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We investigate the effective conductivity or* of a quasiperiodic medium in Nd 
and the discontinuous dependence, found in ref. 1, of o* on the wavelengths of 
the system. It was shown there, for example, that the effective conductivity 
a*(k) for a layered medium with a one-dimensional local conductivity ak(x)= 
A + cos x + cos kx, A > 2, is discontinuous in k. An explicit class of higher- 
dimensional examples which exhibit the discontinuity is constructed here. The 
conductivity a*(k, L) of a sample of length L in one dimension as L ~ co is also 
analyzed and shown to have a plateau structure for any irrational k well 
approximated by rationals. 

KEY WORDS: Quasiperiodic media; effective conductivity; discontinuous 
dependence on wavelengths; sample-size dependence. 

1. I N T R O D U C T I O N  

Recently we observed (1~ that classical t ranspor t  coefficients of a 

quasiperiodic med ium in Nd with a conduct ivi ty  a(x)  and /or  potent ial  V(x) 
depend d iscont inuous ly  on the frequencies of the quasiperiodicity.  For  

example, when a k ( x ) = A + c o s x + c o s k x ,  A > 2 ,  in R 1, the effective 
conduct ivi ty  

lfL [ 1/o'k(x)] dx ~*(k)=L~oolim cr*(k, L), [a*(k,  L ) ] - I  = ~  r 

has the same value 6 for all irrational k, but  depends on k for k rational. 
In fact, cr*(k) is d iscont inuous  at ra t ional  k and is con t inuous  at i r rat ional  
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k. The discontinuity arises in the infinite-volume limit in the computation 
of a*(k); a*(k, L) is, of course, continuous in k for finite L. 

To see the origin of the discontinuity in one dimension, we note that 
a quasiperiodic function containing two frequencies can be written as 
ak(x) = 6(klX, k2x)= 6(kx), where k = (kl, k2) T is a two-by-one matrix 
and d(x, y) is periodic in both x and y of period 1. (We write k as a 
column vector here to be consistent with later notation.) For  the example 
above, d(x, y) = A + cos x + cos y. The integral for a*(k) is over a trajec- 
tory of the flow (cbl, (52)= (kl, k2), (col, co2)E T 2, the 2-torus, which is 
ergodic only when k = k2/kl is irrational. In this case, the limiting integra- 
tion is over all of T 2 with respect to Lebesgue measure. In the rational 
case, however, the trajectory degenerates to a closed orbit on T 2, over 
which the integral is in general different from its value over all of T 2. 
Similarly, a quasiperiodic function with n frequencies, n ~> 2, can be written 
as ak(X) = 6(kx), where k = (kl ..... k~) r and 6 is of period 1 in each variable, 
and the corresponding flow will be on the n-torus T n. 

There is no such general argument for d/> 2, where there is no explicit 
formula for the effective conductivity tensor or*. We therefore construct 
here a class of two-component media which exhibit the discontinuity. In 
these systems the local conductivity ak(x), taking values 61 and 0-2, is the 
restriction of some periodic function on Nn, n >~ d +  1, to a d-dimensional 
subspace whose basis vectors form the n by d matrix k. In particular, for 
d =  2 we take a plane slice of a three-dimensional checkerboard of cubes 
with conductivities 61 and 62. When the corresponding 2-parameter "flow" 
on T 3 is ergodic (k "irrational"), or* of the resulting quasiperiodic medium 
is invariant under interchange of the components 0-1 and 0-2. The Keller 
interchange equality (2-6) then yields the surprising result that det(~*) has 
the same value cr 162 for all irrational planes. To obtain a discontinuity, we 
consider a particular rational angle for which we show that det(~7*) has a 
value different than 61o- 2 . Generalizations of the checkerboard for which 
det(o*)  is the same for irrational k are also discussed. 

For  d>~ 3 the interchange equality becomes an inequality. (4'6) We still 
obtain the discontinuity in det(~r*) by bounding its value for a particular 
rational k away from its possible values for irrational k. 

To obtain greater physical understanding of the discontinuity, observe 
that if in our one-dimensional example we introduce a "phase" 
i[~ = ((J) l ,  (2)2)  by setting 0-k(x, ~)  = A + cos(x + COl) + cos(kx + co2), then 
a*(k, ~)  will depend on m for k rational but not for k irrational. For  the 
d =  2 checkerboard example one can see this as well by observing that for 
k irrational the relative volume fractions Pl and P2 = 1 - P 2  of 61 and 62 
are independent of phase, with Pl = P2 = �89 while for k rational they depend 
on phase. In other words, the discontinuity in cr* arises from a discon- 
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tinuity in the microgeometry, as characterized by the volume fractions. It 
is surprising that even after averaging, say in the one-dimensional example, 
a*(k, r over ~ with respect to Lebesgue measure on T 2, the result a*v(k) 
for rational k is still unequal to & In fact, we prove, for general d on T 2 
with effective conductivity ff for irrational k, that Cr*v(k )/> if, for all rational 
k. In higher dimensions, we prove a natural generalization of this 
inequality, namely, that a*v(k) is upper semicontinuous in k. 

Since the discontinuity arises only in the infinite-volume limit, it is 
important to ask what might be observed in an experiment where one must 
work with a finite sample of size L. We investigate this question, when the 
variation in cr is one dimensional, for irrational k that are very well 
approximated by rationals kn, with kn ~ k as n ~ oo. In this case a*(k, L) 
has "plateaus" with values ~*(kn) over appropriate ranges of L. The 
smaller [ k -  k,[ is, the longer the corresponding plateau, which we interpret 
in terms of the continued fraction expansion of k. 

In ref. 7 we analyze the plateaus and their consequences in any dimen- 
sion using more general arguments which apply as well to diffusion in Na 
obeying d X , = - V V ( X t ) d t + d W  . where W, is standard Brownian 
motion, X 0 =0 ,  and V is quasiperiodic with frequency matrix k. In this 
case, the effective diffusion tensor 

D*(k) = lim D*(k, t), 
t ~ c o  

D*(k, t) = E [ X ~ X ~ ] / t  

exhibits the discontinuity like a*(k),  and D*(k, t) has plateaus in t like 
a*(k, L). 

It is interesting to compare our classical transport with that of quan- 
tum transport in quasiperiodic potentials. This is a field with much current 
activity/8 i1) In particular, it has been shown that the nature of the wave 
functions satisfying the time-dependent Schr6dinger equation with poten- 
tial q(x)  = cos x + e cos(kx + 0) depends very sensitively on the rationality 
of k. The interpretation in that case is in terms of interference, leading in 
some cases to localization--something that does not occur classically. 
Nevertheless, we see here that classical transport, too, depends sensitively 
on the commensurability of the frequencies characterizing the system. 

2. F O R M U L A T I O N  

Let d(r be a function on the unit n-torus T" = ~ " / 2  n, to ~ T", which 
we identify with the obvious periodic function on N". We will similarly use 
.. . . .  to indicate other functions on T n. We define the local conductivity 
field ak(x, co), x ~ ~d, via 

O'k(X , r163 ~ ~(r ~- kx) (2.1) 
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where k is an n by d matrix, k [kT,..., r = kd], k i - k / = 0 ,  i r  k~eR ~, and 

d 

kx=  ~ k~x~ (2.2) 

Given ok(x, o),  we consider the electric field Ej(x, o ) = ~ ; j ( m +  kx) 
and current field Jj(x, o )  = , l j(o + kx) satisfying 

aj(x, o)  = Ok(X, o)  l~j(x, o)  

v . J j = 0  

V x E j = O  

~ Ej(x, o)  = ej dx 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

where ey is a unit vector in the j th  direction in ~a, and the integral in (2.6) 
is an infinite-volume average of Ej(x, o )  over Ra. 

We shall be most interested in two-component media, arising from 

a(o) = o, 2,(o). + o222(o) (2.7) 

where ol,  o2 > 0, and the indicator functions 2i(m), i =  1, 2, satisfy 
21 + 22 = 1. Due to the absence of smoothness in this case, Eqs. (2.4) and 
(2.5) should be understood to hold weakly in an appropriate subspace of 
L2(T n, do),(12,13) where d/Ox i is identified with the generator of translations 
in the direction of ki. 

The effective conductivity tensor a* - a*(k) = a*(k, o )  is defined via 

o*ej = f ~  d x Ok(X , O) Ey(x, m) (2.8) 

It is symmetric. We remark that ~r* can also be defined in terms of the 
diffusion process in a random medium with generator �89 o)V). In 
one dimension, if o--+ o + kx, x e ~, is ergodic with respect to d o  on T", 

[a* ] - '= I  do [a(o)]-' 
T n 

while for finite lengths, 

[o* (L ,o ) ]  1 1 i L = [ok(x, o ) ]  1 d x  

(2.9) 

(2.10) 
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The convergence of (2.10) to (2.9) as L-+ oo is in L2(T n, do.)). Note hat 
(2.10) provides a suitable definition of the finite-length conductivity for any 
k, necessary irrational. [For  the definition of a*(L, o )  in any dimension, 
see ref. 13. ] 

The "flow" o - - + o + k x = v ~ k l o ,  X E ~ d  on T ~' leaves invariant 
Lebesgue measure d o  on T ~. It is also ergodic relative to d o  when the 
equations k l . j = 0 , . . . , k d . j = 0  have no simultaneous integral solutions 
j e 2" (14) , j r  We say that k is "irrational" in this case, i.e., when _(kl is ~x 

ergodic, and is "rational" otherwise. In particular, when k is irrational 
a*(k)  is almost surely constant as a function of o. When n = 2, d =  1, and 
k = k = [kl ,  k2] r, k is "irrational" when k2/kl is irrational. When n > d +  1, 
k can have various degrees of rationality, depending on the dimension of 
the ergodic components of r x(kl. In general, ~* will depend upon o only 
through the "ergodic component" to which o belongs. 

3. THE C H E C K E R B O A R D  A N D  ITS G E N E R A L I Z A T I O N S  

We now construct explicit examples of systems for which a*(k) is 
discontinuous in k. First we look at the one-dimensional case ~ ( x ) =  
~(x, kx), where ~ is a checkerboard o n  T 2. Then we consider its higher- 
dimensional analogs and a generalization of these models which yields a 
class of media which exhibit the discontinuity in the same way as the 
checkerboards. 

3.1. d =  1 

Let #(o)  on the unit 2-torus T 2 be defined as follows. Divide T 2 into 
four equal squares with the common vertex (1/2, 1/2). On the squares let 
# (o)  take the positive values a, or o2 in a checkerboard arrangement, with, 
say, a 2 on the square nearest the origin. Extend this by periodicity to the 
whole plane ~2, and define 

ae(x) = a~(x, o = O) = ~(x, kx)  (3.1) 

which we visualize as the restriction of 6 to a trajectory of slope k passing 
through the origin; see Fig. 1. 

Now for ak(x) in (3.1), 

[a*(k) ]  a = p,(k) /al  + p2(k)/a2 (3.2) 

where p/(k) is the proportion of length that  the line of slope k in ~2 spends 
in regions (squares) where ff = aj, j = 1, 2, for the above described checker- 
board. For further simplicitly we assume that al = 1 and az = o0. 

Then we have the following result. 
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Fig. 1. One-dimensional medium defined by the restriction of the checkerboard 6 of o~ and 
a2 on T 2 to the trajectory of slope k = 4. 

T h e o r e m  3.1. For o-k(x) = #(x,  k x )  with # the above checkerboard 
of squares o-~ = 1 and o-2 = oe, and k > 0, 

f l / 2 ,  

1/o-*(k) = J 1/2 - 1/(2pq), 

1.1/2, 

k irrational 

k = p/q, p and q odd, relatively prime integers 

k = p/q, otherwise (3.3) 

The proof is provided by D. Barsky in the Appendix to this paper. 

3.2. d = 2  

The analog of the checkerboard for T 3 is obtained by dividing it into 
eight equal cubes with common vertex (1/2, 1/2, 1/2), with # taking the 
values al and o-2 in a checkerboard fashion. Given k and this 6, (2.1) 
defines o-k(x, ~), which is quasiperiodic when k is irrational and periodic 
when the coordinates of both k l=(kl~ ,k21 ) and k2=(k la ,  k22 ) are 
rational. 

As indicated in the Introduction, we obtain a discontinuity in det(a*)  
by first examining it for k irrational, and then by exhibiting particular 
rationals for which its values are separated from those in the irrational 
case. 
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Our principal tool will be the Keller interchange equality I2 6): let 
o*(c~1, 32) be the effective conductivity tensor of any ergodic two-compo- 
nent material and let ~*(32, 0-1) be the effective conductivity tensor of the 
material with al and 0-2 interchanged. Then 

0"~(0-I' 0"2)0-~(0-2' 0-1)= 0-10-2 (3.4) 

where 0- * -..< 0- ~' are the eigenvalues of the symmetric matrix a*. The 
following observation allows (3.4) to provide information about det(cr*). 

k e m m a  3.1. For k irrational, the quasiperiodic medium ak(x, co) 
arising from the checkerboard on Z 3 satisfies 

cr*(k; al ,  0-2)= a*(k; or2, al) (3.5) 

i.e., a*(k) is invariant under the interchange of the components. 

Proof. Suppose k is irrational, then cr*(k) is independent of co almost 
surely. However, interchange of the components 0-1 and 0-2 is induced 
by (o21,0)2, o93)~--~ (o91 + �89 co2,093) on T 3. Thus, cr*(k) is interchange 
invariant. 

As an immediate consequence of (3.4) and Lemma 3.1, we have the 
following: 

Theorem 3.2. Let 0-k(X,O))=8(f.lJ-q--kx), x ~  2, where 6 is a 
checkerboard of o- 1 and a2 on T 3. Then for all irrational k, 

det(cr*(k)) = 0-10-2 (3.6) 

We now obtain the discontinuity. Let the cube nearest the origin in T 3 
(~ - [0 ,  1) 3) have conductivity a2. Consider the plane passing through 
(1, 0, 0), (0, 1, 0), and (0, 0, 1), and then translate it downward so that it 
passes through (0, 0, 3/4). Let ko span this plane and let co o = (0, 0, 3/4). 
The resulting pattern ak0(X , COO) is a periodic array of six-pointed stars with 
the central hexagon of cr 1 (see Fig. 2), which is clearly "isotropic," 
0-*(ko, COo) = 0-*(ko, COo) 6ij, due to the sixfold symmetry about the center 
of the hexagon. However, this array is not interchange invariant, since 
Pl = 3/4, while P2 = 1/4, which indicates that we should not expect that 
det(~*(ko, COo)) = 0-1 a2. 

l e r n m a  3.2. There exist 0-~ and 0-2 such that for the resulting 6 and 
k o, ~o o as above 

det(n*(ko, Oo)) -r 0-1 or2 (3.7) 

Proof. Since ako(x, too) is isotropic 

det(~*(ko, r = (a*(ko, COo)) 2 (3.8) 

822/58/3-4-i8 
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o-/ o- e 

Fig. 2. Two-dimensional medium defined by the restriction of the checkerboard 6 of a I and 
o2 on T 3 to the plane defined by ko and co 0. A period cell has been outlined, and the darkened 
point at its bottom corresponds to (0, 0, 3/4) in T 3. 

By the well-known arithmetic mean upper bound (13~ 

3 1 
~  1110) ~ P10-1 -I-/)20-2 = 461 -}- 40-2 

But 

when 

Thus 

(3.9) 

O" l < 0 . 2 < 9 6 1  (3.11) 

det(~r*(ko, COo)) < 0.162 (3.12) 

when (3.11) is satisfied. | 

Theorem3.2 and Lemma3.2  together yield a discontinuity in 
det(cr*(k)) at k = ko. Since det (a*)  is a continuous function of o*, we have 
the following: 

C o r o l l a r y  3.1. Let 0-1 and 0.2 be as in Lemma 3.2. Then cr*(k) is 
discontinuous at k = ko. 

We have constructed here only one example of a rational k for which 
the discontinuity can be proven. When the denominators in the rational 

30.1 I 2 -{- 40-2) <0.10"2 (3.10) 
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numbers in k are much larger, so that Pl and P2 are both very close 1/2, 
the simple proof given above will not work, as much tighter bounds on ~r* 
would be required. Nevertheless, we expect that ~r*(k) is discontinuous at 
"most" rational k. 

We remark that not all periodic media arising from the checkerboard 
are isotropic like the "stars." Consider the plane that contains the x axis 
and (0, 1, 1). The resulting pattern is infinite strips of width 1/2 alternating 
in 0"2 and 0"2. The principal directions of this medium are parallel and per- 
pendicular to the strips. Parallel to the strips, the corresponding eigenvalue 

1 1 of ~r* is ~0"1+~0"2, and perpendicular to the strips, it is [1/(20"2)+ 
1/(20"2)] -I  . 

In one dimension, the value of 0"*(k) is independent of k when k is 
irrational, for general ~ on T n, n ~> 2. For d~> 2, a*(k) for general ~ on T n 
may depend on k for k irrational (as well as rational). The following exam- 
ple illustrates this for d = 2. Let d on T 3 be a two-component medium com- 
posed of a thin cylindrical tube of 0"1 in the eo3-direction in the center of T 3, 
surrounded by 0"2. Further assume 0"1 >> 0"2. Now let ka span an irrational 
plane which is almost perpendicular to the cylinder axis. The resulting 
medium is a quasiperiodic array of disks of a~ embedded in 0"~ which are 
only very slightly elongated in one direction, so that 0"*(k• is presumably 
very close to being isotropic, i.e., a multiple of the identity. However, for 
kll spanning an irrational plane which is almost parallel to the cylinder 
axis, the resulting medium consists of a quasiperiodic array of very long 
parallel spikes of ~r 1 embedded in a2 (in the same volume fraction as the 
disks in the k• case). In this case a*(kH) is presumably highly anisotropic, 
with the degree of anisotropy increasing as either as is increased or the klr 
plane is further aligned with the 0) 3 axis. 

3.3. d~>3 

For d~> 3, the inequality 

0-~(0"1' 0"2) 0"/'~(0"2' 0-1) > 0-1 0-2 (3.13) 

replaces (3.4), for all pairs of eigenvalues a* and or*. Schulgasser (4~ first 
proved (3.13), and Kohler and Papanicolaou (6~ proved a more general 
form of it. Since Lemma 3.1 holds for T n as well as T 3, slight manipulation 
of (3.13) yields the following result. 

Theorem 3.3. Let ak(x, o)) = ~(~o + kx), x e ~d, d~> 3, where d is a 
checkerboard of al and az on T n, n ~> d +  1. Then for all irrational k, 

det(a*(k)) ~> (a~ cr2)~/2 (3.14) 
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0-*(ko) ~ Pl 0-1 + P20-2 

for any ko and i. Inequality (3.15) yields 

det(a*(ko)) < (0-1 a2) d/2 

Golden e t  al. 

To establish the discontinuity for d~> 3, we again use the bound 

(3.15) 

at least when 

(3.16) 

0-1Pl = 0-2P2 (3.17) 

and 

Pl P2 < 1/4 (3.18) 

At these ko we have, in view of (3.16) and Theorem 3.3, a discontinuity in 
det(cr*(k)) if 0-1 and 0" 2 are chosen so that (3.17) holds. 

We remark that whenever interchange of 0-1 and 0-2 in the ambient 
environment 6 on Rn is induced by a change in realization o, ~ o,', which, 
in fact, can be assumed to be a translation, the conclusions of Theorem 3.2 
for d =  2 or Theorem 3.3 for d>~ 3 hold. 

4. PHASE A V E R A G I N G  

We first consider phase averaging in one dimension for a medium 
0-k(x, o,) = 6(o, + kx), o, s T n. Define 

0 -* (k )=f  0-*(k, o,) do, (4.1) 
T n 

where 0-*(k, o,) is the effective conductivity of 0-k(X, CO). Also let [# ] -1  be 
given by the right side of (2.9). Then we have the following: 

T h e o r e m  4.1. F o r d = l ,  

0-*v(k)/> # (4.2) 

Furthermore, equality holds in (4.2) if and only if 0-*(k, o~) is independent 
of o, (almost everywhere with respect to Lebesgue measure on Tn). 

Proof. Suppose k is rational. Let (-) ,~ denote normalized averaging 
over the trajectory - (k),.. T n. ~x ~', x E ~, on Then 

0-L(k) = f o ~ do, (4.3) 
T u(o,)  
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where u(o~)= (1/#)o, .  By Jensen's inequality, 

r 

a*v(k) ~> 1 / f r u ( o ~ ) d m = #  (4.4) 

where equality holds in (4.4) if and only if u(m) is independent of o~ (almost 
everywhere in Lebesgue measure on T~). 

The statement below (4.2) shows that, typically, phase averaging 
preserves the discontinuity of a*(k) at rational k in one dimension. While 
we have not proven that the discontinuity is generally present in higher 
dimensions for e*~(k), which is the analog of (4.1) for d~> 1, we still have 
the following result. 

Theorem 4.2. a*v(k) is upper semicontmuous in k. 

Proof. We use an alternative variational formula for a* (6~: For  any 
e E ~  d 

( .  

e" Cr*v(k ) �9 e = inf | dee ~(o~) F_~2(( ,o)  (4.5) 
E ~ N '  'J T n 

where g is the set of fields satisfying (2.5) and (2.6) with ej replaced by e. 
In terms of potential fields f on T ", (4.5) can be written as 

where 

e ' a * ( k )  e =  inf | d e ~ a ( m ) ( l + D k f )  2 
f E H 1 J T  n 

(4.6) 

H 1= { f e L 2 ( T  n, d ~ ) ] D ~ f e L 2 ( T  ", do~), f e e  Nd} 

and D k is the generator of the translation subgroup ~.(k~ t e ~ .  We have v t e  , 

thus characterized e a,v(k) e as an infimum of continuous functions of k, 
so that it is upper semicontinuous in k. 

5. B E H A V I O R  OF a * [ k ,  L] AS L-~ ~ :  P L A T E A U S  

In this section we examine the effective conductivity of a sample 
extending from x = 0 to x = L, 

D*(k, L)] -1= Dk(x)3-1 & (5.1) 

where ak(x) = #(x, kx), for some d > 0 on T 2. 
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When k < l  is irrational, it has a unique continued fraction 
expansion(15) 

1 
k = [al ,  a2,...] = 1 (5.2) 

a ~ + - ~  

a2 + 7-- 

with positive integers al,  a2 ..... Truncations of this expansion provide the 
"best" rational approximants kn to k, 

kn = P ~ =  [al ..... a. ]  (5.3) 
q. 

They are best in the sense that if for some n, [ k -  p/q[ < I k -  Pn/q.I, then 
q > qn- It is when k satisfies 

f k -  p./q~[ < i/q] Vn (5.4) 

for large enough 7 > 0  that a*(k, L) can be shown to have "plateau 
structure." The larger 7 is, the faster the a.  grow to infinity, and the longer 
the plateaus are, as we now explain. 

For any particular rational approximant k, ,=p. /qn we have from 
(5.1) 

[a*(k. ,  L)]  - - 1  : [a*(kn)] - '  + L . .  O(1/L) (5.5) 

where L.  = q. is the period of ako(x). Furthermore, for smooth 6 o n  T 2 

there is a C > 0 such that 

I 1/cr*(k, L) - 1/a*(k., L)I ~ CL Ik - k~[ (5.6) 

Now let 6 be the value of a* for irrational k and let 

e , =  I~-,,*(ko)r > 0  (5.7) 

Choose An so large that for L > A,,, 

la*(k~, L) - a*(k~)l <<  a~ (5.8) 

which by (5.5) will be satisfied when 

A. >>  L. /e .  (5.9) 
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Next pick B n >>  A n. When k is so close to k n that 

CBn Jk-kn[ <<en (5.10) 

as well, then by (5.5) and (5 .6 ) ) r* (k ,  L)-a*(kn) l << [•-a*(k, ,) l  for 
A,<L<B,, ,  so that the graph of a*(k, L) has a "plateau" for L in this 
range. This closeness of k to k n can be arranged by requiring that a~ +1 be 
sufficiently large, or equivalently, by demanding that 7 be large. Clearly, 
the smaller I k - k . I  is, the longer the plateau. 

As a specific example, we consider the checkerboard of Theorem 3.1, 
where we know the a* = a*(kn) exactly, 

1 1 l 
- ( 5 . 1 1 )  

2 

for k, = Pn/qn with Pn and q,, odd and relatively prime. Moreover, though 
6 is not smooth, (5.6) can nonetheless be shown to hold. In order to 
guarantee that 1/cr*(k, L) is within, say, 1/q 4 to l /a*,  our choices for An 
and B, must satisfy 

q~ + <-~'qn A"<L<Bn (5.12) 

for some C1, C2>0.  We can then choose, for example, A,=q 6 and 
/ 5 B, = q, , obtaining plateaus when 7 > 11 in (5.4). 

APPENDIX. EXPLICIT CALCULATION OF THE EFFECTIVE 
CONDUCTIVITY FOR A ONE-DIMENSIONAL 
MODEL [PROOF OF THEOREM 3.1] 

D. Barsky, University of Arizona 

We first consider k irrational. By ergodicity, 1/a*(k) is given by (2.9), 
which clearly has value 1/2. 

Now let k = p/q, where p and q are relatively prime integers. The orbit 
having slope k and beginning at the origin in T 2 can be represented as the 
diagonal line of the rectangle R(q, p ) =  [0, q] x [0, p].  The rectangle 
R(q, p) is equipped with a checkerboard grid consisting of 4pq squares 
having sides of length 1/2, where the square closest to the origin has 
cr = ~r2; see Fig. 1. We must compute p~(k): the proportion of the length of 
the diagonal spent in regions having a = cr 1. Observe that the square closest 
to (q, p) has a = a2. Thus, by symmmetry, it suffices to consider that half 
of the diagonal lying in R(q/2, p/2). In order to work with integers rather 
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than half-integers, it is convenient to now double the length scales by 
mapping R(q/2, p/2) to R'(q, p), equipped with a checkerboard which has 
pq unit squares. 

Note that if either p or q is even (but one of them is odd, since p and 
q are relatively prime), then the square closest to the vertex (q, p) has 

= a 1. Simple symmetry considerations now show that p~(k)= p2(k)= 1/2. 
We now take up the case where p and q are two relatively prime odd 

numbers. Without loss of generality it may be assumed that q > p, since 
a*(p/q) = a*(q/p). The regions a = al  and a = ~r 2 along the diagonal from 
(0, 0) to (q, p) each consist of several intervals. Hence, to determine p~(k), 
we merely have to find the endpoints of all of these intervals and then 
decide which intervals have a = a l. 

Observe that a change in the conductivity along the diagonal can 
only occur when one of the integer lines x = i  ( i=  l,..., q - 1 )  or y = j  
( j =  1,..., p - 1 )  is crossed. Furthermore,  since the only points on the 
diagonal having integer coordinates are (0, 0) and (q, p), it follows that the 
conductivity must change whenever an integer line is crossed. The vertical 
integer lines can be used to divide the diagonal q segments: the ith segment 
has x coordinates between i -  1 and i for i = 1,..., q. Each segment either has 
a single conductivity (if the segment crosses no horizontal integer line) or 
it has a single change of conductivity (if the segment crosses a horizontal 
integer line). No segment can have two or more changes of conductivity. 

We first treat the p -  1 segments for which there is a change in the 
conductivity. Our  basic tool is the following fact: if both p and q are odd 
and if i, k, and l are chosen so that lq = kp + i, then k + l has the same 
parity as i. 

Now for each i = 1, 2,..., p -  1, let k i and li be the smallest nonnegative 
integers for which liq = kip + i. The numbers ki and l~ have a geometric 
interpretation: the segment of the diagonal having x projection [k~, k~ + 1 ] 
intersects the horizontal integer line y = li, and the intersection occurs at 
(ki+l/p,l~). Note that the diagonal crosses integer lines for the 
(ki + i/p, li), respectively. Because ki + I~ and i have the same parity, and 
because the first conductivity seen along the diagonal is e=c~ 2, it 
follows that if i is odd, then ~ = ~ 2  for k ~< x< k iq - i / p  and or= c h for 
k~ + i/p < x < k~ + 1. By the same reasoning, the conductivities are reversed 
when i is even. Letting s~ denote the fraction of the segment having x 
projection [k~, k~+ 1] for which cr = o-l, we see that s~= ( p - i ) / p  for i odd 
and s~ = i/p for i even. 

We now return to investigate the q - p  + 1 segments for which there 
was no change in the conductivity. We claim that a --- a2 for �89 p) + 1 of 
these, and that cr = a~ for the remaining � 89  To verify the claim, one 
observes that if the segment having x projection I-k, k + 1 ] has only one 
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conductivity, then that segment lies between two successive horizontal 
integer lines, say y = 1 and y = l + 1. Let j = kp - lq; then the diagonal 
crosses the vertical integer lines x = k  and x = k + l  at ( k , l + j / q )  and 
(k + 1, l+ (p +j)/q). The condition that the segment not cross a horizontal 
integer line for x between k and k + 1 implies that j = 0,..., q - p. Note that 
these values of j account for all q - p  + 1 segments having only one con- 
ductivity. Furthermore, because j and k + l  have the same parity, and 
because the conductivity changes for the (k + / ) th  time at the beginning of 
the segment, it follows that ~ = o2 i f j  is odd. 

A direct calculation now shows that i fp  and q are relatively prime and 
odd, then 

P l ( q - P + P ~ t s i  ) 

-2 2q -2 i~=1 
i o d d  i e v e n  

1 2  2ql { P - - 2 I P 2 1  p l ( ~ - ~ ) 2 ]  +p2-1~---@p J 

1 1 

2 2pq 
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