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Classical transport coefficients in a d-dimensional medium with a potential ¥ (x) and/or conduc-
tivity a (x) are found to vary discontinuously as functions of the ‘‘wavelengths’’ of the inhomo-
geneities. For example, with a potential depending on one direction only, say V (x)=cos2wx;
+ cos2wkx, the effective diffusion coefficient D (k) has the same value D* for all irrational k, but
differs from D* and depends on k for k rational. Thus D (k) is discontinuous at rational k. More-
over, D (k) is continuous at irrational k. This pathology is reflected in the time scales on which the

diffusion approaches its limiting behavior.
PACS numbers: 05.60.+w, 66.30.Dn

1. Introduction.—There is current interest in trans-
port in random systems and in modulated struc-
tures.!* Here we describe the very discontinuous
dependence of the effective diffusion constant D, and
other transport coefficients, on the wavelengths of the
inhomogeneities in a periodic, quasiperiodic, or ran-
dom medium. These discontinuities arise from the
infinite-time and -volume limits involved in comput-
ing stationary transport coefficients. The pathologies
also show up, however, in the variations of the length
and time scales on which the system approaches its
limiting behavior, and necessitate the use of caution in
carrying out and interpreting computer simulations.
They also affect the low-frequency transport properties
of the medium.

We consider first the motion of a particle in a dif-
fusive medium with a spatially varying drift propor-
tional to a force (Smoluchowski regime). Different
transport coefficients and/or inhomogeneities behave

g,-,-(t,V)=(2:)"1<8X,(t)s)(,.(t))y: D;(V), ij=1,..d

in a similar way. The results also hold for lattice sys-
tems.

Let X(#) be the position of a particle at time ¢
diffusing in R in a medium with a bounded (suffi-
ciently smooth) potential V according to

dX (1) = — ooV V(X(0))dt + (2D)V2dW (1), (1)

where W(7) is standard Brownian motion,
(Wi (DOW;(0)) =8,t, i,j=1,....d, and oy and D, are
the ‘‘bare’’ mobility and diffusion constants. The den-
sity p(x,7) associated with (1) satisfies the diffusion
equation
6p/6t=D0Ap+V- [ao(V V)p], 2
which has the equilibrium density p ~—expl—gV],
B=0oo/D,, as per the Einstein relation. For X(0)
=Xp, p(x,0) =8(x—xp).
It is known>"’ that for V periodic, quasiperiodic, or
stationary random ergodic,

3)

Here 8 X,= X,(1) — X;(0), () y denotes average over Brownian motion paths in (1), and D(V) is a positive-definite
effective-diffusion tensor. The actual trajectories are asymptotically Brownian with diffusion tensor D( V), i.e.,

EX([/GZ) ':'OWD(V)(I).
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The computation of D(¥) involves spatial averages
of functionals of V so that D(V) (but not &) is in-
dependent of the starting position X(0) and (with pro-
bability one) of the realization of the random potential
V. In particular, when the potential varies only in one
direction, V=V (x;), i.e., the medium is layered,
then D;=D;8;, D;=Dy, i#1, while Dy;=D (V) is
given (see, e.g., Ref. 7 and Ferrarl Goldstein, and Le-
bowitz?) by

D(V)/Dy= (ef¥y ~1(e=B¥y 1, 5)
Here,

@) = tim L " 4 (r()ax G)
We note that when V(x) is periodic with period
L, V(x)= V(x/L), V(x)=V(x+1), then ($(1))
- f #(V(x))dx and D is independent of L. The same
is true if ¥V (x) is a random potential with a scale L;
, if V(x)= te in intervals of random lengths s
w1th a density p(s)=L 'e 5L then (5) gives
D (V)/Dy= (coshBe) 2.
The scale invariance of D follows generally from (1)

or (2). Letting V,(x)=V(xx), D(A)=D(V,), we

D, f explB(cos2mpx + b cos2mwgx ) ldx} ™

D(k) DO(f pcos21rxdx) 2(f eBbcosZ‘n‘xdx) 22

find
g (V) =g(>\2t,V)t:" D(\)=D(V), @)

independent of X, for A=0. However, D()) is discon-
tinuous at A=0 since D;(A=0)=Dy5; for any V.
This can be understood from the fact, seen explicitly
in (7), that the time ¢, that it takes & (¢, V,) to ap-
proach its limiting value D(¥) goes as A2, the square
of the length scale of the inhomogeneity. Note that
the discontinuity in D(X\) at A =0 appears only in the
infinite-time limit since & (¢, V) for finite ¢ is, in fact,
continuous in V.

There are, however, more interesting and pathologi-
cal discontinuities in D (¥) which are less readily made
explicit. We shall therefore describe them first for
d=1 (or the layered structure) in the next section
where everything can be obtained directly from Egs.
(5) and (6). The case of inhomogeneous conductivity
is also described in Sec. 2. We consider more dimen-
sions in Sec. 3, while the approach to the asymptotic
behavior, is discussed in Sec. 4.

2. Discontinuities in d=1.—We illustrate the dis-
continuous dependence of D (¥) on V by considering
the example V(x)=cos2wx + b cos2wkx. Equations
(5) and (6) yield

f expl — B(cos2mpx + b cos2mwgx)ldx} ™, k=gq/p,

(8

k irrational,

where p and q are integers. We see that D (k) has the same value D* for all irrational k, but differs from D* and
depends on k for (almost) all rational k. Furthermore, if k, — k (k,>=k ), then D (k,) — D*, regardless of the ra-
tionality of k, or k. Thus D (k) is discontinuous at (almost) all rational k but continuous at the irrationals.

The mathematical origin of the bizarre behavior exhibited in (8) is very simple. For functions of the form

V(x)=V(kix, ..., kyx)=V(kx), where V(y, ..

.,¥n) has period 1 in each y; and k= (kq, . .

, k), the spatial

averages in_ (6) correspond by the ergodic theorem to averages over T", the n-dimensional torus In fact, with

()= (V(y)),

@M =) =[ GO -
where
) = tim < [ "s(y—ke)d (10)
pely) = fim 5 g, y—kt)at

is the (weak) limit of the & function along a trajectory
of the flow y; = k; on T" starting at the origin. When k
is “‘irrational,” i.e., 3m;k; =0 has no nontrivial solu-
tions for integers m;, then =1 on T". However,
when k is ‘‘rational,”” u.d”y is uniformly distributed
on an /-dimensional torus, ! < n, embedded in T” (and
is zero elsewhere on T"). The discontinuous depen-
dence of uy on k renders D (k) discontinuous, in the
same way as D (k) above.

To obtain a more physical understanding of the
phenomenon, we observe that if in our example we in-
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| troduce a phase 8= (8, 6,) by setting

V(x, 0) =cos2mw(x +6;) + b cos2w (kx +6,),

then D (k, @) will depend on 6 for k rational but not
for k- irrational. It should be noted, however, that
even after we average D (k, ) over 0, with weight
~ expl — B(cos270; + b cos270,)], the result D (k)
for k rational is still unequal to D*. In fact, D (k)
> D* for all rational k.

We can also treat the more general case of a random
phase change (or noise in the wave vector), e.g.,
0= (0,0(x)), 0(x)=f0xe(y)dy, where e(x) is itself
some stationary process with mean zero. Then, if and
only if e(x) is ‘“‘good” noise (having good mixing
properties) will D (k, @) = D* regardless of k.
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The above results all follow from (5). In fact it is
easy to see from (5) thatif V=V, + V,, where V, and
V, are ‘“‘independent’ potentials, then

under sufficiently strong mixing conditions on ¥ and
A
As mentioned previously, our analysis applies equal-

ly well to other transport coefficients, e.g., heat con-
duction in a medium with a spatially varying conduc-
tivity a (x). Then the analog of (2) takes the form

u/ot=V-la(x)Vul, (12)

where u is the temperature. The effective conductivity
matrix A is again equal to spatial averages of some
functional of a. For d =1 we again have an explicit
formula 4 (a)=(a"!)~! which leads to results
analogous to those obtained for D (V). The same for-
mula holds for the effective diffusion constant of the
discrete version of the diffusion process associated
with (12), so that similar discontinuous behavior oc-
curs for lattice systems.”®

3. More dimensions.—There are no explicit formulas
like (5) for effective transport coefficients when the
inhomogeneities depend on more than one space
dimension, and we cannot give general proofs of the
existence of the discontinuities. Instead we will give,
below, examples of two types of higher-dimensional
systems which exhibit the discontinuous behavior.
However, it would be surprising if this behavior is not
generic, since the origins of it discussed for d =1 per-
sist in more dimensions. In particular, the diffusion
matrix has the representation’

D(Vi+Vy) DV D(Vy)

. 11
D, D, D, an

Equation (8) for irrational k may thus be regarded as a
special case of (11), where V;=cos2wx and V,
= b cos2wkx. For k rational, on the other hand, V,
and ¥V, are not ‘‘sufficiently independent.”” [Equation
(11) is true when the direct product of the spatial
translation groups arising from ¥, and V, is ergodic,
which holds, e.g., when ¥V, is weakly mixing or when
V), and V, are quasiperiodic with incommensurate
wave vectors.]

We may also consider the effect of adding to the po-
tential in (8) an ‘‘independent’’ potential, say the one
described in Sec. 1. In view of (9), the resulting dif-
fusion constant would then be

D =D (k)[coshBe]~? :’OD(k).

Thus additive noise does not destroy the difference
between k rational and irrational. It is also worth not-
ing that D~in d =1 is invariant under a random scaling,
ie, if V(x)=V('N()dy), then D(V)=D(V) |

Dy (V) =Dod; — %ifo”«%(x(o»%(xm ), ds (13)
J

i

where (( ))y denotes over Brownian motion paths and initial position {with weight

~exp[—B8V(X(0))]}. For
V(X)= Vk(xl, e ,Xd) = I7(k11x1, .

average

.. ,k,,llxl, “ .. ,k‘fxd, “ e ey k,‘,jdxd),
the spatial average contained in (13) corresponds to an average over T” with respect to a d-dimensional version of

(10) (which involves d-dimensional 7 and extra weight e “#"), where n = 34 ,n; and
k=(ki, ... ki, kKD,

As before, uy is nonzero only on an /-dimensional torus inside 7, with / = n when the &/, for each fixed 1 <j <d,
are rationally independent, and / < n otherwise. Thus while V is continuous in k, Mk is not, so that Dy in (13)
should generally be discontinuous in k. Furthermore, for irrational k, D,; does not depend on the phase of V [see
the sentence following Eq. (4)], while for k rational (/ < n), D,; should in general be phase dependent, again im-
plying discontinuity. In fact, it is easy to see that given any rational kg, there exists a ¥, on T" such that D,-,( Vo,x)
is phase dependent, and hence discontinuous, at least at k = k.

Another example which exhibits discontinuous behavior in more dimensions (say, d =2) is the following. As
mentioned before, Sec. 2 applies verbatim to layered structures varying in the x; direction. For spatially varying
conductivity a (x), it is easy to construct such an example by slight modulation of the layered environment. For
example, consider

a(xy,x9) =[3+cos2mx; +cos2mkx 1[1 +ef(xy,x,)],

where 0=< f(x;,x;) <1, €>0. Now a;(x) < a,(x) implies that the corresponding bulk conductivities satisfy
A=< A,. Then for any fixed rational k,, the bulk conductivity associated with our a (x) will be discontinuous at
ko when € < |4*— A (ko) |/min[A4*,A4 (ky)], where 4* [4 (ko)1 is the bulk conductivity of the layered environ-
ment for irrational k (rational k).
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4. Approach to the limiting behavior and low-frequency
transport.—Let V be a general ergodic potential in R
Then & (¢, V) defined in (3) is equal to Dyl for t =0,
where I is the identity, and approaches D(V) as
t— oco. The time 7, necessary for & (1, V) to ap-
proach its asymptotic value will depend on the length
scale L on which V wvaries. It is only for
t>> -ry=L2/D0 that the particle knows what V is
really like, as can be seen explicitly via (7).

Consider now & (t,k) for the potential considered
in (8). Let k,=k +¢,, 0#¢,— 0 as n — oo, with k
rational. The time 7, after which & (1,k,) — D (k,)
will grow with n. More precisely, for > 0, let

ts(k) =inf{t > 0|sup| D (s,k) — D*| < §}.
s=t

Then tz(k) — o as k — k', k' rational, whenever
|D (k') — D*| > 8, since & (1,k) is continuous in k for
finite . Furthermore, if k is ‘“‘well approximated’’ by
rationals k,, then we expect that there is a sequence of
times ¢, (k) such that & (t,k) ~ D (k,) for t ~ ¢, (k).
Thus we see that the time dependence of the system
is quite sensitive to the nature of the inhomogeneities.
This sensitivity for a (x) (now electrical conductivity)
will affect the low-frequency ac conductivity o(v),
which is proportional to the one-sided Fourier
transform of the mean square displacement, 1°

c) =2 e (X -XO) ) d.  (14)

Here (( )) denotes averaging over Brownian motion
paths and over the initial position X(0). The structure
of o(v) for small v will depend markedly on the
modulation of a (x). This dependence can be studied
through analysis of the spectral properties of the gen-
erator L=V -a(x)V of the process X(¢#). For
periodic a (x), L on the appropriate Hilbert space has
(negative) discrete spectrum, which renders o (v) ana-
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lytic in a neighborhood of v=0. For quasiperiodic
a (x), we believe that the origin is a limit point of the
spectrum of L, so that o(v) near v=0 is presumably
analytic only in a neighborhood which excludes v =0
and the negative imaginary axis near 0. Details will
appear elsewhere.
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