CHAPTER 2

Convexity in Random Resistor Networks*
Kenneth Goldent

Abstract. The bulk conductivity o*(p) of the bond lattice in Z¢ is consid-
ered, where the conductivity of the bonds is either 1 with probability p or € > 0
with probability 1 — p. Rigorous and non-rigorous results demonstrating convex-
ity of o*(p) near the percolation threshold p, are presented. For € = 0, a certain
transformation on graphs which drives the system to p. is found to be “convexity
improving”. This analysis leads us to propose upper and lower bounds on the con-
ductivity critical exponent ¢ in terms of some percolation exponents. These bounds
become tighter with increasing dimension and coincide in d = 6, where mean field
behavior is believed to hold.

1. Imtroduction. Disordered conductors are encountered frequently in sci-
ence and engineering. Examples include inhomogeneous gold films on glass, impure
semiconductors, suspensions of particles in a fluid, composite materials, and even
sea ice. Of particular practical and theoretical interest are those systems which un-
dergo an insulator/conductor transition as some parameter is varied. For example,
sea ice is composed of salty water, or brine inclusions (conductor) embedded in a
pure ice matrix (insulator). When the sea ice is cold, the brine pockets occupy only
a small volume fraction and the sea ice behaves as an insulator. However, when the
sea ice is warmer, the brine pockets tend to coalesce and form a conducting matrix,
so that the sea ice behaves as a conductor.

In the late 1960’s Ziman [1], Eggarter and Cohen [2,3] and others suggested
that random resistor networks based on the percolation model [4] provide a good

*Supported in part by NSF and AFOSR through NSF Grant DMS - 8801673.
t Department of Mathematics, Princeton University, Princeton, NJ 08544 USA

149



150 Golden

description of disordered conductors. In particular, consider the bulk conductivity
c*(p) of the bond lattice in Z¢, where the conductivity of the bonds is either 1
with probability p, or € > 0 with probability 1 — p. When ¢ = 0, we can view the
conductivity 0 bonds as vacant. In this case, the associated percolation problem
concerns Poo(p), the probability that the origin is connected to an infinite cluster
of occupied (conductivity 1) bonds. For p below some critical probability p., called
the percolation threshold, Puoo(p) = 0, while for p > p., Po(p) > 0. The bulk
conductivity o*(p) has a similar behavior, with o*(p) = 0 for p < p., and o* (p) >0
for p > pe, although there is apparently no simple relation between o*(p) and P (p)
(5]- As p— pf, it is believed that o*(p) exhibits critical scaling, ¢*(p) ~ (p — p)*
where t is called the conductivity critical exponent [6].

)

Since their introduction, random resistor networks have been widely studied in
the physics literature [7,8]. Given their central place in the theory of disordered
conductors, it is surprising that there has been little rigorous analysis of random
resistor networks. The main exceptions are the works of Grimmett and Kesten
[9] (see also ref. [10]) and Chayes and Chayes [11, 12]. One of the principal
contributions of these works is to establish the coincidence of the conduction and
percolation thresholds for d = 2, where p, = % (9], as well as for higher dimensions
[11]. In addition, the Chayes [11] obtain bounds on ¢ (assuming it exists) in terms of
some percolation exponents. In d = 2 it has also been established, using arguments
that can be made rigorous, that ¢ > 1 [13,14, see also ref. 12]. Furthermore, it
is rigorously known that o*(p) is continuous at p, = % in d = 2, which is proven
via the continuity of Peo(p) at p. = 1 [15] and the bound o*(p) < pdP2 (p) [11].
In higher dimensions it is certainly believed that o*(p) is continuous at p,, but this
has not been rigorously proven yet.

The purpose of the present work is to introduce a new approach to the ran-
dom resistor problem based on convexity, which has played an important role in
many problems of statistical physics, but has apparently all but been ignored in the
present context. As Straley [16] remarks, o*(p) is “ necessarily positive but has
no convexity property, with the consequence that no rigorous expouent inequalities
can be proved.” Nevertheless, casual inspection of numerical simulations [6,17-20]
of the graph of o*(p) for bond or site models in d 2> 2 suggests convexity in p, at
least near the percolation threshold p.. (In the site problem, vertices of Z¢, along
with all 2d attached bonds, are removed (when € = 0) at random with probability
1 —p.) Given the broad and enduring interest in these models, we believe that it
is important to investigate this convexity, which appears to be a general feature of
the conductivity of lattices near p,.

The principal results discussed in this paper are as follows. First we observe
directly that o*(p) cannot be convex for all p when e = 0, and present numerical
results outlining the regimes of ¢ and p for which o*(p) is convex. Next, rigorous
results for € > 0 are obtained, the main one being that o*(p) for the d = 2 bond
problem is convex near p, = -;- for every € > 0. The proof is based on Keller’s In-
terchange Theorem, which holds for certain continuum systems, so that our result
holds for them as well. Finally the ¢ = 0 case is considered, and a general physical
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argument explaining convexity near p. is offered. Owr physical argument is sup-
ported by a rigorous result asserting that a certain transformation which maps the
p =1 lattice to a well-known model of the conducting backbone near p., namely
the node-link model, is “convexity improving”. Further analysis leads us to pro-
pose upper and lower bounds on ¢, in terms of some percolation exponents, which
become tighter with increasing dimension, and coincide for d = 6, where mean field
behavior is believed to hold, with ¢t = 3.

2, Formulation. We formulate the bond conductivity problem for an arbi-
trary graph. Let G be a finite graph consisting of N bonds {b;} and N’ vertices
{z:}. Assigned to G are N independent random variables ¢;, 1 < i < NV, the bond
conductivities, which take the values 1 with probability p and e > 0 with probability
g = 1 —p. Distinguish two vertices, say z; = & and 2y = y, and connect them
to a battery which keeps the voltage drop between them equal to 1. The effective
conductivity &(w) of the network for any realization w of the bond conductivities
is just the total current ¢(w) that flows through the network, which is obtained via
Kirchoff’s laws. We define o(p) =< &(w) >, where the expectation < - > is over all
2% realizations. For example, a two bond network has

o(p) = p¥F(1,1) +pq(5(1, €) + (e, 1)) + ¢*5 (e, €)

where 5(1,1) = 5(w) with w = (1,1), and so on. For N bonds, o(p) is an Nth order
homogeneous polynomial in p and ¢,

N
a(p) =y cup™ "
k=0

ap= y W) ¢=1-p

wkeQk

(2.1)

where QF = {w" = (wi,...,wn)|we = ¢ for exactly k of the wy ’s}.

The cases of most interest are when G is a square, cubic, or hypercubic lattice.
Then, with d = 2 for simplicity, we take an L x L sample of the lattice and attach
a perfectly conducting bus bar to each of two opposite edges of the sample. This
can be accomplished [9] in the above language by attaching to each vertex of these
opposing edges a perfectly conducting bond. All of these bonds from one edge
meet at a new vertex z and all the bonds from the other edge meet at a new
vertex y. Then 2 and y are connected again with the unit battery. Random bond
conductivities are assigned only to the bonds in the original L % L sample. Let
o (p) denote (2.1) for the effective conductivity measured between z and y. Then
for d > 1, the bulk conductivity o} (p) is defined as

o3 (p) = L*Yor(p) - (2.2)
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For € > 0, Kiinnemann [21] proved that the infinite volume limit
o*(p) = lim o3 (p) (2.3)
L—eco

exists. For e = 0, the existence of (2.3) has still not been proven [9-11]. In what

follows we shall assume that this limit exists. It should be remarked that since

for € > 0, o*(p,e) = Llim o7(p,€) exists and is monotonically decreasing in e,
—00

lim o*(p, €) exists, and provides a reasonable definition for the bulk conductivity in
e—0

the e = 0 case. The unsolved problem of the existence of (2.3) directly for ¢ = 0
then boils down to whether or not the ¢ — 0 and L — oo limits can be interchanged.

3. Regimes of Convexity. We now make an observation which directly
indicates that o*(p) cannot generally be a convex function of p. For the d = 2 bond
problem with e = 0, it is known [7, 19] (although not rigorously) that ‘% |p=1 = 2.
Now, a straight line with slope 2 at ¢*(1) = 1 intersects the p-axis at p = 3. Ifo*(p)
is convex for all p, then either p. < 1 or the graph of o*(p) is the above straight
line, which is the effective medium solution for this problem. Since it is rigorously
known [9] that p. = } for d = 2, the only way a*(p) could be convex for all p is
if effective medium theory gives the correct solution for all p, which gives a critical
exponent of ¢ = 1 and contradicts practically every numerical simulation of this
problem. From inspection of the simulations in references [6] or [19], as p increases
from % to 1, what apparently happens is that o*(p) starts off convex at p= %, but
eventually the curve “turns over”, i.e. becomes slightly concave, which allows it to
have the correct slope of 2 at p = 1. We note that this effect is subtle, because
away from the critical regime (p ~ 3)» the graph of o*(p) looks nearly linear, where
effective medium theory is believed to provide a very good approximation. In fact,
an expression for % |p=1 is found in reference [19] and is numerically evaluated,
with a result of about —.21, which supports the accuracy of effective medium theory
near p = 1. The calculations of %ﬁ’z—‘lpzl are somewhat involved, and it is not at
all obvious before numerical evaluation that the result will be negative, hence the
need for our above direct argument.

Another direct way of seeing that convexity is not a general principle is the
following finite network pointed out to the author by P. Doyle. Let the network
consist of three circuit elements in series, the first consists of two bonds in parallel,
the second (and middle) is a single bond, and the third is again two bonds in parallel.
When € = 0, an elementary calculation shows ’71,;—‘2’|p=1 < 0.

In order to build intuition about convexity in resistor networks, we have examined
‘L;% for a variety of finite graphs. The calculations are based on an exact formula,
(22, 23 Jfor the effective conductivity 5(w) of a conductor network based on a graph
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G for any realization of the bond conductivities ¢;,

2 I e

T bieT

T G

Tz-y b;Gsz

where the sum in the numerator is over all spanning trees T in G, and the sum
in the denominator is over all spanning trees Tyy in G with the vertices z and v
identified. The numerator and denominator are computed via the determinants of
the appropriate adjacency matrices. The graphs we have considered include the
square lattice, triangular lattice, trees (Bethe lattice), ladders, Wheatstone bridge,
and others. We have considered bond and site problems, and various ranges of
€ 2 0. Most of the networks we have looked at have been rather small, the largest
being a 15 x 15 sample of the square lattice.

To summarize our results, away from p = 1 all networks we have considered have
o{p) convex for any ¢ > 0, and for both bond and site problems. Near p = 1,
however, bond problems typically are not convex when ¢ is small enough, while site
problems typically are convex for all ¢ > 0. For a typical bond problem, if we start
with € close to 1 and allow it to shrink, %;;‘21 |p=1 is positive until, say € 2 0.1, below
which it becomes and stays negative all the way down to € = 0. This concavity
near p = 1 for e = 0 is, of course, consistent with the results in [19). Furthermore,
the convexity near p = 1 for site problems is consistent with the results of [20]. We
see then for the site problem, o*(p) for the square lattice with € = 0 appears to be
convex for all p. If indeed this is the case, then one can obtain a bound on Pe using
the result {17, 20] for d = 2 that %: lp=1 = 7. The bound would be obtained by
drawing a straight line of slope # through the point p = 1, o*(p) = 1, and noting
that p, is less than the intercept of this line, which leads to

1
Pe<l==. (3.2)

For the d = 2 site problem, p, is believed [17] to be about .59, whereas 1-1/7 ~ .68,

4. Convexity when ¢ > 0. In this section we directly consider the infinite
volume limit o*(p) for the bond problem in dimensions d > 2 with € > 0. In order
to prove our principal results, we shall need some smoothness in p of 0*(p). The
analysis for this is based on an integral representation for o*(p) which was proved
for two component stationary random media in [24] (see also [25]). The formula-
tion there is in the continuum, but applies in the present context by replacing the
continuum equations for the electric and current fields with their discrete analogs,
i.e., Kirchoff’s laws. We repeat here only the relevant features.

Let s = 1/(1 —€). We shall consider s to be a complex variable. It can be
shown that o*(p,s) is analytic everywhere in the s-plane except for the interval
[0,1). Furthermore, o*(p,s) maps the upper half plane to the upper half plane,
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i.e., Im 0*(p,s) > 0 when Im s > 0. As a consequence of these analytic properties,
o*(p, s) has the following integral representation,

1= (pe)= [ ), (4.1)

where p is a positive Borel measure on [0, 1] which depends on p. Notice that this
representation separates the dependence of o*(p, s) on s from its dependence on p.
(In fact, (4.1) applies even when € = 0.) The dependence of y on p is most easily
obtained through its moments, as follows. For |s| > 1, (4.1) can be expanded about
a homogeneous medium (s = oo or € = 1), yielding

po(p) | ma(p) . pa(p)

1—-0%(p,s) = A 2 = 4o, (4.2)

Ha =/(; z™du(z) . (4.3)

By equating (4.2) to a similar expansion of a resolvent representation for o*, one
can obtain a formula for u,(p) in terms of the iterates of a self adjoint operator
on L% () = set of realizations of the bond conductivities) involving the Green'’s
function of the discrete Laplacian. Because the bond conductivities are independent,

these moments can be computed in principle (see, e.g., [26]), but they become very
complicated. The first two are

po(p)=1—-p
_p(1-p) (4.4)

#1(1))————(2——~ .

In general, ;1,(p) is an (n + 1)-order polynomial in p.
We are now ready to state

LEMMA 4.1:(d > 1 bond problem) For every ¢ > 0, there exists an open neigh-

borhood V, in the complex p-plane such that [0,1} C V. and o*(p) is analytic in
V.

PROOF: Fix s = 1/(1 —€) > 1. The idea is to produce a neighborhood containing
[0,1] in which (4.2) converges uniformly. Since for p € [0,1], uo(p) = 1 — p and
tin(p) > pry1(p) for all n (via (4.3)),

ta(p) <1, pelo,i]. (4.5)

Now we must extend what we can of (4.5) into the complex plane. Consider W =
{p € Cip ¢ [0,1]}. Conformally map W onto the unit disk D in the z-plane, so that
p = oo gets mapped to z = 0, and [0, 1] gets mapped to the unit circle |z| = 1. Let
m = n+1. Since pun(p) is an mth order polynomial in p, 1, (2) has at worst an mth
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order pole at z = 0. Thus 2™ un(z) is analytic in D. Since |un(2)] < 1 for |2 =1,
by the maximum modulus principle,

1
|2|™

lun(2)] < , 2€D. (4.6)

For any small §' > 0, there is a small § > § > 0 such that in the annulus Ag
defined by 1 > |z] > 1 - ¢’

lpn(2)| (1 +6)™, z2€ As . (4.7)
For our given s > 1 (or € > 0), we can choose § and ¢’ such that
lua(P) S (1+6)™ <s™, peVe, (4.8)

where V, conformally maps to Ag. Then (4.2) converges uniformly in Ve, which
proves the lemma.

The conformal mapping trick used to obtain (4.8) arose from a wonderful conver-
sation with C. McMullen and C. Simpson, and the author gratefully acknowledges
this.

Remark. Lemma 4.1 and its proof hold for a large class of continuum systems as
well, namely infinitely interchangeable media, which have recently been introduced
by O. Bruno [27]. This class is a generalization of Miller's cell materials (28],
where all of space is divided up into cells, such as spheres of all sizes, and then the
conductivity of each cell is a random variable (independent from the others) taking
two (or more) values with probability p and 1 —p. While the integral representation
(4.1) holds in great generality, along with (4.5), what is needed to make the proof go
through is that the jn(p) are polynomials in p. The proof of this fact for infinitely
interchangeable media is contained in [29] (along with rigorous upper and lower
bounds on o*(p) for the d = 2 bond problem with ¢ > 0). We also note that
Lemma 4.1 presumably does not hold for all composite media. For example, o*(p)
for a periodic array of spheres of volume fraction p embedded in a host material is
believed to be analytic at p = 0 only in the variable p3, so that o*(p) has a branch
cut there (see, e.g., [30]).

We now return to convexity. In the previous section it was found that convexity
of o*(p, €) appears to be lost only when ¢ becomes small enough. The following
result provides some basis for this observation.

PROPOSITION 4.1: (d > 1 bond problem) For ¢ sufficiently close to 1, o*(p) is
convex for all p € [0,1].

Proor: From (4.2) and (4.4)

o (prs) =1 (1—p+p(1—p)/d+”_) ' (4.9)

S 52
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By Lemma 4.1,

dp? s2 g

which is positive for all p € [0, 1] when s is sufficiently large.

o _2/d +O( 1) , (4.10)

In the previous section it was observed that convexity can only be lost near p = 1.
At the other end, p = 0, convexity can never be lost, as shown in

PROPOSITION 4.2: For any finite graph G with ¢ > 0,

d?c

ao (4.11)
dp? p=0

PRrROOF: The proof is elementary and follows directly from (5.9).

Finally we come to the principal result of this section.

THEOREM 4.1: (d = 2 bond problem) For every ¢ > 0, there exists an open neigh-
borhood U, C [0,1] containing p. = § such that o*(p) is convex on Ue.

ProOF: The proof is based on Keller's Interchange Theorem

0*(01,02)0%(02,01) = 01032, (4.12)

where o*(0y,02) is the bulk conductivity of a statistically isotropic, two-component
stationary random medium in d = 2 with component conductivities oy and o, and
0*(0,01) is the bulk conductivity with oy and o9 interchanged [31-33]. For the
d = 2 bond lattice with ¢; = 1 in proportion p and oy = € in proportion 1 — p,
(4.12) is also known as a duality relation [16], and is written as

o*(p)a*(1—-p)=c¢, (4.13)

so that at p = —12;

o*(3) = Ve. (4.14)

In order to prove the theorem, we compute the second derivative of o*(p) at p = 1,
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d*o* o*(3 4 h) —20*(3) + 0*(3 — h)
—] o1 =1 4.15
dp? lp'_“? Ilzl—i% h? (415)
A1 _ x(1
=’llin%]a (3 +h) Zﬁ—l-é/d (z+17) , (4.16)

where (4.16) is obtained via (4.13) and (4.14). To compute the limit, we need some
of the smoothness of o*(p) provided by Lemma 4.1,

o*(3 +h) = e+ ah+O(R?), (4.17)

where o > 0 (when 0 < € < 1). Inserting (4.17) into (4.16) and taking the limit, we
obtain

2 ok 2
d’o =2 (4.18)

>0
dp? |,y VE .

. . 2,.% , . . a, . iy .
A gain using Lemma 4.1, -dd—z‘)’é— is a continuous function of p, so that it is positive in

a neighborhood U, of p. = 1, which proves the theorem.

Remark 1. It is interesting to note that %lw 1 depends only on %|p___ 1 and
o*(3).

Remark 2. Our argument, while very simple, gives no control on the size of U,
as € — 0, so that one cannot rigorously conclude from it alone that convexity is
preserved in the limit. As stated before, however, it is known that the conductivity
exponent for d = 2 satisfies t > 1, which indicates convexity near p. = % in the
€ — 0 limit. In view of our result one can view the fact that £ > 1 ind= 2 as
arising from duality.

Remark 3. As noted above, Keller’s Theorem holds in great generality, in particu-
lar, for infinitely interchangeable media in the continuum, as does Lemma 4.1. Thus
Theorem 4.1 holds for infinitely interchangeable media as well. Information about
the shape of ¢*(p) in the insulator/conductor transition regime for small € > 0
is provided by the theorem only for those systems whose percolation threshold is
known to occur at p. = 4. For percolating random systems in the continuum, ap-

2

parently little is known about this. However, there is a periodic system which has

an insulator/conductor transition occurring at pe = 1 and to which Theorem 4.1

presumably applies. This system is a variant of the one considered in a classical
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problem dating back to Maxwell [34] and Rayleigh [35], namely, a periodic array
of perfectly conducting spheres occupying a volume fraction p of a host medium of
unit conductivity. The variation that we consider here in d = 2 has been studied in
[36] and [37], and is described as follows. At each integer pair (i,7) € Z2 place a
small square prism so that the center of the prism is at (¢,7) and its vertices lie on
the line segments joining (7,j) to its four nearest neighbors. Let the prisms have
conductivity 1 and occupy a volume fraction p, and fill the rest of space with a
medium of conductivity e, with 0 < e << 1. As the prisms grow in size, p increases.
When p = 3, the corners of the prisms touch, and it is around p = % that the
conducting transition occurs (when e =0, p, = %) Keller’s Theorem applies to this
problem, and presumably o*(p) is analytic in p when € > 0, at least near p = %,
in which case Theorem 4.1 applies as well, which says that o*(p) is convex in the
transition regime when e > 0. This finding is consistent with Figure 4 in [{36]. The
interesting question here is what happens as ¢ — 0. Is the convexity near p = % a
finite € effect which vanishes as € — 0, or does it persist as € — 0. In the e = 0 limit,
convexity is not a general feature of these types of systems near the transition. For
a related problem in d = 2 involving circles (with p. # 3) rather than squares,
the critical exponent for conductivity is 1 [38], indicating concavity rather than
convexity at threshold when ¢ = 0.

5. Convexity when ¢ = 0 and Conjectured Bounds on t. We begin
this section by proposing a physical argument which we believe explains observed
convexity of o*(p) in bond and site lattice problems with e = 0 and d > 2 for p near
Pe, P > pc. Before giving the argument, we must introduce the notion of correlation
length, which for p > p. is somewhat more delicate than for p < p,. For the infinite
bond lattice in d > 2 with a fraction p of occupied bonds, let

77(0,z) = Prob,{0 and z belong to the same finite

(5.1)
cluster of occupied bonds} .
Then the correlation length can be defined (see [39]) by
1 1
— = lim ——log7/(0,2) , 5.2
) o ey 5T O 2

where the limit is taken as z moves out to infinity in a fixed direction. This limit was
proved to exist for p > p. in {39]. We shall assume that £ diverges with exponent
v,

§p)~(p=p)™, p—pt. (5.3)

For simplicity we formulate the argument for the d = 2 bond problem. Fix p > p.

and consider an L x L sample of the square lattice with L >> £(p). Let us view

. . d b .
convexity as a decrease in TZ-T as p decreases, where for convenience we have dropped

the I subscript in (2.2). To accomplish a decrease in %"p—', remove one occupied
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*bond b; from the sample, and let §;0 be the expected drop in the conductivity
as we average over all possible removals. It should be remarked that the occupied
bonds can be divided into two types, the “backbone” and the “dangling” bonds.
Backbone bonds have current flowing through them and dangling bonds do not -
they are dead ends for the current. Consequently, a decrease in the conductivity can
only be obtained by removing a backbone bond; the removal of a dangling bond does
not contribute to §;0. Now, the removal of a backbone bond can create many new
dangling bonds, for example if it breaks a “string” of connected bonds. Presumably,
the probability of creating dangling bonds many correlation lengths away from b,
is exponentially small. Consider then the removal of a second occupied bond by. If
bs is far away (with respect to £) from b, then the contribution from such bonds to
the expected drop ;0 in the conductivity will be essentially 6;0. However, when
by is close to by, the corresponding average contribution to ;0 will be less than
610, due to the increased density of dangling bonds around by, the removal of which
contributes nothing to §;0. Thus a0 < 6,0, which is equivalent to convexity. Far
away from p. the creation of dangling bonds will be a minor effect. For example,
at p =1 the removal of a single bond cannot create any dangling bonds. However
as p — pt, £ diverges, the backbone becomes more “stringy”, and this effect will
be more pronounced.

In order to make the intuition in the above argument more quantitative, we define
the following quantities. Let G be any graph (we have in mind an L x L sample of
the square lattice) with N bonds having conductivities 1 or € > 0, and let w* be as
in (2.1). Now define

N—k
s = 3 [5(6h0) - 3k 0)] (5:4)
i=1
where given w¥, i runs over the N —k bonds which have conductivity 1, w¥(1) = w¥,
and wf(e) is the same realization but with the ith bond conductivity changed to e.

Similarly, let

N—k

S MOESY)
=1
1]

?f'(wikj(l,l)) + E(wf“'j(e,e)) - Ef(wf}(l,e)) - E(w,%(e,l))] , (5.5)

where, given w®, ¢ and j run over the N —~ %k bonds which have conductivity 1,
wf‘:,-(l, 1) = wh, w,-kj(e, €) is w* but with the :th and jth bond conductivities changed
to €, wf(1,€) is w* but with the jth bond conductivity changed to ¢, and similarly
for wk;(e, 1) with i instead of j. The expressions in (5.4) and (5.5) represent discrete
first and second derivatives of the conductivity with respect to p. To make this
connection more precise, we define

Be= > b5(w) (5.6)

wk er
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w"EQ"

Then the exact relation is contained in

LEMMA 5.1: Let G be any N-bond graph with bond conductivities 1 and e > 0.
Then

dor N-1
== AV TR (5.8)
p k=0
e 2 ok k
o5 = 2wV (5.9)
P k=0
ProoF: Differentiate o(p) in (2.1) keeping in mind that since ¢ = 1 —p, d% = -—j‘%.

Then we have

8

N
dp _ Zak [(N _ k)pN—-k—lqk _ kpN-qu—l]
k=0

N-1

&

pN—k=1gk [(N — k)ak — (k + 1)01k+1} ’
k=0

which can be written as (5.8). Taking one more derivative, we have

N

2
’Z_Z = Z ag [(N ~ k)N = k —1)pN-k=2gk
LA ‘
— 2N = k)kpN Rty (k- 1)pN"kq’°-2}
N~2

= X o7t (V- B k- 1
k=0

~ 2N — k= 1)(k + D + (k + 2)(k + 1>ak+2] ,

which can be written as (5.9).

When the number of bonds in G goes to infinity, the appropriate limits of Gy
and 7y yield exact formulas for the first and second derivatives of o(p). When G
is a hypercubic sample of the lattice with side L, then N ~ dL%. In this case we

consider 0*(p) in (2.3), assuming that the infinite volume limit exists. Then we
have
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LEMMA 5.2: For the lattice in d > 2 with € > 0 and fixed p,

do™
: 2~d N
Jm LB/ () = (5.10)
d?o*
. 2—d N
Jim D) =P (5.11)
where the simultaneous limits of k and L — oo are taken so that
lm — = lim i— =1
k,L—o00 N - k,Ll-»oo dLd == P
Proor: Equation (5.8) can be written as
p@ = Ni:lﬂkpN_qu (5.12)
dp k=0 . '

Note that in (5.8) there are (1;’) terms 65(w’). When N is large, the weight of
the binomial distribution is concentrated on values of k such that k/N is nearly
g = 1 —p. Appropriately scaling fj with L2~ yields the result (5.10), and similarly
for (5.11). See [40] for more details about this type of argument.

It is important at this juncture to point out the implications of Lemmas 5.1 and

5.2 for our analysis of dj;;. For simplicity, let us consider d = 2 (with ¢ = 0) so

that L2~¢ =1 in (5.11), which can be written as (after dropping the “" notation)

1o

b dp?

where w? is a configuration of the bond lattice with a fraction p of the bonds

occupied (which can be viewed as a random graph), and < - >, denotes averaging

over such configurations. Since §25(w?) involves all pairs of bonds in wP, presumably

an ergodic theory argument shows that it suffices in (5.13) to consider a single

“typical” configuration B(p) of the bond lattice with a fraction p of occupied bonds

(i.e., B(p) belongs to a set of full Bernoulli measure in the standard percolation
problem). Then (5.13) can be written as

P dp?

=< 6%5(wP) >p (5.13)

= 8%0(B(p)) , (5.14)
where we have now dropped the “”” notation. Also note that, given any graph G
with bond conductivities 1 and 0 and conductivity function o(p),

2o

= §20(G) . (5.15)
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Then we see via (5.14) that pz‘jlip‘;(p) for the lattice can be computed by finding

%;;flpzl, where 7 is the conductivity function for G = B(p). Similar considerations
hold for %%, with the analog of (5.15) being

do

— = 60(G) . 5.16
B, =5 (5.16)

We now return to the physical argument given above. The principal objection
that one can raise to this argument is that the first removal by can set up a situation
where the second removal results in a larger drop in the conductivity than did the
first. For example, consider a configuration of connected bonds in the shapeof a Y,
where the current flows in through the single leg and out through the two arms. For
simplicity let each “limb” of the Y be composed of 1 bond of conductivity 1, with b,
the leg and &, and b3 the arms. Consider now 620(Y) = 2(813 + 693 -+ 613), where the
6;j are the summands in (5.5). Elementary calculation shows that b1p = b1y = +%
and 633 = St so that 620(Y) = 0. The important point to note is that (2,3)
is a pair of bonds in parallel, while (1,2) and (1,3) are pairs in series. The pair
(2,3) is an example of the objection raised. When by is removed, the current
can still flow through b3, and the drop in conductivity is minimal. When by is
subsequently removed, the effect is to cut off all current flow, with the result that
the net contribution of the pair to §2¢(Y’) is negative. However, when b; is removed
first, the flow is stopped immediately, so that by and by are dangling bonds whose
subsequent removal does not affect the conductivity, which is the principal reason
why 612 and 6,3 are positive.

For an arbitrary graph G, there is no particular reason why the positive é;;’s
should outweigh the negative ones. However, for graphs that are sufficiently stringy,
positive contributions from series pairs in a given string should tip the balance to
a net positive §20(G) > 0. For example, if we replace each bond in ¥ above with
2 bonds in series, and call the new graph 2, then §20(Y2) > 0. The reason is
that the three series pairs in the leg and two arms give new, positive contributions

to §20(Y;) which were not present in 620(Y). Such considerations led us to the
following

THEOREM 5.1: Let G be any finite connected graph with bond conductivities 1 or

0, and let S, G be a new graph formed by replacing each bond of G with n bonds
in series. Then

§0(5,.G) = n6%3(G) + (n — 1)60(G) (5.17)
d0(G)>0. (5.18)
Before we prove the theorem, its principal consequence is given in

COROLLARY 5.1: If G satisfies

16%0(@)| < §0(@) , (5.19)
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then there exists a positive constant C' such that
620(5,G)~Cn, C>0,n—c0. (5.20)

PRrOOF 1 OF THEOREM 5.1: In order to calculate §2¢(S,G), we must consider all
pairs of bonds (i,5), 1 # j, in the new graph S5,G. Let the pairs in the original
graph be labeled by (i',3'), i # j'. Now, the pairs in S, G are of two types, those
which arise from i’ # j' and those which arise from one original bond #'. Denoting
the summands in (5.5) again as &;;, for those (3, j) pairs of the first type, we have

1
8ij = —bujr , (5.21)
where the factor of % appears because
1
a(SnG) = EO‘(G) , (5.22)
since the conductivity of n bonds in series is % For pairs of the second type,

8ij = - (ow(1) ~ 0u(0)) , (5.23)

where 0;/(1) = 0(G) and 04(0) is o of G without bond ¢. Note that §;; in (5.23)
is always non-negative. For each (i',7') pair in G, &' # j, there are n? pairs of the
first type in S,G. For each i’ in G, there are n(n — 1) pairs of the second type in
S.G. Thus

§20(S,G) = %(nzézo‘(G) +n(n - 1)50(G)) | (5.24)

which yields (5.17).

Remark. S,G is composed of a graph G whose elements are strings of n bonds in
series. Removal of any one of these bonds converts all the other bonds in that string
into dangling bonds. Their subsequent removal has no effect on the conductivity,
and this effect is the source of the positive term (5.23), which becomes the second
term in (5.17).

PROOF 2 OF THEOREM 5.1: Let the conductivity function of S,G be denoted by
o(p), and that of G be denoted by o(p). Then

3(p) = 2o(s") - (5.25)

Differentiating both sides of (5.25) twice with respect to p and setting p =1 yields

d’o

do
=" P

+(n—-1)d

p=1

dp?

(5.26)

4
p=1

=1
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which is equivalent to (5.17).

Proof 2 was a joint observation with S. Goldstein, which was made subsequent to
the original Proof 1. We chose to include Proof 1 as well because it shows explicitly
the convexity improving effect of creating dangling bonds.

We are interested in applying Theorem 5.1 and its corollary to the lattice. Hence-
forth let Gz be a square (or cubic or hypercubic) sample of side L of the square
(or cubic or hypercubic) lattice in d > 2 with p = 1. (Think of G, as standing for
“grid”.) Let G be the infinite volume limit of G. Furthermore, let

60*(G) = lim L* %o (GL) (5.27)
§20*(G) = Jim L4820 (GL) (5.28)

where on the right hand sides of (5.27) and (5.28) we have simply added an L
subscript to the notation used in (5.15) and (5.16). In order for Corollary 5.1 to
apply to Gy, and G, condition (5.19) (appropriately scaled in L) must be satisfied.
As stated before, for d = 2,

. da*
60’ (G) = d—p|P=1 == (5.29)
2 % d20.*
526*(G) = _@,ﬂp:l ~ —0.21 (5.30)

so that condition (5.19) is presumably satisfied for both G and G with L large,
although we have not rigorously proven such a statement. In higher dimensions 7]
do*

§o*(G) = — d

dp ‘p=1 = m ) (531)

while numerical simulation of ¢*(p) in d = 3 [6] and analytical solution of o*(p)
for the Bethe lattice, supposedly representing large d [41, 42], are practically linear
near p = 1, so that §2¢*(G) is also small, as in d = 2. We thus state an unproven

CONJECTURE 5.1: Condition (5.19) is satisfied by the bulk conductivity o* for the
square (or cubic or hypercubic) lattice in d > 2.

Let us now describe the picture we have in mind. We begin with G, and apply
Sn to it, for some large n. The result, S,Gp, can be thought of as a super lattice
or grid with side of length nL, composed of “strings” or “macrolinks” connecting
the old vertices or “nodes” of G1.. This super lattice is closely connected to the
so-called “node-link” model of the backbone of the infinite cluster for p near p,
P > Pc, proposed independently by Skal and Shlovskii [43] and de Gennes [44].
In this model, the length n of the strings connecting the nodes is greater than
the distance between the nodes, reflecting the observation in actual clusters that
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“strings” are not straight but tend to wander around. The distance between the
nodes is assumed to be on the order of a correlation length {. The geometrical
parameters n and £ in the node-link model are related to p via the scaling relations
asp — pt,

€(p) ~ (p~pc)™" (5.32)

n(p) ~ (p—pe) ¢ . (5.33)

The Chayes [12] have rigorously shown that { > v, and also that ¢ > min {1, 5},
for an appropriately defined ¢, where v' is the correlation length exponent as p
approaches p, from below. It is believed, however, that »' = v, and we shall assume
that ¢ > 1. Under these assumptions, an easy calculation leads to the following
expression for the conductivity critical exponent,

t=(d—2+C. (5.34)

We can make the correspondence between our super lattice S,Gy, and the node-
link model exact by allowing our strings to wander as well, and stipulating that
the length of a side of S,G|, is £L, rather than nL. This variation does not alter
the conductivity or its derivatives, but only the way the graph is situated in space.
It should be remarked that in the node-link model we have generated via S,Gr,
four strings meet at each node in d = 2. Apparently, though, it is much more
common in actual percolation clusters to observe three fold meetings (D. Fisher,
private communication). This can be taken into account in our model by letting
G, be a sample of the hexagonal lattice instead of the square lattice. Presumably
(5.19) still holds for the hexagonal lattice. Similar considerations apply in higher
dimensions as well.

Apparently it is now generally accepted [14,12] that the node-link model is an
oversimplification of the backbone structure, particularly in low dimension, espe-
cially d = 2. Stanley [45] has suggested that a more accurate representation of the
backbone is provided by a “node-link-blob” model. In this model, nodes separated
by a distance ¢ are connected by strings or links (of singly connected bonds) and
blobs (of multiply connected bonds). One can visualize the connection between
nodes as a segment of a necklace of beads on a string where there is some distance
between the beads. Also, a node may actually be a blob. These blobs have a
self-similar structure, i.e., they have a node-link-blob structure themselves.

We now wish to explore the consequences of Theorem 5.1 and its corollary, under
the assumption of Conjecture 5.1 The case of d = 2 is considered first. Theorem
5.1 yields

§20(85,G1) = né20(Gr) + (n — 1)é0(G1) . (5.35)

Since L2~¢ = 1 for d = 2, we can directly take the infinite volume limit of (5.35)
(assuming it exists) to obtain

§20%(5,G) = n620™(G) + (n — 1)60*(G) . (5.36)
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Under Conjecture 5.1,
520*(SnG) ~ an, n -— oo, C2 >0. (537)

The upshot of (5.37) is that, if one assumes that the backbone of the infinite clus-
ter behaves like the node-link model, then not only is d;};’; positive as p — pf,
indicating convexity, but it diverges to +oco. Presumably a similar result can be
obtained for a good approximation of a node-link-blob model by taking an appro-
priate G with a sufficient number of levels of self similarity in each blob (and such
that (5.19) holds). Such considerations lead us to

CONIJECTURE 5.2: (d = 2 bond problem)

d?o*
dp?

— 400 asp— pf . (5.38)

Consequently, o*(p) is convex in (pc,p. + a), for some small a, and

1<t<2. (5.39)

The first inequality in (5.39), as already mentioned, has been rigorously estab-
lished, but is explained here via convexity of o* near p, = % The second inequality
t < 2 comes from (5.38) and

d?o* _
dpz ~ (p_pC)t z * (5'40)

A tighter upper bound on ¢ is provided by the node-link relation for ¢ in (5.34)
for d = 2,

t< ¢, (5.41)

where a reasonable numerical estimate for ¢ in d = 2 is about 1.35 [46]. A rigorous
argument yielding (5.41) was shown to the author by H. Kesten. What this bound

amounts to is that the conductivity of the node link backbone is smaller than the
conductivity of the actual backbone, i.e.,

a*(SaG) < o*(B(p)) , (5.42)

where B(p) is a typical backbone configuration at volume fraction p, and n is
given by (5.33). Inequality (5.42) is physically reasonable if we imagine B(p) to be
constructed from S, G by adding bonds, which increases the conductivity (see also
[12]).

We now apply Theorem 5.1 to higher dimensions, with d = 3 first. Dividing
(5.35) by the length ¢L of a side of S,G', yields

$0(5:G1) _ n?0(G1) , (n=1)éo(Gr)

EL 33 33 (5.43)
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Taking the limit as I — oo gives

520"(5,G) = %a%*(a) + ”T“laa*(c) . (5.44)
Under Conjecture 5.1,
§20*(5nG) ~ c3-7§, n,€—00,C3>0. (5.45)
Now, as we will discuss below, we have rigorous evidence that
§20*(SnG) > 6%0*(B(p)) , (5.46)
which, using (5.45), (5.32) and (5.33), becomes
O~ -p) " <-p) (5.47)

giving a lower bound on {. Repeating the same procedure, but dividing by the
appropriate power of £L in (5.43), and considering the analog of (5.42) in higher
dimensions, leads us to

CONJECTURE 5.3: (3 < d £ 6 bond problem)
(=2 +(@2-()<t<(d=2w+C, (21 (5.48)

These bounds become tighter with increasing dimension and converge in d = 6
where 1t is believed that v = % and ¢ = 1, with t = 3. Using numerical values
for ¢ and v in dimensions 2 through 5 [46, 47, 8], we have plotted in Figure 1 the
proposed bounds (5.48), as well as the bound 1 £ ¢ < ¢ in d = 2. In our choices
of values for (, we have chosen the largest reasonable ones, which make the bounds

the widest. The best current numerical estimate for ¢ in d = 2 appears to be

¢ = 1.303%0.014 [48], while in d = 3 the situation is not as well established. In [49],
a “relatively well established” value of ~ 1.9 is quoted, while very recent numerical
estimates of C. Lobb indicate that ¢ in d = 3 is “very close to 2" [C. Lobb, private
communication]. These values fall within the proposed bounds. The only recent
numerical estimates of ¢ for d = 4 and 5 known to the author are those in [46] and
[47], where ¢ is computed via (5.34), which is just the upper bound in (5.48).

We now explain (5.46), which says that §%¢* for the node-link model is greater
than 62¢* for an actual backbone configuration. The intuitive reason is fairly sim-
ple. The node-link model is composed purely of strings, and pairs of bonds from
within a given string give purely positive contributions to 6%0*. However, the actual
backbone is composed of strings and regions of multiply connected bonds. Imagine
a blob composed of a piece of the lattice G at p=1(a “full” blob). Pairs of bonds
from within the blob will give a small negative contribution to §2c*. Even if the
blob has some string structure within it, the net contribution to §%0* will still be
less than if there were in its place a pure string with length of the same order as

the size of the blob. Such statements can be proved under certain conditions, which

provides a rigorous basis for (5.46) and forms the content of the informally stated
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THEOREM 5.2: Let S(n) be a graph composed of n bonds in series, i.e., S(n)isa
string of length n. Let T(n) be a “necklace” composed from S(n), i.e., replace some
sections of S(n) with blobs, which can be pieces of the lattice G at p = 1, or pieces
of SmG, with m sufficiently small compared to the length of the section of S (n) the
blob replaced. Then
§20(S(n)) > 6% (T(n)) . (5.49)
The proof of this theorem follows along the lines of Proof 1 of Theorem 5.1, but
will be omitted here.
We close by remarking that Straley [13] has proposed a (non-rigorous) lower
bound on t that is better than the one in (5.48), namely, ¢ > (d—-2)v +1. However,
our analysis leading to the lower bound in (5.48) has some interesting consequences

for the behavior of

d;}‘)’; as p — p¥, particularly in d > 3, which is discussed in [50].

Figure 1. Proposed upper and lower bounds on the conductiv-
ity exponent ¢ in terms of the percolation exponents v and (.
Numerical values for v and ¢ are used to evaluate the bounds in
dimensions d = 2,3, 4,5, and 6. Straight lines have been drawn
between these points.
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