in the vicinity of a flat or
cylindrical superlens [25–27] are cloaked, but apparently
not larger objects [28], and cloaking due to complementary
media [29] where an ‘‘antiobject’’ is embedded in a super-
lens, to create cancellation.

Miller [10] found that active controls rather than passive
materials could be used to achieve interior cloaking. Here
we use active cloaking devices to achieve exterior cloak-
ing. In principle this could be done by mimicking the effect
of the cloaking device of [29], but our objective is to have
an active cloaking device which does not require one to
know the shape of the object to be cloaked.

Perhaps an analogy with water waves can be made [14].
Our objective is to use the cloaking devices to create an
area of still water, near but outside the cloaking devices,
without disturbing the pattern of waves a certain distance
away. Then a boat can be placed in the area of still water,
without disturbing the surrounding waves: the boat is
cloaked, and so are the cloaking devices. The area of still

water is created by destructive interference between the
surrounding waves and anomalously localized waves cre-
ated by the cloaking devices. A similar principle is used in
active control of sound for, e.g., noise suppression [30,31].
Our work is the first where the ‘‘quiet zone’’ is not com-
pletely surrounded and the sources used to achieve cancel-
lation emit very little radiation in the far field. Our cloaking
approach has the disadvantage that one needs to know in
advance the incoming probing waves, including phase
information. However, it has the advantage of being broad-
band [32], unlike recently proposed methods of cloaking
(e.g., [9,11–13]) which have the major drawback of being
narrow band unless the background medium has a dielec-
tric constant sufficiently greater than one so one can
achieve frequency independent relative refractive indices
less than one.
For simplicity our analysis is restricted to the two-

dimensional case, corresponding to transverse electric or
magnetic waves, so the governing equation is the
Helmholtz equation. To begin with we study the two-
dimensional quasistatic problem since the analysis can be
carried further in that case and yields valuable insights. For
the Helmholtz equation our results are purely numerical
but provide convincing evidence that broadband exterior
cloaking is possible [32].
For the two-dimensional quasistatic problem we assume

that the dielectric constant of the background media is
constant; i.e., the voltage is harmonic. Also by Brð�Þ �
R2 we will denote the disk with radius r centered at x ¼
ð�; 0Þ, and by f we denote the potential due to exterior
sources, that would exist in the absence of both the cloak-
ing device and object to be cloaked. The exterior cloak we
propose for the quasistatic problem, consists of one active
cloaking device, which is a simply connected region con-
taining the origin, along the boundary of which the poten-
tial can be prescribed, and a region to be cloaked B�ð�Þ
with � > �> 0, that is exterior to the cloaking device. The
cloaking is achieved as follows: according to the assumed
known potential f (which could be obtained by suitably
placing probes in the surrounding medium) the active
device generates appropriate fields such that one will
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have very small fields inside B�ð�Þ and at the same time a
very small total scattering effect (due to the device and the
object) outside a sufficiently large disk, i.e., B�ð0Þ, with
� > �þ �. Therefore, an exterior cloak will, regardless of
the probing field, achieve approximate invisibility of both
the active device and any passive object placed in the disk
B�ð�Þ.

The question is then to provide a constructive way to find
the potential at the device in order to achieve cloaking.
First, notice that by subtracting f from the potential every-
where and applying an inversion transformation to the
problem, namely z � 1=s where s ¼ x1 þ ix2, the ques-
tion now is to

find a harmonic v: R2 ! R such that

v � 0 in B1=�ð0Þ and v � �f in B�� ð��Þ: (1)

Here we have �� ¼ �=ð�2 � �2Þ and �� ¼ �=ð�2 � �2Þ.
In fact we only need v to be harmonic outside the image of
the cloaking device, but requiring it to be harmonic in all
R2 simplifies the problem. If such a function v exists then
its Dirichlet data on the boundary of the cloaking device
give us the necessary potential one needs to generate at the
surface of the device in order to achieve approximate
invisibility.

By introducing harmonic conjugate potentials one ob-
tains the analytic extensions, V and F, of v and f, respec-
tively. Then problem (1) is equivalent to

find V: C ! C analytic, such that

V � 0 in B1=�ð0Þ and V � �F in B�� ð��Þ: (2)

Since the product of two analytic functions is again
analytic, the problem (2) can be equivalently formulated as

find W: C ! C analytic, such that

W � 0 in B1=�ð0Þ and W � 1 in B�� ð��Þ: (3)

To recover V one needs to multiply W by a polynomial
which approximates �F in B�� ð��Þ.

Next we consider the Hermite interpolation polynomial
h: C ! C of degree 2n� 1 defined by

hð0Þ ¼ 1; hð��Þ ¼ 0;

hðjÞð0Þ ¼ hðjÞð��Þ ¼ 0 for j ¼ 1; . . . ; n� 1:
(4)

From (4), by algebraic and combinatoric manipulations
together with an induction argument, it can be shown that
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Notice that (5) implies the symmetry property hð�� � zÞ þ
hðzÞ ¼ 1.
Our claim that WðzÞ ¼ 1� hðzÞ satisfies the properties

in (3) when 1=� and �� are small enough is strongly
supported by Fig. 1: the solid white curve corresponds to
the contour jhðzÞj ¼ 0:01 and the dashed white curve to
jhðzÞ � 1j ¼ 0:01. Also, the last equality in (5) implies that
hðzÞ is in fact a power series in the variable z=��, which by
the ratio test converges as n ! 1 in the entire figure eight
shaped region jz2 � ��zj< �2�=4 (red curve in Fig. 1), and
diverges everywhere outside this region, excluding the
boundary. The convergence is uniform in any simply con-
nected domain that lies strictly within the figure eight.
Therefore the limit function is analytic in each half of the
figure eight, and from the Taylor series of the limit function
at the points z ¼ 0 and z ¼ ��, implied by (4), we deduce
that the limit function is one in the left side of the figure
eight, and zero in the right side of the figure eight. To
ensure that (3) is satisfied we require that the disks B1=�ð0Þ
and B�� ð��Þ lie, respectively, within the left and right sides
of the figure eight, which is the case if both 1=� and �� are
less than ��=ð2þ 2

ffiffiffi
2

p Þ. Notice that one gets cloaking (in
the limit n ! 1) not just within the disk B�� ð��Þ but in the
whole right half of the figure eight. Thus the scheme based
on the Hermite polynomial defined in (5) achieves exterior
cloaking in the original s ¼ 1=z plane for objects which
are sufficiently small compared with �. For example with
�� ¼ 1, we have �� < 0:2, � > 4:9, and � ¼ ��=ð�2� �
�2�Þ< 0:2.
The cloaking device can be taken to be any simply

connected region which contains the origin, but not the
point (�, 0). If it is a small disk, say Brð0Þ with r � 1 then
one needs to generate enormously large potentials at its
boundary. Alternatively its boundary could be taken as the
contour where, say, jhð1=sÞj ¼ 100 (black curve in Figs. 1
and 2), then the cloaking device will tend to surround the
cloaking region as n ! 1. Such a cloaking device is
demonstrated in Fig. 2 where we wish to cloak a (almost
resonant) disk of radius 0.2 centered at s ¼ 1:1 with di-
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FIG. 1 (color online). Magnitude of the Hermite polynomial
hðzÞ for �� ¼ 1 and degree n ¼ 10. The color scale is logarith-
mic from 0.01 (dark blue) to 100 (dark red).

PRL 103, 073901 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

14 AUGUST 2009

073901-2



electric constant � ¼ �0:99 and located inside the cloaked
region (solid white curve where jhð1=sÞj ¼ 0:01). This
‘‘scatterer’’ deforms the vertical equipotential lines of the
‘‘incident’’ field fðsÞ ¼ s when the device is inactive
[Fig. 2(a)]. When the device is active the effect of the
scatterer is greatly diminished, making it for all practical
purposes invisible: outside the dashed white curve where
jhð1=sÞ � 1j ¼ 0:01, the equipotential lines are vertical
[Fig. 2(b)]. Indeed the discrepancy between the incident
field and the field on the dashed white circle in Fig. 2(b) is
of about 1.1% of the incident field or 2.9% of the uncloaked
scattered field, measured in the L2 norm. Because of their
association with high order multipoles these errors decay
very rapidly as � increases.

One possible extension of the quasistatic cloaking is to
the Helmholtz equation�uþ k2u ¼ 0where k ¼ 2�=� is
the wave number and � ¼ 2�c0=! is the wavelength at
frequency! and constant propagation speed c0. Numerical
simulations suggest it is necessary to take D � 3 devices
located at points x1;x2; . . . ;xD surrounding the cloaked
region to design good cloaks regardless of the incident field
direction. The cloaked region is for simplicity the disk
jxj � � and the devices lie on the circle jxj ¼ �. To ensure
that objects inside the cloaked region are hard to observe at
locations jxj � �, the devices need to create a combined
field ud such that

ud ��ui for jxj � �; and ud � 0 for jxj � �; (6)

where ui is the field due to exterior sources which would
exist in the absence of the cloaking devices and the object
to be cloaked. Since we want ud to be a solution to the
Helmholtz equation and decay far from the devices, we use
the ansatz,

udðxÞ ¼
XD

m¼1

XN

n¼�N

bm;nH
ð1Þ
n ðkjx� xmjÞ exp½in�m	; (7)

where Hð1Þ
n is the nth Hankel function of the first kind and

�m � argðx� xmÞ is the angle between the vectors x� xm

and (1, 0). The coefficients bm;n 2 C are found numeri-

cally by enforcing (6) on N� points p�
1 ; . . . ;p

�
N�

of the

circle jxj ¼ � and N� points p�
1 ; . . . ;p

�
N�

of the circle

jxj ¼ �. The resulting linear equations are Ab � �ui

and Bb � 0, where b 2 CDM, M ¼ 2N þ 1, is a vector
with the coefficients bm;n, and the matrices A 2 CN�
DM

and B 2 CN�
DM are constructed so that ðAbÞj ¼ udðp�
j Þ

and ðBbÞj ¼ udðp�
j Þ.

Coefficients b satisfying these equations in the least
squares sense can be obtained via the singular value de-
composition (SVD) in two steps. First a solution b0 with
Ab0 � �ui is calculated using the truncated SVD. Then a
correction z is found as a minimizer of kBðb0 þ zÞk2 such
thatAz ¼ 0. The latter linear least squares problem can be
easily solved with the truncated SVD if a basis of the null
space of A is available, which is the case since the SVD of
A was computed in the first step. Thus the coefficients to
drive the cloaking devices are b ¼ b0 þ z.
We illustrate this procedure in Fig. 3 with three devices

located � ¼ 10� away from the origin. Here k ¼ c0 ¼ 1,
� ¼ 2� and we apply a plane wave incident field uiðxÞ ¼
exp½ikx � d	 with d ¼ ð cosð2�=7Þ; sinð2�=7ÞÞ. The
cloaked region is the solid white circle with radius � ¼
2�. Invisibility is enforced on the dashed white circle of
radius � ¼ 20�. The control points p�

j and p�
j are uni-

formly spaced and less than �=2 apart on their respective
circles and N ¼ 57 terms were used for the ansatz (7).
Finally, the scattered field resulting from the impenetrable
‘‘kite’’ obstacle with sound-soft (homogeneous Dirichlet)
boundary conditions is computed using the boundary in-
tegral equation approach in [33].
As shown in Fig. 3(b), when the cloaking devices are

active they create a ‘‘quiet’’ region where the wave field is
close to zero. An object lying in this region is practically
invisible because both the scattered and device’s fields are
for all practical purposes undetectable outside of the
dashed white circle. The field outside the dashed white
circle is nearly identical to the incident plane wave: the
discrepancy on that circle is of about 1:5
 10�5% of the
incident field or 6:8
 10�5% of the uncloaked scattered
field, measured with the L2 norm. Of course these relative
errors depend on the particular choice of the cutoffs for the
singular values in our two step approach.
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FIG. 2 (color online). Real part of the
total field with the quasistatic cloaking
device (a) inactive and (b) active in the s
plane. The color scale is linear from�10
(dark blue) to 10 (dark red) and the
scatterer appears in black.
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By Green’s identities, these point devices could be re-
placed by a bounded region containing x1; . . . ;xD but not
the cloaked region, provided the region’s boundary has a
controllable single- and double-layer potential (i.e., a point
source and dipole density [33]). One example is to take D
disjoint disks, however if their radii are too small then the
strength of the potentials on the disk boundaries would be

enormous [since for n � 0, Hð1Þ
n ðrÞ ¼ Oðr�jnjÞ as r ! 0].

A natural question is whether one can get exterior cloaking
with reasonable field magnitudes. The black curves repre-
senting the contours judðxÞj ¼ 100 in Fig. 3 suggest this is
possible because they resemble three disjoint disks.

A complete mathematical discussion, including the rig-
orous analysis for the arguments for the quasistatic case,
together with a different analytical approach, will be in-
cluded in a forthcoming publication. The theory for the
Helmholtz problem remains an object of current research.
We anticipate that the results extend to three dimensions
and to the full Maxwell equations but this remains to be
explored.
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FIG. 3 (color online). Real part of the
total field with the Helmholtz cloaking
devices (a) inactive and (b) active. The
color scale is linear from �1 (dark blue)
to 1 (dark red) and the axis units are �.
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