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Abstract. We design a device that generates fields canceling out a known
probing field inside a region to be cloaked while generating very small fields

far away from the device. The fields we consider satisfy the Laplace equation,

but the approach remains valid in the quasistatic regime in a homogeneous
medium. We start by relating the problem of designing an exterior cloak in

the quasistatic regime to the classic problem of approximating a harmonic

function with harmonic polynomials. An explicit polynomial solution to the
problem was given earlier in [Phys. Rev. Lett. 103 (2009), 073901]. Here we

show convergence of the device field to the field needed to perfectly cloak an

object. The convergence region limits the size of the cloaked region, and the
size and position of the device.

1. Introduction

Cloaking – preventing detection of objects from a probing field – has been the
subject of many recent studies, see e.g. the reviews [1, 7]. A cloak can be active or
passive depending on whether active sources are needed to maintain the cloak. A
cloak is said to be interior if it completely surrounds the object to be hidden and
exterior otherwise.

One approach to obtain passive interior cloaks is to exploit the invariance of
the governing equations (e.g. Laplace, Helmholtz, Maxwell equations, . . .) to co-
ordinate transformations. This approach was introduced in [6, 20, 14, 15, 3, 7]
(see also references in [1, 7]) and is based on ideas first observed in [4]. Although
transformation based cloaking is set on solid mathematical grounds and has been
demonstrated experimentally in a variety of physical settings, the cloaks generated
with this approach require materials with extreme properties that are usually ap-
proximated using specially designed metamaterials. Unfortunately metamaterials
used in electromagnetic transformation based cloaking are typically very dispersive,
meaning that the cloak operates only in a narrow band of frequencies. Also losses
in the cloak material generate heat that can make the object detectable using in-
frared. Some recent results in generating broadband low-loss metamaterials have
been obtained in [23]. In an effort to overcome the shortcomings of transformation
based cloaks, various regularizations have been proposed (see [12] and references
therein).

Other passive interior cloaking methods include plasmonic cloaking (see [1] and
references therein). Cloaking methods that are passive and exterior include cloaking

Key words and phrases. Cloaking, Laplace equation, Quasistatics, harmonic polynomial
approximation.
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with complementary media [13], cloaking by anomalous resonances [17, 19, 18] and
plasmonic cloaking [22].

An example of an active interior cloak appears in [16] and uses sources contin-
uously distributed over a closed surface surrounding the cloaked region in order to
cancel out the incident field inside the cloaked region.

Here we focus on an active exterior cloak for the 2D Laplace equation [8], which
can be easily adapted to 2D quasistatics in a homogeneous medium. This scheme
assumes the incident or probing field is known and uses one active source (cloaking
device) to cancel the incident field in the cloaked region with no significant pertur-
bation in the far field. Thus an object inside the cloaked region interacts very little
with the probing field and becomes harder to detect. Active exterior cloaking has
been extended to the 2D Helmholtz equation in [9, 10] and to the 3D Helmholtz
equation in [11]. Our approach assumes a homogeneous background medium and
requires three (resp. four) devices or antennas to construct a cloak for the 2D (resp.
3D) Helmholtz equation.

Our goal here is to rigorously justify the quasistatic cloaking method of [8]. Qua-
sistatics refers to the Maxwell or Helmholtz equations in the long wavelength limit,
where the governing equation is the Laplace equation. We start by describing the
cloak setup in Section 2. Then in Section 3, we prove the existence of a solution for
the 2D quasistatic active exterior cloak, based on a classic harmonic approximation
result due to Walsh (see e.g. [5]). Unfortunately the existence proof is not construc-
tive. We proposed a candidate constructive solution without proof in [8], supported
by numerical experiments. In Section 4 we give the arguments behind this solution
and prove that it does indeed solve the active exterior cloaking problem.

2. Cloak setup and device requirements

Three regions in R2 are needed to describe our cloak setup: the region to be
cloaked, the cloaking device, and the observation region. See Figure 1 (left) for an
example setup. The main idea of our cloaking method is to cancel out an (assumed
known) incident field u0 inside the cloaked region while perturbing the far field only
slightly. Thus the total field inside the cloaked region is practically zero and the
scattered field from any objects inside the cloaked region is reduced significantly.

Here we consider the conductivity equation with conductivity one and a harmonic
incident field u0 (i.e. ∆u0 = 0). Without loss of generality, we take as cloaked region
the disk B(c, a) ⊂ R2, centered at c = (p, 0) ∈ R2, p > 0, and with radius a > 0.
As in [8], we consider one cloaking device located inside B(0, δ), with δ � 1. The
device generates a field u, harmonic outside B(0, δ). In order to cloak objects the
device field u needs to satisfy the following requirements.

(1) The total field u+ u0 in the cloaked region B(c, a) is very small.
(2) The device field u is very small far away from the device, e.g. in the

observation region R2 \B(0, R) for a large R > 0.

In order for the device to be exterior to the cloaked region, we must have

p > a+ δ. (1)

Also the observation radius R needs to be large enough to contain both the device
and the cloaked region:

R > a+ p. (2)
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Figure 1. The effect of the inversion (Kelvin) transform w = 1/z
on the cloak geometry. The cloaked region is in red and the device
sources are all contained in the gray disk. The green region is the
observation region, where the device field must be very small to
avoid detection.

3. Cloak existence

The existence of a device field u having the desired cloaking properties to within
a tolerance ε is stated in the next theorem.

Theorem 1. Let ε > 0 be an arbitrarily small parameter. Let also a > 0, c = (p, 0),
p > 0 and R satisfy the inequalities (1) and (2). Then for a harmonic incident
field u0, there are functions g0 : R2 → R and u : R2 → R such that{

∆u = 0, in R2 \B(0, δ),

u = g0, on ∂B(0, δ),

with |u| < ε in R2 \B(0, R) and |u+ u0| < ε in B(c, a).

(3)

The main idea of the proof of Theorem 1 is to relate active exterior cloaking to
the problem of approximating harmonic functions with harmonic polynomials. We
rely on the following classic result.

Lemma 1 (Walsh, see e.g. [5], page 8). Let K be a compact set in R2 such that
R2 \K is connected. Then for each function w harmonic on an open set containing
K and for any ε > 0, there is a harmonic polynomial q for which |w− q| < ε on K.

We can now proceed with the proof of Theorem 1.

Proof. It is convenient to use complex numbers z = x + iy to represent points
(x, y) ∈ R2. By applying the inversion (Kelvin) transformation w = 1/z, the
geometry of the problem transforms as in Table 1. (see also Figure 1).

Thus the cloaking problem (3) is equivalent to finding functions g̃0 and ũ for
which {

∆ũ = 0, in B(0, 1/δ),

ũ = g̃0, on ∂B(0, 1/δ),

with |ũ| < ε on B(0, 1/R) and |ũ+ ũ0| < ε on B(c∗, α).

(4)
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Region z plane w = 1/z plane

Cloaking device B(0, δ) R2 \B(0, 1/δ)

Cloaked region B(c, a) B(c∗, α) with c∗ = (β, 0), α = a/|p2−a2|
and β = p/(p2 − a2)

Observation region R2 \B(0, R) B(0, 1/R)

Table 1. The different regions in our cloak setup and how they
are mapped by the inversion (Kelvin) transformation.

Here ε is as in the statement of the theorem, g̃0(z) = g0(1/z) and the function
ũ0(z) = u0(1/z) is harmonic on R2 \ {0}.

Let Ũ0 denote the analytic extension of ũ0 in B(c∗, α), obtained by adding i

times its harmonic conjugate. Notice that since Ũ0 is analytic, it can be arbitrarily

well approximated by a polynomial, e.g. a truncation of the power series of Ũ0.
Therefore, there is a polynomial Q0 such that

|Ũ0 −Q0| < ε/2, on B(c∗, α). (5)

For ũ0 this means that

|ũ0 − q0| < ε/2, on B(c∗, α), (6)

where q0 is the real part of Q0. Thus we may solve (4) by first approximating the
(inverted) incident field ũ0 by q0 and then studying the following problem{

∆ũ = 0, in B(0, 1/δ),

ũ = g̃0, on ∂B(0, 1/δ),

with |ũ| < ε on B(0, 1/R) and |ũ+ q0| < ε/2 on B(c∗, α).

(7)

After inversion, the conditions (1) and (2) necessary for having an exterior cloak
become

1/R < β − α, (the two disks B(0, 1/R) and B(c∗, α) do not touch), and

β + α < 1/δ, (the two disks B(0, 1/δ) and B(c∗, α) do not touch).
(8)

Therefore, there exists 0 < ξ � 1 such that

1

R
+ ξ < β − α− ξ. (9)

We can now apply Lemma 1 to the compact set K = B(0, 1/R) ∪ B(c∗, α) (which
has a connected complement by virtue of (8)) and the function

w =

{
0 in B(0, 1

R + ξ),

−q0 in B(c∗, α+ ξ),
(10)

which is a harmonic function in the open set B(0, 1
R + ξ) ∪ B(c∗, α + ξ) (a set

containing K). We obtain that there exists a harmonic polynomial q such that
|q − w| < ε/2 on K. A solution to (7) is then given by ũ = q and g̃0 = q on
∂B(0, 1/δ). This implies the statement of the theorem. �
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Remark 1. We assumed throughout this section that the incident field u0 is har-
monic on R2. This corresponds to a source located at infinity. Recall our method
relies on approximating the Kelvin transformed analytic extension of the incident

field Ũ0 inside the Kelvin transformed cloaked region B(c∗, α) by a polynomial Q0

(see (11)). This approximation only requires analyticity of U0 inside the cloaked
region B(c, a). Hence the results of this section and the construction of Section 4
below generalize easily to the case where the incident field u0 is harmonic inside the
observation region B(0, R). This is the case where the sources generating the inci-
dent field are outside the observation region but not necessarily located at infinity.

Remark 2. Clearly, Theorem 1 also holds when the device and cloaked region are
not necessarily disks. The only requirements are that they be bounded, disjoint and
that the complement of their union be connected (see Lemma 1).

4. A constructive solution for active cloaking

Although mathematically rigorous, the existence result of Theorem 1 does not
give an explicit expression for the potential required at the active device (antenna).
To give an explicit harmonic solution to problem (3), we first simplify the problem
in Section 4.1. Then we give a candidate solution to the simplified problem in Sec-
tion 4.2, in the form of a Lagrange interpolation polynomial. A better solution is
constructed in Section 4.3 by averaging several Lagrange interpolation polynomials.
The resulting polynomial turns out to be a Hermite interpolation polynomial. Then
in Section 4.4 we show that this Hermite interpolation polynomial solves (4) (and
thus the cloaking problem (3)) provided its degree is sufficiently large. This con-
vergence study reveals constraints on the size of the cloaked region and the device
that are due to the particular solution we construct.

4.1. Simplifying the problem. In the proof of Theorem 1, we related the cloak-
ing problem (3) to the problem of approximating a polynomial Q0 with an analytic
function V such that for some ε > 0,

|V | < ε in B(0, 1/R) and |V +Q0| < ε in B(c∗, α). (11)

Now consider the problem of finding an analytic function W such that for some
ε′ > 0,

|1−W | < ε′ in B(0, 1/R) and |W | < ε′ in B(c∗, α). (12)

Assuming we can find an approximant W in (12) with ε′ = ε/M and

M = sup
z∈B(c∗,α)∪B(0,1/R)

|Q0(z)|, (13)

a solution to (11) is then V = −Q0(1−W ), which is analytic because the product
of two analytic functions is analytic.

For illustration purposes we fast forward to Figure 3, where we give an example
of a function W with the approximation properties (12). The function W is a poly-
nomial whose motivation, derivation and analysis are the subject of the remainder
of this section.

In order to use such a function W for cloaking, assume Q0(1/z) is the harmonic
incident field. Then the device field needed for solving the cloaking problem (3)
is the real part of the function U(1/z) = −Q0(1/z)(1 − W (1/z)) (after having
undone the Kelvin transformation we used for the analysis). The actual device
field is illustrated in Figure 4. On the left, a scatterer perturbs the incident field
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and can be easily detected. On the right, the device field (based on the function W
of Figure 3 is activated and suppresses the incident field inside the cloaked region,
making the object undetectable for all practical purposes.
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Figure 2. Left: sample interpolation points for the interpolation
polynomial pφ,ψ with n = 5, φ = 0 and ψ = π/3. Right: the
modulus of the polynomial pφ,ψ with n = 10, φ = −ψ = π/10 and
β = 4. The color scale is logarithmic and the interpolation nodes
are indicated by the interpolation values.

4.2. A first candidate polynomial from Lagrange interpolation. We present
a polynomial solution to (12) based on Lagrange interpolation. This is an inter-
mediary step to motivate the explicit solution to (12) given later in Section 4.3.
The idea applies only to the case where α = R = 1 and β = p/(p2 − a2) > 2.
The candidate solution is a polynomial that is one at n equally distributed points
on ∂B(0, 1) and zero at n equally distributed points on ∂B(c∗, 1). The motivation
being that by surrounding both 0 and c∗ = (β, 0) by n points where the polynomial
has the desired values, we hope to get close to a polynomial satisfying (12).

To be more precise, let us introduce the following family of 2n nodes {eiφwj , β+

eiψwj}n−1j=0 . Here φ and ψ are two arbitrary angles and wj = exp[2iπj/n], for
j = 0, . . . , n − 1. Define the polynomial pφ,ψ as the unique polynomial of degree
2n− 1 satisfying,

pφ,ψ(eiφwj) = 1 and pφ,ψ(β + eiψwj) = 0, for j = 0, . . . , n− 1. (14)

An example of the interpolation nodes and the values of pφ,ψ is shown in Fig-
ure 2(left).

The polynomial pφ,ψ is unique and can be written explicitly as

pφ,ψ(z) =

n−1∑
m=0

qφ,ψ,m(z), (15)

where qφ,ψ,m(z) are Lagrange interpolation polynomials (see e.g. [24]) defined for
m = 0, . . . , n− 1 by

qφ,ψ,m(z) =

 n−1∏
j=0,j 6=m

z − eiφwj
eiφwm − eiφwj

n−1∏
j=0

z − (β + eiψwj)

eiφwm − (β + eiψwj)

 , (16)

or alternatively by their interpolation properties

qφ,ψ,m(eiφwj) = δmj , and qφ,ψ,m(β + eiψwj) = 0, for j = 0, . . . , n− 1. (17)
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Here δmj = 1 if m = j and 0 otherwise is the Kronecker delta. Straightforward
calculations give the expression

qφ,ψ,m(z) =

[
(z − β)n − eiψn

(eiφwm − β)n − eiψn

] [
zn − eiφn

z − eiφwm

] [
1

n(wmeiφ)n−1

]
, (18)

which will be used later in Section 4.3.
We state the following symmetry property of the polynomial pφ,ψ for later use.

Lemma 2. For any angles φ and ψ, the polynomial pφ,ψ has the following symmetry
property:

pφ,ψ(z) + pψ+π,φ+π(β − z) = 1. (19)

Proof. Equation (19) follows from noticing that for j = 0, . . . , n− 1,

pψ+π,φ+π(β − (β + eiψwj)) = pψ+π,φ+π(ei(ψ+π)wj) = 0, and

pψ+π,φ+π(β − eiφwj) = pψ+π,φ+π(β + ei(φ+π)wj) = 1.
(20)

Hence the polynomial pφ,ψ(z)+pψ+π,φ+π(β−z)−1 must be identically zero because

it is of degree 2n− 1 and has 2n roots {eiφwj , β + eiψwj}n−1j=0 . �

An actual polynomial pφ,ψ is shown in Figure 2(right). Unfortunately this poly-
nomial is not a good solution for problem (12) as the regions where pφ,ψ ≈ 1 and
pφ,ψ ≈ 0 to within a certain tolerance (say 1%) are relatively small. Changing φ
and ψ does not give a significant improvement. However these polynomials are the
building block for the ensemble average polynomial solving (12) that we present
next.
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Figure 3. The modulus of the ensemble average polynomial
〈p〉 (z) for n = 12 and β = 1. The device field used for cloak-
ing is 〈p〉 (1/z). Within 1% accuracy, the polynomial 〈p〉 is close
to one inside the dashed white circle and close to zero inside the
solid white circle. The boundary of the convergence region Dβ of
〈p〉 as n→∞ is the peanut shaped curve in red (see Theorem 2).
The color scale is logarithmic from 0.01 (dark blue) to 100 (dark
red), with light green representing 1.

4.3. The ensemble average polynomial. In an effort to obtain a polynomial
solution to problem (12) we calculate the ensemble average of the polynomials pφ,ψ
with respect to the two phase factors φ, ψ ∈ [0, 2π], that is

〈p〉 (z) =
1

(2π)2

∫ 2π

0

∫ 2π

0

pφ,ψ(z)dφdψ. (21)
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Figure 4. Real part of the total field with the cloaking device
active (right) and inactive (left), for an incident field u0(z) = z
and n = 12. The solid white, dashed white and red curves are the
Kelvin transforms of the respective curves in Figure 3. The solid
black disk is an almost resonant scatterer with radius r = 0.1,
located at z = 1.05 and with dielectric constant ε = −1 + 10−3,
chosen to be plasmonic with a negative value close to −1 to amplify
its effect. The solid black curve is the contour |u| = 100. The color
scale is linear from -10 (dark blue) to 10 (dark red).

We prove in Theorem 2, using the next lemma, that indeed 〈p〉 is a solution for
(12). An example of such polynomial for β = 1 and n = 12 is given in Figure 3.

Lemma 3. The ensemble average polynomial defined in (21) has the expression

〈p〉 (z) =

(
1− z

β

)n n−1∑
j=0

(
z

β

)j
(n+ j − 1)!

j!(n− 1)!
. (22)

Proof. We first use the Cauchy residue theorem to compute the integral

1

2π

∫ 2π

0

(z − β)n − eiψn

(eiφwm − β)n − eiψn
dψ =

1

2iπ

∫
|w|=1

(z − β)n − wn

(eiφwm − β)n − wn
dw

w

=
(z − β)n

(eiφwm − β)n
,

(23)

since the integrand has a single simple pole at w = 0 in the disk |w| < 1. Then by
plugging (23) into the expression for qφ,ψ,m we get that

1

2π

∫ 2π

0

qφ,ψ,m(z)dψ =
(z − β)n

(eiφwm − β)n
zn − eiφn

z − eiφwm
1

n(wmeiφ)n−1
. (24)

Recalling that pφ,ψ is the sum (15) of qφ,ψ,m we can write

〈p〉 (z) =
1

2π

n−1∑
m=0

(z − β)n

(eiφwm − β)n
zn − eiφn

z − eiφwm
1

n(wmeiφ)n−1
. (25)
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Now all n terms in the previous sum are identical, therefore

〈p〉 (z) =
1

2π

∫ 2π

0

(z − β)n

(eiφ − β)n
zn − eiφn

z − eiφ
1

eiφ(n−1)

=
1

2iπ

∫
|w|=1

(z − β)n
zn − wn

(z − w)(w − β)n
dw

wn

=
(z − β)n

2iπ

∫
|w|=1

(
zn

wn
− 1

)
1

(z − w)(w − β)n
dw

=
(z − β)n

2iπ

∫
|w|=1

n−1∑
j=0

zj

wj+1(w − β)n
dw

= (z − β)n
n−1∑
j=0

zj

j!

dj

dwj

[
1

(w − β)n

]
w=0

,

(26)

where we used Cauchy’s theorem in the last equality of (26). The desired expression
(22) follows by straightforward algebraic manipulations of (26). �

Remark 3. By using elementary algebraic manipulations and (26), it is possible
to show that 〈p〉 is the Hermite interpolation polynomial [24] of degree 2n− 1 that
is uniquely defined by the 2n interpolation conditions

〈p〉 (0) = 1, 〈p〉 (β) = 0, and 〈p〉(j) (0) = 〈p〉(j) (β) = 0, for j = 1, . . . , n− 1. (27)

Notice that the ensemble average polynomial inherits the symmetry property
(19) for pφ,ψ, that is

〈p〉 (z) + 〈p〉 (β − z) = 1. (28)

This symmetry property means that by design, the polynomial gives as good an
approximation to one near the origin as the approximation to zero near β.

4.4. Asymptotics of the ensemble average polynomial. We now study the
behavior of the polynomial 〈p〉 (defined in (21)) as n → ∞. The following result
shows that the polynomial 〈p〉 solves the problem (12), and gives limits to the size
of the cloaked region.

Theorem 2. The ensemble average polynomial 〈p〉 can be written as

〈p〉 =
1

2
+
n−1∑
k=0

(2k)!

(k!)2

(
z

β

(
1− z

β

))k (
1

2
− z

β

)
. (29)

The polynomial 〈p〉 (z) converges as n→∞ if and only if z belongs to the conver-
gence region

Dβ =

{
z ∈ C, |z2 − βz| < β2

4

}
. (30)

The convergence is uniform on compact subsets of Dβ to the function

χ(z) =

{
1 if <(z) < β/2,

0 otherwise.
(31)

For large enough n, the polynomial 〈p〉 solves (12) if and only if

1

R
<

β

2
√

2 + 2
and α <

β

2
√

2 + 2
. (32)
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Proof. Consider the function

fn(t) = (1− t)n
n−1∑
j=0

tj
(
n+ j − 1

j

)
(33)

where for any positive integers m and p,
(
m
p

)
= m!

p!(m−p)! . Note that, from (22) we

have

fn(t) = 〈p〉 (βt), for all t ∈ C. (34)

Then for all t 6= 1 we obtain,

fn+1(t)

(1− t)n+1
=

n∑
j=0

tj
(
n+ j

j

)

= 1 +

n∑
j=1

tj
[(
n+ j − 1

j − 1

)
+

(
n+ j − 1

j

)]

=

n∑
j=1

tj
(
n+ j − 1

j − 1

)
+

1 +

n∑
j=1

tj
(
n+ j − 1

j

)
=

n−1∑
k=0

tk+1

(
n+ k

k

)
+

n∑
j=0

tj
(
n+ j − 1

j

)

= t

[
fn+1(t)

(1− t)n+1
− tn

(
2n

n

)]
+

fn(t)

(1− t)n
+ tn

(
2n− 1

n

)
.

(35)

In the above equation we used the recurrence relation(
m

p

)
=

(
m− 1

p− 1

)
+

(
m− 1

p

)
, for any integers m, p > 0.

From (35), for any integer n ≥ 1 we obtain,

fn+1(t) = fn(t)− (1− t)ntn+1

(
2n

n

)
+ (1− t)ntn

(
2n− 1

n

)
= fn(t)− (1− t)ntn

(
2n

n

)(
t− 1

2

)
, for all t 6= 1.

(36)

In (36) we used the identity(
2n

n

)
= 2

(
2n− 1

n

)
, for every integer n ≥ 1.

From the first order linear recurrence (36) we obtain,

fn(t) =
1

2
+

n−1∑
k=0

(1− t)ktk
(

2k

k

)(
1

2
− t
)

(37)

and this is valid for all n ≥ 1 and all t ∈ C (as (37) which was initially obtained
for t 6= 1 checks also for t = 1). The final expression (29) follows from substituting
t = z/β in (37) and using (34).
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Notice that the polynomial 〈p〉 is in fact the n-th order partial sum of the fol-
lowing infinite sum,

1

2
+

∞∑
k=0

(1− z

β
)k
(
z

β

)k (
2k

k

)(
1

2
− z

β

)
.

By the ratio test this series converges uniformly on compacts subsets of the region
Dβ (defined at (30)) to a limit function ϕ and diverges in C\Dβ . From the uniform
convergence of 〈p〉 we deduce the analyticity of ϕ in Dβ and by using the Taylor
expansion around the origin for ϕ, the Remark 3, and the symmetry property (28)
we obtain convergence to the function (31) inside Dβ .

We now study the convergence region Dβ in order to show that the constraints
(32) are necessary and sufficient for 〈p〉 to solve (12). First notice that the definition
of the region Dβ and simple algebra reveal that

1

R
<

β

2
√

2 + 2
⇔ 1

R
e−iπ ∈ (Dβ ∩ {z ∈ C, 2Re(z) < β}), and (38)

α <
β

2
√

2 + 2
⇔ β + α ∈ (Dβ ∩ {z ∈ C, 2Re(z) > β}). (39)

Next we show that

1

R
<

β

2
√

2 + 2
⇔ B(0, 1/R) b (Dβ ∩ {z ∈ C, 2Re(z) < β}), and (40)

α <
β

2
√

2 + 2
⇔ B(c∗, α) b (Dβ ∩ {z ∈ C, 2Re(z) > β}), (41)

where b is the classical symbol for compact inclusions. By using the equivalences
(38) and (39) it is easy to check that the inclusions in (40) and (41) imply the
constraints (32). To show the implication (⇒), we first show that for any two
positive real numbers l, q with 2 max{l, q} < β, we have

le−πi ∈ Dβ ⇔ B(0, l) b (Dβ ∩ {z ∈ C, 2Re(z) < β}) and (42)

β + q ∈ Dβ ⇔ B(c∗, q) b (Dβ ∩ {z ∈ C, 2Re(z) > β}). (43)

Let us first show the equivalence (42). The sufficiency (⇐) is immediate. For
the other implication (⇒), we can use the definition of Dβ to show that for any
θ ∈ [−π, π] we have,

leiθ ∈ Dβ ⇔ |l2eiθ − βl| < β2

4

⇔ (l2eiθ − βl)(l2e−iθ − βl) < β4

16

⇔ l4 + β2l2 − 2l3β cos θ − β4

16
< 0. (44)

Since we assumed le−πi ∈ Dβ , equation (44) immediately implies that

l4 + β2l2 + 2l3β − β4

16
< 0. (45)

Consider the even function f : [−π, π]→ R defined by,

f(θ) = l4 + β2l2 − 2l3β cos θ − β4

16
. (46)



12 F. GUEVARA VASQUEZ, G. W. MILTON AND D. ONOFREI

Observe now that, because l > 0, its derivative f ′(θ) = 2l3β sin θ has the signs,

f ′(θ) ≥ 0 for θ ∈ [0, π] and f ′(θ) ≤ 0 for θ ∈ [−π, 0]. (47)

Note that from inequality (45) and the definition (46) of f(θ) one immediately
obtains

f(−π) = f(π) < 0. (48)

Then the signs of f ′(θ) in (47) together with the particular values of f(θ) in (48)
imply

f(θ) < max{f(π), f(−π)} < 0, for all θ ∈ [−π, π]. (49)

Because of equivalence (44) we conclude from inequality (49) that

leiθ ∈ Dβ , for any θ ∈ [−π, π]. (50)

From the conditions on l, we have that 2Re(leiθ) ≤ 2l < β and by using this in
(50) we obtain

leiθ ∈ (Dβ ∩ {z ∈ C, 2Re(z) < β}), for any θ ∈ [−π, π]. (51)

Inclusion (51) together with the convexity of Dβ ∩ {z ∈ C, 2Re(z) < β} implies
that

Bl(0) b Dβ ∩ {z ∈ C, 2Re(z) < β}.
This establishes the equivalence (42). From the definition of the set Dβ , by simple
algebraic manipulation we obtain

β + q ∈ Dβ ⇔ qe−πi ∈ Dβ . (52)

Equivalence (52) clearly implies that (43) follows from (42) applied to q instead
of l. Finally, observing the fact that the constraints (32) imply 2 max{ 1

R , α} < β

and using equivalences (38), (39), (42) and (43) for 1
R and α instead of l and q

respectively, we obtain the desired equivalences (40) and (41). By using the uniform
convergence of the polynomial 〈p〉 to the function χ(z) in Dβ , and equivalences (40)
and (41) we obtain that the constraints (32) are indeed necessary and sufficient for
convergence of 〈p〉. �

Remark 4. The expression (29) of the ensemble average polynomial could also be
obtained by generalizing to distributions a theorem by Ramharter [21] (which is in
turn a generalization of a result due to Berger and Tasche [2]). To remain concise,
we prefer to include a direct proof.

5. Summary

For the Laplace equation we have shown the existence of a device capable of
cloaking a region exterior to the device, assuming a priori knowledge of the inci-
dent field. The proof relies on a non-constructive harmonic function approximation
result. The theory does not constrain the size and relative positions of the de-
vice and cloaked region, as long as they are bounded, disjoint and the complement
of their union is connected. Although the construction of such a cloaking device
is clearly not unique, we presented earlier in [8] a construction based on an ex-
plicit polynomial. Here we rigorously justify this construction and show that the
constraints (32) must be satisfied in order to have a proper active exterior cloak.
Because of the constraints (32), the current strategy fails to cloak large objects
(α large) unless they are sufficiently far from the origin (β large enough). In [11]
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(see Conjecture 1), we present without proof, as a conjecture, an extension of The-
orem 2 which gives a wider choice of cloaks and that is supported by numerical
experiments.
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