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CRITICAL PATH ANALYSIS OF TRANSPORT IN
HIGHLY DISORDERED RANDOM MEDIA

K.M. GOLDEN
University of Utah, Department of Mathematics, 155 S 1400 E RM 233,
Salt Lake City, UT 84112-0090 USA

S.M. KOZLOV

In problems of conduction and fluid flow through complex random media,
systems with a broad distribution in the local properties are often encoun-
tered. Here we introduce a continuum percolation model for such media,
which is exactly solvable for the effective transport properties in the high
disorder limit. The model represents such systems as fluid flowing through
consolidated granular media and fractured rocks, as well as electrical con-
duction in some matrix-particle composites near critical volume fractions.
Moreover, the results provide a rigorous basis for the widely used Ambe-
gaokar, Halperin, and Langer critical path analysis {1]. This method rests
on the proposition that transport in media with a broad range of local con-
ductances g is dominated by a critical conductance g, which is the smallest
conductance such that the set {g | g > g.} percolates, and in our model
this proposition is rigorously established.

A central issue in the theory of transport in disordered materials
is to determine the effective properties, such as electrical conductiv-
ity and fluid permeability, from some knowledge of the microstructural
features of the material. In many problems of technological impor-
tance, one meets systems which display a wide distribution in the local
properties characterizing the system. For example, in porous media
there is often a wide range of pore and neck sizes through which the
fluid must flow [2, 3, 4, 5, 6, 7, 8]. As another example, in resistor
network models of hopping conduction in amorphous semiconductors,
the bonds of the network are assigned a wide range of conductivities
[1,9, 10]. A powerful idea which has been widely used (2] to estimate the
effective properties of such systems is the critical path analysis, which
was first introduced by Ambegaokar, Halperin and Langer (AHL) [1].
They proposed that transport in a medium with a broad range of local
conductances g is dominated by a critical value g., which is the small-
est conductance such that the set {g | g > g.} percolates, or forms a
connected cluster which spans the sample. This cluster is called the
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critical path. Then the problem of estimating transport in a highly
disordered medium with a wide range of local conductances is reduced
to a percolation problem with threshold value g.. Critical path analy-
sis was further developed in the context of amorphous semiconductors
in [9] and [10], and its accuracy was numerically confirmed for various
conductance distributions in [11]. It has also been used to analyze the
permeability and electrical conductivity of porous media, such as sand-
stones, as obtained through mercury injection [12, 13, 14, 15|, as well
as fractured rocks with a broad distribution of fracture apertures [16],
and porous media saturated with a non-Newtonian fluid [17].

While critical path analysis has been applied with substantial suc-
cess, there has been little rigorous work on the fundamental observation
that the critical conductance g. dominates the effective behavior. Here
we introduce a continuum percolation model of conducting and porous
random media which is exactly solvable in the high disorder limit, and
the result we obtain for the effective conductivity or permeability rig-
orously establishes the AHL principle for this model. Furthermore, our
model closely represents an important class of porous materials, in-
cluding consolidated granular media and some fractured rocks, where
the easiest flow paths or channels exhibit a complex random topology,
similar to a Voronoi network, as in Fig. 1 [2, 18, 19, 20, 6].

We obtain our model as a “long-range” generalization of the random
checkerboard in R? [21, 22, 23, 24, 25, 26, 27], where the squares are
assigned the conductivities 1 with probability p and § > 0 with proba-
bility 1—p. The random checkerboard has been used to model conduct-
ing materials which exhibit critical behavior too rich to be accurately
handled by random resistor networks, such as graphite (conducting)
particles embedded in a polymer (insulating) matrix. For example, the
presence of both corner and edge connections between squares produces
two percolation thresholds, with distinct asymptotic behaviors of the
effective conductivity as 6 — 0 (or § — o00) in the different regimes
of p separated by these thresholds [22, 24, 25, 26]. In our model we
allow arbitrarily long-range connections between squares, which leads
to infinitely many thresholds, and rather complex asymptotic behav-
ior, which we can nevertheless obtain exactly. Our analysis is based on
the variational formulation of effective properties, which allows us to
obtain bounds required for the asymptotics, by constructing trial fields
which exploit relevant percolation structures [25, 26, 27]. A key com-



Figure 1: Two dimensional Voronoi tessellation (from {2]). The bound-
aries of the polygonal grains are formed from points which are equidis-
tant to the dots in two neighboring grains. These boundaries form the

channels of easiest flow in consolidated granular media and fractured
rocks
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ponent of our percolation analysis is to connect our model to a Poisson
distribution of discs in the plane.

Whereas the standard checkerboard model allows for only two types
of connections between conducting particles (squares), our generaliza-
tion allows for arbitrarily many. This leads us to expect that our model
may serve as a good representation for high contrast matrix-particle
composites, particularly in the regime where the conducting particles
“percolate,” yet are of low enough volume fraction so that the con-
ducting phase is only “partially connected” [27], where there is a broad
distribution of connection types between the conducting particles. In
such regimes the effective conductivity has been observed to vary over
many orders of magnitude [28] over small volume fraction ranges, as
does our model. More precisely, in the high disorder limit, the paths of
easiest current flow in our model form a (continuum) Voronoi network
with a broad distribution of “bond” conductivities. This network can
be identified with the one obtained from joining the centers of “touch-
ing” conducting particles. The quality of the connection between the
particles determines the conductivity of the path joining them. Our
model can be modified to handle such problems, and our variational
analysis, which is quite general, can be suitably applied to this and
other related problems.

We now formulate the mathematical model. For simplicity, we give
the formulation for electrical conductivity in d = 2, but the model
and result can be carried over to d = 3, as well as fluid flow in a
porous medium obeying Darcy’s law, which will be discussed later.
Consider the checkerboard of unit white squares in R2, with centers
of the squares being the points of the lattice Z2. Randomly color the
squares red with probability p, where the probability of coloring one
square is independent from any other. Then for z € R?, let S(z) be
the distance from z to the boundary of the nearest red square, with
S(z) = 0 if z is inside a red square. Then define the local conductivity
o(z) as

o(z) = @, (1)

It is useful to think of the red squares as insulating particles, as we
will be considering asymptotics as A — +oo (although we could just as
easily consider A — —o0). The medium defined by (1) can be thought
of as being divided into grains associated with each red square, where
each grain is the set of all points for which the distance to its red square
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~ is smaller than the distance to any other red square. The boundaries
between these grains, where the distance to a red square is maximal,
form the “channels” through which current (or fluid) passing through
the medium will tend to flow. For small p, the set of boundaries forms a.
Voronoi network, as shown in Fig. 1. The points in the figure represent
the red squares.

Our goal is to find the A — 400 asymptotics of the effective con-
ductivity o*(p) of the medium in (1), which is defined as follows (e.g.
[29, 30]). Let E(z) and J(z) be the stationary random electric and cur-
rent fields in the medium satisfying J(z) = o(z)E(z),V-J =0,VXE =
0, and < E(zx) >= e, where e, is a unit vector in the k** direction, and
< - > denotes ensemble or infinite volume average. Then the effective
conductivity o* is defined via

<J>=0"<E>. (2)

In order to state the results for the asymptotics and to more fully
describe our model, we first consider standard nearest neighbor site
percolation on Z? [31, 32, 33|, which is equivalent to the percolation
of nearest neighbor red squares (connected along an edge), with perco-
lation threshold p] =~ 0.59. Now we relax the nearest neighbor re-
striction for connectedness, and consider a generalized definition of
percolation of the red squares. We say that two red squares Z and
9 with centers z and y in Z2, are r-connected if there is a sequence
Zoy, L1,y En, £o = &, In = 7§ of red squares connecting them such
that dist{Z;, Zi+1} < r, where dist{#;, Z;11} means the shortest dis-
tance between the boundaries of Z; and Z;,;. With 6.(p) the infinite
cluster density of r-connected red squares, we define p.(r) as the per-
colation threshold for 6,(p). We shall be concerned with a particular
sequence 75, j > 1, defined by squares which are increasingly distant
from 0, the square centered at the origin, with r; = 0, 7, = 1, 73 =
V2, ry =2, r5 = /5, r6 = V/8,---. Note that it suffices to consider
squares with centers (m,n) € Z% with n > m > 0, n > 0. For simplic-
ity we denote p,(r;) as p.(j), and we also replace the term r;-connected
by j- connected. Note that the j = 1 (r; = 0) case includes both the
nearest neighbor case above and the next nearest neighbor (diagonal)
case (since the distance between connected squares is 0 in both cases),
so that p.(1) = 1 —pS ~ 1 — 0.59 = 0.41 [25, 26, 27]. Furthermore
Pc(j +1) < pe(4), which can be obtained from [34). From analysis of a
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Poisson distribution of discs in the plane (see below), one can also find
that .
P~ oo, ®

where p, is the critical percolation intensity for unit discs [33].

The last ingredient we need to state the results is the notion of
critical values of S(z), which are associated with the p.(j). These
values S,(j) are defined by the observation that for p > p.(j), the set
R; = {z € R?: 5(z) < S.(j)} percolates in R?, where for j associated
with (m,n) € Z? as above,

Se(d) =r13/2= /(1= bmo)(m — 1)+ (n — 1)2/2, (4)

where 6,0 is the Kroneker delta. By percolating in R? we mean that
R; contains an infinite polygonal line joining vertices of the red squares
in R;. Note that R; is just the set of red squares, which percolates in
the above sense when p > p.(1). Now in terms of the S.(j), define a
step function S.(p) via

Se(p) = Se(4) , peld) <p<pli—1), 721, (5)

where p.(0) = 1. These critical distances S.(j) in our model correspond
via (1) to the critical conductances g, in the AHL theory.

The principal results of our investigation are now stated as follows.
For the effective conductivity o*(p) of the medium o(x) = e*5*), we

have for p # pe(7),

1

3 log o’ (p) ~ Selp), A — oo, (6)
which establishes the validity of the AHL critical path analysis in the
high disorder limit for our model. Furthermore, we have the following
p — 0 asymptotics for the exponents,

Sip)~ B, poo, (7)

where p is the density of red squares (i.e., with units of inverse square
length). Via (6) and (7), we see that o*(p) for our long range checker-
board model exhibits infinitely many thresholds p.(j) — 0 as j — oo
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with an infinite set of asymptotics as A — oo. If instead of A — oo we
wish to put A = 1 so that o(z) = ¢5®), and consider the asymptotics
of o*(p) as p — 0, we also find that

Vplog o*(p) ~ /e, p—0. (8)

‘We now give the analysis which leads to these results. The idea is to
exploit the variational definition of o* equivalent to (2) and its dual, to
obtain upper and lower bounds on ¢*. Let Ay = [0, N] x [0, N] ¢ R2.
Then the variational form of (2) is

o* = 1\}1_120 % 114161‘;; . o(z) |Vul’dz , (9)
where P = {continuous potentials u on Ay : u(0,z2) =0, u(N, z3) =
N,Vz, € [0, N]}. We obtain bounds by inserting trial « into (9). To
describe the construction, we recall certain properties of standard site
percolation. It has been shown (35, 36] that for p > pS the num-
ber ay of disjoint paths through the occupied phase, (formed from
sequences of nearest neighbor, occupied sites) which cross Ay hori-
zontally or vertically, or disjoint crossings, satisfies (roughly speaking)
ay = O(N) as N — co. In our generalized model, recall that for
p > pc(j), Rj = {x € R?: S(z) < S.(j)} percolates in R2. In this case,
the number ay(j) of disjoint crossings of Ay by j-connected red squares
also satisfies ay(j) = O(N) as N — oo. We call the associated disjoint
subsets of R; that cross Ay pink “j-chains” (we say “pink” because
such sets contain both red squares and parts of white ones). It will be
necessary for our purposes to consider only those chains which cross
vertically. Note that these j-chains can be viewed as ribbons which at
some points may have zero width, for example at corner connections be-
tween red squares with j = 1 and r; =0, with p.(1) =1 —-p% < p < pS.
In this case, note that both R; and its complement in R2 percolate,
with similar behavior for 7 > 1. (In standard nearest neighbor lattice
percolation models, double connectivity, or simultaneous percolation of
the two phases, does not occur in two dimensions, but only in higher
dimensions.) Now, the trial u is constructed as follows, using a similar
technique to that which has been used for the random checkerboard
[25]. On the j-chains u increases linearly across the chain, in such a
way that the total contribution to (9) of |Vu|? on the pink j-chains is
O(N?). In each region between the j-chains, u is a constant (so that
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Vu = 0), which, along with additive constants for « on the j-chains, are
chosen so that u is continuous, and it “steps up” as one moves across
An. Constructing u in the neighborhood of points where the j-chains
have zero thickness is handled with asymptotic expansions, which are
patched continuously to the rest of u, as in [25] for the so-called Laplace-
Dirichlet integral. For such u then, the integrand in (9) is zero off the
j-chains, and for z in the pink j-chains,

a(z) < %0, (10)
which leads to the inequality
() SCeD p>p(j), (11)

for some C; > 0 (depending on p), with 7 > 1. Another trial potential
which gives the same type of bound (pointed out to us by a referee) is
the actual potential for a medium which has unit conductivity in R;
and is superconducting off R;.

To get the lower bound, we first note that a dual formulation of
(9) can be obtained by replacing ¢* and o(z) by (¢*)~! and o7(z),
respectively. The key observation in the analysis now is that for p <
pe(j = 1), 2 1 (with p(0) = 1,W; = { € R? : S(z) > S.(j))
percolates in R?, which can be seen as follows. When p < p.(j—1), R,
cannot percolate, j > 2. In this case, easy geometric reasoning shows
that there must exist infinite chains of white cells, such that the minimal
thickness r; of these white chains (meaning that discs of radius r;/2
percolate in these chains) is 25.(j). Then Wj = {z € R? : S(z) >
7;/2 = S,(7)}, which contains this set of white chains, percolates in
R?. Now constructing  similar to that above, one obtains

[0*()]™! < Che?50) | p<plj—1), (12)

for some C; > 0 (depending on p) , with j > 1. Combining (11) and
(12) yields (6).

In order to obtain the asymptotic behaviors of the thresholds in (3)
and the exponents in (7), we connect our work to the analogous problem
for a Poisson distribution of discs in R?. Let {zx}{2; be a set of Poisson
distributed red points in the plane, with intensity u. First we define,
analogously to (1), S,(z) = dist{z, nearest z;} and g,(z) = e*5®),
Let S;; be the smallest A for which {z € R?: S,(z) < h} percolates.
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Then Sy, coincides with 7, the minimum radius such that the discs of
radius Tf; centered at the x; percolate. The above arguments used for
the long range checkerboard yield for the effective conductivity o}, in

this case 1
X log o), ~ S, =1},

We remark that, via the scaling properties of the Poisson model, we
can replace AS,(z) by ﬁ S1(z), so that we may set A = 1 and consider

A — 00. (13)

asymptotics as p — 0, with a result analogous to (13).

It is now useful to note that the above Poisson model can be ob-
tained by rescaling our checkerboard model, where the red squares of
our model correspond to the z; of the Poisson model, as follows. On the
scaled lattice hZ2, h > 0, let the density of red squares be p/h? = p .

Asp — 0, with h = 1/p/p — 0 as well, §(z,p) = h S(z/h,p) — Su(z).
Then the critical values also converge, S'C(p) — S asp — 0. Then with
5. = hS, and h = {/p/m, setting u = 1 yields VPSc(p) = 1§ asp — 0O,
which is equivalent to (7), since y, = (r$)%. Furthermore, the criti-
cal density of red points on the rescaled lattice is p.(j)/h?, so that
pe = limj,e0 p—;l(’r). Note that p,(j) is the critical p for which disks of
radius r; percolate. So if we rescale the lattice with h ~ 1/7; as j — oo,
then unit discs percolate, so that

pe = lim pe(j)r - (14)
To relate 7; to j, we note that there are O(j) integer points inside the
disc of radius r; as j — oo, so that

j~7rr]2-, j— 00, (15)
which combined with (14) yields (3).

In closing we wish to make a few remarks. Presumably an effective
medium approach as in [22] could give an accounting of the behavior of
our model for small j. However, as j grows, the number of configura-
tions of squares that must be considered grows extremely rapidly, and
numerical calculations become intractable.

An interesting question is the transition between different exponents
for large A as p crosses the threshold p.(j) . We remark that, for
example, the constant C; in estimate (11) diverges like £(p) as p —
pc(j4) T, where £(p) is the correlation length for j—percolation.
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Finally, for fluid flow (with unit viscosity) in porous media [2] obey-
ing Darcy’s law v = —K(z)V P, where K (z) is the local permeability, v
is the fluid velocity satisfying V-v = 0, and P is the pressure (including
gravity), one is interested in the effective permeability K*, defined anal-
ogously to (2). As briefly mentioned earlier, if K(z) has the form (1),
then for large A it is a close model for flow through consolidated granu-
lar media, where the grains themselves are permeable, with decreasing
permeability as one approaches a hard core. Fig. 2 shows a computer
simulation of a grain consolidation process {19]. The sequence (a) - (d)
shows increasing consolidation, and correspondingly decreasing poros-
ity. As A — oo the network of easiest flow paths in our model closely
resembles the configuration in (d), which itself is similar to many types
of sedimentary rocks, including Devonian sandstone [19).

Reminiscence: (from K.G.)

The work represented in this paper evolved over a period of a few years
beginning in August 1991, when I visited Serguei Kozlov in Moscow,
which turned into a very eventful time. During our initial investigations
of the model considered here, our work was interrupted by the coup
against Gorbachev, which led to the rise of Yeltsin, and the fall of
the Soviet Union. During the first day, Serguei and I ventured into
Red Square and saw the tanks assembled, on the last day we attended
Yeltsin’s speech from the Russian “White House,” and there were some
very tense times in between. It was a most memorable sequence of
events, and I am grateful that I was able to experience it with Serguei
and his family. We continued this work after Serguei moved to the south
of France, and had some very enjoyable and productive periods there.
During the times that we spent together, I came to greatly appreciate
the depth, clarity, and power of Serguei’s ideas, as well as his friendship.
His untimely death is truly a loss, and he is deeply missed.
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