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Abstract The response function of a network of springs and masses, an elastodynamic

network, is the matrix valued function W(ω), depending on the frequency ω, mapping

the displacements of some accessible or terminal nodes to the net forces at the terminals.

We give necessary and sufficient conditions for a given function W(ω) to be the response

function of an elastodynamic network, assuming there is no damping. In particular we

construct an elastodynamic network that can mimic a suitable response in the frequency

or time domain. Our characterization is valid for networks in three dimensions and

also for planar networks, which are networks where all the elements, displacements

and forces are in a plane. The network we design can fit within an arbitrarily small

neighborhood of the convex hull of the terminal nodes, provided the springs and masses

occupy an arbitrarily small volume. Additionally, we prove stability of the network

response to small changes in the spring constants and/or addition of springs with

small spring constants.
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1 Introduction

Is it possible to design an elastic material that has a prescribed response? This question

is answered by Camar-Eddine and Seppecher [4] for linear elastic materials in three

dimensions, assuming the macroscopic response is governed by a single displacement

field. Their approach consists of three steps. First it is shown how to design a continuum
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material that behaves like an elastic network (a network composed of springs). Then

the response of elastic networks is characterized, i.e. it is shown how to construct an

elastic network with a suitable response. A limiting argument is then used to answer the

question for the continuum. As a first step towards solving the characterization problem

when the response depends on time, we show how to design an elastodynamic network

(a network of springs and masses), that can mimic a prescribed response as a function

of time (or frequency). Moreover if the springs and masses occupy an arbitrarily small

volume, the network can be designed to fit within an arbitrarily small neighborhood of

the convex hull of the terminal nodes, which is a requirement for an argument similar to

that of Camar-Eddine and Seppecher [4]. An earlier characterization of elastodynamic

networks is that of Milton and Seppecher [9]. However the network elements used in the

construction [9] are frequency dependent, so the constructed network can only mimic

the response function at a single fixed frequency.

In a different context, the approach of Camar-Eddine and Seppecher was applied

earlier by the same authors [3] to characterize all possible responses for the conductiv-

ity equation, assuming the macroscopic response is governed by a single voltage field.

The problem of finding a network with a given response is often called “network syn-

thesis”, and the earliest example is Kirchhoff’s Y − ∆ theorem, which characterizes

the response of any resistor network in three dimensions. Another characterization for

resistor networks is that of Curtis, Ingerman and Morrow [5] who consider planar net-

works that can be embedded inside a disk and where all terminals lie on its boundary.

For electrodynamic networks (with resistances, capacitors and inductances), we are

only aware of results dealing with the frequency response or impedance of a circuit

with two terminals (see Foster [6, 7] and Bott and Duffin [1]). Milton and Seppecher

[9] give a construction for n−terminal elastodynamic, electrodynamic and acoustic net-

works which is valid at a single frequency. The electromagnetic analog of elastodynamic

networks is considered by the same authors [10, 11]

In §2 we give the properties of the response function of elastic and elastodynamic

networks. The construction of a network that matches a response function with the

properties in §2 is given for the static case in §3. Note that the characterization of

elastic networks by Camar-Eddine and Seppecher [4] is part of a limiting argument

on energy functionals, so only non-degenerate three dimensional elastic networks are

needed. The degenerate case corresponds to planar elastic networks (the network, forces

and displacements lie on a plane) and is a set of measure zero which leaves the energy

functionals considered in [4] unaffected. We complete the characterization in [4] to

include planar elastic networks. Then in §4 we completely characterize the response of

elastodynamic networks (planar or in three dimensions) for all frequencies and assuming

there is no dissipation (damping) in the network. We include in the appendices two

technical results. Appendix A shows that the network response is stable with respect

to small changes in the spring constants and the addition (but not deletion) of springs.

Appendix B uses stability to give a systematic method of modifying an elastic network

to eliminate floppy modes without changing significantly the response. Floppy modes

correspond to nodes that can move with zero forces and they are discussed in more

length in §2.2.
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1.1 Preliminaries

Consider a network composed of springs and masses, and assume we only have access

to n “terminal” or “boundary” nodes x1, . . . ,xn ∈ Rd, where the dimension d is either

2 or 3. The network is said to be planar if d = 2 and the springs do not cross. The

static response matrix or displacement-to-forces map is the nd×nd matrix W so that

f = Wu,

where u = (uT1 , . . . ,u
T
n )T is the vector of displacements ui of the terminal nodes xi

and f = (fT1 , . . . , f
T
n )T is the vector of net forces fi acting on node xi at equilibrium.

In the dynamic case the displacements u(t) and f(t) depend on time t. Let û(ω)

be the Fourier transform of u(t),

û(ω) =

∫ ∞
−∞

u(t)e−iωtdt,

and similarly for f̂(ω), where ω is the frequency. Then if ω is not a resonance frequency

of the network (a precise definition of resonance is given later in §2.2.2), the response

matrix of the network is the possibly complex nd × nd matrix valued function Ŵ(ω)

such that

f̂(ω) = Ŵ(ω)û(ω).

For convenience we have chosen to work in the frequency domain. However when u(t) =

0 for t < 0, our results can be reformulated for the transfer function of the network

since L[u(t)](s) = û(−is), where L denotes the Laplace transform, i.e.

L[u(t)](s) =

∫ ∞
0

u(t)e−stdt.

In this case the transfer function of the network is Ŵ(−is). As we work only in the

frequency domain, we drop the hats in the Fourier transform notation for the sake of

clarity (i.e. u(ω) ≡ û(ω) etc. . .). Also as there is no dissipation, it suffices to assume

that u(ω) and f(ω) are real to determine the real valued function W(ω).

2 The response function of an elastodynamic network

In this section we establish the properties that the response of an elastodynamic net-

work satisfies. We start with the response of networks (static or dynamic) where all

the nodes are terminals (§2.1) and then study the case where interior nodes are present

(§2.2). We also include some transformations in §2.3 that do not affect the response

function.

2.1 Response function for networks without interior nodes

Consider the simple network consisting of two nodes x1 and x2 with masses m1 and

m2, linked with a spring with spring constant k1,2. Let ai be the force exerted by the

spring on node xi, i = 1, 2. By Hooke’s law

a2 = −k1,2
(x2 − x1)(x2 − x1)T

‖x2 − x1‖2
(u2 − u1) = −a1.
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The laws of motion can be written in matrix form as −ω2Mu = f −Ku, where

K = k1,2

[
n1,2n

T
1,2 −n1,2n

T
1,2

−n1,2n
T
1,2 n1,2n

T
1,2

]
, M = diag (m1e,m2e),

n1,2 =
x2 − x1

‖x2 − x1‖
,

and the vector e = (1, . . . , 1) ∈ Rd for d = 2, 3. Thus the response function of a single

spring is given by

W(ω) = K− ω2M. (1)

When all nodes are terminal nodes (i.e. there are no interior nodes) the response

function can also be written in the form (1), but now K is the stiffness matrix of the

network and the mass matrix

M = diag (m1e, . . . ,mne), (2)

where mi ≥ 0 is the mass of the i−th node and n is the number of nodes. The stiffness

matrix K of the network is a n× n matrix of d× d blocks (i.e. a nd× nd matrix). The

d× d block [K]i,j in the i−th row and j−th column of the stiffness matrix is

[K]i,j =

{
−ki,jni,jnTi,j when i 6= j,∑n
l=1,l 6=j kl,jnl,jn

T
l,j when i = j.

(3)

Here ki,j is the stiffness constant of the spring between nodes xi and xj , or zero if

there is no spring joining these nodes. The vector ni,j is a unit vector with direction

xi − xj . We only consider non-negative spring stiffnesses ki,j . Stiffnesses with a non-

zero imaginary part model damping or dissipation of energy in the network and are

left for future studies.

2.2 Response function for networks with interior nodes

2.2.1 The static case

The response matrix W can be obtained from the response matrix A of the network

where all nodes are considered as terminal nodes. The partitioning of the nodes into

interior nodes I and terminal (boundary) nodes B induces the following partitioning

of A,

A =

[
ABB ABI

AIB AII

]
. (4)

Instead of dealing directly with the response matrix A, it is convenient to introduce

the quadratic form

qA(u) = uTAu,

which represents twice the total elastic energy stored in the network. In the simple case

of a single spring between nodes x1 and x2 with spring constant k, the quadratic form

is

s(x1,x2)(u1,u2) = k

(
(u1 − u2) · x1 − x2

‖x1 − x2‖

)2

.
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We omit the spring constant indices for clarity. When there are more springs qA is the

sum of the quadratic forms for all springs, thus qA(u) ≥ 0.

For general static networks the response matrix is defined indirectly by its quadratic

form qW:

qW(uB) = inf
uI

qA(uB ,uI). (5)

By the partitioning (4) we may rewrite

qA(uB ,uI) = uTBABBuB + 2uTBABIuI + uTI AIIuI .

The first order optimality conditions for the minimization (5) are actually the balance

of forces at the interior nodes:

0 = ∇uI qA(uB ,uI) = 2AIIuI + 2AIBuB .

The following lemma shows that for any uB it is possible to balance forces at the

interior nodes and it implies the minimization (5) has at least a minimizer (since qA
is bounded below). Another way of seeing this lemma is that if there are any “floppy”

modes within the interior nodes (i.e. modes that generate displacements with zero

forces) then those modes are not coupled to the terminals. Hereinafter R(B) denotes

the range or columnspace of a matrix B.

Lemma 1 Given the partitioning (4) of the response matrix A where all nodes are

considered as terminal nodes, we have R(AIB) ⊆ R(AII).

Proof By reciprocity AT = A, thus it is equivalent to prove N (ABI) ⊇ N (AII),

where N (B) denotes the nullspace of a matrix B. Let uI be a displacement such that

AIIuI = 0 (i.e. a “floppy” mode). Then

0 = uTI AIIuI =
[
0 uTI

]
A

[
0

uI

]

=
∑

springs i, j∈I
s(xi,xj)(ui,uj) +

∑
springs i∈I,j∈B

ki,j

(
ui ·

xi − xj∥∥xi − xj
∥∥
)2

.

Therefore for all nodes xi ∈ I and xj ∈ B that are linked by a spring we must have

ui · (xi − xj) = 0, which means precisely that ABIuI = 0. ut

Remark 1 We show later in Appendix B that floppy modes can be eliminated from

a network by adding springs with small spring constants. The response of the new

network can be made arbitrarily close to that of the original one, provided the new

springs have sufficiently small stiffness. Examples of floppy modes are given in Figure 3.

By eliminating the interior nodes, the static response matrix can thus be written

in Schur complement form:

W = ABB −ABIA
†
IIAIB , (6)

where † stands for the Moore-Penrose pseudo-inverse, which is is simply the inverse

if there are no floppy modes. Recall that one way of defining the pseudo-inverse of a

matrix B is

B† = lim
ε→0

BT (BBT + ε2I)−1.



6

We denote by u ∧ v the cross product of the vectors u,v ∈ Rd. For d = 2 we have

u ∧ v = det[u,v] and for d = 3, u ∧ v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)T .

Before reviewing some properties of the static response matrix we need the following

definition.

Definition 1 A balanced system of forces fi, i = 1, . . . , n supported at nodes xi,

i = 1, . . . , n in Rd (d = 2, 3) satisfies:

(a)

n∑
i=1

fi = 0 (balance of forces)

(b)

n∑
i=1

xi ∧ fi = 0 (balance of torques)

Lemma 2 For any stiffness matrix A (of the form (3)), the static response matrix W

at the terminals (see (6)) satisfies the following properties.

(a) W ∈ Rnd×nd.

(b) W = WT (reciprocity)

(c) W is positive semidefinite (energy is not produced by the network)

(d) Every column f = (fT1 , . . . , f
T
n )T of W is a balanced system of forces when sup-

ported at the nodes xi in Rd.

Proof Properties (a), (b) and (d) follow from the construction of the response matrix.

We now prove Property (c). Let W̃ be the response matrix of a network if all the nodes

are considered as terminal nodes. Then for all displacements u ∈ Rnd we have

q̃(u) = uTW̃u =
∑

springs i,j

s(xi,xj)(ui,uj) ≥ 0,

where s(xi,xj)(u,v) is the quadratic form associated with the spring between nodes xi
and xj . Thus (c) holds for networks where all the nodes are terminals. Using (5) we

see that (c) holds for general networks as well. ut

2.2.2 The dynamic case

The response function in the dynamic case can be obtained in a similar way as in the

static case. First if all the nodes are terminal nodes, the response function A(ω) of the

network is given by (1). The partitioning of A induced by the partitioning of the nodes

into boundary B and interior I nodes is,

A(ω) =

[
KBB KBI

KIB KII

]
− ω2

[
MBB

MII

]
.

As in the static case we can introduce the quadratic form

qA(uB ,uI ;ω) = uTB(KBB − ω2MBB)uB + 2uTBKBIuI + uTI (KII − ω2MII)uI . (7)

Remark 2 Unlike in the static case the quadratic form qA(uB ,uI ;ω) could be un-

bounded from below for uB fixed. This happens for example if there is a uI so that

KIIuI 6= 0 and MIIuI 6= 0. Then for ω large enough the matrix in the last term of

qA becomes indefinite. Thus we cannot define the response function at the terminals

through a minimization principle similar to (5).
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The dynamic response function at the terminals is the displacement-to-forces map

at the critical point ∇uI qA(uB ,uI ;ω) = 0, if such critical point exists. Because qA
may be unbounded below, this critical point could be a saddle point for the quadratic

qA with uB fixed. The frequencies ω for which there is no critical point (i.e. there is

some uB so that ∇uI qA(uB ,uI ;ω) 6= 0 for all uI) are important physically and in

our derivation and correspond to the resonance frequencies of the network.

To give an expression for the dynamic response function we partition the interior

nodes into nodes J with positive mass and massless nodes L, so that I = J ∪ L.

Therefore MJJ is positive definite but MLL = 0.

Lemma 3 For any nd× nd stiffness matrix K (see (3)) and nd× nd mass matrix M

(see (2)), the response function at the terminals is

W(ω) = K̃BB − ω2MBB − K̃BJ (K̃JJ − ω2MJJ )−1K̃JB , (8)

provided that ω2 is not an eigenvalue of M
−1/2
JJ K̃JJM

−1/2
JJ . Here we have used the

submatrices of the matrix

K̃ =

[
K̃BB K̃BJ

K̃JB K̃JJ

]
=

[
KBB KBJ

KJB KJJ

]
−
[
KBL

KJL

]
K†LL

[
KLB KLJ

]
. (9)

Proof The matrix K̃ is the response matrix for the network with terminals B ∪ J and

interior nodes L and can be obtained from (6). Since the nodes L are massless the

dynamic response at the nodes B ∪ J is K̃− ω2diag (MBB ,MJJ ). Since MJJ is non-

singular, the matrix K̃JJ − ω2MJJ is singular if and only if ω2 is an eigenvalue of

M
−1/2
JJ K̃JJM

−1/2
JJ . Thus when ω2 is not an eigenvalue of M

−1/2
JJ K̃JJM

−1/2
JJ , we can

equilibrate forces at the nodes J and get the expression for the response function. ut

A corollary of Lemma 3 is that if ω is a resonance frequency of the network then

ω2 must be an eigenvalue of the matrix M
−1/2
JJ K̃JJM

−1/2
JJ . The expression for the

response function in Lemma 3 leads to the following properties.

Lemma 4 The response function W(ω) of any network of springs and masses with n

terminals is of the form

W(ω) = A− ω2M +

p∑
i=1

C(i)

ω2 − ω2
i

∈ Rnd×nd, (10)

where the matrix M = diag (m1e, . . . ,mne) is real diagonal with the masses of the

boundary nodes in the diagonal, the vector e = [1, . . . , 1] ∈ Rd, the matrices C(i) are

real symmetric positive semidefinite, and the static response

W(0) = A−
p∑
i=1

ω−2i C(i),

is real symmetric positive semidefinite and balanced (i.e. it satisfies the conditions (a)–

(d) of Lemma 2). The resonant frequencies are distinct, finite and satisfy ω2
i > 0.
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Proof Let I = J ∪ L be a partition of the interior nodes into massless nodes L and

nodes with positive mass J , and let K̃ be defined as in (9). By Lemma 3 the response

function at the terminals can be rewritten as

W(ω) = K̃BB − ω2MBB − K̃BJM
−1/2
JJ (C− ω2I)−1M

−1/2
JJ K̃JB ,

where C = M
−1/2
JJ K̃JJM

−1/2
JJ and ω2 is not an eigenvalue of C. The matrix C is

symmetric positive semidefinite because K̃ is a symmetric positive semidefinite matrix

(Lemma 2). Let {ω2
j }
N
j=1 be the (nonnegative) eigenvalues of C and {cj}Nj=1 be a

corresponding orthonormal basis of eigenvectors of C, where N = |J |. When ω 6= 0

and ω2 6= ω2
j , the response function W(ω) becomes

W(ω) = K̃BB − ω2MBB +

N∑
j=1

c̃j c̃
T
j

ω2 − ω2
j

, (11)

with c̃j = K̃BJM
−1/2
JJ cj , j = 1, . . . , N . Let r = rank (C) = rank (K̃JJ ) and assume

the eigenvalues are ordered such that ω2
j > 0 for j = 1, . . . , r. Clearly K̃JJM

−1/2
JJ z = 0

if and only if Cz = 0. Thus M
−1/2
JJ cj ∈ N (K̃JJ ), for j = r + 1, . . . , N . By Lemma 1,

we have N (K̃JJ ) ⊆ N (K̃JB) which means that

c̃j = 0 for j = r + 1, . . . , N.

In other words, only the first r terms of the sum in (11) are nonzero. We obtain the

form (10) of the response function from (11) by setting A = K̃BB and M = MBB . The

matrices C(i) are the sum of the matrices c̃j c̃
T
j that correspond to the same resonance

ω2
i , thus the C(i) must be real symmetric positive semidefinite.

We now show that W(0) = K̃BB − K̃BJK̃†JJK̃JB , i.e. at ω = 0 the dynamic

response function is the static response of the network. Then the properties of W(0)

follow from Lemma 2. First note that from (11),

W(0) = K̃BB − K̃BJM
−1/2
JJ C†M

−1/2
JJ K̃JB

where we used that

C† =

r∑
j=1

ω−2j cjc
T
j .

It is sufficient to show that uJ = −M
−1/2
JJ C†M

−1/2
JJ K̃JBuB equilibrates the forces at

the interior nodes for any terminal displacements uB . Indeed we have

CM
1/2
JJ uJ = (M

−1/2
JJ K̃JJM

−1/2
JJ )M

1/2
JJ uJ = −M

−1/2
JJ K̃JBuB , (12)

since Lemma 1 and MJJ invertible imply

R(C) = R(M
−1/2
JJ K̃JJ ) ⊇ R(M

−1/2
JJ K̃JB).

The balance of forces at the nodes J (i.e. K̃JJuJ = −K̃JBuB) comes from multiplying

(12) by M
1/2
JJ on the left. ut
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v

xj

u

xi

w

u

xi

xjv

(a) (b)

Fig. 1 Truss structure replacing a spring between nodes xi and xj without changing the
response function. This structure can be used to avoid a line for (a) networks in R3 or (b)
planar networks.

2.3 Network transformations not affecting the response function

We need a few elementary transformations that allow more flexibility with the place-

ment of springs in a network. We assume throughout this text that the springs occupy

an arbitrarily small volume and that the nodes are points which may or may not have

a mass attached to them.

2.3.1 Avoiding a line

It is possible to transform a spring in order to avoid a line or a crossing (for networks

in R3). The construction for networks R3 is given in [9, Example 3.2] and consists of

replacing the spring by a simple truss as shown in Figure 1(a). A similar construction

can be done for planar networks, see Figure 1(b). If a network in R3 has springs

crossing, these can be eliminated via this transformation since the position of the

additional interior nodes u,v,w is not fixed. Moreover, the additional nodes in the

truss structures can be chosen to avoid a finite number of points.

2.3.2 Virtual crossings

A network with all springs in R2 is not necessarily planar because its springs may

cross. However [9, Example 3.15] shows how to replace such a crossing by a planar

network with exactly the same response function. This transformation involves adding

a node at the crossing point of the springs and carefully choosing the spring constants.

To avoid a finite number of points one can first replace one of the springs by a simple

truss as in Figure 1(b) and use virtual crossings to transform the network into a planar

network.

2.4 The superposition principle

A fundamental tool for our construction of a network reproducing the response function

is the following result, which is valid for both planar and R3 networks.

Lemma 5 Let W1 and W2 be the response matrices of two networks (planar or in R3,

static or dynamic) sharing the same terminals but with no interior nodes in common.

Then the response function of both networks together is W1 + W2.
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Proof The result follows from the reasoning in [9, Remark 3.9] and the frequency

independent transformations in §2.3. For the planar case any crossing can be eliminated

using [9, Example 3.15]. Note that the transformations in §2.3 allow one to avoid a finite

number of locations (except the terminals). ut

3 Characterization of the static response

Building upon the seminal work of Camar-Eddine and Seppecher [4], we give necessary

and sufficient conditions for a function to be the response function for either a planar

network or a network in R3. The sufficiency is proved constructively and relies on the

existence of networks that have rank one response matrices, as is described in detail in

the remaining part of §3.

Recall that the ε-neighborhood Cε of a set C is the set,

Cε = {x ∈ R2 | dist(x,C) ≤ ε}. (13)

If the set C is convex then the set Cε is also convex because of the convexity of the

function dist(x,C) for convex C (see e.g. [2, §3.2.5]).

Theorem 1 For any choice of terminal node positions, any real symmetric positive

semidefinite and balanced nd × nd matrix W (i.e. a matrix with the properties of

Lemma 2) is the response matrix of a purely elastic network which is either planar

or in R3. Moreover, any internal nodes in the construction can be chosen within an

ε−neighborhood of the convex hull of the terminals, and avoiding a finite number of

positions.

Proof By properties (a)–(c) in Lemma 2 the matrix W can be written as a sum of

rank one matrices Wi:

W =

n∑
i=1

Wi,

where Wi = λiwiw
T
i and (λi,wi) is an eigenpair of W, λi ≥ 0, for i = 1, . . . , n. Each

Wi satisfies properties (a)–(d) in Lemma 2. Properties (a)–(c) are easy to check for W

and (d) follows by linearity, since it holds for each Wi. Owing to Theorem 3 (Theorem 2

in the planar case), it is possible to construct a network with matrix response equal to

Wi. By the superposition principle we obtain a general network with response W. If

the desired network is planar, then every crossing between springs can be transformed

to a planar network through a truss-like structure [9, Examples 3.2, 3.15]. As discussed

in §2.3, such transformations can be chosen to avoid a finite number of points in Rd. ut

Remark 3 If W is the static response matrix of a network and α is a positive constant

then clearly αW is the response matrix of the same spring network, but where all the

spring constants are multiplied by α.

3.1 Planar networks with rank one static response matrices

The main result in this section is Theorem 2 which is the statement of Theorem 1

for rank one response matrices, i.e. it shows that for any rank one response matrix

satisfying Lemma 2 it is possible to find a planar network that realizes it. We first prove

Theorem 2 for three terminal networks in §3.1.1, then for four and more terminals in

§3.1.2.
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x1

x′1

x0

x′2

x2

Fig. 2 A planar network with rank one response. Any resulting force at terminals is propor-
tional to (fT0 , f

T
1 , f

T
2 )T .

3.1.1 Three terminal rank one static planar networks

We show how to construct a three terminal planar elastic network realizing any valid

rank one response matrix. If f0, f1, f2 ∈ R2 is the balanced system of forces at the nodes

x0,x1,x2, the construction depends on rank [f1, f2,x1 − x0,x2 − x0]. More precisely

Lemma 7 corresponds to the case when this rank is two and Lemma 8 when this rank

is one. Since we are in R2 these are the only non-trivial cases available, which shows

Theorem 2 for planar three terminal networks.

Remark 4 (Pierre Seppecher, private communication) The easiest way to construct a

three terminal rank one network is to add a node at the intersection of the force lines

(three forces that are balanced meet at a single point in 2D, this can be shown by

writing the torque balance equation for the intersection point). The only problem with

this construction is that the extra node can end up far away if the force lines are almost

parallel.

We start with the following intermediate result. A similar result is shown in three

dimensions by Camar-Eddine and Seppecher [4, Lemma 5].

Lemma 6 Let f0, f1, f2 be a set of balanced forces at the nodes x0, x1, x2 in R2.

Then if rank [f1, f2,x1 − x0,x2 − x0] = 2, there is an ε > 0 such that the points x0,

x′1 = x1 + εf1 and x′2 = x2 + εf2 are not collinear. Moreover ε can be chosen arbitrarily

small and so that x′1 and x′2 do not coincide with a finite number of points.

Proof If it were true that for all ε > 0 the three points x0, x′1 and x′2 are collinear,

then the second degree polynomial in ε, p(ε) = det(x′1−x0,x
′
2−x0) is identically zero.

That the constant coefficient of p(ε) vanishes means that det(x1 − x0,x2 − x0) = 0,

or that the points x0, x1 and x2 are collinear. Since the lemma for x0 = x1 = x2 is

trivial to prove, we may assume without loss of generality that there is some α ∈ R
such that

x2 − x0 = α(x1 − x0), (14)

swapping the indices 1 and 2 if necessary. Since the coefficient in ε of p(ε) vanishes we

get det(f1,x2 −x0) + det(x1 −x0, f2) = 0 or equivalently det(x1 −x0,−αf1 + f2) = 0.

Now the torque balance implies that

(x1 − x0) ∧ (f1 + αf2) = 0 (15)
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Putting both (14) and (15) in matrix form, there are some real β and γ such that[
I αI

−αI I

] [
f1
f2

]
=

[
β(x1 − x0)

γ(x1 − x0)

]
.

The determinant of the matrix above is (α2 + 1)2 6= 0, thus rank [f1, f2,x1 − x0,x2 −
x0] = 1 which contradicts the hypothesis of the lemma. Finally since p(ε) is not identi-

cally zero, one can choose an arbitrarily small ε that avoids a finite number of points.

ut

Lemma 7 Let f0, f1, f2 be a set of balanced forces at the nodes x0, x1, x2 in R2.

If rank [f1, f2,x1 − x0,x2 − x0] = 2 then there exists a purely elastic planar network

with force response proportional to f = (fT0 , f
T
1 , f

T
2 )T , or in other words a (rank one)

response matrix proportional to ffT . The internal nodes of such a network can be chosen

to avoid a finite number of points and within an ε−neighborhood of the convex hull of

the terminals.

Proof First observe the hypothesis that rank [f1, f2,x1 − x0,x2 − x0] = 2 implies the

existence of at least one permutation σ of {0, 1, 2} such that

fσ(1) ∧ (xσ(1) − xσ(0)) 6= 0 (16)

Indeed, if (16) is false for all permutations σ, i.e.,

f1 ∧ (x1 − x0) = 0 = f2 ∧ (x2 − x0),

f2 ∧ (x2 − x1) = 0 = f0 ∧ (x0 − x1),

f0 ∧ (x0 − x2) = 0 = f1 ∧ (x1 − x2)

we have that rank [f1, f2,x1−x0,x2−x0] = 1 and this contradicts our initial hypothesis.

So, without loss of generality we can assume that,

f1 ∧ (x1 − x0) 6= 0. (17)

Next, let x′i = xi + εfi, for i = 1, 2. By Lemma 6, if rank [f1, f2,x1−x0,x2−x0] =

2, there is ε > 0 such that the points x0, x′1 and x′2 are not collinear and do not

coincide with a finite number of points. Consider the network in Figure 2 (the spring

constants are irrelevant for this proof). Let A be the response matrix for the network

including both terminal (B = {0, 1, 2}) and interior (I = {1′, 2′}) nodes. The associated

quadratic form is

qA(uB ,uI) =

2∑
i=1

s(x0,x′
i)

(u0,u
′
i) +

2∑
i=1

s(xi,x′
i)

(ui,u
′
i) + s(x′

1,x
′
2)

(u′1,u
′
2). (18)

It suffices to show that the quadratic form qM(uB) at the terminal nodes has codi-

mension one (since M is positive semidefinite, we do have ker M = ker qM). Actually

uB = (uT0 ,u
T
1 ,u

T
2 )T ∈ ker qM if and only if there exists uI = (u′T1 ,u′T2 )T such that

all terms in the sum (18) vanish or equivalently,

(u′i − u0)T (x′i − x0) = 0, for i = 1, 2, (19)

(u′i − ui)
T fi = 0, for i = 1, 2, (20)

(u′2 − u′1)T (x′2 − x′1) = 0. (21)
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Property (19) is equivalent to

u′1 − u0 = aR⊥(x′1 − x0)

u′2 − u0 = bR⊥(x′2 − x0)

for some a, b reals and where

R⊥ =

[
0 1

−1 0

]
.

Property (21) implies that b = a, i.e. the only infinitesimal deformation which does

not change the side lengths of the triangle in Figure 2 is an infinitesimal rigid motion

(translation plus rotation). Since fi ∧ x′i = fi ∧ xi and the forces and torques are

balanced we conclude from (20) that

2∑
i=1

fi · (ui − u0) = a

2∑
i=1

fi ∧ (x′i − x0) = a

2∑
i=0

fi ∧ xi = 0.

Thus ker qM ⊆ span {(fT0 , fT1 , fT2 )T }⊥.

To prove the other side of the inclusion we start with ui, i = 0, 1, 2 satisfying

2∑
i=1

fi · (ui − u0) = 0 (22)

and we seek u′i, i = 1, 2 such that (19), (20) and (21) hold. For any real a, the choice

u′1 = u0 + aR⊥(x′1 − x0) and u′2 = u0 + aR⊥(x′2 − x0),

satisfies (19) and (21). Next, note that from the definition of the points x′1,x
′
2 we have,

(x′i − x0) ∧ fi = (xi − x0) ∧ fi, for i = 1, 2.

Using the latter, the balance of forces and (17), property (20) follows by taking

a =
f1 · (u1 − u0)

f1 ∧ (x1 − x0)
=

f2 · (u2 − u0)

f2 ∧ (x2 − x0)
.

This proves that ker qM = span {(fT0 , fT1 , fT2 )T }⊥, so qM can be written for some c > 0

as,

qM(uB) = c

(
2∑
i=0

fi · ui

)2

.

ut

Lemma 8 Let f0, f1, f2 be a set of balanced forces at the nodes x0, x1, x2 in R2.

If rank [f1, f2,x1 − x0,x2 − x0] = 1 then there exists a purely elastic planar network

with force response proportional to (fT0 , f
T
1 , f

T
2 )T . The internal nodes of such a network

can be chosen to avoid a finite number of points and within an ε−neighborhood of the

convex hull of the terminals.
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Proof We build up on the idea presented in [4, Theorem 5]. It can be easily observed

(by choosing a coordinate system with x0 as origin) that for any point y in the plane,

not collinear with x0,x1,x2, there is a force f , such that the following families,

((f ,y), (f0 + f2 − f ,x0), (f1,x1)) and ((−f ,y), (f − f2,x0), (f2,x2)), (23)

form balanced systems of forces. Then, by using Lemma 7 there exists purely elas-

tic networks with response matrices proportional with (fT , fT0 + fT2 − fT , fT1 )T , and

(−fT , fT − fT2 , f
T
2 )T respectively. It is possible to choose the spring constants so that

the associated quadratic forms are (see Remark 3),

q′(v,u0,u1) = (f · v + (f2 − f) · u0 + f0 · u0 + f1 · u1)2 and

q′′(v,u0,u2) = (−f · v + (f − f2) · u0 + f2 · u2)2.
(24)

Now, let us consider the infimum,

q̃(u0,u1,u2) = inf
v∈R2

{q′(v,u0,u1) + q′′(v,u0,u2)}. (25)

The necessary condition of the infimum,

f · v = −1

2
((f2 − f) · u0 + f0 · u0 + f1 · u1)− 1

2
((f2 − f) · u0 − f2 · u2) , (26)

implies the statement of the Lemma, i.e.,

q̃(u0,u1,u2) =
1

2

(
2∑
i=0

fi · ui

)2

. (27)

The point y and any additional points in Lemma 7 can be chosen to avoid a finite

number of points in the plane, and within an ε−neighborhood of the convex hull of the

terminals. ut

3.1.2 General rank one planar networks

We show in Lemma 10 the construction of a network realizing a valid four terminal rank

one response and then generalize the result to any number of terminals in Theorem 2.

We start our argument with Lemma 9 which is a technical result needed later in this

section.

Lemma 9 Let f0, f1, f2, f3 and {x0,x1,x2,x3} be a balanced system of forces in R2.

Then there exists a point y∗ in an ε-neighborhood of the convex hull of the set {x0,x1,x2,x3}
such that y∗ /∈ {x0,x1,x2,x2} and

fi ∧ xi + fj ∧ xj − (fi + fj) ∧ y∗ = 0, for some i, j ∈ {0, 1, 2, 3}, i 6= j,

or in other words, the three forces fi, fj and −(fi + fj) supported at the nodes xi, xj
and y∗ are balanced. The point y∗ can be chosen to avoid a finite number of positions.
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Proof For any pair of indices {i, j}, with i 6= j and i, j ∈ {0, 1, 2, 3}, let fij : R2 → R
be defined by

fij(y) = fi ∧ xi + fj ∧ xj − (fi + fj) ∧ y. (28)

Using the balance of forces relations it can be easily observed that

fij = fji = −fkt = −ftk, for any {i, j, k, t} = {0, 1, 2, 3}. (29)

Let C be the convex hull of {x0,x1,x2,x3}, that is

C =

{
z ∈ R2

∣∣ z =

3∑
i=0

cixi, for ci ≥ 0 and

3∑
i=0

ci = 1

}
,

and Cε be the ε-neighborhood of the set C as defined in (13).

Next we show that there exists a pair of indices {i, j} with i, j ∈ {0, 1, 2, 3}, with

the property that there exists a point y∗ ∈ Cε, such that fij(y∗) = 0. We reason by

contradiction. Assume that the above is not true, i.e.,

For all pairs {i, j}, with i 6= j and i, j ∈ {0, 1, 2, 3} we have

fij(y) 6= 0, for any y ∈ Cε. (30)

Using the continuity of the functions fij and the convexity of the set Cε, from (30)

we obtain that all the functions fij have constant strictly positive or strictly negative

sign over Cε. Using this observation, together with the relations (29), for any partition

{i, j} ∪ {m,n} = {0, 1, 2, 3} we have

fij(y)fmn(y) < 0 for y ∈ Cε. (31)

For simplicity we shall call from now the complement of fij the function fkt with

{k, t} = {0, 1, 2, 3} \ {i, j}.
From (29), (30) and (31) we conclude there are six different functions fij , with

i, j ∈ {0, 1, 2, 3}, out of which three functions have strictly positive sign on the set

Cε while their complements have strictly negative sign on Cε. Using this observation,

it can be easily checked that for {i, j, k, t} = {0, 1, 2, 3}, at least one of the following

triplets of functions (fij , fik, fit), (fij , fik, fjk), (fij , fjt, fit), (fkt, fik, fit), has a constant

strict sign over the set Cε (the three last triplets are obtained by replacing one of the

elements of the first triplet by its complement). Indeed, if fij , fik and fit do not have

the same sign, either two are positive and one is negative or two are negative and one

is positive. By replacing one by its complement we get three functions of the same sign.

From the balance of forces relations one can immediately observe that the sum of the

functions in any of these triplets is of the form

± 2fi0 ∧ (y − xi0) for some i0 ∈ {0, 1, 2, 3}. (32)

Finally relation (32) leads to a contradiction. Indeed for a triplet with the property

that all the functions in the triplet have the same strict sign, the sum of its functions

must have the same sign on Cε. However from (32) the sum cannot have constant

sign over the set Cε because it equals zero for y = xi0 . Thus the hypothesis (30) is

false and we have that there exists a pair of distinct indices {i, j} ⊂ {0, 1, 2, 3} so that

fij(y∗) = 0 for some y∗ ∈ Cε.
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From (32) it is possible to choose y∗ /∈ {x0,x1,x2,x2}. Indeed from Lemma 10

there are two indices {m,n} such that

fmn(y∗) = 0. (33)

Consider the point yδ = y∗+ δ(fm+ fn) with δ > 0. For δ small enough it is clear that

yδ ∈ Cε \ {x0,x1,x2,x3} and from (28) we obtain

fmn(yδ) = fm ∧ xm + fn ∧ xn − (fm + fn) ∧ yδ

= fmn(y∗)− δ(fm + fn) ∧ (fm + fn)

= 0,

which implies the statement of the Lemma. ut

The next Lemma 10 shows that for any balanced system of four forces in R2 there

exists a purely elastic four terminal planar network with proportional (rank one) force

response.

Lemma 10 Let f0, f1, f2, f3 and x0,x1,x2,x3 be a balanced system of forces in R2.

Then, there is a purely elastic four terminal planar network with force response propor-

tional to (fT0 , f
T
1 , f

T
2 , f

T
3 )T . The internal nodes of such a network can be chosen away

from a finite number of points, and within an ε−neighborhood of the convex hull of the

terminals.

Proof From Lemma 9 we have that there exists a pair of indices {i, j}, a point y∗ ∈
Cε \{x0,x1,x2,x3}, and a force f = fi+ fj , so that the sets (y∗, f), (xi, fi), (xj , fj) and

(y∗,−f), (xk, fk), (xt, ft) are balanced sets of forces. From the results of the previous

section we have that both sets have a rank one network reproducing the forces. By

rescaling the spring constants (see Remark 3) their associated quadratic forms are,

q1(v,ui,uj) =
(
f · v + fi · ui + fj · uj

)2
q2(v,uk,ut) = (−f · v + fk · uk + ft · ut)2

where {k, t} = {0, 1, 2, 3}\{i, j}. The quadratic form for both networks taken together

is

q(u0,u1,u2,u3) = inf
v
{q1(v,ui,uj) + q2(v,uk,ut)}.

The optimality conditions are

f · v = −1

2
(fi · ui + fj · uj) +

1

2
(fk · uk + ft · ut)

which yield the desired result

q(u0,u1,u2,u3) =
1

2

(
3∑
i=0

fi · ui

)2

.

ut

The following Theorem is the main result of this section. We use the previous results

for three and four terminal networks to prove the result in the general case of p-terminal

networks by induction, following the approach of Camar-Eddine and Seppecher [4].



17

Theorem 2 Let fi and xi, i = 1, . . . , p be a balanced system of forces in R2. There

is a purely elastic p terminal planar network with a force response proportional to

(fT1 , . . . , f
T
p )T and with internal nodes in an ε−neighborhood of the convex hull of the

terminals and avoiding a finite number of points.

Proof We use an induction argument in the number of terminals as in [4, Theorem

5], which we reproduce here for completeness. The p = 2 case corresponds to a single

spring with same direction as the forces. The cases p = 3 and p = 4 are proved in

Lemma 7, Lemma 8 and Lemma 10. Assume for the induction argument that the

theorem holds for any t < p terminals. Let r be the integer part of p/2, and let y be

a node distinct from the terminals x0, . . . ,xp. Then there are two forces f and f ′ such

that both families

((f ,y), (f1 + f ′,x1), (f2,x2), . . . , (fr+1,xr+1)) and

((−f ,y), (−f ′,x1), (fr+1,xr+1), . . . , (fp,xp)).

are balanced systems of forces, as can easily be seen by taking f ′ = −(f + f1 + f2 +

. . .+ fr+1) and choosing x1 as the origin of coordinates. These families have r+ 1 and

p − r + 1 terminal nodes, and both have less than p terminals when p > 4. By the

induction hypothesis there are rank one networks with associated quadratic forms

q′(v,u1, . . . ,ur+1) =

(
f · v + f ′ · u1 +

r+1∑
i=1

fi · ui

)2

, and

q′′(v,ur+1, . . . ,up) =

(
−f · v − f ′ · u1 +

p∑
i=r+1

fi · u1

)2

.

The quadratic form of both networks together is

q̃(u1,u2, . . . ,up) = inf
v∈R2

q′(v,u1, . . . ,ur+1) + q′′(v,ur+1, . . . ,up).

The optimality conditions are:

f · v = −1

2

(
f ′ · u1 +

r+1∑
i=1

fi · ui

)
+

1

2

(
f ′ · u1 −

p∑
i=r+1

fi · u1

)
.

Thus the quadratic form of both networks is a rank one with

q̃(u1, . . . ,up) =
1

2

(
p∑
i=1

fi · ui

)2

.

Notice that the additional point y can be picked inside an ε−neighborhood of the

convex hull of the terminal nodes and avoiding a finite number of points. Also we can

use virtual crossings and trusses to make the network planar (see §2.3). ut

Remark 5 The networks in Lemmas 7, 8, 9, 10, and Theorem 2 may have crossing

springs so are not strictly planar. To make them planar is suffices to convert all spring

crossings with non-zero angle to a node as is done in [9, Example 3.15]. Zero-angle

crossings can be eliminated by replacing springs with simple trusses [9, Example 3.2].

These network transformations are discussed in §2.3.
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3.2 Networks in R3 with rank one static response matrices

The construction of these networks is essentially due to Camar-Eddine and Seppecher

[4]. We first complete their construction of rank one four terminal networks to include

some degenerate cases which correspond to planar networks (Lemma 11). Then follow-

ing Camar-Eddine and Seppecher [4] we use induction (Theorem 3) to derive rank one

networks with an arbitrary number of terminals.

Lemma 11 Let f0, f1, f2, f3 be a set of balanced forces at the nodes x0, x1, x2, x3

in R3. There is a purely elastic rank one network with force response proportional to

(fT0 , f
T
1 , f

T
2 , f

T
3 )T . Moreover the internal nodes can be chosen within an ε−neighborhood

of the convex hull of the terminals and avoiding a finite number of points.

Proof As in the planar case there are two cases depending on the value of

r ≡ rank [f1, f2, f3,x1 − x0,x2 − x0,x3 − x0].

The construction for r = 3 is given in [4, Lemma 5]. When r ≤ 2 the network is planar,

so the result follows from Theorem 2. ut

Theorem 3 Let fi and xi, i = 1, . . . , p be a balanced system of forces in R3. There is

a purely elastic p terminal network with a force response proportional to (fT1 , . . . , f
T
p )T .

Moreover the internal nodes can be chosen within an ε−neighborhood of the convex hull

of the terminals and avoiding a finite number of points.

Proof The result follows from an induction argument similar to that of Camar-Eddine

and Seppecher [4, Theorem 5]. See also the proof of Theorem 2. ut

4 Characterization of the dynamic response function

To fully characterize the dynamic response matrices, we take a function W(ω) as in

Lemma 4 and show that we can construct a network that has W(ω) as its frequency

response. The construction relies on the static case (Theorem 1) and the existence of a

network of springs and masses with rank one response that has exactly one prescribed

resonance (Lemma 12). Both networks in R3 and planar can be constructed.

Theorem 4 Let W(ω) be a real nd× nd matrix valued function of ω of the form

W(ω) = A− ω2M +

p∑
i=1

C(i)

ω2 − ω2
i

,

where M = diag (m1e, . . . ,mne), the vector e = [1, . . . , 1] ∈ Rd, the matrices C(i) are

real symmetric positive semidefinite and W(0) is real positive semidefinite and balanced

(i.e. W(ω) satisfies the properties of Lemma 4). Then for any choice of terminal node

positions, there is a network (either planar or in R3) of springs and masses with W(ω)

as its response function. Moreover the internal nodes of such a network can be chosen

to avoid a finite number of positions and within an ε−neighborhood of the convex hull

of the terminals.
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Proof It is convenient to rewrite (10) as,

W(ω) = W(0)− ω2M +

p∑
i=1

C(i) ω2

ω2
i (ω2 − ω2

i )
. (34)

Since W(0) has the properties of Lemma 2, by Theorem 1 there is a (static) network of

springs that has W(0) as its response matrix. Since the C(i) are positive semidefinite

we can use the spectral decomposition to write

C(i) =

ni∑
j=1

λ
(i)
j c

(i)
j (c

(i)
j )T , for i = 1, . . . , p,

where the (λ
(i)
j , c

(i)
j ) are the eigenpairs of C(i) with λ

(i)
j > 0 and ni = rank (C(i)).

Assume that we can construct a network with response function(√
λ
(i)
j ω−1i c

(i)
j

)(√
λ
(i)
j ω−1i c

(i)
j

)T
ω2

ω2 − ω2
i

.

The explicit construction of such a network is postponed to the next Section (Lemma 12).

By the superposition principle there is a network with response the sum appearing in

(34). Finally to obtain the −ω2M term, simply endow the terminal node xi with a

mass equal to the id−th diagonal element of M (The mass of node i is repeated d

times in the nd×nd matrix M). To obtain a planar network, simply replace all spring

crossings by “virtual crossings” (see §2.3). ut

4.1 Rank one response matrices with resonance

The following lemma shows how to design a network with arbitrary rank one response

and one single resonance at a prescribed frequency. The network we construct has a

purely dynamic response as it has a zero response matrix in the static case ω = 0. The

construction is valid for both networks in R3 and planar networks.

Lemma 12 Let xi and fi, i = 1, . . . , n, be arbitrary points and forces and ω0 6= 0

a given finite resonance frequency. There is a network with terminals xi composed of

springs and masses with rank one response function

W(ω) = ffT
ω2

ω2 − ω2
0

, where fT = (fT1 , f
T
2 , . . . , f

T
n ).

Moreover the internal nodes of such a network can be chosen to avoid a finite number

of positions and within an ε−neighborhood of the convex hull of the terminals.

Proof Let us choose two distinct nodes xn+1 and xn+2, in the convex hull of {x1,x2, . . . ,xn},
and forces fn+1 and fn+2 so that the system (xi, fi), i = 1, . . . , n + 2 is balanced. To

do this we take a force fn+2 6= 0 in the line

(xn+2 − xn+1) ∧ fn+2 = −
n∑
i=1

(xi − xn+1) ∧ fi, (35)
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and choose fn+1 such that
∑n+2
i=1 fi = 0. Note that the choice of the nodes xn+1 and

xn+2 is unrestricted in dimension d = 2 because equation (35) admits a solution fn+2

provided xn+1 6= xn+2. To guarantee solvability of (35) in dimension d = 3, the nodes

need to be chosen such that xn+2 − xn+1 is orthogonal to the right hand side of (35).

Then by Theorem 2 there is a rank one network with force response proportional to

(fT , fTn+1, f
T
n+2)T . Attach a mass m to nodes xn+1 and xn+2. The spring constants in

the network can be rescaled (Remark 3) so that the equations of motion are[
wB

mω2uI

]
=

[
f

a

] [
fT aT

] [uB
uI

]
,

where aT = (fTn+1, f
T
n+2) 6= 0, the displacements uB and uI are respectively at the

“boundary” nodes x1, . . . ,xn and the “interior” nodes xn+1,xn+2. Then solving the

system for the resulting forces wB at the “boundary” nodes we get,

wB = ffTuB

(
1 +

‖a‖2

mω2 − ‖a‖2

)
= ffTuB

ω2

ω2 − ‖a‖2 /m
.

Finally choose the mass m = ‖a‖2 /ω2
0 . The position of the internal nodes xn+1 and

xn+2 is flexible and by Theorem 2 so is that of any interior nodes in the rank one

network involved in the construction. ut

A Stability to small perturbations

We show that the response function of an elastodynamic network is stable to changes in the
network, which could come from either modifying the spring constants of existing springs or
possibly adding springs with small spring constants between any two nodes in the network.
However we do not allow springs to be deleted from the network. We first show stability of
the response of static networks and then stability for the response function of elastodynamic
networks.

A.1 Stability in the static case

Let A be the response matrix of an elastic network with all nodes considered as terminals and
W be the response matrix at the terminal nodes as given by (6). If we add or modify (but not
delete) springs then the new response with all nodes considered as terminals is A+ εE, ε > 0,
and its response at the terminals W(ε). We prove the following result

Lemma 13 Let ε > 0. As ε→ 0, we have W(ε)→W.

The stability result for the static case may seem surprising at first because the pseudo-
inverse we used to find the response at the terminals (6) is not continuous (see e.g. [8, §5.5.5]).
However Lemma 1 guarantees that the instabilities are controlled as they remain (roughly
speaking) in N (AII). Before showing Lemma 13 we need to establish the following relation
between the floppy modes of the perturbed and unperturbed stiffness matrices.

Lemma 14 For all ε > 0 sufficiently small, N (AII + εEII) ⊆ N (AII). Moreover N (AII +
εEII) is independent of ε, and depends only on the connectivity of the new network. In other
words if a network is perturbed by adding springs or modifying existing springs, then a floppy
mode of the perturbed network must be a floppy mode of the unperturbed network.
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Proof If uI is a floppy mode of the perturbed network then:

0 = uT
I (AII + εEII)uI =

[
0 uT

I

]
(A + εE)

[
0
uI

]
=

∑
old springs
i∈I, j∈B∪I

(ki,j + εli,j)

(
(ui − uj) ·

xi − xj

‖xi − xj‖

)2

+
∑

new springs
i∈I, j∈B∪I

εli,j

(
(ui − uj) ·

xi − xj

‖xi − xj‖

)2

.

Since the perturbed network is a spring network, the new spring constants should be positive
and all the terms in the sums above vanish, a condition which is independent of ε. Since all
the terms in the sums above vanish it follows that uI ∈ N (AII):

uT
I AIIuI =

∑
old springs
i∈I, j∈B∪I

ki,j

(
(ui − uj) ·

xi − xj

‖xi − xj‖

)2

= 0.

ut

We are now ready to prove stability for the static case.

Proof (of Lemma 13) Let ε > 0 be sufficiently small. By Lemma 14 it is possible to find a
unitary matrix [U,V,W] independent of ε such that R([V,W]) = N (AII) and R(W) =
N (AII + εEII). Writing AII + εEII in the new basis gives,

AII + εEII = [U,V,W]

Ã + εẼ1 εẼ2 0

εẼT
2 εẼ3 0

0 0 0

 [U,V,W]T , (36)

where Ã ≡ UTAIIU. Because of our choice of basis both Ã and the non-zero block in (36)
must be invertible and symmetric positive definite. The inverse of this block is[

Ã + εẼ1 εẼ2

εẼT
2 εẼ3

]−1

=

[
Ã(ε)−1(I + εẼ2Ẽ(ε)−1Ẽ−1

3 ẼT
2 Ã(ε)−1) −Ã(ε)−1Ẽ2Ẽ(ε)−1Ẽ−1

3

−Ẽ(ε)−1Ẽ−1
3 ẼT

2 Ã(ε)−1 ε−1Ẽ(ε)−1Ẽ−1
3

]
=

[
Ã−1 + εG1 + o(ε) −Ã−1Ẽ2Ẽ

−1
3 + εG2 + o(ε)

−Ẽ−1
3 ẼT

2 Ã−1 + εGT
2 + o(ε) ε−1Ẽ−1

3 + G3 + o(1)

]
,

(37)

where Ẽ(ε) = (I− εẼ−1
3 ẼT

2 Ã(ε)−1Ẽ2) and Ã(ε) = Ã + εE1. Notice that Ẽ3 is a submatrix of
a symmetric positive definite matrix and thus must be invertible. The second equality comes
from the standard perturbation formula for the inverse (see e.g. [8, §2.3.4]) and the matrices
G1,G2,G3 are independent of ε. We now examine the response of the perturbed matrix. Since
the first term in (6) is linear in E, it is stable to perturbations. Now the negative of the second
term in (6) can be written as:

(ABI + εEBI)(AII + εEII)†(AIB + εEIB) = ABI(AII + εEII)†AIB

+ εEBI(AII + εEII)†AIB + εABI(AII + εEII)†EIB + ε2EBI(AII + εEII)†EIB .
(38)

Moreover in the basis [U,V,W] the pseudo-inverse becomes,

(AII + εEII)† = [U,V]

[
Ã + εẼ1 εẼ2

εẼT
2 εẼ3

]−1

[U,V]T .
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Using Lemma 1 and Lemma 14, we have ABI [V,W] = [0,0] and (ABI + εEBI)W = 0. The
leading order asymptotics of each of the terms in (38) are

ABI(AII + εEII)†AIB = ABIUÃ−1UTAIB +O(ε) = ABIA
†
IIAIB +O(ε),

εEBI(AII + εEII)†AIB = εEBI(UÃ−1UT −VẼ−1
3 ẼT

2 Ã−1UT )AIB +O(ε2),

εABI(AII + εEII)†EIB = εABI(UÃ−1UT −UÃ−1Ẽ2Ẽ
−1
3 VT )EIB +O(ε2),

ε2EBI(AII + εEII)†EIB = εEBIVẼ−1
3 VTEIB +O(ε2).

which proves the desired result:

(ABI + εEBI)(AII + εEII)†(AIB + εEIB) = ABIA
†
IIAIB +O(ε).

ut

A.2 Stability in the dynamic case

As in the static case, we deal only with network perturbations that modify existing springs
or add new springs, but excluding spring deletions. Denote by K the response when all the
nodes are terminals and let ε > 0 be sufficiently small so that K + εE is the response of the
perturbed network. We show the following result.

Lemma 15 Partition the interior nodes I into massless nodes L and nodes with mass J, as

in Lemma 3. Let ω be a frequency such that ω2 is not an eigenvalue of M
−1/2
JJ K̃JJM

−1/2
JJ ,

and K+εE be the response of the perturbed network where we allow for new springs or changes
in the spring constants, but no spring deletions. Then as ε→ 0,

W(ω; ε) = W(ω) +O(ε),

where W(ω; ε) (resp. W(ω)) is the response at the terminal nodes of the perturbed (resp.
unperturbed) network at frequency ω.

Proof By Lemma 13 the matrix K̃ (the response matrix of the network with terminals B ∪ J ,
see (9)) is stable to such spring perturbations, meaning that the response of the perturbed

network at the nodes B ∪ J satisfies K̃(ε) = K̃ + εẼ + o(ε), for some matrix Ẽ independent of
ε. Since both the perturbed and unperturbed responses are symmetric, the Wielandt-Hoffman
theorem (see e.g. [8, §8.1.2]) implies that there is a reordering of the eigenvalues ω2

i (ε) of

K̃JJ (ε) such that

|ω2
i (ε)− ω2

i | ≤ ε‖Ẽ‖F ,

with ω2
i being the eigenvalues of K̃JJ and ‖ · ‖F denoting the Frobenius matrix norm. There-

fore if ε is sufficiently small and ω is not an eigenvalue of M
−1/2
JJ K̃JJM

−1/2
JJ then ω is not an

eigenvalue of M
−1/2
JJ K̃JJ (ε)M

−1/2
JJ either and the matrix K̃(ε) − ω2MJJ is invertible. Thus

using (8) and the standard perturbation formula for the inverse, it is possible to show that the
response at the terminals of the perturbed matrix is W(ω; ε) = W(ω) +O(ε). ut

B Eliminating floppy modes by adding springs

We use the stability results from the previous Appendix to show that if a network has floppy
modes then there is a network with no floppy modes and a response function arbitrarily close
to that of the original network. Some examples of floppy modes (for planar networks) are given
in Figure 3. Our strategy to remove floppy modes is to connect all nodes (be them terminal or
interior nodes) of the network by springs with small spring constants, thus creating a complete
graph with the nodes I∪B and springs as edges. By Lemma 13 the response of the new network
can be made arbitrarily close to the response of the unperturbed network.



23

Let A be the response of the network where all nodes are terminals and let A + εE be
response when we have added all these new springs. Then if uI is a floppy mode of the new
network, proceeding as in Lemma 14 gives

0 = uT
I (AII + εEII)uI =

[
0 uT

I

]
(A + εE)

[
0
uI

]
=

∑
old springs
i∈I, j∈B∪I

(ki,j + εli,j)

(
(ui − uj) ·

xi − xj

‖xi − xj‖

)2

+
∑

new springs
i∈I, j∈B∪I

εli,j

(
(ui − uj) ·

xi − xj

‖xi − xj‖

)2

.

This is equivalent to saying that

∀i ∈ I and j ∈ B ∪ I, (ui − uj) · (xi − xj) = 0. (39)

Assume that we are working in d dimensions and that we have d+ 1 nodes x1, . . . ,xd+1 that
form a non-degenerate triangle (d = 2) or tetrahedron (d = 3) and for which u1 = u2 = · · · =
ud+1 = 0. Then since every interior node y is connected to the x1, . . . ,xd+1, equation (39)
implies that v · (y − xi) = 0, i = 1, . . . , d+ 1, where v is the displacement associated with y.
Since these special “anchor” nodes are non-degenerate, rank [x1−y,x2−y, . . . ,xd+1−y] = d
and we must have v = 0. Repeating this for every interior node we get uI = 0, and so the
network does not have any floppy modes.

We now need to show which networks have “anchor” nodes. Clearly if the network has
d + 1 terminal nodes forming a non-degenerate triangle (in d = 2) or tetrahedron (in d = 3),
then the network does not have any floppy modes, since the terminal nodes do not move.

If we are in d = 2 dimension and the terminal nodes do not form a non-degenerate
triangle, then all terminals must lie on a line. Since the network has at least two terminal
nodes (otherwise we cannot balance forces), we can add two interior nodes with a truss as in
§2.3 without changing the response. Let x1,x2 be two terminal nodes and y be one of the
interior nodes of the truss, with associated displacements u1 = u2 = 0 and v. Then condition
(39) implies that v · (x1 − y) = v · (x2 − y) = 0, i.e. v = 0. Thus the nodes x1,x2,y form an
“anchor” and the network does not have any floppy modes.

If we are in d = 3 dimension and we cannot form a non-degenerate tetrahedron from the
terminal nodes, then the terminals must lie on a plane. Assume further that the terminals
do not lie on a line, we shall deal with this case later. Let x1,x2,x3 be three terminal nodes
forming a triangle. Then replacing e.g. the spring between x1 and x2 by a truss (as in §2.3),
we introduce three new interior nodes and at least one of them y is not in the plane where
x1,x2,x3 lie. Let v be the displacement of y and u1 = u2 = u3 = 0 be the displacements of
the boundary nodes. Then condition (39) implies that v · (xi − y) = 0 for i = 1, 2, 3. Since
rank [x1 − y,x2 − y,x3 − y] = 3, we must have v = 0. Therefore the nodes x1,x2,x3,y form
an “anchor” and the network does not have any floppy modes.

If we are in d = 3 dimension and all the terminal nodes lie on a line then every interior
node y forms a triangle with two terminal nodes x1,x2. In this case condition (39) means that
the displacement v of node y is orthogonal to the plane formed by x1,x2,y, and in particular
to the axis where all terminals lie. Thus in this case the floppy modes cannot be eliminated
by adding springs or interior nodes, as any additional interior node is in this situation as well.
This corresponds to rotations of the network around the axis where all the terminals lie.
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