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Abstract The objective of this study is to apply an in-

verse analysis using the iTOUGH2 model to estimate the

location of a leakage pathway in multiple brine reservoirs

when CO2 is injected. If a reservoir exhibits leakage, brine

or CO2 is able to migrate into a permeable reservoir

overlying the storage reservoir. Fluid pressure anomalies

induced by leaks in the overlying reservoir can be dis-

tributed differently depending on the leakage locations and

rates. Thus, the application of an inverse model utilizes

specific pressure anomalies for leakage pathway detection.

Prior to applying the inverse analysis, a forward simulation

and a sensitivity analysis are conducted. The result of

forward simulation demonstrates the interrelation between

migrations of brine or CO2 through the leakage pathway

and pressure anomalies in the leakage pathway and reser-

voirs. The sensitivity analysis is performed to evaluate/

identify the most influential model inputs on the observed

pressure signals and the most appropriate monitoring wells

for leakage pathway estimation. The inverse modeling

examines the impact of the input parameter’s uncertainties,

the number of monitoring wells, observed periods of

leakage signal, and noises in the measurements on the

leakage pathway estimation through thirteen simulation

scenarios. Residual (between the measured pressure and

the calculated pressure) analysis illustrates that pressure

anomalies in the overlying reservoir induced by leaks are

critical information for leakage pathway estimation. The

accuracy of the leakage detection using inverse analysis

can significantly depend on the number of monitoring wells

and the magnitude of the pressure anomalies.

Keywords Inverse analysis � Leakage pathway

detection � Geologic carbon storage � Pressure anomalies in

overlying formation � Pressure monitoring

Introduction

The objective of this study is to apply mathematical inverse

analysis to identify possible locations of abandoned wells or

other possible leakage zones, in subsurface reservoirs. This

research is related to the storage of CO2, a primary green-

house gas from coal fired power plants and other point

sources, in geological formations. This research focuses on

the storage of CO2 in saline aquifers. However, the storage of

CO2 in deep geological formations has risks, and perhaps the

most important risk is the leakage of CO2 (Metz et al. 2005).

For a reservoir to store CO2, it will ideally exhibit high

porosity and high permeability and be capped by a low-

permeability seal layer (or caprock above the reservoir). The

existence of pathways that can release CO2 from the reser-

voir and through the seal rock layer may allowCO2 to escape

into the atmosphere or to migrate into adjacent reservoirs.

CO2 leakage through abandoned pre-existing wells is iden-

tified as one of the most probable leakage pathways. More

than 350,000 abandoned oil and gas wells have been drilled

in Alberta, Canada (Gasda et al. 2004). Particularly, un-

completed or improperly plugged abandoned wells are the

most susceptible to the leakage of buoyant fluids such as CO2

(Metz et al. 2005). In geologic carbon storage (GCS), the

detection of these pathways is a very significant objective.
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In GCS, many researchers have studied forward mod-

eling to solve leakage problems. For example, Pruess and

Garcı́a (2002) modeled the effects of CO2 discharge along

a fault zone, including the impacts of salinity on CO2

migration. In addition, Pruess and Garcı́a (2002) consid-

ered how decreasing pressure reduces fluid mobility, thus

decreasing vertical CO2 flow but increasing the lateral

migration of CO2. Doughty and Pruess (2004) investigated

the effects of heterogeneity on CO2 migration. Altevogt

and Celia (2004) explored flux mechanisms (of CO2

transport) in the vadose zone. Nordbotten et al. (2004)

studied perturbations in hydraulic heads that were induced

by leakage rates through abandoned wells in systems with

two aquifers and one aquitard. Nordbotten et al. (2008)

studied CO2 leakage in multiple geological layers. Zhou

et al. (2009) developed semi-analytical solutions to simu-

late induced pressure perturbations and vertical leakage

rates in a system consisting of multiple aquifers. Cihan

et al. (2011) studied a methodology to solve pressure per-

turbations through leakage wells and associated ground-

water injection/pumping. Nogues et al. (2011) investigated

the limits and extents of monitoring wells to measure

pressure anomalies induced by leakage wells. Hou et al.

(2012) quantified the post-injection impacts of CO2 leakage

through heterogeneous caprock without specific leakage

pathways.

However, fewer people are interested in the application

of inverse modeling for leakage estimation than those using

forward modeling to evaluate leakage features. Gasda et al.

(2011) investigated the actual permeability of several wells

in the field using what is called the ‘‘Vertical Interference

Test’’ (VIT) to measure pressure related to fluid movement

outside of well casings. Jung et al. (2012a) developed a

framework for early leakage detection. The framework

consists of inverse modeling with high-spatial-resolution

surface deformation (InSAR) data. Jung et al. (2012b) also

utilized inverse modeling for leakage detection in a single-

phase system. Pressure anomalies from monitoring wells in

multiple reservoirs were used for early leakage detection

by inverse modeling. They introduced monitoring data with

random errors resulting from various sources and system-

atic errors due to drift in pressure gauges and uncertain

values for caprock permeability. Jung et al. (2013) exam-

ined the sensitivity of pressure anomalies by leakage. They

suggested that accurate information regarding the forma-

tion parameters (like formation permeability) is indeed

more important than leaky well permeability for the suc-

cessful detection of leaky wells. In addition, they con-

cluded that the level of noise in the measured signals is also

significant for leakage pathway detection. However, they

focused on the simple single-phase problem. Other meth-

ods for the risk assessment of CO2 leaks include InSAR

data of surface deformation, water chemistry perturbations

in aquifers and CO2 land surface flux monitoring (Carroll

et al. 2009; Krevor et al. 2010; Onuma and Ohkawa 2009).

Abandoned wells and other leakage pathways typically

exhibit higher vertical permeability than the confining layers

and reservoirs. The leakage pathways may cause pressure

anomalies that induce transient flow in reservoirs. Thus, this

study focuses in particular on pressure anomalies to estimate

the locations of abandoned wells and other potential leakage

zones. Before applying inverse methods to identify leakage

pathways, more general numerical modeling is performed to

evaluate the impacts of leakage zones on the flow patterns in

confined brine aquifers with homogeneous and isothermal

conditions. The uncertainties of the model parameters are of

major consideration for the successful estimation of leakage

pathways (because the model parameters with errors are

assigned as known values in the inverse modeling). Sensi-

tivity analysis is implemented to examine the effects of the

uncertainties in geological properties on themagnitude of the

pressure and to evaluate the sensitivities of the pressure at the

monitoring wells to the leakage pathway permeability. To

achieve these objectives, this study uses iTOUGH2, a

simulation code developed by the Lawrence Berkeley Na-

tional Laboratory (Finsterle 2007).

Materials and methods

Conceptual framework of inverse modeling

If a reservoir exhibits leakage, a leakage pathway can in-

duce pressure anomalies in adjacent reservoirs overlying

the storage reservoir, i.e., brine or CO2 is able to move into

the overlying permeable reservoir from the source reser-

voir. Fluid pressure perturbations can be distributed and

propagated differently throughout the source and overlying

reservoirs depending on the leakage locations and rates.

However, specific pressure anomalies induced from leak-

age can provide information about the leakage locations

and rates. The inverse method employed here estimates the

leakage locations and rates by calculating the discrepancy

between the calculated and observed pressure data at

monitoring wells. The objective function (S) is used to

calculate the discrepancy at points in identical space and

time, referred to as calibration points. The weighted least-

squares objective function used by iTOUGH2 is

S ¼
Xm

i¼1

r2i
r2zi

: ð1Þ

Here, i is calibration point (i = 1,…, m), ri is residuals

between the measured pressure (z�i ) and calculated pressure

(zi), i.e., ri ¼ z�i � zi, and r2zi is the prior error variance (or

weighting coefficient) for each observation. The
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measurement data can be appropriately weighted to be

scaled and assessed based on the measurement and random

errors (this problem is discussed in ‘‘Residual analysis’’

and ‘‘Effect of singular noises in the measurements’’

sections).

The calculated pressures are obtained through forward

simulation [TOUGH2 coupled with the ECO2N module, an

equation of state module for mixtures of water, NaCl, and

CO2 (Pruess et al. 1999)] parameterized with the vertical

permeability values of randomly selected ‘‘initial guess

locations’’ of leakage pathways, which will be updated as

part of the optimization approach. The forward simulation

is repeated with updated parameter values, and when the

discrepancies are minimized, the resulting parameter val-

ues are deemed the best estimates. An initial guess location

with minimum objective function is estimated to the most

likely leakage pathway location. The Levenberg–Mar-

quardt algorithm designed for the minimization of a non-

linear least-squares models is applied to minimize the ob-

jective function in this study. Table 1 presents the inverse

modeling procedure for leakage pathway estimation.

Model and parameters

A model domain is designed and parameterized for the

simulation of CO2 storage and leakage. For an idealized

system to realize pressure perturbations induced by CO2

injection and leakage, the model domain should ideally

consist of at least three layers, such as two sandstone layers

and one confining layer for this analysis (Cihan et al.

2011). Figure 1 is a schematic of multiple formations with

a single leakage pathway. The domain consists of a storage

formation (for CO2 injection through an injection well), a

confining formation (caprock), and an overlying formation.

The overlying and the storage formations are composed of

sandstone with appropriate permeability, and the caprock

consists of shale with lower permeability and is located in

0.3 m

Higher permeability zone (Leaky well)

120 m

49.85 m 49.85 m

Confining 
Layers

20 m

Storage 
formation

Overlying
formation

40 m

60 m

1st layer

2nd layer

3rd layer

4th layer

5th layer

6th layer

7th layer

8th layer

9th layer

10th layer

11th layer

(a)

(b)

Fig. 1 Conceptual domain: a schematic of the model of multiple

formations with a leakage pathway. The permeabilities of the storage

reservoir, the caprock and the overlying formation are 10-13 m2,

10-20 m2 and 10-15 m2, respectively. IW injection well, MW

monitoring well, and LW leakage well. b Schematic of the specified

LW (not to scale)

Table 1 Procedures of inverse modeling for leakage pathway estimation

Step Description

1 Development of a forward conceptual model

2 Selection of initial guesses of leakage pathway locations

3 Assignment of vertical permeability of an initial guess and permeability of the formations (as the most influential parameters on calculated

model response)

4 Calculation of TOUGH2

5 Calculation of discrepancy between the calculated and measured pressure at calibration points by an objective function

6 Updating the parameter values until minimum objective function values can be obtained or reaching the iteration number specified by the

users

7 Iterating from Steps 3 through 6

8 A placement of initial guess with a minimum objective function value is estimated to the likely leakage location
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the middle of the conceptual domain. The hydrogeological

properties for both formations and caprock are assigned

based on information on the deep geological formations for

CO2 storage from Metz et al. (2005). It is assumed that the

entire domain is homogenous, isothermal (50 �C), and

completely saturated by brine. The domain size is

10,100 m 9 10,100 m 9 220 m. The number of cells is

103 9 103 9 11 (116,699 grid blocks total). The XZ-

planes on the left and right boundaries (Fig. 1a) are as-

signed a constant head boundary condition, but the other

boundaries are assigned no flow boundary conditions. The

assumed leakage pathway vertically penetrates the caprock

at (x, y) = (5250, 6050 m) from the origin. Table 2 sum-

marizes the dimensions and the parameters of the model.

The initial pressures of all the top grid blocks and all the

bottom grid blocks are specified as approximately 10 and

12 MPa, respectively, and the other cells are assigned a

linear distribution with the same pressure gradient in the

vertical direction to maintain the hydrostatic conditions

before CO2 injection. In addition, injected CO2 can sustain

supercritical conditions in the simulation domain. The

porosity of the overlying and storage formations and the

leakage pathway is 0.2, and the porosity of the caprock is

assigned as 0.02. The pore compressibility ðPa�1Þ is as-

sumed as 0 in the model domain so that the porosity re-

mains constant. This simulation is assigned a constant

injection rate (63.4 kg/s) at (x, y, z) = (5050, 5050,

-190 m) from the origin throughout the simulation time

(10 years). Table 3 details the point locations of the

monitoring wells. In the model domain, four monitoring

wells are available for pressure observation. The four

monitoring wells measure pressure data in both the over-

lying and storage formations (eight points total).

The van Genuchten–Mualem model (Mualem 1976; van

Genuchten 1980) and the Corey model (Corey 1954) were

used for the relative permeability function. The van

Genuchten model (van Genuchten 1980) was implemented

for the capillary pressure function. For further information

on the relative permeability and capillary pressure func-

tions, refer to Pruess (2005). Table 4 details the parameter

values for the relative permeability and capillary pressure

functions.

Forward simulation

The forward simulations show the pressure perturbation

and migration of CO2 through the leakage pathway. The

pressure data at the simulated monitoring wells are used as

‘‘observed data’’ for the inverse simulation afterward. The

migration of CO2 along a leakage pathway saturated by

brine can be subject to buoyant and capillary effects and

may impact multi-dimensional flow in the formations

(Pruess 2005). The conceptual domain in Fig. 1 with the

given hydrogeological properties is employed to model the

effects of CO2 and brine migration through a leakage

pathway. Figure 2 presents, the discharge rates of CO2 and

brine at the top of the leakage pathway. Figure 3 illustrates,

the simulated pressure perturbations at the top of the

leakage pathway. As shown in Fig. 2, when CO2 injection

starts, pressure buildup propagates to the top of the leakage

pathway, at which point it induces brine discharge. The

outflow of brine continues for approximately 1.1 9 108 s

(3.5 years), so the pressure anomalies increase in the

leakage pathway (see Fig. 3). However, CO2 reaches the

leakage pathway at that time, so brine discharge is rapidly

reduced (see Fig. 2) because the relative permeability of

brine decreases (due to the drop in brine saturation), and

increased capillary pressure (due to the surface tension

which exists at the interface between two immiscible flu-

ids) also quickly reduces the pressure of brine (see Fig. 3).

The rapid drop in brine pressure continues until the CO2

pressure exceeds the capillary pressure to break through

brine (see Fig. 3). After CO2 breaks through at ap-

proximately 1.12 9 108 s (3.55 years), the flow rates of

Table 2 Dimensions and parameters of the conceptual model

Domain size (m) 10,100 9 10,100 9 220 Permeability

(m2)

Storage

formation
kx ¼ ky ¼ kz ¼ 10�13

Each normal cell size (m) 100 9 100 9 20 Overlying

formation
kx ¼ ky ¼ kz ¼ 10�15

Cell sizes including a leakage

pathway (m)

49.85 9 49.85 9 20, 0.3 9 0.3 9 20 and

49.85 9 49.85 9 20

Caprock kx ¼ ky ¼ kz ¼ 10�20

Number of cells 103 9 103 9 11 (116,699 total) Leakage

pathway
klx ¼ kly ¼ 10�20 and

klz ¼ 10�10

Leakage pathway location from

origin

(5250, 6050 m) Porosity Both aquifers 0.2

Simulation time (s) 0–3.16e8 (&10 years) Caprock 0.02

Time step size (s) 10 Tolerance 1.0e-7
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CO2 start to increase due to the higher relative permeability

following increased CO2 saturation (see Fig. 2). The CO2

pressures, therefore, rapidly increase at the top of leakage

pathway (see Fig. 3). In this paper, the pressure anomalies

that occur when CO2 breaks through the leakage pathway

are referred to as ‘‘capillary effects.’’ Figure 4 illustrates,

the simulated pressure propagation induced by leaks in the

XY-plane of the overlying formation. As mentioned ear-

lier, when CO2 reaches the leakage pathway, the brine

leakage rates decrease in the leakage pathway due to

capillary effects, so the pressures rapidly drop in the

leakage pathway. The capillary effects also cause a de-

crease in the pressure propagation in the overlying for-

mation (Fig. 4b, c). After the outflow of CO2 breaks

through the leakage pathway, the pressures continuously

increase in the overlying formation until the end of the

simulation (Fig. 4d). Figure 5 provides, the pressure pro-

files at the monitoring points in the overlying formation

and in the storage formation. In Fig. 5a, each pressure

profile for a monitoring well exhibits a sudden change in

the pressure. One explanation is that the pressure anomalies

caused by capillary effects at the leakage pathway propa-

gate into the entire overlying reservoir. This propagation

has a significant effect on MW4 in the overlying reservoir.

Such information may be an indicator of CO2 leakage

through the leakage pathway. In Fig. 5b, the pressures in-

crease after CO2 reaches the monitoring wells due to

capillary pressure at approximately 3.5 years.

Sensitivity analysis

A sensitivity analysis is conducted in terms of the pressure

signals at the monitoring wells in the model domain (1) to

quantify the impact of the uncertainties in input parameters

on the calculated system response and (2) to identify more

critical monitoring wells for leakage pathway estimation.

First, the purpose of quantifying the uncertainties of the

input parameters is to evaluate the most influential input

parameters on the calculated pressures. The process will be

a means to parameterize those input variables to reduce the
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Fig. 3 Simulated pressure perturbations at the top of the leakage
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Table 3 Eight location points

of the four monitoring wells and

distance from a leakage

pathway

1st well (MW1) 2nd well (MW2) 3rd well (MW3) 4th well (MW4)

x, y, and z directional distances from origin (m)

MP at OF 6050, 5050, -30 4050, 5050, -30 5050, 4050, -30 5050, 6050, -30

MP at SF 6050, 5050, -170 4050, 5050, -170 5050, 4050, -170 5050, 6050, -170

x and y directional distance from leakage pathway (m)

– 800, 1000 1200, 1000 200, 2000 200, 0

MP measurement point, OF overlying formation, SF storage formation

Table 4 Relative permeability and capillary pressure parameters

Parameter values

Relative permeability

Liquid: van Genuchten–Mualem function

Irreducible water saturation (Slr) 0.20

Exponent (k) 0.457

Gas: Corey function

Irreducible gas saturation (Sgr) 0.05

Capillary pressure

van Genuchten function

Irreducible water saturation (Slr) 0.20

Exponent (k) 0.475

Strength coefficient (P0) 19.61 kPa

Maximum capillary pressure (Pmax) 104 kPa
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impact on a subsequent inversion. Second, for a successful

inversion, the magnitude of the pressure anomalies induced

by leakage can be important, and the changes in the per-

meability of leakage pathways, the main unknown pa-

rameter of this inverse analysis, should affect the pressures

at the monitoring wells. The sensitivities of the pressures at

the monitoring wells to changes in the leakage pathway

permeability are examined to identify more critical

monitoring wells.

This sensitivity analysis is conducted through the ex-

amination of a sigma-normalized coefficient (oP
oa
� rarP), where

oP
oa

is sensitivity coefficient, P is pressure, a is parameter,

and r is standard deviation (Finsterle 2007; Saltelli et al.

Fig. 4 Simulated pressure propagations in the XY-plane of the overlying formation a after 3.2 years, b after 3.5 years, c after 3.8 years, and

d after 10 years
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2000). The sigma-normalized coefficient (SC) evaluates

the difference in the calculated system response (pressure)

to the change in each input parameter. A sensitivity ana-

lysis function of iTOUGH2 is utilized to examine the SC

values for the given parameters. Jung et al. (2013) exam-

ined the sensitivity of pressure anomalies to the perme-

ability of the overlying and storage aquifers, the leaky well

permeability and the thicknesses of the overlying and

storage aquifers. They suggested that the formation per-

meability has higher sensitivity and is more important for

successful leaky well detection. Thus, in this study, the

sensitivity analysis focuses on four input parameters: the

vertical permeability of the leakage pathway (klz), perme-

ability of the overlying formation kO, permeability of the

storage formation kS, and caprock permeability (kC). The

initial parameter values of interest and their potential var-

iations are assigned as shown in Table 5. The wide ranges

of input factors are selected to evaluate the sensitivity to a

simulated system response. In particular, the leakage

pathway permeability values from 10-5 to 10-15 m2 are

assigned to represent a substantial leakage and less leakage

cases (Cihan et al. 2013).

Figure 6 illustrates, the absolute SC values at eight lo-

cation points of four monitoring wells (MW1, MW2,

MW3, and MW4) from the sensitivity measures. In the

overlying formation (Fig. 6a–d), the sensitivity of each kO
and kS substantially increases depending on the decrease in

the distance between the leakage pathway and the

monitoring well (distance from the leakage pathway:

MW3[MW2[MW1[MW4). In total, both the kO and

kS of the four input parameters are the most influential

input parameters on the pressure signals at the MWs in the

overlying formation. Note that the SC values of kO and kS
rapidly increase and decrease after approximately

3.5 years. The rapid changes in the SC values are caused

by capillary effects. The changes in kO and kS have a

greater effect on the rapid pressure changes at the MWs

near the leakage pathway. The sensitivity of kC increases

with time, especially after approximately 5 years, so kC
might also be considered an influential parameter if the

observed leakage signals for over 5 years are used for the

leakage pathway estimation. Pressure buildup in the stor-

age formation (due to constant CO2 injection) results in the

migration (diffuse) of CO2 or brine through the caprock

(Cihan et al. 2013), so the changes in kC affect the pres-

sures in the overlying formation. In fact, the diffuse mi-

gration causes a decrease in the pressure anomalies in the

overlying formation that were induced by leaks (Jung et al.

2012b). In addition, the thickness of the caprock has an

effect on the diffuse migration. Refer to ‘‘Appendix 1’’

section for more details on the effects of caprock thickness

on pressure anomalies induced by leaks. As shown in

Fig. 6(e–h), kS is the most influential parameter on the

pressures at the MWs in the storage formation. The wide

fluctuations of the SC values at all the MWs result from

capillary pressures. These sensitivity analysis results indi-

cate that prior information about the input parameters,

particularly both kO and kS, is very important for the ac-

curacy of pressure calculations. klz is much less sensitive

than the other parameters at the MWs in both formations.

The sensitivity analysis results of klz are depicted in Fig. 7

with an extended ordinate scale. As shown in Fig. 7, the SC

values in the storage formation (Fig. 7b) are relatively very

small for changes in the leakage rates (varied by klz), re-

gardless of the increase in time. However, the SC values

for the MWs in the overlying formation (Fig. 7a) are larger

by approximately two orders of magnitude than those for

the storage formation. In particular, at MW4, which is the

closest MW to the leakage pathway, the difference in

sensitivity between both formations is more significant.

This result implies that the pressure signals in the overlying

formation may be more important for leakage pathway

detection through estimates of klz. The effects of the

measurements in each formation on the leakage pathway

estimation are discussed in ‘‘Residual analysis’’ section.

Inverse simulation

The calculated and measured system responses may in-

clude errors. In this context, error means a deviation be-

tween the calculated/measured and exact values. It is

practically impossible to obtain exact values of calculated/

measured system responses from the real world because the

errors can never be removed. In general, both calculation

(or modeling) error and measurement (or data) error have

two types of errors: (1) systematic errors in the calculation

Table 5 Input parameter ranges for sensitivity analysis

Input parameters Notation Initial values Variation Minimum values Maximum values

Leakage pathway permeability (m2) klz 1e-10 0.1 1e-15 1e-5

Overlying formation permeability (m2) kO 1e-15 0.1 1e-16 1e-14

Storage formation permeability (m2) kS 1e-13 0.1 1e-14 1e-12

Caprock permeability (m2) kC 1e-20 0.1 1e-21 1e-19
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resulting from insufficient information about the input pa-

rameters and model geometry (systematic modeling error)

and in the measurement due to drift in the pressure mea-

suring devices (systematic data error), and (2) random er-

rors in the modeling such as numerical oscillations

(random modeling error) and in the measurement including

noises (random data error). In most cases, the impact of

systematic modeling errors is more significant than that of

systematic data errors, while the random modeling errors

are of less interest than the random data errors (Finsterle

2007). This study therefore focuses on examining the

impact of both systematic modeling errors from uncertain

input parameters and random data errors due to measured

signals including random noises on inverse modeling.

Inverse modeling for the estimation of a leakage path-

way is applied to the model domain of Fig. 1. However, the

number of cells specified in the model domain

(103 9 103 9 11) is adjusted to 21 9 31 9 11 (7161 grid

blocks total) to reduce the high computational demands for

inverse modeling. The leakage pathway location is esti-

mated by calibrating the logarithm of the absolute vertical

permeability of each different initial guess location of the
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leakage pathway. Forty-eight initial guess locations of the

leakage pathway through the caprock at (z) = (-40 to

-160 m) are randomly selected in a two-dimensional co-

ordinate system (x, y) but are more densely assigned around

an injection well located at the center of the model domain

because significantly higher pressure in the region is likely

to invoke potential CO2 leakage. The grid blocks are

meshed to 0.3 m 9 0.3 m according to the specific ge-

ometry of each initial guess. Forty-eight inversions with

each different initial guess location are performed to esti-

mate a global minimum of the objective function, i.e., the

most possible location of the leakage pathway.

Input parameter uncertainty is associated with the abso-

lute permeability, porosity, relative permeability, and cap-

illary pressure. Uncertainties are inherent to information

regarding geologic and hydrologic boundaries and the

thicknesses of geologic layers. However, it is impossible to

examine or estimate all the uncertainties of those parameters

through inverse modeling. In practice, a priori investigation

of those parameters should be performed to reduce the as-

sociated error. Based on the results of the previous sensitivity

analysis, the application focuses on evaluating and reducing

the impact of uncertain permeability values from the reser-

voirs on the solutions of inverse modeling. In addition, the

accuracy (or limit) of the inversions can be closely related to

the number and network of monitoring wells and the obser-

vation periods at the monitoring wells of leakage signals that

increase with CO2 injection. To examine the effect of noises

in the measurements on the parameter estimations, the ob-

served signals randomly include an additive zero mean

Gaussian noise that is ±0.1 % of the magnitude of each

pressure data point at all the monitoring wells. Considering

different combinations of those influential factors on the

inverse modeling, the inverse modeling was applied to

thirteen application examples. Cases 1, 2, and 3 examine the

impact of reservoir permeability uncertainties, and case 4

identifies that the parameterization of the uncertain perme-

ability values can reduce their impact using pure pressure

signals (without data noise) from fourmonitoringwellswhen

the entire monitoring period (10 years) is employed. Based

on the result of case 4, cases 5–8 utilize the pure pressure

signals from different combinations of two (MW2 and

MW3) or three (MW1, MW2, and MW3) monitoring wells

andmonitoring periods of 1 or 3 years. The inversemodeling

of cases 9 through 13 applies the pressure signals with data

noises to cases 4 through 8. Table 6 summarizes the numbers

and kinds of unknown parameters to be estimated, the ob-

servation periods, and the number and locations of the

monitoring wells and data noise conditions in the measure-

ments in each inverse modeling scenario.

Results

Inverse modeling results using pure pressure signals

Case 1 estimates only the location of the actual leakage

pathway from the initial guesses based on the exact per-

meabilities of the overlying formation (10-15 m2) and

storage formation (10-13 m2). This scenario can be called

the ‘‘idealized case’’. The second case is inverse analysis

for only the leakage location estimation based on an as-

sumed error of the permeability field of the overlying

formation (that permeability is 10-15.5 m2). In case 3, the

inverse modeling is also performed for only the calibration

of the leakage location based on an assumed permeability

error of the storage formation (10-12.5 m2). Case 4 simul-

taneously calibrates the uncertain formation permeabilities

with the permeability of each potential leakage location

through inverse modeling. Thus, the fourth inverse model

estimates an optimal combination of three parameters: the

logarithm of the vertical permeability of an initial guess

location and the logarithms of the uncertain permeability

values of both reservoirs. Figure 8 illustrates, each result

from the eight cases using pure pressure signals with

contour plots of the objective function values from forty-

eight inversions with each different initial guess location.

Figure 8a shows, the result of case 1 from four monitoring
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wells. The inversion estimated the coordinate (x,

y) = (5250, 6150 m) as the most possible location (black

filled circle). The estimated leakage pathway has a de-

viation of 100 m against the actual leakage pathway lo-

cation (void circle) at (x, y) = (5250, 6050 m). Even with

the deviation of 100 m, the deviation is not significantly

large with respect to the whole system, suggesting that the

inversion results are qualitatively good. Case 2 resulted in a

global minimum at (x, y) = (5150, 5750 m) for the pre-

dicted leakage pathway location as shown in Fig. 8b. The

deviation from the actual leakage pathway location is ap-

proximately 316 m. Figure 8c illustrates that the leakage

pathway location estimated for case 3 is (x, y) = (5150,

5950 m). The deviation between the actual and estimated

leakage pathway is approximately 141 m. In cases 2 and 3,

the two estimated leakage locations do not significantly

deviate from the actual leakage pathway location. How-

ever, it can still be established that the uncertainty of the

formation’s permeability influences the accuracy of the

inversion for the detection of the leakage pathway. The

result from case 4 as shown in Fig. 8d has a deviation of

100 m from the actual leakage pathway location. The re-

sults indicate that estimating the combination of both the

vertical permeability of each initial guess and the incorrect

permeability values of the reservoirs reduces the impact of

the uncertainty of the formation’s permeability and in-

creases the accuracy of the detection of the leakage path-

way location. The specific accuracy of four inversion cases

can be identified by the residual analysis in the next

section.

Figure 8e–h illustrates each result of cases 5 through 8

estimated from three unknown parameters. In Fig. 8e, the

contour plot has one global minimum (black filled circle)

and two local minima (blue filled circles), but the deviation

of the global minimum is 100 m from the actual leakage

pathway location. Case 5, which had a combination of

three monitoring wells and a three-year monitoring period,

estimated an identical leakage pathway location as the

idealized case. Meanwhile, the accuracies of cases 6, 7, and

8, which had certain combinations of fewer monitoring

wells and monitoring periods, were reduced as shown in

Fig. 8f–h. Case 8 of two well monitoring and 1-year

monitoring scenario estimated two global minima (non-

unique solution). Although the leakage pathway is well

estimated in one of the two global minima, another esti-

mated leakage pathway location has a significant deviation

of 583 m from the actual leakage pathway. These inversion

results indicate that the accuracy of inverse modeling can

depend on the number of monitoring wells and the mag-

nitude of the measured anomalous pressure induced by

leaks at the monitoring wells. Refer to ‘‘Appendix 2’’

section for specific information regarding the magnitude of

the pressure anomalies at the monitoring points in the

overlying formation.

Residual Analysis

Residual analysis provides a measure of the overall good-

ness-of-fit. Figure 9 presents, the residuals (r ¼ z� � z) of

the disparity between the measured pressures (z�) and

Table 6 Numbers and kinds of unknown parameters to be estimated, data noise conditions, monitoring periods (time), and number of used

monitoring wells (MWs) in thirteen inversion scenarios (perm. indicates permeability)

Case # of MWs (MW

name)

Data

noise

Time

(years)

# of

unknown

Initial guess

perm. (m2)

Logarithm of applied OF

perm. (m2)

Logarithm of applied SF

perm. (m2)

Unknown -15

(true)

-15.5 Unknown -13

(true)

-12.5 Unknown

1 4 (1, 2, 3, 4) N 10 1 Y Y – N Y – N

2 4 (1, 2, 3, 4) N 10 1 Y – Y N Y – N

3 4 (1, 2, 3, 4) N 10 1 Y Y – N – Y N

4 4 (1, 2, 3, 4) N 10 3 Y – – Y – – Y

5 3 (1, 2, 3) N 3 3 Y – – Y – – Y

6 2 (1, 2) N 3 3 Y – – Y – – Y

7 3 (1, 2, 3) N 1 3 Y – – Y – – Y

8 2 (1, 2) N 1 3 Y – – Y – – Y

9 4 (1, 2, 3, 4) Y 10 3 Y – – Y – – Y

10 3 (1, 2, 3) Y 3 3 Y – – Y – – Y

11 2 (1, 2) Y 3 3 Y – – Y – – Y

12 3 (1, 2, 3) Y 1 3 Y – – Y – – Y

13 2 (1, 2) Y 1 3 Y – – Y – – Y
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Fig. 8 Estimated leakage

pathway location from objective

function in a case 1, b case 2,

c case 3, d case 4, e case 5,

f case 6, g case 7, and h case 8
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calculated pressures (z) in the overlying formation for cases

1 through 4. The residuals of the storage formation in the

same scenarios are shown in Fig. 10. In Fig. 9, the resi-

duals for case 2 (Fig. 9b) and case 3 (Fig. 9c) are larger

than those for case 1 (Fig. 9a) and case 4 (Fig. 9d), indi-

cating that the inversions of cases 2 and 3 have lower

accuracy. On the other hand, in Fig. 10, the residuals for

the storage formation in each case are not identical to the

different estimated results from each case, although the

residuals in case 3 (Fig. 10c) are larger than those in case 4

(Fig. 10d). This result implies that the pressure data in the

storage formation may not be suitable for estimating

leakage pathway locations because the sensitivity of the

monitoring wells in the storage formation is very slight to

changes in leakage pathway permeability, i.e., leakage

rates (see Fig. 7). The large amount of injected CO2 can

damp the pressure anomalies induced by leaks in the

storage formation. However, pressure anomalies in the

overlying formation that are induced by leaks can be cri-

tical for detecting likely leakage pathway locations by in-

verse modeling. To demonstrate these results, two inverse

models were conducted based on the ‘‘idealized case’’.

First, the inverse analysis estimated the leakage pathway

location based on only measurement data in the overlying

formation (Fig. 11a). The second inversion estimated the

leakage location based only on the measurement data in the

storage formation (Fig. 11b). In Fig. 11a, the leakage

pathway was estimated similarly to case 1 but the second

inversion was ill-posed. These inverse modeling results

identify that pressure anomalies induced by leaks in the

overlying formation are critical for detecting the leakage

pathway locations. Thus, calculating the exact pressure

anomalies in the overlying formation is very important for

successful leakage pathway estimation. The significant

influential factors on calculating the pressures in the

overlying formation should be parameterized to reduce

those impacts on the leakage pathway detection.

Another interesting observation is that even the ideal-

ized case has some residuals in all of the four monitoring

wells in Fig. 9a. In particular, the residuals in MW4, in-

cluding serious pressure anomalies associated with capil-

lary effects at the leakage pathway, are relatively very

large. The residuals are caused by increased truncation

errors, derived from the adjustments in the number of grid

blocks in the model domain to reduce the computational

demands for inverse modeling. Thus, the drifts in time

from the increased truncation errors when CO2 reaches the

bottom of the leakage pathway result in the significant

residuals at MW4. Such truncation errors can cause these

deviations (between the actual and estimated leakage

pathway locations) in the inverse modeling results. In the

model domain, the intervals of the initial guesses for the

leakage pathway are at most 100 m. To alleviate the de-

viations of the inverse modeling results, a model with finer

intervals for the initial guesses is required.

The storage formation in which CO2 is injected has

higher pressure than the overlying formation, so the resi-

duals in the storage formation can be larger. Such contrast

may lead to a failure of the inverse model solution because

the residuals in the overlying formation, which are critical

for leakage pathway detection, can be obscured. In Figs. 9

and 10, the magnitude of the residuals in the storage
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formation is approximately 100 times larger than that in the

overlying formation. Therefore, in cases 1 through 8, 1 Pa

and 100 Pa weighting factors were utilized for the over-

lying and storage formations, respectively, so that the

residuals of both formations will be approximately

equivalent.

Effect of singular noises in the measurements

Figure 12 illustrates, each inversion result of cases 9

through 13 correspondingly applied to cases 4 through 8

with the measured signals, including random noises. Case 9

determined that the most probable leakage pathway is lo-

cated at (x, y) = (5250, 6150 m) as shown in Fig. 12a. The

deviation from the actual leakage pathway is 100 m,

indicating that the leakage pathway was reasonably esti-

mated, as in case 4 (see Fig. 8d). The result of case 10 (see

Fig. 12b) also has an analogy with that of case 5 (see

Fig. 8e), i.e., though this inversion estimated one global

minimum and one local minimum, the global minimum is

not significantly different from the actual leakage pathway.

However, as shown in Fig. 12c–e, the accuracies of each

estimated leakage location in cases 11, 12, and 13 decrease

more than those in cases 6, 7, and 8 (see Fig. 8f–h) because

of the effect of noises in the measurements. In particular,

the inverse modeling of case 13 was ill-posed. A noise

problem in the measurements can be significant for leakage

pathway detection by inverse modeling and degrade the
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accuracy of the leakage pathway estimation depending on

the number of monitoring wells and the monitoring periods

associated with the magnitude of the measured pressure

anomalies induced by leaks (see ‘‘Appendix 2’’ section).

Table 7 presents the objective function values and coor-

dinates of the estimated leakage locations in thirteen cases.

In Table 7, the inversions from measurement data noises

(cases 9 through 13) have much smaller objective function

Fig. 12 Estimated leakage pathway location from the objective function in a case 9, b case 10, c case 11, d case 12, and e case 13 using

measurements with random noises
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values than cases 1 through 8 because weighting factors of

approximately 600 and 80,000 Pa were assigned for the

overlying and storage formations, respectively; i.e., those

weighting factors are approximately assessed based on the

standard deviation of the random data errors and the dif-

ferent magnitudes of the residuals of the overlying and

storage formations.

In this study, the random data errors including noises of

0.1 % were applied to leakage pathway estimation. How-

ever, measurements including the various magnitudes of

random noises need to be applied to quantitatively identify

the impacts of measurement data noises on the application

of inverse modeling, and more studies should be conducted

with respect to the complexities of uncertain input pa-

rameters and model geometry.

Conclusion

The conceptual domain was applied to model the effects of

CO2 and brine migrations through the leakage pathway. In

the modeling scenario, CO2 is injected for 10 years into the

storage formation. The increased pressure gradient from

the CO2 injection continuously induces brine discharges

through the leakage pathway before the CO2 leaks. When

CO2 reaches the bottom of the leakage pathway after ap-

proximately 3.5 years, CO2 migration along a leakage

pathway saturated by brine induces capillary effects. Each

pressure profile at the four monitoring wells (MW1, MW2,

MW3, and MW4) in the overlying reservoir has a sudden

change in the pressure due to the capillary effects at the

leakage pathway. This process has a substantial effect on

MW4 in the overlying formation, which is the closest

monitoring well to the leakage pathway.

The sensitivity analysis was performed through the

sigma-normalized coefficient with respect to four pa-

rameters: the vertical permeability of the leakage pathway

(klz), permeability of the overlying formation kO, perme-

ability of the storage formation kS, and caprock perme-

ability (kC). As a result, the most influential input

parameters on the pressure signals at the MWs are both kO
and kS. The sensitivity of klz for the MWs in the overlying

formation are significantly larger than that in the storage

formation.

In the inverse modeling, the leakage pathway location

was estimated by calibrating the logarithm of the absolute

vertical permeability for each different initial guess loca-

tion of the leakage pathway. Depending on the results of

the sensitivity analysis, the uncertainties of the reservoir

permeability values in the inverse modeling were em-

ployed and the uncertain reservoir permeability values

were parameterized to reduce those impacts on the leakage

pathway estimation. In thirteen inverse modeling scenarios,

the accuracy of the leakage pathway detection can sig-

nificantly depend on the number of monitoring wells and

the magnitude of the pressure anomalies. In addition, the

noises in the measurements reduce the accuracy of the

leakage pathway detection. Case 5 and case 10, each using

pure and noisy monitoring data from MW1, MW2, and

MW3 over 3 years, sustained an accuracy of the leakage

pathway estimation similar to that of the idealized case.

Residual analysis illustrated that critical information for

leakage pathway estimation by the inverse modeling is the

pressure anomalies in the overlying formation induced by

Table 7 Objective function values and coordinates of the estimated leakage locations in thirteen inversion scenarios (True: actual leakage

pathway located at 23th initial guess)

Case # of initial guess Coordinate of estimated leakage location (m) Deviation from true (m) Objective function

23 (true) (5250, 6050) – –

1 24 (5250, 6150) 100 0.2554e11

2 10 (5150, 5750) 316 0.2657e11

3 11 (5150, 5950) 141 0.3936e12

4 24 (5250, 6150) 100 0.6697e10

5 24 (5250, 6150) 100 0.1009e10

6 13 (5150, 6150) 141 0.6387e9

7 21 (5250, 5750) 300 0.7304e9

8 24 (5250, 6150) 100 0.4768e9

6 (4950,6550) 583 0.4768e9

9 24 (5250, 6150) 100 0.9092e5

10 24 (5250, 6150) 100 0.2138e5

11 9 (5150, 5550) 510 0.1403e5

12 31 (5350, 5550) 510 0.2297e5

13 Ill-posed – – –
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leaks. This indicates that prior information about the input

parameters that are influential for calculating pressures in

the overlying formation is very important for successful

leakage pathway detection. In addition, the influential

factors should be parameterized to reduce the impact on the

leakage pathway estimation.

In a follow-up study, multiple leakage pathways should

be pursued to evaluate the applicability of the inverse

method. Pressure signals from multiple leakage pathways

can be distributed, creating further complexity. The

uncertainties of multiple input parameters and model ge-

ometry can also have a more significant impact on the

detection of leakage pathways. Uncertain pore compress-

ibility can have an effect on the pressure’s evolution in a

confined aquifer, so the compressibility may be considered

as one of the influential uncertain parameters. The drift in

pressure gauges can limit the applicability of inverse

modeling. Those will be quantitatively examined in a fu-

ture study. An uncertain leakage pathway size may create

errors in the calculation of pressure anomalies induced by

leaks. The parameterization of the leakage pathway ge-

ometry will be studied for a more effective inversion. Most

of all, an inversion in an unknown heterogeneity will be a

difficult problem and challenge. The inverse modeling may

be incorporated with geostatistics to estimate the hetero-

geneity and leakage pathways. The above follow-up study

will proceed to provide practical strategies for leakage

detection and subsurface monitoring in a GCS project.
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Appendix 1

The effect of caprock thickness on the pressure anomalies

could be examined from the pressure difference dP, cal-

culated from pressures in the overlying formation between

(1) with the leakage pathway and (2) without the leakage

pathway in the model domain of Fig. 1. The thickness of

the caprock is varied to 60, 80, 100, and 120 m, but the

other simulation conditions are the same as those of the

model domain. Figure 13 depicts, the dP in the overlying

formation for each caprock thickness after 10 years.

Fig. 13 Pressure differential results with caprock thickness: a 60 m, b 80 m, c 100 m, and d 120 m after 10 years
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In Fig. 13, the dP and the area significantly decrease as

the thickness of the seal layer decreases. The reason is that

CO2 or brine may diffuse through thinned caprock (without

leakage pathways) more quickly, so dP may be reduced for

cases of greater diffusion through the caprock. The diffu-

sion process, therefore, may reduce the efficacy of leakage

pathway detection by inverse analysis. That is, thicker

caprock can reduce diffusion and thus magnify pressure

anomalies related to leakage pathways for successful in-

verse modeling. This effect can be a criterion for the siting

and screening of CO2 injection projects designed to better

identify leaks using inverse modeling.

Appendix 2

The magnitude of pressure anomalies induced by leakage

with respect to the monitoring wells increases as the

monitoring periods increase in a system with constant CO2

injection. The pressure anomalies from leaks were exam-

ined by pressure difference (dP) as mentioned in ‘‘Ap-

pendix 1’’ section. Figure 14 presents, the dP at four

monitoring wells in the overlying formation for 10 years of

simulated time. In Fig. 14, each dP value at MW1, MW2,

and MW3 is approximately 0.58, 0.32 and 0.12 kPa for a

1-year monitoring time and 1.84, 1.36 and 0.84 kPa for

3 years. The results of both case 5 under a no-noise con-

dition (Fig. 8e) and case 10 under noisy conditions

(Fig. 12b) for monitored data from MW1, MW2, and MW3

over 3 years sustained good accuracy for the leakage

pathway estimation, although the combination of those

dP dimensions cannot be defined as a limit for the leakage

pathway detection. The accuracy (or limit) of leakage de-

tection using inverse analysis can significantly depend on

the number of monitoring wells, the magnitude of the

pressure anomalies, the relative distance between the

monitoring wells and leakage pathways and the monitoring

period.
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