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Abstract—Radio Tomographic Imaging (RTI) is
an emerging technology that uses received signal
strength measurements to image the attenuation
of objects within a wireless network area. RTI is
by nature an ill-posed inverse problem, therefore,
regularization techniques must be utilized to obtain
accurate images. This paper discusses some com-
mon regularization techniques, including Tikhonov,
truncated singular value decomposition, and total
variation, and presents the results of applying them
to RTI.

I. INTRODUCTION

Radio Tomographic Imaging (RTI) is a method
for imaging the attenuation of physical objects
within areas surrounded by wireless radios. RTI
uses received signal strength (RSS) measurements
that traverse the network area to reconstruct an
image of where the signals are being attenuated (see
Fig. 1). Previous work developed a linear model
relating the attenuation field to signal strength mea-
surements, and derived error bounds for resultant
images [1], [2]. The formulation for RTI is by
nature an ill-posed inverse problem, and regular-
ization must be applied to obtain accurate images.
This paper focuses on a few common regularization
techniques, and presents the results of applying
them to RTI.

RTI has applications in emergencies, rescue op-
erations, and security breaches, since the objects
being imaged need not carry an electronic device.
RF signals can travel through obstructions such as
walls, trees, and smoke, while optical or infrared
imaging systems cannot. RF imaging will also work
in the dark, where video cameras will fail. Even
for applications where video cameras could work,
privacy concerns may prevent their deployment. An

Fig. 1. An illustration of an RTI network. Each node
broadcasts to the others, creating many projections that can
be used to reconstruct an image of objects inside the network
area.

RTI system provides current images of the location
of people and their movements, but cannot be used
to identify a person.

One main application of RTI is to reduce injury
for correctional and law enforcement officers; many
are injured each year because they lack the ability
to detect and track offenders through building walls
[3]. By showing the locations of people within a
building during hostage situations, building fires, or
other emergencies, RTI can help law enforcement
and emergency responders to know where they
should focus their attention.

Another application is in automatic monitoring
and control in “smart” homes and buildings. Some
building control systems detect motion in a room
and use it to control lighting, heating, air condition-



ing, and even noise cancellation. RTI systems can
further determine how many people are in a room
and where they are located, providing more precise
control.

Generally RTI has application in security and
monitoring systems for indoor and outdoor areas.
For example, most existing security systems are
trip-wire based or camera-based. Trip-wire systems
detect when a person crosses a boundary, but do
not track the person when they are within the area.
Cameras are ineffective in the dark and have limited
view angles. An RTI system could serve both as
a trip-wire, alerting when intruders enter into an
area, and tracking where are at all times while they
are inside, regardless of availability of lighting or
obstructions.

The reduction in costs for radio frequency in-
tegrated circuits (RFICs) and advances in peer-to-
peer data networking have made realistic the use of
hundreds or thousands of simple radio devices in
a single RTI deployment. Since the relative cost of
such devices is low, large RTI networks are possible
in applications that may be otherwise impractical.

II. RELATED WORK

RF-based imaging has been dominated in the
commercial realm by ultra-wideband (UWB) based
through-the-wall (TTW) imaging devices from
companies like Time Domain, Cambridge Consul-
tants, and Camero Tech. These companies have
developed products using a phased array of radars
that transmit UWB pulses and then measure echoes
to estimate a range and bearing. These devices
are accurate close to the device, but inherently
suffer from accuracy and noise issues at long range
due to monostatic radar scattering losses and large
bandwidths. Some initial attempts [4] allow 2-4
of these high-complexity devices to collaborate to
improve coverage.

To emphasize the small required bandwidth com-
pared to UWB, some relevant research is being
called “ultra-narrowband” (UNB) radar [5], [6], [7].
These systems propose using narrowband transmit-
ters and receivers deployed around an area to image
the environment within that area. Measurements are
phase-synchronous at the multiple nodes around
the area. Such techniques have been applied to
detect and locate objects buried under ground using

what is effectively a synthetic aperture array of
ground-penetrating radars [8]. Experiments have
been reported which measure a static environment
while moving one transmitter or one receiver [7],
and measure a static object on a rotating table in an
anechoic chamber in order to simulate an array of
transmitters and receivers at many different angles
[7], [8], [5]. Because in this paper we use low
complexity, non-coherent sensors, we can deploy
many sensors and image in real time, enabling
the study of tracking moving objects. We present
experimental results with many devices in real-
world, cluttered environments.

Multiple-input-multiple-output (MIMO) radar is
another emerging field that takes advantage of
multiple transmitters and receivers to locate objects
within a spatial area [9]. In this framework, signals
are transmitted into the area of interest, objects
scatter the signal, and the reflections are measured
at each receiver. The scattering objects create a
channel matrix which is comparable to the channel
matrix in traditional MIMO communication theory.
RTI differs from MIMO radar in the same way that
it differs from traditional radar. Instead of measur-
ing reflections, RTI uses the shadowing caused by
objects as a basis for image reconstruction.

Recent research has also used measurements of
signal strength on 802.11 WiFi links to detect and
locate a person’s location. Experiments in [10]
demonstrate the capability of a detector based on
the change in signal strength variance to detect
and to identify which of four positions a person
is located. Our approach is not based on point-wise
detection. Instead, we use tomographic methods to
estimate an image of the change in the attenuation
as a function of space.

III. LINEAR FORMULATION

When wireless nodes communicate, the radio sig-
nals pass through the physical area of the network.
Objects within the area absorb, reflect, diffract, or
scatter some of the transmitted power. The goal
of an RTI system is to determine an image vector
of dimension RN that describes the amount radio
power attenuation occurring due to physical objects
within N voxels of a network region. Since voxels
locations are known, RTI allows one to know where



attenuation in a network is occurring, and therefore,
where objects are located.

If K is the number of nodes in the RTI network,
then the total number of unique two-way links
is M = K2−K

2 . Any pair of nodes is counted
as a link, whether or not communication actually
occurs between them. The signal strength yi(t) of
a particular link i at time t is dependent on:
• Pi: Transmitted power in dB.
• Si(t): Shadowing loss in dB due to objects that

attenuate the signal.
• Fi(t): Fading loss in dB that occurs from

constructive and destructive interference of
narrow-band signals in multipath environ-
ments.

• Li: Static losses in dB due to distance, antenna
patterns, device inconsistencies, etc.

• νi(t): Measurement noise and modeling error.
Mathematically, the received signal strength is de-
scribed as

yi(t) = Pi − Li − Si(t)− Fi(t)− νi(t) (1)

The shadowing loss Si(t) can be approximated
as a sum of attenuation that occurs in each voxel.
Since the contribution of each voxel to the attenua-
tion of a link is different for each link, a weighting
is applied. Mathematically, this is described for a
single link as

Si(t) =
N∑

j=1

wijxj(t). (2)

where xj(t) is the attenuation occuring in voxel j at
time t, and wij is the weighting of pixel j for link
i. If a link does not “cross” a particular voxel, that
voxel is removed by using a weight of zero. For
example, Fig. 2 is an illustration of how a direct
LOS link might be weighted in a non-scattering
environment. In Section III, an ellipse is used as a
simple mechanism to determine LOS weighting.

Imaging only the changing attenuation greatly
simplifies the problem, since all static losses can be
removed over time. The change in RSS 4yi from
time ta to tb is

4yi ≡ yi(tb)− yi(ta)

= Si(tb)− Si(ta) + Fi(tb)− Fi(ta)

+νi(tb)− νi(ta), (3)

which can be written as

4yi =
N∑

j=1

wij4xj + ni, (4)

where the noise is the grouping of fading and
measurement noise

ni = Fi(tb)− Fi(ta) + νi(tb)− νi(ta) (5)

and
4xj = xj(tb)− xj(ta) (6)

is the difference in attenuation at pixel j from time
ta to tb.

If all links in the network are considered si-
multaneously, the system of RSS equations can be
described in matrix form as

4y = W4x + n (7)

where

4y = [4y1,4y2, ...,4yM ]T

4x = [4x1,4x2, ...,4xN ]T

n = [n1, n2, ..., nM ]T

[W]i,j = wij (8)

In summary,4y is the vector of length M all link
difference RSS measurements, n is a noise vector,
and 4x is the attenuation image to be estimated.
W is the weighting matrix of dimension M × N ,
with each column representing a single voxel, and
each row describing the weighting of each voxel
for that particular link. Each variable is measured
in decibels (dB).

To simplify the notation used throughout the rest
of this paper, x and y are used in place of 4x and
4y, respectively.

Normalized Elliptical Weight Model

If knowledge of an environment were available,
one could estimate the weights {wij}j for link
i which reflected the spatial extent of multiple
paths between transmitter and receiver. Perhaps
calibration measurements could aid in estimation of
the linear transformation W. However, with no site-
specific information, we require a statistical model
that describes the linear effect of the attenuation
field on the path loss for each link.



Fig. 2. An illustration of a single link in an RTI network that
travels in a direct LOS path. The signal is shadowed by objects
as it crosses the area of the network in a particular path. The
darkened voxels represent the image areas that have a non-zero
weighting for this particular link.

An ellipse with foci at each node location can
be used as a method for determining the weighting
for each link in the network [1], [2]. If a particular
pixel falls inside the ellipse, it is weighted, while
all pixels outside the ellipse have a weight of
zero. Additionally, the weight for each pixel is
normalized by the link length [11]. The weighting
is described mathematically as

wij =
1√
d

{
1 if dij(1) + dij(2) < d+ λ
0 otherwise

(9)

where d is the distance between the two nodes,
dij(1) and dij(2) are the distances from the center
of voxel j to the two node locations for link i, and
λ is a tunable parameter describing the width of the
ellipse.

IV. REGULARIZATION

Linear models for many physical problems, in-
cluding RTI, take the form of

y = Wx + n (10)

where y ∈ RM is measured data, W ∈ RM×N is
a transfer matrix of the model parameters x ∈ RN ,

and n ∈ RM is a measurement noise vector. When
estimating an image from measurement data, it is
common to search for a solution that is optimal in
the least-squared-error sense.

xLS = arg minx ||Wx− y||22 (11)

In other words, the least-squares solution minimizes
the noise energy required to fit the measured data
to the model. The least-square solution can be
obtained by setting the gradient of (11) equal to
zero, resulting in

xLS = (WT W)−1WT y (12)

which is only valid if W is full-rank. This is not
the case in an RTI system.

RTI is an ill-posed inverse problem, meaning that
small amounts of noise in measurement data are
amplified to the extent that results are meaning-
less. This is due to very small singular values in
the transfer matrix W that cause certain spectral
components to grow out of control upon inversion.
To see this, W is replaced by its singular value
decomposition (SVD):

W = UΣVT (13)

where U and V are unitary matrices, and Σ is a
diagonal matrix of singular values. Plugging (13)
into (12), the least squares solution can be written
as

xLS = VΣ−1UT y =
N∑

i=1

1
σi

uT
i yvi (14)

where ui and vi are the ith columns of U and V, and
σi is the ith diagonal element of Σ. It is evident that
when singular values are small, the corresponding
singular basis vectors become very large.

Regularization involves introducing additional
information into the mathematical model to han-
dle these small singular values, which makes the
inverse problem stable. In some methods, a regular-
ization term J(x) is added to the objective function
of the original problem as

freg = f(x) + αJ(x), (15)

where α is the weighting parameter. Small values
of α lead to solutions that fit the data, while
large values favor the solution that matches prior
information.



Some regularization techniques follow from a
Bayesian approach, where a certain prior distribu-
tion is imposed on the model parameters. Other
forms of regularization modify or eliminate small
singular values of the transfer matrix. Here, the
results of some common regularization methods
applied to RTI are examined and compared. An
overview of regularization and image reconstruction
in general can be found in [12] and [13].

A. Tikhonov

In Tikhonov regularization, a regularization term
is included in the objective function.

f(x) =
1
2
||Wx− y||2 + α||Qx||2 (16)

where Q is the Tikhonov matrix that enforces a
solution with certain desired properties. Taking the
derivative of (16) and setting to zero results in the
Tikhonov solution:

xTIK = (WT W + αQT Q)−1WT y. (17)

Tikhonov regularization provides a simple frame-
work for incorporating desired characteristics into
the RTI reconstruction. If smooth images are de-
sired, a difference matrix approximating the deriva-
tive of the image can be used in the Tikhonov
matrix Q. If the prior image is known to have a
particular Gaussian covariance structure, the root-
inverse covariance matrix C−1/2

x can be used.
One major strength of Tikhonov regularization

lies in the fact that the solution is simply a linear
projection of the measurement data. Since the pro-
jection does not depend on instantaneous measure-
ments, it can be pre-calculated, and then applied for
various measurements for fast image reconstruction.
This is very appealing for realtime RTI systems that
require frequent image updates [1], [2].

PTIK = (WT W + αQT Q)−1WT (18)

xTIK = PTIKy (19)

B. Truncated Singular Value Decomposition
(TSVD)

Another common form of regularization called
trucated singular value decomposition (TSVD) is
achieved by removing small singular values from
the transfer matrix W. In this method, only the

largest k singular values are kept in the reconstruc-
tion shown in (14),

xTSV D =
k<N∑
i=1

1
σi

uT
i yvi = VkΣ−1

k UT
k y (20)

where

Uk = [u1,u2, ...,uk] (21)

Vk = [v1, v2, ..., vk] (22)

Σ−1
k = diag

(
σ−1

1 , σ−1
2 , ..., σ−1

k

)
. (23)

The TSVD technique is a reduction of the di-
mensionality of the true solution. It can be thought
of as a projection of the solution onto a subspace
spanned by the remaining singular vectors. Those
singular vectors are dependent on the device itself,
or in RTI, the node locations and signal propagation
model. Since the projection is based on the device
itself, TSVD lacks the ability for incorporation of
known or desired image properties into the results.

Like Tikhonov regularization, a tranform matrix
can be pre-calculated and applied to data for fast
image reconstruction in realtime applications.

PTSV D = VkΣ−1
k UT

k (24)

xTSV D = PTSV Dy (25)

C. Total Variation

Total Variation (TV) is a form of non-linear reg-
ularization that penalizes changes in the solution.
Mathematically, total variation takes the form

f(x) =
1
2
||Wx− y||2 + αTV (x) (26)

where
TV (x) =

∑
i

|∇x|i, (27)

and |∇x|i is the ith element of the gradient of x. In
other words, the integration of gradient magnitude
is minimized.

It’s not possible to calculate the gradient and
Hessian of TV (x), which is necessary for most
numerical optimization algorithms to converge re-
liably and quickly. To address this problem, a
differentiable function is used as an approximate:

TV (x) '
∑

i

√
||∇x||2i + β2. (28)



This approximation is based on

|a| =
√
a2 '

√
a2 + β2 (29)

for small β, which removes the discontinuity at
a = 0. The objective function for total variation
becomes

f(x) =
1
2
||Wx−y||2+α

∑
i

√
||∇x||2i + β2. (30)

Using this approximation, the gradient and Hessian
information is easily obtained and utilized in a
numerical optimization procedure. The parameter
β is tunable, and relates to the “sharpness” of the
images generated by the TV regularization. Total
variation penalizes slow changes in an image, and
therefore can lead to images that maintain sharp
transitions if parameters are set accordingly.

V. RESULTS

This section presents images that are recon-
structed using the regularization techniques de-
scribed in Section IV. For each image, the same RTI
measurement data y and transfer matrix W were
used, and Table I lists the model and calibration
parameters.

Parameter Value Description
N 28 Number of nodes
Nc 2000 Number of calibration frames
∆p .17 Pixel width (m)
λ .01 Width of weighting ellipse in (9) (m)

TABLE I
CALIBRATION AND MODEL PARAMETERS

The experiment is performed in an area with
furniture, walls, moving people, and other building
structures to provide a rich multipath environment.
The wireless network is comprised of twenty eight
“Telosb” wireless nodes by Crossbow, and each
node operates on the IEEE 802.15.4 specification.
A token passing protocol is implemented so that
node transmissions do not collide.

The nodes are set up in a square network with
a length of 4.2 meters on each side, establishing
a network image area of 17.6 square meters (196
square feet). Each side of the square contains eight
nodes separated by approximately .6 meters (2
feet), as depicted in Fig. 5. The nodes are placed
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Fig. 5. The RTI geometry and human locations for the
images found in Section V. Twenty-eight nodes are placed in
a square perimeter, with two humans standing inside the area
at coordinates (3,1) and (1,3).

on stands approximately four feet off the ground
so that line-of-sight paths travel through humans at
torso level.

To image the change in attenuation, RSS mea-
surements of each link are taken at time t = ta
as described in Section III. During this calibration
period, the network area is vacant from moving
objects. The signal strength from each link is mea-
sured Nc times and is averaged over the entire
calibration period. After calibration, when the RTI
network is in use, all instantaneous measurements
are taken as the difference from the calibration
measurements. This provides the difference mea-
surement vector 4y in (7), which is required to
image motion within the network. In other words,
any attenuation that was not part of the calibration
at time t = ta is imaged.

It should be noted that only one image result
is provided for each regularization method. Dif-
ferent regularization parameters will yield different
results, but the parameters chosen in this section
provided good results in terms of the ability to dis-
tinguish the location of changed attenuation. Other
parameters were not able to produce significantly
better image results in our experiments.
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Fig. 3. RTI results using H1 regularization with parameter α = 2 using forward difference matrices.
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Fig. 4. RTI results using truncated singular value regularization. Here, any singular value below the threshold τ = 5.6 is
truncated.

A. Tikhonov

A difference matrix approximating the derivative
operator is applied as the Tikhonov matrix Q.
By minimizing the energy found within the image
derivative, noise spikes are supressed and a smooth
image is produced.

Since the image is two dimensional, the regu-
larization should include the derivatives in both the
vertical and horizontal directions. The matrix DX is
the difference operator for the horizontal direction,
and DY is the difference operator for the verticle
direction. The regularized function can be written
in this case as

f(x) =
1
2
||Wx− y||2 + α(||DXx||2 + ||DY x||2),

(31)

which results in the solution

xT ik = (WT W + α(DT
XDX + DT

Y DY ))−1WT y.
(32)

When the derivative is used as the Tikhonov matrix,
this is also known as H1 regularization.

As seen in Fig. 3, H1 regularization results in
very smooth RTI results for α = 2. The difference
operators act as a low-pass filter, smoothing the
noise and blurring any sharp changes in attenuation.
The smoothness can be increased or decreased by
choosing α appropriately.

B. Trucated Singular Value Decomposition (TSVD)

As described in Section IV, TSVD regularization
removes spectral components of W that correspond
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Fig. 6. RTI results using total variation regularization with parameter α = .35 and β = .08.

to low singular values. This means that all informa-
tion in the spectral components that are removed are
entirely lost from the solution.

The limitations of TSVD regularization when
applied to RTI are evident in Fig. 4. The image is
rough due to the high frequency components that
are included in the reconstruction, and yet contrast
remains low when the threshold is set to τ = 5.6.
This makes it difficult for a human or image
processing algorithm to determine where objects
are located. Other thresholds did not significantly
improve the image.

C. Total Variation

As explained in Section V-A, the gradient of
a two-dimensional image is approximated by two
difference matrices DX and DY . This leads to the
regularization function for total variation

TV (x) '
∑

i

√
||DY x||2i + ||DXx||2i + β. (33)

The minimum of the total variation least-squares
problem is found using a numerical optimization
algorithm. In this experiment, the BFGS algorithm
is used [14].

The total variation results shown in Fig. 6 for
α = .35 and β = .08 demonstrate the capability
of TV regularization in maintaining sharpness of
RTI images. The combination of sharp edge defini-
tion and low noise make total variation appealing
for RTI, but the computational complexity of the
numerical optimization is more than Tikhonov or

TSVD regularization. This is due to the fact that
the solution must be obtained using a numerical
optimization algorithm instead of a simple matrix
multiplication, as is the case with Tikhonov and
TSVD.

VI. CONCLUSION

Radio tomographic imaging is an ill-posed in-
verse problem. Since many different attenuation
fields can lead to the same noisy measurement data,
no unique solution to the least-squares formulation
exists. The problem is made stable by incorporating
additional information about the solution into the
mathematical framework.

Tikhonov regularization is appealing for RTI
systems due to the flexibility to incorporate desired
image characteristics into the solution. It follows
naturally from a Baysian approach where the sta-
tistical distribution of the image is assumed or
known. Since the Tikhonov solution is a linear
transformation of the measurement data, it is useful
for realtime RTI systems where fast reconstruction
of images is needed.

Truncated singular value decomposition is a nat-
ural form of regularization that does not require
prior information about the solution. This can be
viewed as both a strength and a weakness, since it
is often helpful to incorporate desired image proper-
ties. Our experimental results indicate that TSVD-
RTI images are noiser than the other regularization
methods, and lack the contrast needed to accurately
distinguish the location of moving objects.



Total Variation is useful when the preservation of
sharp edges in the image is desired. Experimental
results show that TV-RTI images contain a large
amount of contrast without much noise, making
it easier to distinguish the location of objects. It
requires two regularization parameters, however,
and is more computationally expensive than the
other methods presented in this paper.

The results presented in this paper demonstrate
that regularization plays an import role in track-
ing the location of moving objects with radio
tomographic imaging. While this paper presents
some common forms of regularization, many other
regularization and image reconstruction techniques
could be applied to RTI in future work.
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