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Scaling law for conduction in partially connected systems
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Abstract

The electrical transport properties of systems of conducting particles embedded in an
insulator are considered. For low volume fractions of the particles, the conducting matrix
may only be “partially” connected, as particles may only touch at corners or edges. As a
model where these connectedness questions can be precisely formulated, we consider a
random checkerboard in dimensions d =2 and 3, where the squares in d =2 or cubes in
d =3 are randomly assigned the conductivities 1 with probability p or (<8 <1 with
probability 1 — p. To analyze connectedness, we introduce a new parameter, d,,, called the
minimal dimension, which measures connectedness of the conducting matrix via the
dimension of the dominant contacts between particles. Based on analysis of the checker-
boards, we propose a general scaling law for the effective conductivity o* as §— 0, namely
o*~87 where g=1(d—d,) for0<d-d, <2and g=1for d - d,=2. The applicabili-
ty of this law to situations where d_, is non-integral, such as the checkerboards at criticality,
is discussed in detail.

Composite conductors, such as cermets, thick-film resistors, and piezoresistors,
typically consist of conducting articles embedded in an insulating matrix. If the
particles are quite expensive, such as gold or silver, then it is useful to find the
minimal volume fraction p required for the formation of a “connected” matrix of
conductors which achieves the desired properties. However, for many systems,
the degree of connectedness can vary significantly over a small range in p, which
can be accompanicd by the effective conductivity o* varying over orders of
magnitude [1]. For example, if we consider polyhedral particles in dimension
d =3, then as p is increased from zero, there is a minimal p for which there is a
connected matrix of particles. Just as this matrix is formed, there will be many
places where the contact between particles effectively occurs at a point, or vertex.
As p is increased the degree of connectedness increases as the “predominant”
contacts increase in dimension, through edges and faces. In this note we propose
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a general scaling law which describes o* for composite conductors when the
conducting matrix is only partially connected.

As a model where the above connectedness questions can be precisely
formulated, we consider the random checkerboard in RY, where for d =2, R® is
divided up into unit squares which are randomly assigned the conductivities 1
(white) with probability p and & <1 (black) with probability 1 — p. When p <1 -
p., where p.=0.59 is the site percolation probability, nearest-neighbor black
squares (connected by edges) percolate, which prevents the formation of any type
of conducting matrix. When p > p_, white nearest-neighbor squares percolate and
the conducting matrix is fully connected. However, for 1 — p. <p <p,, there is an
infinite phase of white squares which coexists with an infinite phase of black
squares, where the coexistence is made possible by allowing next-ncarest-neigh-
bor (or corner connections), as well as nearest-neighbor connections bctween
squares, which is called star-connectedness. In order to characterize the degree of
connectedness of the conducting matrix, we introduce the minimal dimension d
of the matrix, which is unity for 1-—p, <p <p, since the current is forced to
constrict to being one-dimensional where it passes through corner connections.
For p>p,, d, =2 since it can always pass through edge connections between
conducting squares, in which case we say the matrix is fully connected. For
p<l-p.,d,=0.

The effective conductivity o* for checkerboard models, both random and
periodic, has been studied in numerous works. For d =2 there is a classical, exact
result o* =6"% at p =1 [2], which arises from the duality relation o*(p) o*(1 ~
p) =28 [3,2]. For general p, the following three-step form for ¢* as 8 — () has been
established [4-6]:

0@, pE,1-p.),
o"(p,3)=10@""),  pE(=p.p.). (1
0@, PE (P, 1].

In fact, it has been recently shown that the exact result o* =8'"* holds to leading
order as § — 0 for all p in the interval (1-p,, p.), not just at p =1 [7],

' (p,8)=Vs+0@), 80, pe(l-p.,p.). (2)

The analysis used to obtain (2) is based on the identification of a network of
special corner connections between white squares which we call “choke points.”
These connections cannot be avoided by easier, alternative routes such as a chain
of white squares connected only by edges, which we call an edge chain. The
absence of an easier way around means that the current must be “blocked” by a
“perpendicular” star-connected chain (star chain) of insulating black squares.
Thus a choke point is characterized as the central vertex at the intersection of a
horizontal white star chain (i.e., one which connects the left side of an L X L box
to the right side) with a vertical black star chain, or vice versa. Now, due to the
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black—white symmetry in our definition, for any p € (1 - p., p.) the choke-point
density C(p) is symmetric in p, i.e., C(p) = C(1 - p). Note also that C(p)— 0 as
p—>1—p_or p—p,_. In other words, the average distance between choke points
diverges as p— 1 — p, or p— p.. We remark that choke points have been directly
observed in an experiment involving copper and graphite granules [5,7], and were
manifested as hot points which melted the plastic platform into which the particles
were pressed.

The key structure associated with the choke network that we use to extend the
duality result o* =8''* away from p =1 is a new type of backbone appropriate to
the current situation where we have two coexisting percolating phases. Associated
with cach choke point is a white and black star chain. For any realization of the
square conductivities, we define Q(p) for p €(1 —p,, p.) to be the union of all
the white and black star chains associated with the set of choke points. Due to the
black-white symmetry inherent in the definition of choke point, the backbone
Q(p) is “symmetric,” i.e., it is statistically invariant under the interchange of
black and white (p—1-p), just as the checkerboard itself is statistically
invariant under interchange at p = . [A rigorous understanding of this invariance
of O(p) can be obtained by notmg that separated white chains which cross an
L % L box alternate with black chains, which holds for all L.]

For the d =3 random checkerboard of cubes we meet three thresholds p(”
0.10, p'® =0.14 and p'” =~ 0.31, which correspond, respectively, to the onsct of
percolation by corners, edges and faces, with d, =1 for p €]l =(p", p,
d,=2 for pel,= (p?, p"y and d,,=3 for pEL= (pt™,1]. By extending
Kozlov’s variational method [6] to d =3 and using the properties of o™ in the
neighborhood of corner and edge contacts in d = 3 [8—11] one can show that cr
has the same three-step form as in (1) with p ) replacing 1—p,, and e
replacing p.. Note that there is no transition atpC , 50 that percolating by corners
is not enough to increase the order of ¢* beyond that for no conducting matrix.

In view of the scaling behavior established for the checkerboard in d =2 and 3,
it is interesting to investigate the dependence of the exponent g, with o* ~ 89, as
8—0, on the degree of connectedness of the conducting matrix, as measured by
d,,. This dependence is shown in Fig. 1, which immediately teads to the following
scaling law for o™ as 6 = 0:

d-d,), 0sd-d, <2
.84 —J2 m/ m 5
ar~8t, g {1, d—d =2. )

The cut-off of g = 1 for d — d,, =2 says that the contact between conductors must
be of high enough dimension in order to achieve conduction greater than O(8").
While (3) should be viewed as a rigorous result for the random checkerboard in d
dimensions with p not equal to any critical point, it is tempting to extend its
meaning to situations where an appropriately defined d,, is non-integral, such as
the checkerboard at criticality, or other fractal media. In order to define d,, for
the checkerboard at criticality, let us focus on d =2 at p =1—p,, and note that
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Fig. 1. Dependence of g, as § 0, on d,-

any reasonable definition must yield 0=d, =<1, since d =1 for p just above
L—p. and d, =0 for p just below l=p.. Now let Q (p) be the conducting
(white) part of the symmetric backbone Q(p), for pe(1-p., p,), and let A be
an L X L sample of the checkerboard. It is important to note that given a
realization of the entire conducting backbone B(p), any choice for Q.(p) is
strictly contained inside B(p), since a cluster of star-connected squares in B(p)
may be reduced to some star-chain in Q. (p) running through the cluster.

We view the relevant part of the partially connected conducting matrix at
P =1-p, to be the “incipient infinite cluster” left over from QO (p) as p— (1 —
p.)", and define the fractal dimension d, of O (p) as follows. Let m be the
number of squares in Q_(p), so that

m~L% L—ow, (4)
Forpe(l-p,p.), do=2. Then we define
d,=dyld, (5)

so that d =1 for p € (1 ~ D¢ P.) in d =2, which can be interpreted as the fractal
dimension of the crossings by Q.(p) of, say, a vertical, unit width strip of A.
Now, from the relation Q.(p) C B(p) discussed above, we clearly have d, <d,,
where dj; is the fractal dimension of the backbone. Note that d 5 is universal for
d=2 (or d=3) lattice problems, independently or whether “connection” is
defined via 1st, 2nd or whatever nearest neighbor, as is dg.
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Through this universality, it is clear that the analog of O, (p) for a d =2 bond
problem contains the set of “red” or singly connected bonds, so that d, = d s

where d_,, is the fractal dimension of the red bonds. Combining our inequalities,
we have
dred = dQ = dII : (6)

Using Coniglio’s result that d 4= 1/v [12], where » is the correlation length
exponent (v =%, d =2), and numerical estimates for dj, [13], we have for d =2,
0.38<d, <0.8latp=1-p.We obtain inequalities for d,, at p, by noting that
d. (p)=d,(1—p,)+1,since we are simply adding a dimension in the contact.
For d =3, we have from (6), 0.38<d,<0.58 at p =p'". Again, dm(pﬁz))=
d, (p'"”)+1, and so on.

It is very interesting to compare (3) with the following (conjectured) exact
scaling results in d =2 obtained from physical argument [7]. At p= 1-p.
universality at critical points and a resistor network interpretation allow the
checkerboard to be viewed as a bond lattice in d =2 at criticality (p =4%) with
resistors of conductivities 8 and 8''%, so that from duality ot~ (68 L2yt =5,
Comparing with (3) implies d, =latp=1-p., which is consistent with the
above inequality. In particular, this implies that the universal fractal dimension d,
takes the value 1 in d =2. At p =p,, similar arguments give o ~§'"*, which
implies d,, =2, which is consistent with 1.38<d_<181 at p=p,. For d=3 we
have no argument yielding exact results for g at p® and p'?, although (6) and
(3) imply

071<¢q=<081, p=p;, 021=<¢g=<031, p=pl. (7

We expect that the scaling law (3) should apply to a universality class of
continuum percolation models which contains the checkerboards, and is defined
by the condition that connections between conductors are formed from corners,
edges and faces, or mixtures thereof, Examples of systems in the class should
include polyhedral particles in d =3 or polygonal particles in d =2, Miller’s cell
materials [14] with appropriate cells, or systems of conducting particles with
fractal connections, such as cubes whose contact is a Cantor set, rather than an
edge. The existence of this universality class is made possible by the fact that the
exponent ¢ = 4 at corners for d =2 is independent of the contact angle, so that it
is valid for paralielograms [9,6], and even for random polygons [15], as well as
squares.
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