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Abstract—Recent advances in forward modeling of the elec- the basis for inverse algorithms for reconstructing the physical
tromagnetic scattering properties of sea ice are presented. In properties of sea ice from scattering data.
particular, the principal results include the following:

1) approximate calculations of electromagnetic scattering
from multilayer random media with rough interfaces,
based on the distorted Born approximation and radiative
transfer (RT) theory;

2) comprehensive theory of the effective complex permittivity |
of sea ice based on rigorous bounds in the quasi-static '

case and strong fluctuation theory in the weakly scattering A. Sea Ice Remote Sensing and the Interaction of
regime; )

3) rigorous analysis of the Helmholtz equation and its solu- Electromagnetic Waves with Composite Random Media

tions for idealized sea ice models, which has led in the A ICE, which covers approximately 10% of the earth’s
one dimensional (1-D) case to nonlinear generalizations of cean surface, plays a major role in the world climate
classical theorems in Fourier analysis. . . . .

system and is an indicator of global climatic change [12].

The forward models considered here incorporate many detailed Th . K f he | f b h d
features of the sea ice system and compare well with experimental 1€ S€a Ic€ pack forms the interface between the ocean an

data. The results have advanced the general theory of scattering atmosphere in the polar regions and mediates the exchange
of electromagnetic waves from complex media as well as homoge-of heat and momentum between them. For example, the

nization theory, which relates bulk properties of composite media thickness and concentration of the ice are the primary factors
to thelr_mlcrostrl_Jctu_raI char_acterlstlcs. Furthermo_re, the results in controlling heat exchange, with thin ice and leads playing
have direct application to microwave remote sensing and serve as . X .
a disproportionately large role compared to their areal extent,
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other complex random composite whose microstructure cambmillimeter scale of variations in the brine microstructure.
vary significantly. The layer of snow may well be infiltratedn this case, the wave cannot resolve the details of this random
with brine or sea water. The underlying physical problenmclusion microstructure and the behavior of the wave is deter-
of understanding how electromagnetic waves interact withined primarily by an effective complex permittivigy, which
complex composite media, such as those present in the seasca complicated (tensor) function of the permittivities of the
system, is of considerable general interest. For consideratmonstituents of sea ice and the geometry of the microstructure
of electromagnetic waves, the medium is characterized by well as frequency. In the quasi-static, or infinite wavelength
the local complex permittivitye(x), which takes a wide limit, a time-independent analysis can be used to analyze
range of values as the positionvaries through the principal complexc*. While scattering from the brine inclusions must
constituents of the sea ice system: pure ice, air, brine, and seancorporated inte* over much of the microwave region, it
water. In this context, we distinguish two closely connectead useful to consider a so-called “quasi-static” regime, in which
problems that form the theoretical basis of remote sensing.Molume scattering from individual inclusions is relatively small
the forward or direct problem, the electromagnetic scatterimgpd the behavior is well approximated with a quasi-static
properties of a multilayer random medium, such as the samaalysis. For example, for waves with the electric field in the
ice system, are calculated based on knowledge of its lodedrizontal plane, so that the much longer vertical dimension of
complex permittivitye(x). In the corresponding inverse prob-the brine inclusions is not sampled, a quasi-static analysis of
lem, we wish to obtain information aboufx) and the sea works well at C-band, but it appears to be inadequate for data
ice characteristics from knowledge of the far-field scatteririg the 26.5-40-GHz range [30], [51]. Even at C-band, there
properties. In this paper, we focus on the forward problem.may be more significant scattering from larger air inclusions or
Due to the random nature of the variations in sea ice propgrains of snow and coherent structures, such as brine drainage
ties over many length scales from submillimeter to kilometergjbes and cracks. Surface scattering at C-band may also be
we are usually most interested in effective electromagnesignificant, as often there are roughness features on millimeter,
properties obtained from ensemble or spatial averaging on @ntimeter, and larger scales at the interfaces separating air
appropriate scale. Examples include the backscatter coefficiant! snow, snow and sea ice, frazil and columnar sea ice, or
and the effective complex permittivity. Variations in such bullnfiltrated and dry snow.
coefficients are often related to variations in geophysically The electromagnetic properties of sea ice relevant to remote
interesting parameters in the system. The general problemsehsing, such as* and the volume and surface scattering
calculating the effective properties of random composite mediehavior, have been widely studied. The state of the art in
has a long history, going back to the early work of Maxweflorward microwave modeling for sea ice as of 1992 was
[57] on the effective conductivity of a dilute suspension ofomprehensively reviewed in [94]. Numerous approximate
spheres embedded in a host of different conductivity, Einstdiormulas for ¢* have been developed, and various forms
[18] on the effective viscosity of a dilute suspension of rigi@f radiative transfer (RT) theory and analytic wave theory
spheres in a Newtonian fluid, as well as the extensive works bgve been applied to volume scattering in sea ice, as have
Rayleigh and Kirchhoff on scattering by particles and randomumerous surface scattering models employing tangent plane
surfaces. Refer to [90], [91], and [70] for comprehensivapproximation, perturbation, and integral equation techniques.
treatments of the electromagnetic properties of various typgeme electromagnetic signature models treat both surface and
of random media and surfaces arising in microwave remotelume scattering, but make simplifying assumptions about
sensing and other applications. We also note that in recémeractions between the two types. All of these models are
years there has been considerable attention in the phydiesed on Maxwell’'s equations for linear, nonmagnetic media,
and applied mathematics literature focused on theoretical dnat differ in the types of approximations made, in how the
numerical analysis of effective, or “homogenized” coefficientsiedium is characterized, and in applicability to different
of composite media [19], [54], [62], [34]. Examples of such cdrequency regimes.
efficients include complex permittivity, electrical and thermal While much progress was made in the 20 years or so prior
conductivity, elastic moduli, diffusivity of turbulent fluids, andto 1992 in modeling the electromagnetic properties of sea ice,
fluid permeability of porous media. Some of the methods diiere has remained a large gap in how our understanding of for-
analysis that have received particular attention in recent yearard electromagnetic modeling could be used to quantitatively
include rigorous bounds obtained from translation, variationagcover sea ice parameters of geophysical, climatological, and
and complex variable methods, perturbation expansions, peperational interest via remote-sensing techniques. In an effort
colation models, and numerical algorithms, such as the fastfill this gap, a five-year Accelerated Research Initiative
multipole method. (ARI) on Sea Ice Electromagnetics, sponsored by the Office
When electromagnetic waves interact with random medid Naval Research, was begun in 1992. The initiative was
or surfaces, a key parameter determining the nature of tinéerdisciplinary in nature, involving over 30 investigators at
interaction and the types of analysis that can be used, is thaide range of institutions and departments, and consisted of
ratio& /A, wheref is an appropriate measure of the length scataree closely integrated components: modeling and laboratory
of variations in the medium or surface andis wavelength. and field experiments. The principal goals of the ARI were to
For example, at C-band with frequengy= 5.3 GHz and free- improve our understanding of how the physical properties of
space wavelength, = 5.7 cm, the wavelength; in sea ice, sea ice determine its electromagnetic behavior and, in turn, to
typically satisfyingAo/2 < Ay < Ag, IS much larger than the use this knowledge to develop and test inverse algorithms for
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recovering sea ice parameters from observed electromagnétcjuency domain and for the variation in the index of refrac-
data. A key step in accomplishing these goals is further devébn, which reduces to the classical Plancherel equality in the
opment of forward models of the electromagnetic propertiéigit of small variations, has been discovered. While Fourier
of complex media and sea ice, in particular. This paper givagalysis can be viewed as spectral theory for the Helmholtz
an overview of our main results on the forward problemequation in a homogeneous medium, this new work can be
How these models are used to develop inverse algorithwiswed as generalizing such ideas to inhomogeneous media.
is presented in [33]. What particularly distinguished the ARSubsequently, the Helmholtz equation with the complex index
from previous efforts has been the following: of refraction (including dissipation) varying in a half-space in
1) integration of model development with laboratory expethree dimensions is analyzed [13]. Through conversion of the
iments designed to test and help refine the models; differential equation to an integral equation (with a Green’s
2) focus on the development afverse algorithms; function kernel) that incorporates the boundary conditions at
3) recent advances in the mathematical theories of eld@finity, solutions to the forward scattering problem can be
tromagnetic inverse scattering and homogenization feenstructed. A rigorous theorem establishing existence and
composite materials have been brought to bear on tHeiqueness is obtained.
problem of sea ice remote sensing, which in turn hasIn Section Ill, we present a series of rigorous bounds on
led to new theoretical findings. the quasi-static effective complex permittivity of sea ice,
treated as a general two-component random medium [26], [75],
[30]. These bounds restriet* in the quasi-static regime to
increasingly smaller regions of the compleXxplane as we
From a forward modeling perspective, our principal resuligow more information about the microstructure, such as the
include the following. brine volume and geometry, and represent an alternative to
1) Significant refinement of approximate calculations ahe wide variety of approximate mixing formulas that have
electromagnetic scattering from sea ice based on theen applied to sea ice. The bounding procedure exploits
distorted Born approximation, strong fluctuation theorythe properties ofc* as an analytic function of the ratio
and RT theory. Model improvement was accomplishesf the component permittivities and is based on a Stieltjes
through close integration with experiments, incorporantegral representation far* involving the spectral measure
tion of realistic features of the sea ice system, andiving the distribution of the spectrum) of a self-adjoint
accounting for both volume and surface scattering. operator associated with the geometry of the microstructure.
2) Rigorous, mathematical analysis of the forward ele@articularly tight bounds are obtained when we further impose
tromagnetic scattering problem and its solutions for ahe condition that the brine phase is contained in separated
idealized sea ice system, treated as a one-dimensiom@lusions. This “matrix-particle” structure forces a gap in the
(1-D) layered medium, and an inhomogeneous, dissipgpectrum, with colder temperatures corresponding to greater
tive half-space in three dimensions. Surprising generaeparation, a larger gap, and tighter bounds. Such bounds
izations of classical theorems in Fourier analysis weege valid up to the critical brine volume fractign ~ 5%,
obtained from the layered medium theory. or percolation threshold, above which the brine phase is
3) Comprehensive theory of the effective complex permitonnected on a macroscopic scale, and the sea ice is permeable
tivity ¢* of sea ice and how it is determined by theo fluid transport.
microstructural characteristics. Rigorous boundsc<dbn  The above bounds apply to wave propagation in the quasi-
valid in the quasi-static regime were obtained using aflatic regime. However, as frequency or inclusion size is
analytic continuation method and an approximate modiglcreased, scattering effects become more significant. Two
based on strong fluctuation theory, which incorporatggincipal approaches have been used to deal with the problem
scattering effects at higher frequencies and many dsfincorporating scattering effects: wave theory and RT theory
tailed features of the sea ice microstructure, was alggn]_ In analytic wave theory, approximate solutions to the
developed. vector wave equation arising from Maxwell’s equations, such
The paper is organized as follows. In Sections Il and I, was the Born, or first-order approximation, are used to estimate
present rigorous, general results on the forward problem fitwe scattering characteristics of the medium. RT theory, on the
idealized models of sea ice. In Sections IV and V, we focus ather hand, begins not with Maxwell’s equations but with the
approximate methods of calculating the scattering properti8$ equation governing the propagation of energy through the
of multilayer, random media models for sea ice. These resusigattering medium. While this theory is heuristic, it is simpler
form the basis for the inverse algorithms in [33]. than analytic wave theory and incorporates multiple scattering
The main results are summarized as follows. In Section #ffects. In Section IV, we consider analytic wave theory for
the Helmholtz equation with an index of refraction varying multilayer, anisotropic, random medium model of sea ice
in one dimension (neglecting dissipation) is analyzed throug¥ith rough interfaces, which incorporates detailed properties
the introduction of “travel-time coordinates” [85]. An analogf the brine, air, crystallographic, and snow microstructures
of the Plancherel equality in Fourier analysis, which stat¢86], [69]. In particular, the distorted Born approximation
that the “energy” (orL? norm) of a function is preservedis used in conjunction with strong fluctuation theory to cal-
under Fourier transform, is obtained. In particular, an equalitplate the scattering characteristics. This approximation for
relating appropriate energies for the reflection coefficient in thiee incoherent scattered field incorporates single scattering

B. Summary of Main Results
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electric field E(x,¢) satisfies Maxwell's equations, or the
vector wave equation derived from them. For simplicity, we
assume that the medium is unchanging in#helirection, and
Air 1 / we consider the transverse electric (TE) polarization case with
~ E = (0, E5,0) in the x» direction. Under the time-harmonic
oS5 assumptiony, = FE, satisfies the Helmholtz equation with a
Snow ;éi? %;jﬁ ;g;g;% ngi% ngg %gf spatially varying complex permittivity
W V2u(x) + Fe(x)u(x) = 0 (2.1)
o Oy, Pure Ice .
Iee | '\ s " U ' SD, ‘A’Background wheref is the free-space wavenumbler= w./iipé0 = w/c,
AN ! 1o IS the magnetic permeability of free spaeas the velocity
/ o.i RNy O 1y .O, ," ¢ N of light in free space, and the Laplaci&t is two-dimensional
ASH '. '\! ,Ou", , \O\ / ¢ Brine (2-D) in the z; and x5 variables. In what follows it will be
' Y '(\D.C?’. ne, ,.O.\. v useful in (2.1) to writek?c = k*n? +ikm, wheren = \/e,./co
"O p “ .W O Air @s _the index of refraction aneh = a«/_uo/co. (We note that
.\ ..Oc. ! it is perhaps more common to assigd = ¢, with ¢ the

" n\nl" VAR, .
ﬂ relative complex permittivity, but here the above definitions
will be more convenient). Equation (2.1) can be thought of
Sea Water as a scalar model for electromagnetic wave propagation. It is

Fig. 1. Multilayer random inclusion model for sea ice. simpler than the full Maxwell’'s equations, but it retains the key
mechanisms of variable speed of propagation and dissipation.

of the coherent field, whose propagation characteristics drguation (2.1) also governs acoustic wave propagation.

assumed determined by the effective complex permittivity. _
For media with strong permittivity fluctuations, such as seék Layered Media

ice, this effective complex permittivity, including scattering of significant interest in many geophysical contexts is the
effects, is approximated with strong fluctuation theory [65HeImholtz equation for layered media, whete) in the lower
[69], [90]. The results of the model calculations compare welly|f-space varies only in the vertical, or depth variable zs.
with laboratory data, airborne synthetic aperture radar (SARyr simplicity, we explicitly consider here only the vertical in-
data, and European Remote Sensing Satellite (ERS-1) sateflience problem for reflection off the lower half-space 0,
data as well. Finally, in Section V, we consider RT theory fofie|ding a 1-D problem, while noting that it is straightforward
a similar, multilayer random inclusion model of sea ice. Ay extend the results to off-nadir reflection at either vertical
schematic representation of such a model is shown in Fig. d¢ horizontal polarization. The following analysis serves as
the basis for a causally stabilized layer-stripping algorithm
Il. FORWARD SCATTERING THEORY [85], [33] developed to reconstruct the index of refraction
FOR THE HELMHOLTZ EQUATION at progressively increasing depths in the reflecting medium.

In this section, we formulate the forward scattering problerhhe results have been rigorously established for the case of
for the Helmholtz equation for idealized sea ice modeWave propagation in a system governed by the Helmholtz
and give general properties of its solutions. These resufi@uation without losgo = 0) and without discontinuities in
lay the groundwork for the advances in inverse scatteritige dielectric properties. Nevertheless, computational evidence
theory discussed in [33]. The sea ice scattering probleshows that simple modifications of the same results provide
can be modeled as a half-space problemRf, in which Uusefully approximate solutions in problems, including both
measurements are made in the upper half-space, whichdiglectric jumps and loss typical of sea ice. In the following,
homogeneous and nondissipative, while the lower half-spaté summarize the forward scattering problem and an analog,
is inhomogeneous and dissipative. We consider an electfer the reflection problem, of the Plancherel equality in linear
magnetic wave of a particular frequency in such a mediufrpurier analysis.

(assumed nonmagnetic), whose time-harmonic electric field isThe Helmholtz equation governing the time-harmonic wave
given byE(x,t) = E(x)e~** x € R¢ (with x = (21,20, 23) field v in one dimension, assuming sources only at infinity, is
ind = 3),t e R, withw = 2xf and f the frequency in a2
Hz. The relative complex permittivity(x) of the medium, 72
assumed locally isotropic, is given byfx) = €.(x)/ep + i
io(x)/(weg), Wheree, is the (real) permittivity,co is the We assume that the (dimensionless and, for now, real) index
permittivity of free space, and is the conductivity. In the of refractionn differs from one only on the intervdl-oc, 0)
upper half-space occupied by air= 1, with zero imaginary and that - d Ln is square-integrable on that interval. It is
part. In the lower half-space occupied by sea ice, snow, awell known that there is a unique solution to (2.2) that is
sea waterg(x) takes a wide range of values, often with largelown-going at infinite depth.

imaginary part, in the various media that are encountered,Analysis of both the forward and inverse problems is facil-
such as pure ice, brine, air, fresh water, and sea water. Titated by the introduction of so-called travel-time coordinates.

k2 (2)u = 0. (2.2)
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Define a new “depth” variable by the relation In fact

x(z)z/:n(f)df. (2.3) W/O d 1

W=7 | |z7ms

16

— o0

This new variabler(z) is also called the pathlength for inho-
mogeneous media and can be used to transform the Helmholtz
equation in an inhomogeneous medium to a 8dimger-type
equation. Because is real and positivex is an invertible
function of z. Definev(z) = u(2(x)), v(x) = n(z(x)), and

Moreover, any complex functio®(k) with the stated analyt-
icity and symmetry and with finite “energy’( R) corresponds
to some square-integrable profi€z). The “energy” can be

finally computed from the data or from the profile using (2.9) or
a(z) = 1 & (2.4) (2.10), respectively. A similar relation holds involving the
v(x) dx depth-dependent reflection coefficient

where «(z) is the logarithmic derivative ofy(x), measuring [0
the depth variation in the index of refraction. Note thais E(r(z1, k) — E(r(xo, k)) = Z/ lo(z)[*dz.  (2.11)
actually a function of; as well asz. If we know «(z) we can z

solve (2.4) fory(x) using the boundary condition at0) = 1, gquation (2.11) is useful as a diagnostic in numerical com-
then withy, we can solve the differential equation (with it§ytations to solve both the forward and inverse problems. We
boundary condition) implied by (2.3). Note thatz) = 0 for refer 19 (2.10) as a Plancherel-like equality because it reduces
@ > 0. A little manipulation shows that satisfies to precisely the Plancherel equality in the limit of smalland
Vo kv =0 (2.5) thus small reflection. In particular, we recall that the linearized

) ) o . scattering map atr = 0, known as the Born approximation,
where the primes denote differentiation with respecttand ¢ just the Fourier transform. In the limit, as and hencer,

the condition that we seek solutions down-going at i”ﬁ”itgpproach zero, asymptotically (2.10) becomes
depth takes the fornt ~ ¢~ asz — —occ. '

1

For x > 0, v(z, k) may be written in the form 100 T [°
1 / |R(k)|? dk = Z/ |oo()|? de (2.12)
_ —ikz ikx —00 —0o0
vz, k) = 70 e + R(k)e™™] (2.6)

) ) ] . o which is the classical Plancherel equality.
which uniquely defines the reflection coefficigitk). Knowl-

edge of R(k) at all values oft completely determines(x C

and thUSn((z)), in principle. The additional requirement(s )thaF" Perturbed Dissipative Half-Space

the time-domain impulse response of the reflecting mediumWe now consider the forward scattering theory for (2.1)

be real and causal, i.e., that there can be no response priovié dissipation

excitation, forceR(—k) = R(k), for k& on the real axis, where

the overbar denotes complex conjugation, @&t{é&) to extend

analytically to the upper half of the compléxplane.
Equation (2.6) represents the wavefield above the reflecti

medium in terms of reflected and incident plane waves. Th

is no similar representation at depths (inside the reflectiﬂ%

medium) at whicha # 0. However, defining pOs

V2u + (*n? + ikm)u = 0 (2.13)

in_the case where. = 1,m = 0 for z3 > 0, while in the
nger half-spacers < 0, n differs from a positive constant
only in a region of compact support and differs from a

itive constantn_ only in this region as well [13]. These
assumptions are meant to include the case of an ice floe in

n= v'(z, k) (2.7) sea water. As indicated above, we assume that the medium is

—ikv(z, k) unchanging in ther, direction and consider TE polarization,

and with v = FE,. A number of references on the theory of
1—n scattering from a half-space in the nondissipative case, for
r(z, k) = T4 (2.8) |ayered media, and more general situations, are given in [13].

_ . _ N For any incident field, solutions to the direct scattering
gives us a “depth-dependent reflection coefficient, ), proplem can be constructed in the usual way by converting
such thatr(0,k) = R(k) andr has the physical meaningihe gifferential equation (2.13) to an integral equation that
of a reflection coefficient [in the sense of (2.6)] anywhere thgljigs in the boundary conditions at infinity. The kernel of

@ = 0', . . o this integral equation is a Green'’s function for the unperturbed
Ouir first result [85] is a precise characterlz_atlowk).and problem with outgoing boundary conditions. In particular, this
r(z, k) and takes the form of a Plancherel-like equality. ANy aan’s function is

square-integrable(z) gives rise to anRk(k) with magnitude
less than one at alk, which satisfies the symmetry and Go(x,y) =
analyticity conditions stated above and for which ’ (2m)?

/ei(x,_y,)'”’éo(ﬁ, z3,y3)dr  (2.14)

ER)=-— / log(1 — |R(K)|?)dk < 0. (2.9) Wherex’ = (z1,22) andy’ = (y1,y2), the hat denotes
oo 2-D Fourier transform inz; and z» and with the notation
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Ay = VB2 = [5]Z, A = \/—|;«;|2 k202 +ikm_ [ll. BOUNDS ON THE QUASI-STATIC

EFFECTIVE COMPLEX PERMITTIVITY
Go(k, 73, Y3) We continue our presentation of rigorous results for the for-
i [ROA, A )M mstus) 4 gidvlzs—usl - for 3> 0 ward problem by considering the complex permittivity of sea
T 20, (T (A, A etz emid-ws for x3 < 0  ice. Due to the wide range of relevant sea ice microstructures,

(2.15) as well as the high dielectric contrast of its components, it
is in general quite difficult to accurately predict the effective

for the case wheny; > 0 and complex permittivitye* of sea ice, even in the quasi-static limit
GO(;{ 3,43 where scattering effects are n(_agligiple. Neyertheless, many
PR Cin e i models have been developed, in which typically the sea ice
- L{T&Alvéf)le ettt N , for z3 >0 s assumed to be a pure ice host with ellipsoidal brine and
22 eIl 4 RO A )em™-(eatee) - for 23 < 0 5irinciusions. Various effective medium theories, such as the

(2.16) coherent potential approximation, have been used to derive
“mixing formulas” for¢*. A survey of such results is contained

for the case wherys < 0, where in [37], and more recent measurements appear in [51] and [76].

2\ While mixing formulas are certainly useful, their applicability
T(A,A2) = (2.17) . . X .
AL+ A to the full range of sea ice microstructures is questionable, as
the geometrical assumptions inherent in the formulas are often
and L : L
not satisfied. Furthermore, they do not readily provide infor-
R(A1, Ag) = Az — )‘1. (2.18) Mmation on thergngeof .reasonat.)Ie values fef, correspondjng
AL+ A to natural variations in the microstructural characteristics. In

Note that since the imaginary parts bf andA_ are nonneg- view of these limitations for mixing formulas, a new approach
ative, the exponents in (2.15) and (2.16) are decaying.  (© predicting the effective complex permittivity of sea ice

A scattering solution E of (2.13) can be constructed as thé? the quasi-static regime has been developed. A general,
solution to the integral equation analytic continuation method for obtaining rigorous bounds

on effective parameters of composite media [5], [58], [27] has
E(x) = E'(x) + /Go(x, V)WV(y)E(y)dy (2.19) been applied to sea ice [26]. Accounting for the matrix-particle

(or host-inclusion) structure of sea ice has led to advances in
(2.13) the method and to much tighter bounds [75], [30], which have
for an unperturbed system with two homogeneoyf&!so bgen app!ied .to some smart mgterials consisting of an
lajers ¢ > 0 and z < 0) and we have written insulating n_1atnx with conduct.mg particles [29]. We remark
V(y) = k2(n%(y) — n2) + ik(m(y) — m_). The scattering that the series of bounds considered here forms the basis of an
inversion scheme for reconstructing the brine volume and other
microstructural characteristics from data gn[14], [33]. Any
single value ofe* provides inverse bounds on microstructural

G(x,y) = Go(x,y) +/G0(x, 2)V(2)G(z,y)dz. (2.20) Parameters. For a data set of values, the corresponding
series of inverse bounds yields an algorithm for estimating

The Green'’s functior, however, has a singularity at= v, microstructural characteristics, even though the microstructural

which causes some technical problems. We therefore write @iations are beyond the resolution of the wave.

where E* is an incident field satisfying

solution G(x,y) at x due to a point source a¢ should
satisfy the resolvent equation

resolvent equation in terms of the scattered wéie which It should be noted that the analytic continuation method,
is defined byG = Gy + G, which exploits Stieltjes integral representations for the ef-
fective parameters, has been used in a variety of contexts,

G, = /GoVGo + /GOVGS. (2.21) including bounds on dispersion implied by finite frequency-

range Kramers—Kronig relations [60] and the effective diffu-

It has been shown [13] that both (2.19) and (2.21) have unigd¥ity of tracers in a turbulent fluid [3]. Recently, we have

solutions in the spac&-¢, for any ¢ > 1/2, where used the Stieltjes properties of effective transport coefficients
to establish a rigorous connection between phase transitions in
HY = {u: D% e L* |a] <1} (2.22) statistical mechanics and the transition in transport properties
and that occurs at a percolation threshold [28], such as that
L*9(R?) :{u:(1+|a:3|2)q/2ueL2(R3)}. (2.23) exhibiteoji by sea ice at its critical brine volume fraction
pe = 5%.

The forward and inverse scattering problems for (2.13) canlLet us now describe the analytic continuation method and
also be formulated in terms of a boundary value problem in thew it is used to obtain bounds on the complex permittivity
regionzs < 0, with given boundary data far onz3 = 0. The of sea ice. Consider a two-phase random medium in all of
equivalence of the scattering and boundary value formulatioRg, with an isotropic local complex permittivity(x, 3),
will play a key role in the development of the inverse scatterirtgking valuese; and e;, the permittivities of brine and ice,
algorithm for this problem, as considered in [33]. respectively, with:(x, 3), a stationary random field in € R¢
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andg € , wheref is the set of all realizations of the randomand the integral representation (3.3) provides #malytic

medium. We writee(x, 3) = e1x1(X, 8) + eax2(x,3), where continuation of (3.4) to the full domain of analyticity. In

x1 IS the characteristic function of medium 1, which equaldis way, information obtained about a nearly homogeneous

one for all realizationg € © having medium 1 ak and equals system can be used, remarkably, to analyze the system near

zero otherwise ang» = 1 — x;. Let E(x, 5) andD(x,3) be percolation ash — 0 or h — oc.

the stationary random electric and displacement fields, relatedBounds one*, or F(s), are obtained by fixing in (3.3),

by D = ¢E, satisfying varying over admissible measures(or admissible geome-

tries), such as those that satisfy only = p;, and finding

V:-D=0, VxE=0 1) the corresponding range of values B{s) in the complex

where(E(x, 3)) = e;, e; is a unit vector in theith direction, Plane. Two types of bounds ort are readily obtained. The

for somej = 1,...,d, and(-) means ensemble average ovdiirst boundR; assumes only that the relative volume fractions
Q or spatial average over all &“. The effective complex P1 @ndps =1 —p, are known, so that only, = p; need be
permittivity tensore* is defined as satisfied. In this case, the admissible set of measures forms a
. compact, convex set. Since (3.3) is a linear functional,ghe
(D) = €'(E). (32) extreme values of” are attained by extreme points of the set

Pf admissible measures, which are the Dirac point measures

For simplicity, we focus on one diagonal coefficien L .
= 6*'_9 D):Je to homogeneity of effegtive parametersOf the formp16.. The values ofF" must lie inside the circle

7J p1/(s — 2), —o0 < z < 00, and the regiorR; is bounded by

e*(aey,ae3) = ae*(e1,e2) for any constanta, ¢* depends ‘! N . .
only on the ratioh — ¢ /cs and we definem(h) = ¢* /e, circular arcs, one of which is parametrized in theplane by

The two main properties ofn(h) are that it is analytic off Ci(z) = b1 . 0<2<ps. (3.6)
(—o¢,0] in the h-plane and it maps the upper half plane to §—z

the upper half plane, so that it is an example of a Stieltjesp obtain the other arc, it is convenient to use the auxiliary
or Herglotz function. function [6] E(s) = 1 — ¢, /¢* = (1 — sF)/(s(1 — F)), which

_ The k_ey step in the analytic continuatior_1 method is c_)b_taims a Stieltjes function likeF'(s), analytic off [0,1], with a
ing an integral representation fat. For this purpose, it is representation like (3.3), whose representing measure has mass
more convenient to considé#(s) = 1—m(h),s =1/(1—h), p,. Then in theE-plane, the other circular boundary &

which is analytic off[0, 1] in the s-plane [4]. Then [27] has a parameterization similar to (3.6). In theplane, R;
o L du(z) 1 has verticeipl/cl +pa/ea)t il?dplcl + p2es and collapses
Fs)=1-— = , §= (3.3) to the interval(pi/e1 + p2/e2)™" < € < prer + paea When
€ 0 S—2 1—¢€ /e

€1 andey are real, which are the classical arithmetic (upper)

where 1 is a positive measure or0,1]. This formula and harmonic (lower) mean bounds, also called the elementary

is essentially a spectral representation of the resolvdiaunds.

E = (s+I'x1) te;, obtained from (3.1) and (3.2), where If the material is further assumed to be statistically isotropic,

[=V(-A)"'V., A=V?andinl, (—A)~!is convolution i.e., ¢}; = ¢*6;;, theny; = pip»/d must be satisfied as well.

with the free-space Green’s function ferA. In the Hilbert A convenient way of including this information is to use the

spaceL?(2, P) with weight x; in the inner productl'y; is a transformation [6], [25)F1(s) = 1/p1 —1/(sF). The function

bounded self-adjoint operator with norgl. In (3.3), z is a Fi(s) is, again, a Stieltjes function having a representation like

spectral measure dfy;. One of the most important featureg(3.3) with representing measugé, with only a restriction on

of (3.3) is that it separates the parameter information or its massuy = p2/p1d. Applying the same procedure as ffix

h from information about the geometry of the mixture, whiclyields a regionR,, whose boundaries are again circular arcs.

is all contained ing. In the *-plane, R, has vertices that collapse to the interval
Statistical assumptions about the geometry are incorporated _1

into 4 through its momentg,,. Comparison of the perturbation , +p1< 1 + p_2> <<

expansion of (3.3) around a homogeneous medisim ¢o or cr—e  de

€1 = (:2)

fo  p1 o 2 1 p\
F(s):?+s—2+s—3+--- (3.4) +P2<62_61 +d61> (3.7)
with a similar expansion of the resolvent representation fgshene; andes are real withe; > e, which are the famous
F(s) [27], yields Hashin—Shtrikman bounds [38]. We remark that higher order
1 correlation information can be conveniently incorporated by
fin, :/ 2dp(z) = (D)™ (x1[(Tx1)"e,] -e;).  (3.5) Iiterating the above transformation, as in [25].
0 As mentioned above, tighter bounds éncan be obtained
Thenyg = p; if only the volume fractiong; andp, = 1—p; if the material has a matrix-particle structure with separated
are known, andu; = pip2/d if the material is statistically inclusions. In this case, the support of in (3.3) lies in
isotropic. In general, knowledge of tife+1)-point correlation an interval [s,,, sp], 0 < s, < sy < 1, as observed
function of the medium allows calculation pf, (in principle). in fundamental work by Bruno [11]. The further the sep-
Expansion (3.4) converges only in the dife — 1| < 1, aration of the inclusions, the smaller the support interval
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[sm,sn] and the tighter the bounds. We will indicate latecontained in separated, circular discs, which allows us to
how these values of,,, and sy, are chosen for relevant mi- utilize the explicit calculations in [11] of,, and sp;. In
crogeometries. A convenient way of incorporating the suppguérticular, we consider discs of brine of raditis which hold
restriction is to first consider a new variabte defined by random positions in a host of ice, in such a way that each
s = ($mM — Sm)t + sm. Then the intervalls,,, sy] in the disc of brine is surrounded by a “corona” of ice, with outer
s-plane gets mapped {0, 1] in the ¢-plane and the function radius »;. Then the minimal separation of brine inclusions
H(t)=F(s) = F((sp — sm)t + ) is analytic off[0,1] in is 2(r; — r). Such a medium is called @material, where
the complext-plane. Then there is a positive measwr®n ¢ = r,/r;. For such a geometry, Bruno has calculated [11]

[0,1] such that 1 1
2 2
L sm=-(1-¢), spy==(1+¢). (3.10)
H(t) = / dv(z) (3.8) : 5
o t—27 ' Smallerg values indicate well-separated brine (and presumably

cold temperatures), angl = 1 corresponds to no restriction
on the separation, withs,,, = 0, spy = 1, so thatR;™”
and R, reduce toR; and R, respectively. Examination of

With A = sy — s, the spectral width, it can be shown
that o = p1 /A if only the volume fractions are known and

e ) o "y ) . . : . . .

Y1 fe (g .Sm) if the material IS statistically isotropic. photomicrographs of the brine microstructure in the sea ice

While the details become somewhat involved, bounds‘are L o .
sgmples of [2] indicates that even when the ice is quite cold,

obtained through a similar extremal procedure to that outliné

. ) 0
above applied tdd(¢) and its auxiliary functions. If just the with brine yolumes b(_al_ow the percolation thrfShpr ‘)/0
orresponding to a critical temperatife~ —5 °C at salinity

volume fractions are assumed, we obtain for matrix-partic . : . o
. o mp u . ppt, the brine inclusions are quite close, and it is very
composites a regio®; " in the complexc*-plane, and if the .= . .
difficult to estimate appropriate values of Instead, for a

medium is further assumed to be statistically isotropic, "Siven data set at a particular temperature, we choose a value
obtain a regionR,””. R’ and R5"" provide improvements g P P '

. . of q that best captures the data, and it is always quite close
over the complex elementary and Hashin—Shtrikman bountosone (Computationally, we find that because of the high
R; and R,. Refer to [30] for the details. ) P y: 9

H ap mp
In order to illustrate the above series of bounds, we brief?ontraSt in the components, the bounds™ and &,™ are

describe how to compare them with data in [2]. Given a sea icétremely sensitive to small changesgirior ¢ near one.) By

sample of temperatur® °C and salinityS parts per thousand carefully comparing our bounds to data over a wide range of

(ppt), the brine volumay, is calculated from the equation OfFemperatures, we have found that as the temperature increases,

Frankenstein and Garner [21]. Given the frequefiagHz as i.e., as the percolation thresholfl. is approached and the

well. the comblex permittivite. of the brine is computed from brine inclusions grow closer, the data sweep across from one
' piexp Y1 P side of the regionR; to the other (while the regions becomes

e X X !
afger as the brine volume increases) anidcreases as well.

although the_ brlne mprostructure t_ends _to _be elongated Shee the temperature is abo¥g, the data require that=1
the vertical direction, since only vertically incident waves are

considered in [2], we assume that the geometry is isotropﬁcr:'d the matrix-particle assumption is no longer valid. This

within the horizontal plane, in which case we tae= 2 ascinating behavior is illustrated in Fig. 2, which compares

above. (Marked anisotropy within the horizontal plane in th((j?]ata from samples 84-3 and 84'& € 3.'8 PPy in [2].W'th
e bounds as the temperature is varied over a wide range.

resen f a well-defin rrent direction during grow o .
presence ot a we de ed_cu ent d _ect_o during gro e remark that above the critical temperature, the brine phase
was considered in [31].) While the sea ice is actually a thregé omes connected and the sea ice is bl lowi
. C permeable, allowing
component medium, we have found that very close agreemerércolation of brine, sea water, nutrients, biomass, and heat

of the two-component bounds with the data can be Obtamgwough the ice. In the Antarctic, this transition in the fluid

[14], [30] if we slightly adjust the complex permittivityy .o oo beoperties plays a particularly important role in Snow-
of the ice by treating it as a composite with a small volumg port prop playsap yimp

) ) o . o . ICe formation [1], in heat fluxes through the ice [52], mixing
fraction of air and calculating its effective permittivity with . . . LT
in the upper ocean, and in the life cycles of algae living in
the Maxwell-Garnett formula

the sea ice [22]. Furthermore, brine percolation has significant

d Pair (€ice — €air) } (3.9) implications for remote sensing of sea ice, such as affecting

€ice(d — 1) + €air + Pair(€ice — €air) its dielectric properties as above and allowing flooding of the
whereeie — (3.1884+0.00091 T) i 0.000 05 [56], caie = 1. surface, which can alter microwave signatures [39], [53]. In

d = 3, and p.,, air volume fraction, is calculated via the[32]’ the striking similarity of sea ice microstructure to that

X ) : of compressed polymer/metal powders [43] is exploited to
equations in [16] from the density of the sampfeand 5. rovide a theoretical prediction of the critical brine volume

It should be remarked that the three-component case can A5 . X ) :
. . . . sea ice via percolation theory and the geophysical and
be treated with the multicomponent bounds obtained in [zzﬁiological implications of brine percolation are explored
[59], and [61], although the mathematics involves holomorphic '
functions of several complex variables, and it is quite a
bit deeper than the two-component case, with a number of
unresolved issues.
Finally, to compare the data with our matrix-particle bounds, For the interpretation of geophysical remote-sensing data,
we assume that within the horizontal plane, the brine @nalytic wave theory [90] has been used to develop scattering

€2 = €ice 1-

IV. ANALYTIC WAVE THEORY
FOR MULTILAYER RANDOM MEDIA
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Fig. 2. Comparison of 4.75-GHz data (circles) on the complex permitta/itpf sea ice at different temperatures with the boufs(outer, dotted),Ro
(inner, dotted),2}"? (outer, solid), and?y'? (inner, solid). R1 assumes only knowledge of the brine volume, dhdassumes statistical isotropy as well.

R and R4 further assume that the sea ice is a matrix-particle composite witl treues indicated. Note that as the temperature increases, the data
move across the regioR2 (while the regions become larger), andncreases, indicating decreased separation of the brine inclusiong! Eor2.5 °C,
which is above the percolation threshold, the matrix-particle assumption is no longer valid, go=thatand R{*? and R3'? reduce toR; and R».

models for heterogeneous layered media such as sea ice. Wheree; is the effective medium theory approximation for the
based on the vector wave equation quasi-static effective permittivity. With® = (¢(x)), iteration
9 of (4.3) starting withE(x’) = E° generates a Neumann
VXV XE-kFex)E=0 (4.1) seri(es f)orE(x), gnd trun((:ati)ng it at firgst order yields the Born
where k = w/c is the free-space wavenumber. By writinggpproximation. The associated Dyson equation for the mean
the local complex permittivitye(x) in terms of a constant, field can also be treated with a similar type of expansion.
reference permittivity:® and fluctuationg(x) about it Various approximation schemes are based on inclusion of
o certain types of terms in the expansion, such as the bilocal
¢(x) = +((x) (4-2) approximation, which includes those contributions from higher
then (4.1) can be converted to an integral equation order terms that can be written in terms of products of bilocal
(two-point) diagrams. Approximations based on the choice
E(x)=E° + kQ/dx’GO(x, x)((x)E(x) (4.3) of ¥ = {¢) are valid for small fluctuationg(x). However,
for media such as sea ice, where these fluctuations can be
whereG? is the dyadic Green’s function for the homogeneouguite large, it is more productive to choosé = ¢}, which
medium with complex permittivity® and E° is the solution leads to strong fluctuation theory. The singular nature of the
of (4.1) with e(x) = €. In analytic wave theory, there aredyadic Green’s function is taken into account, and the bilocal
two principal choices for the reference permittivity. The firsapproximation of (4.3) for an auxiliary field, or its Dyson

is ¥ = (e(x)), the mean ofe(x). The second is” = ¢;, equation, is used to approximate the scattering coefficients
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and the effective complex permittivity (including scattering To accurately model electromagnetic wave scattering in sea
effects). This theory is most accurate when the system is né&ag, it is necessary to consider the realistic complexity of sea
the quasi-static regime, as it is, roughly speaking, an expansioa and to define domains of model input parameters con-
about the quasi-static case, while the local fluctuationg)  strained by the sea ice physics. Sea ice is an inhomogeneous
may be large. medium composed of an ice background, brine inclusions,

Layered medium models have been developed with the Bafj bubbles, and solid salt. The electromagnetic properties
approximation for an isotropic two-layer [95], isotropic multi-of these constituents are characterized by permittivities and
layer [96], anisotropic two-layer [48], or isotropic-anisotropigermeabilities, which relate material characteristics to elec-
three-layer configurations [7] to calculate radar power returﬂ%magnetic fields by constitutive relations. Except for air
or conventional backscattering coefficients. For polarimetrig hpies; the sea ice constituents, such as seawater brine and
remote sensing, Mueller and covariance matrices that chgfie ice, are dispersive with large variations, especially in
acterize fully polarimetric scattering properties of the medlﬁlle imaginary part of the permittivity as a function of wave
are calculated for an isotropic two-layer [9] or an anisotropiﬁ:equency [20], [84].

two-layer configuration [8]. In isotropic media containing . . .
. N~ v : Ice crystallographic structure determines the anisotropy of
spherical scatterers, depolarization giving rise to the cross-_ . . . . R
o : . Sea ice. Depending on the orientation distribution of the
polarization return is due to the second-order and h|ghgrr stallographicc-axes, with an associated orientation distri
order terms (multiple scattering) [9], [98]. However, strong iy grap '

depolarization effects can come from the first-order ter ution of layers of brine inclusions, sea ice can effectively be

(single scattering) for anisotropic media [48], [8], or fmlsotropi(j,, uniaxial, or biaxial. The electromagnetic proper_ti_es
nonspherical scatterers [64]. of sea ice are strongly related to the temperature, salinity,
For dense media such as sea ice, the distorted Born @pd density. These parameters together govern the thermody-
proximation is applied [17], [74], [46]. This approximationn@mic phase distribution of sea ice constituents [16]. Surface
takes into account dissipation, scattering losses, and also éghness and surface conditions, such as frost flowers, slush
modification of the wave speed due to embedded scatterd@yer, hummocks, and snow characteristics (grain size, density,
In this case, multiple scattering has been considered to sotfigkness), also impact the scattering from sea ice. Details
extent. Physically, the first-order distorted Born approximatic¥ sea ice characteristics and their effects on electromagnetic
describes the single-scattering process of the mean field f@perties can be found in [66].
can be interpreted as a first-order multiple scattering process. i )
Further improvement has been obtained with a renormalization Strong Fluctuation Theory for the Effective Complex
technique, which has been carried out to first-order [24]€rmittivity of Sea Ice at Microwave Frequencies
second-order [86], and higher order for a half-space isotropicThe application of analytic wave theory to sea ice, and in
random medium [15]. For a two-layer anisotropic mediunparticular the distorted Born approximation, depends on being
renormalization has been applied to derive the Dyson equgble to account for the strong permittivity fluctuations encoun-
tion for the mean field and the Bethe—Salpeter equation f@fred in sea ice. Here we consider strong fluctuation theory for
the scattered field, which are solved, respectively, under g effective complex permittivity. The sea ice is represented in
nonlinear and the ladder approximations [49]. general as a three-component random mixture consisting of the
For media with strong variations in the permittivity, such agree phases: pure ice, brine, and air. The description of sea ice
sea ice, strong fluctuation theory [88] is used in conjunctiofy 4 random medium has been verified by statistical studies of
with the distorted Born approximation, which is what is usefl,,4,m spatial variations in ice salinity and bubble distribution
here. Effective permittivities for isotropic and anisotropi 92], [72], [65]. The ice is frequently also anisotropic due

{ﬁnd;)m Sg]edé% hasve tta[r)iarommaftﬁecii r\:\t"th rstrtohngn flulctulat; the presence of brine inclusions that can have a much
eory [88], [80]. Scattering coefficients are then calculate reater vertical than horizontal extent. In a general random

under the distorted Born approximation with these effecti Bedium, the local value of the permittivity at any poit

permittivities [89], [87], [41], [63]. With a knowledge of . ' .
. - o . described by the random permittivity tensefx). The
the scattering coefficients, the em ty of the ice can I} o . . .
S nd iclens ISSIvIty I éfefmmon of this tensor at a particular location depends on the

determined using Kirchhoff's radiation law [71]. For se o ,
ice, the brine inclusions are usually small compared to cgmplex permittivity at that location and the local geometry.

wavelength in the microwave frequency range and have 15€ permittivity fluctuations are assumed to be statistically
permittivity distinctively higher than that of the background'©mogeneous. Strong fluctuation theory provides a consistent
ice; thus, strong fluctuation theory is particularly suitable. Solution for both the effective permittivity, accounting for

An important advantage of analytic wave theory is thacattering losses, and the propagation of electromagnetic fields
preservation of phase information. Since it is derived frofd the medium in terms of the spatial correlation functions of
wave equations for layered media with the use of dyadi@e components. We begin with consideration of the theory for
Green’s functions [95], [97], [47], wave theory solution§ general random medium and then present results arising from
contain all multiple interactions due to the boundaries #te detailed assumptions of the most recent models of sea ice.
the layer interfaces; therefore, all coherent effects for waveln strong fluctuation theory for a random medium [88],
propagation in different directions, such as constructive afic®], [83], [64], the bilocal approximation is used to obtain
destructive interferences, are included. the following analog of (4.1) for the mean electric fidif”
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propagating in the medium capture the behavior of the system. For example, for two-
component media in the high-contrast lirait/e; — 0 or oo,

VX VxE"—keE" =0 (4-4) the effective permittivitye* exhibits singular behavior near the
wheree* is the effective permittivity tensor in strong fluctu-ctitical volume fraction for percolation of one of the phases
ation theory, given by and ¢* near the percolation threshold exhibits power law

behavior described by certain critical exponents. In general,
€ =€ t+e;. (4.5)  the effective medium formula gives incorrect values for these

cWitical exponents. It should be remarked then that a limitation
f strong fluctuation theory is that the quasi-static liafitas

— 0 of the effective complex permittivity in (4.5) is not
the actual value considered rigorously in Section Il above,
but it is the effective mediunapproximation which does not

€ = k2 (¢GE) (4.6) accurately capture the actual behavior of some random media.

is th tribution due t ttering f inh i A theory of effective parameters in the scattering regime that
IS the contribution due 1o scatlering Irom INNOMOGENEIES. ifLg e correct quasi-static limit would be quite desirable.

(4'6)', G and ¢ are deflngd as fOHOW,S' The dyadic Green’ﬁ\levertheless, strong fluctuation theory provides an excellent
function G, associated with the medium of constant perm”aipproximation in many cases of interest

tivity € satisfies

In (4.5), €* is the quasi-static permittivity tensor that describ
the propagation of the electric field in an effective mediuf}
without volume scattering effects, which is discussed furth
below, and

Now, the scattering contribution to (4.5) is assumed to
VXxVxG, — k%;gq =I6(x — x') (4.7) be that from an unbounded random medium and we ignore
boundary effects. It is calculated using
wherel is the unit dyad and is the Dirac delta functionG,

can be decomposed as ey = k2pv/ *x Cijpa(x, %) Gl (%, %)
G,(x,x') = Gy(x,x') + 86(x — x') (4.8) x exp[—ik - (x — X')] (4.13)

where G, is the principal value ofG,. G is the integral
operator defined by convolution witG,
£ in (4.6) is defined by

where we have used the summation convention for repeated in-

- The random tensor e, es pv denotes principal value, ar@y; is the correlation

function of the permittivity fluctuations defined by
2 —1

£(x) = ¢(x)[I - £7S¢(x)] (4.9) Cijm(x, x') = (& ()& (x)) (4.14)
i deternined b e o utualode) =) % e the oerarcertes comple conggatn, The ety
function. of (4.13) requires that the electric field does not o§C|IIate tqo
The quasi-static effective permittivity tensef is chosen s.tror)gly over Fhe volume where the kernel of theilntegral 'S
such that the mean value 4fx) is zero [88] significant, which effectively means that the correlation _Iength_s
should not be larger than the wavelength. For sea ice, this
(&(x)) = 0. (4.10) approximation is sufficiently accurate for wavelengths greater

han a few millimeters. The tens@® is the key to strong

. " . . L
This cqnd|t|on removes_secular _terms in the d'agramma“ﬁctuation theory. It takes into account explicitly the delta
expansion of an appropriate version of (4.1) for the aux'“argmction part of G, and allows the effects of rather large

3 (T2 i N . :
f'?fld F = k_ SC)E Fgr the f]pe.ualll case of scglar loc?l an ermittivity differences, such as those between ice, brine, and
effective permittivity and a spherically symmetric correlation;. 1 pe incorporated accurately.

H _ 2 %
function so thatS = (—1/(3k%¢;))L, [90] The application of the above formulation to the development

L (%) — e of a particular model requires the following steps:
§x) = 36(1<€(x) +2€*>' (4.11 1) determineS based on the geometry of the inhomo-
! geneities;

Then the condition (4.10) fon-component media with con- 2y geterminee’ using (4.10);
a : !

stituent complex permittivitie:, ¢a, - -, ¢, in the volume 3) determine the components &, and G, using (4.7)
fractionsp, po,- - -, p, takes the form and (4.8); ¢

L ¢ 4) determineCy;z; from (4.14);

Z — i =0. (4.12)  5) calculatee* from (4.13).

— € + 2€q

In practice, this process is quite complex and the details differ
The resulting expression faf; is the Polder and van Santensignificantly depending on the model used. For specific details,
mixing formula [73], which is equivalent to Bruggeman'sefer to [64], [79], [83], and [90].

effective medium theory approximation to the actual quasi- Before proceeding to individual models, we note that,

static effective complex permittivity™ (which was treated if the correlation statistics of the medium have azimuthal
rigorously in the previous section) [10], [42], [45]. While thissymmetry about the vertical axis, the form of the permittivity

effective medium formula provides a good approximation tcan be simplified somewhat. In particulaf, and S will be

the actuak™ in many situations, it does not always accuratelgiagonal ande* is symmetric [83] but can have off-diagonal
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Fig. 3. Calculated values ef and attenuation for wet snow [solid and dotted lines], assuming,, = 1 mm. (a) density= 0.442 Mg/m?, pwater = 0.251.
(b) density= 0.558 Mg/m?, pwater = 0.624. The open symbols denote the observations. Redrawn from [82].

components sensitive to the choice df .. Representative results from [82]
are shown in Figs. 3(a) and (b). Rather close agreement is
obtained between theory and observation for both real and
imaginary parts of the permittivity. Note that for this data set,
particular care was taken to determine the liquid water content
The component;; arises from the tilt of the inhomogeneitiesof the snow samples.
away from vertical, and for the case of no tilt, it will be zero. For dry snow, Zurlet al.[99], [100] have taken into account
Further, if the statistics are locally isotropic, as for snow ahe effects resulting from the tendency of snow grains to
frazil ice where the crystal structure is jumbled, we have thguster. They find that clustering does not significantly affect
further simplification thate* = *L. Re(e*), but it increaseslm(e*) significantly. The amount

In order to model arctic sea ice, we assume that the systefthe increase depends on the fractional volume occupied
consists of a set of homogeneous layers of snow and salse the ice grains and the degree of clustering, and it is
ice. Both snow and ice layers are random mixtures of purgost significant for low-volume fractions in which the grain
ice, brine, and air, whose permittivities are known functionsiacement is less constrained. This model provides a realistic
of frequency and temperature. The appropriate values ag@resentation for the observed spatial distribution of grains in
reviewed in [37]. Each type of mixture is subject to constrainisatural snowpacks.
imposed by observed structural properties, including the vol-The principal case of interest fosea iceis first-year
ume fractions, shapes, and orientations of each constituent, g@gdgelation ice, where the ice occurs as groups of platelets
these constraints depend on ice type. packed together to form grains with brine inclusions embedded

For the case ofnow, the ice grains are assumed to bgetween the platelets. The bulk salinif/ can range from
oriented isotropically in a discrete layer or layers on top efbout 4 to greater than 15 ppt. The brine inclusions are in
the ice. The structure in each snow layer is also assumed togegeral elongated and tend to be oriented vertically, but they
homogeneous. The snow may contain liquid at temperaturescgh be tilted away from vertical [44], [36]. Varying amounts
0 °C and below when brine is transported upward by capillagf air bubbles are also present giving densities in the range
action from the underlying ice. Brine is commonly found irp.92-0.88 Mg/r.
the snow on first-year ice [35], [50]. Stogryn [82] represents The model of Stogryn [83] assumes that sea ice is a three-
wet snow as an assembly of ice grains where the waterpBase (ice, brine, vapor) random medium with azimuthal
distributed in pendular rings at grain contact points and in thfymmetry about a vertical axis, and that a prolate spheroidal
films surrounding the grains. The fraction of water in the filngorrelation function describes the brine inclusions. The brine
around the ice grains is estimated to be (0.261-0p24-), inclusions are assumed to be tilted from vertical at a mean
wherepyaer is the water volume fraction. He assumes that thgngle #5 so thate* has the form shown in (4.15). The
correlation functions are exponential with correlation lengthgrine volume is determined from the bulk saliniyppt and

i1 0 €3
=10 €, 0]. (4.15)
€ls 0 e

2 temperaturel” °C using the equations of Frankenstein and
blice = 3(1 — Pice )dgrain,  Loiim = Lice, Garner [21]. Vapor is then determined from the bulk density
Lrings = 0.54(1 — Pyater fitm) and the inclusions are assumed to be spherical. They contribute

only to the diagonal terms of*. Fig. 4 shows a comparison
(4.16) . :

of calculated values of the real and imaginary partscf
Recent work by Mitzler [55] shows that, because the ice grairfer sea ice at two different temperatures compared with the
quickly undergo metamorphism and become distorted, it @servations of [93]. In addition to the results for first-year
more accurate to usé.. = %dgram. At centimeter and long ice, the model has representations for frazil ice and multiyear
millimeter wavelengths, the effective permittivity is not veryice. For further details, refer to [83]. Recently, the integrated

0.5
X (pwater film /pice—l—water ﬁlm) dgrain-
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Fig. 5. Effects of density differences on the (a) real and (b) imaginary partg offor young sea ice as a function of temperature for an extended
warming sequence. The solid circles are the experimental results, the solid curve is for the calculated results, and the dash-dotted curnesigperfor th
and lower bounds by varying the bulk ice density #3%%. Redrawn from [65].

formulation in [16] that relates the brine volume and vapor votnal processes associated with the evolution of the ice. The
ume toS, T, and bulk density has been incorporated; howevegtincipal differences are in the tilt of the brine inclusions
it produces only small changes in the results presented hernd assumption of ellipsoids versus spheroids. More subtle

A series of models has been developed by Nghétnal.

differences involve the precise shapes of the inclusions, which

[64]-[67], culminating in a multispecies, anisotropic mediurare unfortunately quite variable in actual sea ice and depend
with vertical anisotropy. They assume that the brine pocketst only on the present state of the ice and snow but on their
and vapor inclusions in sea ice are triaxial ellipsoids, includirigmporal evolution. Although no direct intermodel comparison
spheroids and spheres as special cases. For sea ice,hétfe been made, each model produces reasonable values of
ellipsoids are oriented with their longest axis vertically anfoth real and imaginary parts of the effective permittivities

have random azimuthal orientations. The resultaigis of

for actual values of brine volume and bubble density and

the form of (4.15) withef; = 0. For snow, the grains are realistic representations of the microstructure of the ice. We
represented as randomly oriented ellipsoids for whitlis a conclude that these models are useful for determiringnd
scalar. They investigate in detail the effects of distributiorfiave sufficient flexibility to incorporate improvements in our

of size, shape, orientation, and phase of the brine and vapbgerstanding of the physical properties of sea ice.

inclusions.

Representative results showing a comparison with the dB- Distorted Born Approximation for Sea Ice

servations of Arconeet al. [2] are shown in Fig. 5. By

We now present the scattering calculation for sea ice under

including the effects of actual salinity and temperature varighe distorted Born approximation, assuming that the system
tions combined with brine loss from the samples at the highesnsists ofn layersn = 0,1,...,N. For example, we may
temperatures, they obtain good agreement over a wide ramg&e n = 0, the upper half space of aip = 1, the

of temperatures.

The formulations of both Stogryn and Nghieet al. rep-

cover layer such as snow; = 2, the sea ice layer, and
n = 3, the lower half-space of sea water. To account for

resent the snow cover as an isotropic medium and take medium anisotropy, the effective permittivity in layer
into account the anisotropy present in sea ice and the ther-is described by the tenso¢f, from strong fluctuation
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theory discussed in the previous section. A polarimetric raday, = 01,1, are the diagonal elements. The cross-correlation
or scatterometer can measure the backscattered field forcakfficients aresy,n, and oyyy. The copolarized ratio is
polarizations, including magnitude and phase. Ensemble axx /oy, the cross-polarized ratio ig,, /oy, and the complex
erages of scattered field correlations are used to obtain tHwerelation coefficient between the horizontal and vertical
complete set of polarimetric backscattering coefficients. Thesgurns isp = ohhvv(ohhow)*l/? Complex mathematical
coefficients constitute a covariance matrix or a Mueller matrigxpressions ot ... for sea ice covered by media such as
characterizing polarimetric scattering properties of the layeredow and frost flowers have been derived and can be found
medium [63]. Now, the scattered field intensityE®(x)[? ) in [64], [66], and [69].

for x in the upper half space = 0 is given by The microwave emissivity,, of the snow-ice system, where
a = h for horizontal polarization and = v for vertical polar-
(|E* (x — it Z/ dxn/ dx, Coirtm (X, X, ization, can then be determined from the scattering coefficients
Vi as follows:
27
LGy o 00)) (B X"”] ca) =1 1,000~ 2 [T ag [T
X [(Gonat (%, X)) (Fi (x/0))] (4.17)
X sin Ooqn (K, ks) + 0au(k, k%)) (4.21)

where (G, (x,x,)) is the mean dyadic Green’s function of
the anisotropic, layered medium. For the observation pxnntWherekZ is the incident wave propagation vectér,(¢, ¢) is
in layer » = 0 and the source point, in layern, (F) is the scattered wave propagation vector in the direction specified

the mean incident field in the effective medium with compleRy the polar angle? and azimuthal angle), and i, is the
permittivity tensore*, V,, is the volume occupied by layer Fresnel reflection coefficient for a plane wave incident on the
n, and C,, is the correlation function of the scatterers ic€. The resulting brightness temperature measured near the
layer n, defined in (4.14), with variance,, . (depending surface including the contribution reflected from the sky is
on the volume fractions and permittivities of the sea icgiven by

constituents). The summation convention for repeated indexes To(K') = ca(K) Tour + [Ra|* Ty (K)

has been used on the lower indexes in (4.17). Implicit in

27 T 2
(4.17) are averages involving the probability density function + _/ d¢/ /
of scatterer orientation angles, and¢,, in layerrn as well as
the probability density function of layer thicknesses. The an- x sin 0] ,p (k' k) 4 040 (k' k)| Tony (k).
gular probability density is determined by the crystallographic (4.22)

c-axis distribution. [The indexes, j, k,{,m in (4.17) may
be considered as vectors, indicating the relative orientation'© take into account the vertical structural variations in the

of the ellipsoidal scatterers in a given layer relative to tH€e, @ multiple layer formulation has been developed [78],
global coordinate system; see [69] for details.] The correlatid¥ere the properties of the medium are constant in each

function C,, can be written as layer but can differ between layers. This formulation has been
) extended to strong fluctuation theory and applied to snow and
Chjktm(Xn, Xy,) sea ice [81]. Specification of the reflection coefficigty of

. / the coherent mean field in the medium and the components of
- /dk Tnghim Pn (k) exp[—ik - (xn =xn)] - (4.18) the dyadic Green’s function are determined by SO|Vi£g certain
Ricatti equations that involve the effective permittivity tensor.
) The correlation statistics of both ice and snow are assumed
22y Z2\E to have anisotropy with a vertical optic axis and azimuthal
R (x) = exp l < e e e ) ] (4.19) symmetry. This represents the observed physical properties of
sea ice (with random distribution ef axes in the horizontal
with correlation lengthst,..., £,,, and ¢,. related to the plane) extremely well and simplifies the problem sufficiently
effective size and shape of the scatterers [64]. The scatterifgt only two Ricatti equations need to be solved to specify all
correlation (4.17) accounts for the physical and structurgde components of the dyadic Green’s function. The scattered
properties of the anisotropic sea ice, wave interaction witleld correlation is determined as described above, making use

where ®,, is the Fourier transform of

the medium interfaces, and effects of the cover layer. of an appropriate version of (4.18) for this case.
Polarimetric backscattering coefficients., . are calculated  Surface roughness also impacts wave scattering from sea
from ice. Natural interfaces in sea ice are rough with various length
) <EZ ﬁ> scales from large-scale hummocks to small-scale roughness.
Oprvn = 1 (4.20) The lower interface, such as the boundary between sea ice

1*,A—>OOT B E . .

TR and water, can also be rough. In the layered configuration, we
where the subscriptg, v, 7, and « in the linear polarization must take into account the effects of wave-boundary interac-
basis can be: for horizontal polarization or for vertical tions, differential propagation delay, and wave attenuation of
polarization,r is the distance from the radar, antlis the ordinary and extraordinary characteristic wave types in the
illuminated area. In the covariance matrix, the conventionahisotropic layered media. Hummocks modulate the small-
backscattering coefficientsy, = owunn, 0w = owewy, @and  scale rough surface scattering. Assuming the hummock and
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Fig. 6. Comparison of theoretical calculations based on the distorted Born approximation to CRRELEX data on bare sea ice for (a) backscatits coefficie
and (b) polarimetric signatures.

the small-scale roughness are statistically independent amere measured by the first ERS-1 for vertical polarization [67].
stationary Gaussian processes, the total roughness profildti® model results compare well with both the spaceborne and
a convolution of the individual roughness profiles at differergtirborne radar data.
scales. This convolved profile is used to calculate the com-In summary, the layered model for sea ice scattering ac-
posite rough surface scattering subject to the medium a@eunts for the three phases present in sea ice, the orientation
propagation effects in the multilayered configuration [66]. distribution of crystallographie-axes, nonspherical geometry

In the following, we present applications of the model t@f brine pockets and other inhomogeneities, anisotropy of
ground-based, airborne, and spaceborne radar data for g@#mnar ice, thickness distribution in thin ice, a brine layer
ice. Fig. 6 compares the theoretical calculations and measufé§l snow cover, roughnesses at sea ice interfaces, and melt
results for a layer of bare sea ice grown during the Coldmmocks. The model compares well with measured data in
Regions Research and Engineering Laboratory Experimentd@neral and provides physical insights into sea ice signatures
1993 (CRRELEX 1993) [68]. The data are obtained by tHbserved by remote_sensors_to interpret the sig_nature behavior
Jet Propulsion Laboratory (JPL), California, Institute of TecrRnd assess the retrieval of important geophysical parameters
nology, Pasadena, ground-based polarimetric scatterom@gse@ ice.
operated at C-band (center frequency at 5 GHz). The com-
parisons are good for backscattering coefficients [Fig. 6(a)] V- RT THEORY FORMULTILAYER RANDOM MEDIA

and for normalized polarization signatures [Fig. 6(b)]. Fig. 7 In microwave remote sensing of earth terrain, volume and
is for snow-covered first-year sea ice and multiyear sea ipgugh surface scattering give the principal contributions to
with snow and hummocks in the Beaufort Sea. The JRhkdar backscatter responses. For volume scattering, both the
airborne SAR data were obtained during the Beaufort Seendom medium model, in which the scattering effects are ac-
Flight Campaign in 1988 near 79N latitude and 142 W  counted for by introducing a randomly fluctuating permittivity,
longitude. The spaceborne SAR data for sea ice in the Arctiad the discrete scatterer model, in which randomly positioned
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o ume p;, ., permittivity €, size an;, by, cpy, and orientation
distribution. Each interface can be either flat or randomly
rough, with the corresponding varianeg, and correlation

length ¢,, describing the roughness. The RT formulation for

Multi-Year Ice

i:é £ a multilayer medium containing discrete ellipsoidal scatterers

5 20 g &g and the numerical technique for solving the RT equations are

= First—Year Ica described in the following.

9 ] | The specific intensityl,,(z, 6, ¢) at height z for propa-

Bl E o, ERSI gation in the (#,¢) direction inside each scattering layer

. [ opy dato — 0, model n=1,...,N — 1lis described by the generalized RT equation
-40 +Q o, data - - a,, model

cos 0 diIn(G7 ¢, 2) = —Ren(8, P)L.(8, $, z)

¥4

20 30 40 50 60 +/ dY P (8, 6;0'¢L.(6'¢, 2)
Incident Angle (degree) " (5.1)

Fig. 7. Comparison of theoretical calculations of backscatter based on VS{E
distorted Born approximation to SAR data for snow-covered sea ice ere I, P, and xe, are the Stokes vector, the phase

the Beaufort Sea, measured by ERS-1 and during the Beaufort Sea Fligh@trix, and the extinction matrix inside layer respectively.
Campaign. The Stokes vectod associated with a wave with electric

field E = E,® + E,h, where and ~ denote orthogonal
particles are used to represent the volume inhomogeneitidglarizations, is defined as

have been used to calculate the electromagnetic scattering I, (E,E,)

[23], [40], [90], [91]. As for the contribution from rough I— Il 1| (EnEn) (5.2)
surfaces, different methods have been applied over the years to (U] n|2Re(E En) ’
study such scattering. For example, for slightly rough surfaces, V 2Im(E, Ey)

mgirihteh?/v;c\)/ztlerr?etan t?]gu::r?al(lrmzatuhreblgt?énlsmrgtl::z)hd srgglle eren is the characteristic impedance and denotes the
gth, P ( semble averagel (here is not to be confused with the

is used. On the other hand, when the radius of CurVa‘t%eentity matrix). The energy transport can be interpreted in the

Ef. t?}i s];flfrfacetr:s dlarge,bthe taggjgt pslgagne ga f prgglmatmn l%rllowing heuristic way. As the intensities propagate through
irchhoff’'s method can be used [40], [90], [91], [23]. an infinitesimal lengthls = dz/ cos 6, there is an attenuation

tro?nTagtzgggng?/se gfggaggt?cl;r?dane;tggzgeerl%] gtﬂng%%ihsé?%l due to both absorption and scattering loss, but they also
. o ,
media [23], [40], [90], [91]. Even though the RT approac&l t enhanced by the scattering from all other directighs)’)

. ] . to the direction of propagatiorid,$). This coupling is
Sss:asreor\r:l{\a\{mrg tr:z;g;enni:'?jr?; \;\za\;:sscﬁ?ernr?glzggsOtl?:c'ﬁaracterized by the phase matil%, and accounted for in
ure, | u utip 'ng .1) through integration over the solid angle.

energy conservation. The_propag_ation chgracteristics of 1 Crhe phase matri¥,, relates the Stokes vector associated
Stokes parameters associated with the fields are gover%«;"% the incident field to the Stokes vector associated with the

by an integrodifferential equation, the RT equation, whic Ejcattered field, and it is obtained as follows. The scattering

involves the extinction matrix, describing the attenuation Yinction matrixF(8,, d.; 6:, ¢:) that maps the incident field
the specific intensity due to absorption and scattering, and the (B EiY in S(’jiré;:tiz(’)nz(& 4:) to the scattered field
- v h vy W

phase matrix, characterizing the coupling of intensities in twQ, ;.. s’ 4o A
different directions due to scattering. The RT theory has been (£, Ef) in direction (6, ¢) is given by
applied to scattering problems with highly complex geometry. F(6,, bs: 0, 1) = |:fvv fvh:|
Flat or rough surface boundary conditions can be imposed at B fuv  fun

the intgrfaces ofa multilayered structure, and the rough surf%ﬁere the scattering amplitudgs; are functions of the shape
scattering effects can be included in the RT model. Whilg,y permitivity of the scatterer. The associated incident and
some of the material in this section has appeared elsewhergcllytered Stokes vectors are transformed via thed4Stokes
serves as the basis for the RT—thermodynamic inverse mogel;rix L(6,, ¢5:6:,$;), whose components are functions of
in [33]—and for completeness, we include it, particularly th9}vv fon fhv7 an7df7hh [90]. The phase matri®(6,, ¢.; 6;, ¢:)
formulation for multilayered systems such as sea ice. is obtained fromL by incoherent averaging over the type, di-
We now consider a multilayer random medium with layergansjon, and spatial orientation of the scatterers. For example,

n=01,...,N,asinFig. 1 withiV. = 5. LayersO and N {he phase matrix for a mixture of one species of ellipsoid is
are homogeneous half-spaces representing air and sea W@ﬁgén by

with appropriate complex permittivities. Layets..., N — 1
have boundaries at = 0,7 = —di,...,z2 = —dn_1, P(0s, ¢s:0i, i)

wbith thicknessesd,, — d,,—1|, and background permittivities — o, da/db/dc/da/dﬁ/d’y
¢. Each layern contains M, types of scatterers, where
(

(5.3)

n

each typej = 1,..., M, is described by its fractional vol- x fla,b,c,0, B,7)L(0s, Ps: 6, P;) (5.4)
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where n,, is the number of scatterer per unit volume, b, interface, the small perturbation method can be used to solve
andc are the length of the ellipsoid semimajor axis,/3, and for these matrices [90].
~ are the Eulerian angles that describe the orientation of theThe boundary conditions at interfaces 1 aMd(z = 0
ellipsoid, andf(a, b, ¢, v, 3,~) is the joint probability density and » = —dy_1) are slightly different and can be written
function for the quantities:, b, ¢, o, 3, ~. as follows. For interface 1 we have

The total extinction matrix. can be obtained by summing

the scattering and absorption losses in the medium [90]. Thdm —0.4.2=0)
components of this 4« 4 matrix are functions of = R0, 9)L1(0, 4,2 = 0)
27 z
1271, / /i /R TN ol
Mij = T<f“(9’ (7); 9’ ¢)> (55) + /0 dd) /0 df’ sin 0 RlO(ev (/)7 o 7¢ ) 11(9 7¢ ) % 0)

—I—TCQ, Ii7r—9, —I—Ti 9, ;91, i Xo;
where k* is the wavenumber in the background medium 01(fo; ¢o)loi( 0, o) 0(0: 63 00, foi)To

t,7 = v,h and () denotes average over the orientation and (5.8)
size distribution of the scatterers, as in (5.4). and at interfacev

For a layer containingM,, -different types of scatterers,
each with its own size, orientation distribution, and fractional ~ In_1(6,¢,z = —dn_1)
volume, the phase matrix can be obtained by incoherent =R N AIn_1(m—6,¢,2=—dn_1)
averaging over different scatterers. The total absorption and om z
scattering loss matrices due tt/,,-type of scatterers can +/ d¢’/ df’ sin 'R in(0,9:6,4)
also be calculated by incoherent averaging of the matrices 0 0
associated with each scatterer type. x Iy_i(m—0,¢', 2 = —dn_1) (5.9)

The boundary conditions necessary to solve for the Stokvt\al

vector inside layern are as follows. At interface Rere o is related tod by Snell’s law.

Both iterative and discrete ordinate eigenanalysis methods

L(r —0,¢,2 = —dn_1) have bee|_1 used to solve the RT equations [90]_. Det_ails of these
—R° 0, L8, 6,2 = —dy_1) two techniques can also be found in [90]. The iterative method
T mn— 1A FIRAT ¥ 2 T TNl is appropriate for cases of small albedo in which absorption is

27 z ) . . . . . .
+/ d¢’/ 6’ sind R (6,:6'.) domlngnt. The d_|screte ordinate eigenanalysis r_nethod provides

0 0 ' numerical solutions for more general scattering cases. The
X L0, ¢ 2=~dp 1)+ TS 1, (01,00 1) Stokes vector and the phase matrix are first expanded into

a Fourier series in the azimuthal angle Then, the set of

XL_1(n—06,_ 1,2 = —dp_ : . - .
n-i n=t; Pt n-1) integrals overg are carried out analytically to eliminate the

27 z
+/ d(/);_l/z do',_ sind’_, ¢ dependence in the RT equations. The resulting equations
0 0 are further solved using the Gaussian quadrature method by
X T;_lyn(e,d); o 1) discretizing the angular variablke for each harmonic of.
X Iy (m— 0, ¢ 2=—dp_1) (5.6) Finally, the RT equations are transformed into a set of coupled
first-order differential equations with constant coefficients.
and at interfacen + 1 This set of equations is thus solved using the eigenanalysis
method by obtaining the eigenvectors and eigenvalues and by
L.(0,¢,2 = —dy) matching the boundary conditions.
=R 110, 0)L(7 — 0,0,z = —d,,) For a plane wave incident in region 0, the incident intensity

is given by
Ly (7w — 6o, ¢o) = Lo;6(cos by — cos bo;) - 6(Po — ¢oi). (5.10)

The scattered wave in region 0 can be calculated by using the
following equation:

27 z
+/ d¢’/2 o' sinO'RL, (0, 6:6/, )
0 0
X In(7r — 9/7 (/)/’Z = _dn) —+ Tz+l,n(9n+17 d)n-l—l)
X In—l—l(en—l—la d)n—l—laz it _dn)

27 %
+/0 dd);”rl/o A6,y sin b, 1) Io5(00, o) = R (o, ¢0)Loi(m — o, ¢o)
X T (0,630, 1, dhs) + Ry (0o, Po; boi, Poi)Toi
X In,+1(9;/+1, (/);H_l, z = —dn) (57) + T(£20(97 ¢)Il£97 ¢7 z = 0)
wheren = 2,3,...,N — 2 and 6,,_, and 6,1 are the +/0 CW/O d¢’ sin /T,

elevation angles in the local coordinate system of layersl Y VI
andn + 1, respectively, and are related #oby Snell’'s law. X (B0, $0: 0, IR .2 = 0). - (5.11)
The matricesR{

fm» R, T7,,, andT; in (5.6) and (5.7) The backscattering coefficient is obtained as
are the respective coherent reflection, incoherent reflection,

coherent transmission, and incoherent transmission matrices (o, do;) = 4 cos fy; Losu(00i, Poi + ) (5.12)
for the boundary between regiohandm. For a slightly rough Toir (7 = 60i, $oi)
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wherep,, 7 can bew for vertical ori for horizontal polarization
and the subscripts and s denote the incident and scattered
waves, respectively.
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(4]
(5]

(6]

VI. CONCLUSION

A number of advances in the forward theory of electro’]

magnetic scattering from sea ice have been made. Significagf

refinements of existing methods, such as analytic wave theory
and RT theory, have been developed through incorporation
realistic features of the sea ice system and close integration
with experiments. These forward models include both volume
and surface scattering and account for important featuraQ
of sea ice, such as bulk anisotropy, its multilayer character
with rough interfaces between the layers, and inclusion sifé!
and orientation distributions for brine and air. Alternative;
approaches that are new to the sea ice remote-sensing literature Microwave Remote Sensing Sea Ice, Geophys. Mond-.6B. Carsey,
have also been introduced. Analysis of the Helmholtz equati R
for idealized sea ice models has led to rigorous results that
lay the foundation for further theoretical advances in both4]
forward and inverse scattering for complex media, includ-

ing

unexpected generalizations of key theorems in Fourigs)

analysis. A general bounding method from the mathemat-

ical

theory of homogenization for composite materials hgss

been applied to the effective complex permittivity of sea

ice.

Accounting for the microstructural feature that the brinﬁ@
e

phase is contained in separated inclusions for temperatu
colder than the percolation threshold has led to significant
improvement in the bounding method itself. At present, tHee]
bounds apply only in the quasi-static case, where scattering]
from individual inclusions is negligible. The effective complex
permittivity of sea ice in the scattering regime has so far
been estimated only with strong fluctuation theory, which igo]
most accurate in the weakly scattering regime, near the quasi-
static case. While many questions concerning the interaction
of electromagnetic waves with sea ice remain and the above
findings have opened up important new avenues for furthi@f!

research, nevertheless, the body of work presented here has
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