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Arbitrarily Slow Decay of Correlations in
Quasiperiodic Systems
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For diffusive motion in random media it is widely believed that the velocity
autocorrelation function ¢(¢) exhibits power law decay as time r— 0. We
demonstrate that the decay of ¢(7) in quasiperiodic media can be arbitrarily
stow within the class of integrable functions. For example, in 4 =1 with a poten-
tial F{x)=cos x +cos kx, there is a dense set of irrational A’s such that the
decay of c(k, 1) is slower than 1/11+ for any &>0. The irrationals producing
such a slow decay of c(k, 1) are very well approximated by rationals.

KEY WORDS: Long-time tails; quasiperiodic media; velocity autocorrelation
function; time-dependent transport coefficients; modulated structures.

1. Tt has been noted'! © that the velocity autocorrelation function (VAF)
for particle motion in a variety of random systems exhibits a power-law
long-time tail. For example, it is argued in ref. 4 that the VAF e(t) for
diffusion in stationary random media in R” decays in time like 1/t 4% as
{ — 0. In this paper we remark that for diffusion in certain quasiperiodic
media, the VAF has no such universal law, be it algebraic, logarithmic,
or whatever. In particular, for diffusion X, in the drift field VV(x), where
V(x) is a suitable quasiperiodic potential in RY the “VAF” c(1)=
&KVV(Xy) - VV(X,) ) (where « - denotes averaging over diffusion paths
and the phase in the potential) exhibits decay which is arbitrarily slow
within the class of integrable functions. Furthermore, our arguments
indicate that the rate of decay depends on the Diophantine properties of
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the irrational parameters which characterize the quasiperiodicity—the
better the approximation by rationals, the slower the decay. We also obtain
similar results for other transport coefficients.

For example, in d=1 with ¥(x) = cos x + cos kx, there is a dense set I"
of irrational k’s for which the following statements hold. First, for ke I', the
decay of c(k, 1) is slower than 1//" *+* for any &> 0. Related to c(k, ¢) is the
time-dependent diffusion coefficient (k, ¢) = &X?2»/t, which converges as
t— o0 to the effective diffusion coefficient D*. For kel |D(k, t) — D*|
decays to zero extremely slowly, for example, more slowly than
l/log---logt, for any fixed number of iterations of the logarithm. This is
arbitrarily slow decay with no condition of integrability. The Laplace
(Fourier) transform of the VAF corresponds to the frequency (w)-depen-
dent effective diffusivity D(w) (conductivity o(w)) of the medium. For
ke, |D(k,w)—D*| decays to zero as w— 0 more slowly, for example,
than 1/log - --log(1/w), for any fixed number of iterations of the logarithm.
This situation markedly contrasts that in random media,'® where it is
believed that |D(w)— D*| ~ w** as w — 0. In addition to the above quan-
tities, we have also obtained similar results concerning the behavior near
the origin of the spectral measure of VV for the (suitably defined) self-
adjoint generator of the process.

The above statements about rates of decay are actually easy con-
sequences of much stronger results which we state in the body of the paper
and have the following form. For example, in the one-dimensional case,
there exists a dense set of k’s such that c(k, t) = 0 more siowly than any
positive function integrable on [0, co) which is “expressible,” i.e., that can
be written down, either explicitly or implicitly.

Our results are based on the discontinuous dependence of D* on the
wavelengths of ¥, which was observed in ref. 7. For example, with V(x)=
cos x +cos kx in R', D*(k) has the same value D for all irrational k, but
differs from D and depends on k for k rational, where it is thus discon-
tinuous, Moreover, D*(k) is continuous at irrational k. This pathology is
reflected in the behavior of P(k, 1) [—,_, ., D*(k)] for irrational k that are
well approximated by rationals k,. In this case D(k,!) has “plateaus”
around the values D*(k,).”""® The closer k, is to k (ie., the closer the
rational approximant), the longer the corresponding plateau. The existence
of irrationals k for which 9(k, t) decays arbitrarily slowly then follows
easily. The behavior of D(k, w), w — 0, arises in a similar manner.

2. Let X, be the position of a particle at time ¢ diffusing in a medium with
a bounded (sufficiently smooth) potential ¥ according to

dX,= —ao VV(X,) + (2Dy)'* dW, (1)
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where W, is standard Brownian motion, {W!Wi» =d,t, I, j=1,.,4 a_nd
o, and D, are the “bare” mobility and diffusion constants. The density
p(x, 1) associated with (1) satisfies the diffusion equation

which has the equilibrium density p~exp(—pV), f=0¢/Dy, as per the
Einstein relation, With X,=0, p(x, 0)=d(x). _ _

It is known®') that for V periodic, quadiperiodic, or stationary
random ergodic,

DV, )= KX XID [t — =5 D(V) (3)
where D*(V) is a positive-definite effective diffusion tensor. [The actual
trajectories are asymptotically Brownian with diffusion tensor D*(V).]

Consider quasiperiodic V(x)= P(x,k, + --- +x,k,)= V(kx) in RY
where V is a smooth function on the unit n-torus T =R"/Z", which is
equivalent to the unit n-cube with opposite faces identified; k,,..:, k, are
linearly independent vectors in R”; and k=[k,,.., k;]. The potentla‘l F(x)
can naturally be regarded as a member of a family V,(x, 0) depending on
phase 0 7" defined by V,(x, 0)= V(kx +8). The matrix k defines a group
action 7, of RY on T" by 7,0=0+kx. This action leaves Lebesgue
measure d6 invariant. It is also ergodic relative to df when the equations
k;j=0,., k,j=0 have no simultaneous integral solutions je Z". We say
that k is “irrational” in this case and is “rational” otherwise. When n=2,
d=1,and k=k=[k,, k,]7, such as for V(x)=cos k,x +cos k,x, thep k is
irrational when k./k, is irrational, and is rational when k,/k, is rational.
When n>d+ 1, k can have various “degrees” of rationality, depending on
the dimension of the ergodic components of .

Let X, be the diffusion process associated with V(-, 8). We shall be
interested in the trace of the left side of (3).

DV, 1)=LX2 D/t (4)

where - ) denotes averaging of the phase ® over 7" with weight
~exp[—BV(8)] (which defines the equilibrium measure on T."), as well as
over Brownian motion paths W. 2(V,, t) has the representation
1t o
AV, :)=D*(k)+7j dsj du () (5)
0
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where c(1) = (V¥(X,) VV(X,)9, D*(k)=tr[D*(K)]. oo=1, and D=}
in (1). We shall also be interested in‘!?

D(w)= j: ™ o(1) dr (6)

3. In the statement of our results, we utilize the notion of an expressible
function, i.e., one which can be defined, either explicitly or implicity, using
standard mathematical symbols. An example of such an implicitly defined
function is one that satisfies, say, a polynomial or integral equation which
has a unique solution. Since any expressible function is determined by a
finite string of symbols from a finite alphabet, there are only countably
many such functions. (To make this notion completely precise, one should
consider a formal language, but we do not wish to go into this here.)

It is easy to see that @(k, 1) is continuous in k und t=20. Moreover,
lim, , ,, @(k, r)= D*(k) exists, with D*(k) having the discontinuity proper-
ties described above. Now, it can be shown that any function with these
properties exhibits arbitrarily slow decay.

More precisely, for any two functions g(ty and A(r), we write
8(t) >, h(t) as t — co if there is a sequence t,— o« such that g(r,)> h(z,)
for all n. The expression g >, / says that 4 does not ¢\ -minate g, not even
asymptotically (# — oo). Then:

(*) If f(k,¢) is any function continuous in ke R™ and re [0, o),
with lim,_ , f(k, r)=f(k) discontinuous for a dense set
of k’s, there is a dense set I'cR™ such that for each
kel |f(k,1)—f(k)| >, g(t) for every expressible g with
lim,_, . g(1)=0.

We may similarly define g(w)>,, #(w) as w-0 and formulate an
analogous result for a function f(k, w) with w — 0.

The discontinuous nature of D*(k) arises as follows. In one dimension,
there is an exact formula (see, e.g., ref. 7) for D*. In the example V,(x)=
V(x, kx), P(x, y) =cos x + cos », this formula involves integrations of
functions of ¥ on T? over a trajectory of the flow (4,, 6,) = (1, k), which is
ergodic only when £ is irrational. In this case, the integration is over all of
T?. However, when k is rational, the trajectory degenerates to a closed
orbit, over which the integrals are different from their values over all of T 2
which is the source of the discontinuity.

There is no such general argument in higher dimensions d 3 2, where
an explicit formula for D*(k) is absent. Nevertheless, we believe for the
following reasons that, as in one dimension, there is typically a dense set of
k’s in R" at which D*(k) is discontinuous. First, as argued in ref. 7, the
integrals involved in representation formulas for D* suffer the same

LB
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“discontinuity” in the domain of integration, caused by the breakdqv&{n of
ergodicity for rational k, as in one dimension. It would thus l?e surprising if
the discontinuous behavior of D*(k) is not generic. Second, in addition to
the specific examples of the discontinuity provided in ref. 73 we construct.ed
in ref. 8 a whole class of two-component media for which the. effective
conductivity o*(k) is discontinuous. Henceforth, we shz_ill consifier'onl?:
quasiperiodic potentials in RY, d= 1, generated by I{WhlAc,:h are “typical,
i.e., for which D*(k) is discontinuous on a dense set in [R -

Let ¥ on T” be typical. Then from the previous dlSCL{SSIOn we may
conclude that there is a dense set I” of k’s having the following properties:

(i) For any kel, ¢(k, t)=|9D(k, t)— D*(k)| >;, g(t) for every
positive, expressible g with lim, _, ., g(¢)=0.
(i) For any keT, c(k, t)>,, h(t) for every positive, expressible #
integrable on [0, o). y
(iii) For any kel |D(k, @)—D*(Kk)| >, g(w) for every positive,
expressible g with lim,, _ ¢ g(w)=0.
In order to state the last result about the spcctra.l measure,d let
L =14, —V, V-V, where V, is gradient arising from the action 7, .of.ER on
7", and 4, is the Laplacian corresponding to V,. L is self-adjoint on
L2(T", dp), where p is the equilibrium measure on T", and has negative
spectrum contained in (—o0, 0] with projection-valuefl measures P, on
(—o0,0]. We consider the spectral measure of P; In the. state VkTI‘/,
- % 7 . here means integration over T
wdr) =<V, V-P(dL)V, V>, where () I
with respeckt to p. Using the semigroup exp(Lt) = exp(4t) dP;, one can
write
]
()= e*du(2) (7)
Now, for typical V: |
(iv) For any kel pfdA)>, v(dA) as A1 —0 for every expressible
measure v on {—a0, 0] such that j"_m v(dL)/1A] < co.
[By u>;, v as A—0 we mean there is a sequence of intervals (f,,5,)
t,—0, such that w(t,, 5,)> (1, 8,) for all n.] . ) _
The logical relationship among our results is as.follows: (*)=>(i)=
(i) = (iv) and (*)=> (iii). Properties (i) and (iii) are direct consequences of
(*). Property (i)= (i) because the failure of {ii) would. pFov1de, via (5), ;m
expressible positive function dominating ¢(k, #). 'Slml.lal'l')f,- using ( ,)’
(ii) = (iv). [The fact that the same set I'is appro;?rlate 1n*(111) and in (i),
(i), and (iv) follows from a slightly improved vers'lon‘of ( )] h
, We remark that no contradiction is involved in (i)}-(iv), even though,
for example, ¢(k, ¢) in (i) satisfies lim, _, ., d(k, t)=0 and ¢(k, 1) >0 ¢(k, 1)
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is clearly false. The point is that the k in I” are not expressible and there is
therefore no reason why functions defined in terms of these k should be.

To emphasize how slowly these functions decay, observe that, say for
(i), d(k, t)>;, (log---log #)~', i - oo, for any fixed number of iterations of
the logarithm. Indeed, no law, be it algebraic, logarithmic, or whatever, can
capture the behavior of g(k, ), not even in the weak sense of upper
bounds.

While I" is dense, it is of Lebesgue measure zero, so that it is
analytically “small.” However, under a further assumption about D*(k), I
can be shown to be dense ¢s set, ie., it is a dense countable intersection of
open sets, which is topologically “large.” This assumption, which may be
found in ref. 13, is typically true in one dimension, and is presumably true
in higher dimensions,

Detailed proofs of the results in this paper are given in ref, 13.
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Immiscible Cellular-Automaton Fluids
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We introduce a new deterministic collision rule for lattice-gas (ccllulax'u
automaton) hydrodynamics that yields immiscible two-phase flow. The rule is
based on a minimization principle and the conservation of mass, momentum,
and particle type. A numerical example demoqstrates .lhe spomaneo;.lls
separation of two phases in two dimensions. Numerical studies show that the
surface tension coefficient obeys Laplace’s formula.

KEY WORDS: Cellular automata; lattice gases; surface tension; phase
separation; two-phase flow.

Recently, Frisch et al.'") (FHP) introduced a discrete .Iattice-gas modql for
the numerical solution of the 2D incompressible Ngwer—Stok(.:s equations.
In their model, space, time, and the velocities .of particles are discrete. .Iden—
tical particles of equal mass populate a triangular lat‘tlce, obey simple
collision rules, and travel to neighboring sites at eac_h time st(?p‘ Because
the model is entirely discrete, and because the gvolutlon of a 31Fe is deFer-
mined by the state of the Site and its nearest neighbors, the !attlce gas is 2
cellular automaton.’® Despite its simplicity, the macroscopic behav1oF of
the lattice-gas automaton asymptotically approaqhes continuum flow. Since
its introduction, this new model of fluid Fiynamlc_s h(a;i?ot only been the
subject of extensive theoretical and numerical studies, but has also been
extended to 3D® and applied to a wide range of problem§ (e.g., refs. 9—1'1 ).

Here we introduce a simple yet fundamental qxteqsmn of_ the latt_lce
gas that leads to immiscible two-phase flow w1th. interfacial tension
between fluid phases. In regions occupied_by only a single phase, our 2D
model is (barring irrelevant details) identical to the FHP gas. When t}:vo
phases occupy the same region, however, we apply a new collision rule that
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