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Abstract

The effective conductivity o* of a multicomponent composite material is considered. Integral
representations for o* treated as a holomorphic function on a polydisk with values in a half-plane are
analyzed. A representation for o* is introduced which is symmetric in the component conductivities
and for which the moments of the positive measure in the integral are directly related to the
coefficients in a perturbation cxpansion of o* around a homogeneous medium, This second feature,
which is important for obtaining bounds on ¢*, was previously available only in the two-component
case. In addition, a bound valid for any holomorphic function of the above type is proven.

1. Introduction

The effective conductivity of a composite of n isotropic constituent materials
depends both on the conductivities gy, g,,- - -, 0, of the components and on their
geometrical configuration. This is clearly evident if we consider the limit in which
one of the components becomes infinitely conducting. Then the effective conduc-
tivity becomes infinite or not according to whether there is a continuous path of
that component across the composite. In this article we seek integral representa-
tions for the effective conductivity which separate the analytic dependence on
0,, 05, * +, 6, from the dependence on the geometric configuration.

These representations involve a kernel containing the o; which is integrated
with respect to a measure containing the information on the geometry. One of the
principal uses of the integral formulas has been to derive bounds on the effective
conductivity ¢* assuming information about the geometry of the medium, which
puts constraints on the measure.

We shall consider two types of representations, asymmetric and symmetric.
The first type is based on the fact that ¢* is a homogeneous function of the o, s0
that it can be considered as an analytic function of only n —1 variables,
eliminating, say, o,. Representations based on this observation were considered
for two-component media by Bergman [2] and Fuchs [8], and for multicompo-
nent media by Golden and Papanicolaou [10]-[12]. The measures in these
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representations are positive, which plays an important role in obtaining bounds
on o*, Here we derive relations between the measures associated with elimination
of o, and Oy P#q.

The second type of representation formula we consider is symmetric in the o;
it treats them all on an equal footing. Such analytic formulas were considered by
Dell’Antonio and Nesi [7], although their representation incorporates measures
which are not necessarily positive. In this paper we introduce a new symmetric
representation which has a positive measure and solves the following problem. In
obtaining bounds on ¢*, geometric information is most conveniently introduced
into the representation via the moments of the measure. In the most common
asymmetric formula for two-component media (see [2], (8], [9], [16]) the moments
of the measure are directly related to the coefficients of a natural perturbation
expansion of ¢* around a homogeneous medium (o, = g,), which contains the
geometrical information. In the multicomponent version of this procedure (see
[10]-[12]), the relation between the moments of the measure and the coefficients
of the perturbation expansion is quite complicated. The representation we
introduce here has the important feature that the moments of the measure are
directly related to the coefficients of a perturbation expansion.

In an appendix we give a proof of an elementary bound on functions analytic
in the polydisk with positive real part there. The extremal measures which yield
the bound also provide some optimal bounds on o* which were conjectured by
Golden [10]-[12] in the multicomponent case.

For simplicity we assume that the electric and current fields and the geometry
of the composite are periodic with a primitive cell Q of unit volume. We could
equally well treat the random case: Golden and Papanicolaou [9] have shown
how the analysis can be extended to include ensembles of materials,

Locally, conduction is governed by the equations

(1.1) J(x) = o(x)E(x),

(1.2) veJ(x)=0, v XE(x)=0,
(13) /() = L ox(x),

where J(x), E(x) and o(x) are the Q-periodic current field, electric field and
conductivity, and the x,(x) are the characteristic functions

1 in component i
1.4 = )
14 Xi(x) { 0 elsewhere.

On a macroscopic scale, the average current fleld and average electric field,

(1.5) j*=jQJ(x)dx, e = fQE(Qc) dx
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are linearly related,
(1.6) J* = o¥e*,

and the tensor o* that relates them is called the effective conductivity tensor.
Rather than studying the analytic behavior of the full tensor o* we shall focus
our attention on the diagonal element

(1.7) o* = o*(e*) = e* « a*e*,
where e* is a fixed real unit vector.

To derive the standard formula for ¢*, which we shall call the effective
conductivity, let us introduce the polarization field

(1.8) P(x) = [o(x) = o] E(x) = J(x) ~ aE(x),

where o, is the conductivity of an isotropic homogeneous reference medium,
which may be chosen freely. The polarization field satisfies

(1.9) (T = s)P(x) = oge*,

where

(1.10) s(x) = op(0o— 0(x)) 7 = Elsix,-(x),
(1.11) 5; = 0p( 0y — o) -

and T is the projection operator (in L*(Q)) onto the subspace & of curl-free,
mean zero Q-periodic fields,

(1.12) &= {E’(x){v X E'(x) = 0,fQE’(x) dx = 0}.

In Fourier space, T is a local projection operator with Fourier components

ki ;/\k|*  when |k| # 0,

(113) POk = {0 when [k = 0,

and consequently we have
(1.14) IJ(x) =0, TE(x)=E(x) —e*

From these relations (1.9) is easily established.
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Now (1.8) and (1.9) imply

(1.15) a*e*~ooe*=f;2P(x) dx=fQ(I‘——s)nluoe*.

This gives the formula
(1.16) a*=ao+aoje*~(r—s)-1e*dx
Q

f)or the effective conductivity o*. The expression is not as useful as it may seem
ecause tht.a operator I' — s is difficult to invert: I' is local only in Fourier space
whereas s is local only in real space.

; Ir{tegral*represcntations (see [2], [7], [8], [11]) for the effective conductivity
1:annlon o*(oy, 02,'---,0,,) follow from its analytic properties. Dell-Antonio
1gari, and Orlandi [6] noted that the function is analytic on the domain ,

(1.17) A= U H
a& [0,2m)

where H! is the n-fold product of half-planes,

(118) Hy = {Re(e™™0)) > 0) X {Re(e™"0,) > 0} x
Co X {Be(em,) > 0).

On this domain A, the function o* is homogeneous

(1.19) o*(Aay, Aoy, -+, Aa,) = Ao*( oy, 0p,- - -, 0,)

for all A € C, satisfies the normalization

(1.20) o*(1,1,---,1) =1,

and the energy dissipation property

(1.21) o* € Hy whenever (oy,0,,--,0,) € H}.

3;1,1 these properties are implied by the formula (1.16) for the effective conductiy-

By taking A = ¢~ we deduce from (1.19) and (1.21) that

(1.22) o* &€ H, whenever (01,05, --,0,) € H".
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Consequently, if W(a, 8) denotes the wedge
(1.23) W(a,B) = H,N Hy
in the complex plane, then (1.22) implies the wedge bounds
(1.24) o* € W(a,B) whenever o, € W(a,B) foralli.

The representation formulas we develop apply to any function, analytic on A,
which satisfies the three properties (1.19), (1.20) and (1.21). Such functions will be
called conductivity functions.

For two-component composites Bergman [2] deduced the integral representa-

tion

(1.25) o* =0, ~ °zf0 5 — 2

for the conductivity function, where p is a positive measure depending on x1(x)
and

(1.26) sy =0,/(0, — 0y).

A rigorous proof of this representation was given by Golden and Papanicolaou
[9]. The representation clearly separates the analytic dependence of o* on a; and
o, from the dependence on the geometry: the measure p characterizes the
relevant features of the composite geometry and does not depend on the values of
0, and o,. Similar integral representations were obtained independently by Lysne
[17] and Fuchs [8] based on specific models of the composite; see also Korringa
[16].

Bergman’s integral representation (1.25) has been successfully used to bound
the effective conductivity o* given limited information about the composite
geometry. When |s;| > 1, the denominator in (1.25) can be expanded and we
obtain the series

(127) ot = 0= 0, L s}
i=0

for the effective conductivity in terms of the moments

(1.28) u® = fo "2dp(2)

of the measure. This series is an expansion about a homogeneous medium o, = o0,
(s = o0), and the representation (1.25) provides the analytic continuation of this
series to the full domain of analyticity of o*. Alternatively, by choosing g, = 0,
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and expanding (1.16) in powers of 1/s, we deduce that
(1.29) w0 = [ &% (xl) ‘wee*.
Q

In particular we have
(1.30) p@ =p,,

where p, is the volume fraction occupied by component 1. In general, p(®
depends on the correlation function that gives the probability that a configura-
tion of { + 1 points lands with all points in component 1 when placed randomly
in the composite; see [5]. For isotropic materials the expression for u® reduces to

(1.31) p® = pyp,/d,
where d is the dimensionality of the composite.

The relations (1.30) and (1.31) can be regarded as constraints on the measure
. The measure must also satisfy the constraint

(1.32) folw)— 1,

A

1~-1z

which follows because the wedge bounds imply that ¢* > 0 when oy, 0, = 0. By
finding the extreme values of o*, given by (1.25), as the measure p is varied over
all positive measures that satisfy (1.30), (1.31), and (1.32), Bergman [2] obtained
the Hashin-Shtrikman bounds

P p
1.33) o, + <o*<o,+ L
( ) @ 1/(0, — 0;) + p;/doy =720 1/(0y = 03) + p,/do,

on the effective conductivity of isotropic composites with o, > ¢;. These bounds
were first derived from variational principles by Hashin and Shtrikman [14]. They
found that the upper and lower limits correspond to the conductivity of assem-
blages of coated spheres (with sizes ranging to the infinitesimal) packed to fill all
space,

Subsequently, in independent work, Milton [20] and Bergman [3] used the
integral representation formula (1.25) to extend the Hashin-Shtrikman bounds,
and other bounds, to complex ratios of o; and ¢,. Complex conductivities are
needed to describe the response of the composite to oscillating applied fields in
the regime where the wavelength and attenuation lengths are much larger than
the composite inhomogeneities.

The representation formula (1.25) has also_been useful in estimating the
v‘ol‘ume fractions of the components given measurements of the complex conduc-
tivity at various frequencies (see [18]) and for modeling the frequency-dependent
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response of metallic particles in a ceramic matrix (see [8]) and of brine-saturated
porous rocks (see [13], [23]).

These successes motivate us to seek integral representations for the conductiv-
ity function of multicomponent composites. Considerable progress has already
been made. Golden and Papanicolaou [10], [11] developed an integral representa-
tion formula based on the observation, implied by (1.22), that

1.34 Im(o*/o,) 20 when Fm(o/0,) 20 forall i,
q q

where 0, the reference variable, represents one of the conductivities @y, 04,7, G,.
Their asymmetric representation incorporates a positive measure p which satisfies
certain Fourier constraints. A modified version of this representation is analyzed
in Section 3. Some additional constraints on the measure are derived in Section 4.
In Section 5 we develop an integral representation for multicomponent media
such that the moments or Fourier coefficients of the measure are related to the
coefficients in a perturbation expansion of o* of a nearly homogeneous compos-
ite.

2. A Representation Formula for Analytic Functions
of Several Complex Variables

We begin by giving an integral representation formula for a function of m

complex variables z;, z,,- - -, z,, when that function is analytic within the unit
polydisk
(2.1) D™= {|z] <1} X {lzz} <1} X -+ X {|z,/ <1}
and takes values in a half-plane. Given points z = {zj, 23, **, Z,,} and w =
Wy, Wy, * -, W, } let us introduce the Szégo kernel

m 1
22) S(z,w) =l 17—z = Y W Wt e 2

k=1 k7 k Hyy Mgy oy N2 0

on D™ X T™, where

(2.3) T = {Iwy| =1} X {{wgl =1} X -+ X {{w,| =1}

is the distinguished boundary of D™ and is denoted as the torus. The torus is
conveniently parameterized by the angular variables 6;, 6, -, 6, defined via the
relation

(2.4) w, = exp(i;) with 0 <6, <2m.
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We then have the following well-established theorem; see [15].

THEOREM 1. A function f(z) is analytic for z = {2y, 25, -+, z,,} € D™ and
has non-negative real part there,

(2.5) Ref(z) 20 forall z< D™,

if and only if it has the integral representation
(26)  f(2) =i f(0) + [ (25(z.w) = 1) du(03,0,,--,6,),

where the measure

du(6,,0,,--,8,) = Eriq_ (27) " Re[ f(rexp{if,}, rexp{ib,},
(2.7) ’

o+, rexp{if,})] db;, --- df

m

is positive and satisfies the Fourier condition

iy bk, = meexp{i(klﬁl +kofly + e kb)) dp(6y,6;,- -, 6,)
(2.8) |
=0 unless (ky, ky--,k,)€e2m0zm,

where Z = {0,1,2,--- Y and Z_= -7

s

An examination of the proof of this theorem (see [15]) shows that the
expression (2.7) for the measure can be replaced by

dp(8,,0,,---,6,) = lim o (27) " Re[ f(exp{ib, —¢;),

£, 8y, "y 6y

(2.9)
<« exp{if, —¢,})] 6, --- df

m?
Le., the measure is independent of the way the positive infinitesimals &,
£,'**, &, are taken to zero: there is no need to impose the restriction that
gy =gy,= ++ =g,

_The non-zero Fourier components of the measure p. are directly related to the
series expansion of the function f(z) around the origin z = 0 of the polydisk. By
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substituting (2.2) into (2.6) we have

f(z2) = im f(0)

(2.10)

n n . aa n —
+ 2( )y Ay, myyeny mpZ1 1222 me) @9,0,,0"
ny, g, 20

Thus the function f(z) has the series expansion

(2.11) f 2} = ¢ . z"lz"! - znm’
Ny Moy By 142 m

My Mgy Ny 2

where the coefficients ¢, ,, are given by

-
ag g0+ iFm f(0) if ny= -+ =n,=0,

My g, My 28, e otherwise.

(2.12) ¢

3. An Asymmetric Representation Formula for the Conductivity Function

The analysis of this section is based on the work of Golden and Papanicolaou
[10], [11]. We obtain a representation formula for the n-variable conductivity
function in terms of a measure on the (n — 1) torus T"~1. The representation is
asymmetric because one of the variables, the reference variable, plays a special
role in the representation,

Let us choose o, for some g € {1,2,---, n} as our reference variable. Let us
also define the conductivity ratios

(3.1) h§‘7) =g¢,/0,

for j =1 up to j = m, excluding j = g. We assume that the dummy index j in
any variable xj("), such as hj."), runs over the set {1,2,---,g— 1,9+ 1,-++, n})
skipping j = q.

The next step is to notice that we can eliminate one of the variables from the
conductivity function because the function is homogeneous of degree one (see
[2]). Specifically the homogeneity relation (1.19) with A = 1/0, implies

(32)  o*(ay, 05, -, 0,) = oqo*(h{q),- L B9 R, hf,j’)).

Therefore we should focus on finding a suitable representation formula for the
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(n — 1)-variable function

m,(h®) = mq(;,{q), o B@ R, ..,hg,;n)

(3.3)
_ o*(h{q),‘ .- hgq—)l’l’ h51q+)1:' e, hs,‘,])):

where A% denotes the point {A{?,---, kD), h(®, .., AP} in complex Eu-
clidean space. From (1.22) we have

(3.4) Fmm (hD) > 0

on the domain

(3.5) U= {(Fmh® >0} X {Fmh® >0} X --- x {Fm D > 0},

mn

To apply the representation formula of Section 2 we need a one-to-one
analytic mapping between the upper half-plane U and the unit disk D. There are
many fractional linear transformations which do this. Let us introduce the
variables

() 9= (1= h) (1 + hg0)
for all j # g, in terms of which
() b= i(1 = 501+ 2g0).

The mapping (3.6) maps the upper half-plane U onto the unit disk D and takes
the positive real axis to the unit semicircle in the upper half-plane: the points
h{®=10,1, oo and i get mapped to z{9 =1, i, —1 and 0, respectively. Other
choices of fractional linear transformations would suffice. For example, Golden
and Papanicolaou [10], [11] use the fractional linear transformation z{8) =
(1 =il — AO)/11 + i1 - h$9)] which also maps U onto D. We have found,
however, that the choice (3.6) simplifies subsequent formulae.
From (3.4) it follows that the function

L-4) i1-2p)

3. @Dy = iy |22 L T2
( 8) fq(z ) lmq 1+qu) ] ’ 1+Z'(”(1)

has positive real part on the unit polydisk D"~ Therefore the conductivity
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function m (h{?,-- -, h{?) has the representation
mq(h{q),- - hf,‘l))

(3.9)
- ; i ) widy — (@ ... g@)
=@e(mq(l, l,---,l))+l./;~"~‘(2S(z(q7Wq) 1) dp‘q(gl s s Uy )

where z(9 and w(® represent the points

=k iR, i— k), i—hw}

(l]): e 3 T
(310)  :z {i+h§‘1)’ TP+ R i+ R, i+ h{P

(3.11) w@ = {exp(i()l(")),---,exp(qu(Z)l),exp(iﬁq(i)l),-'-,exp(z:t?,,("))},

and 8{2,0{7 -, 6(9,,6(7,---, 6P represent angular variables that parame-
terize the torus 7"~! on which the positive measure

d“q(al(q),' T 0‘1(2)1’ 0(1(1)17' B 0"(0))

(3.12) = lim (M)""”%[fq(exp(iel(q) — @),

49, -, e 0
e ,exp(iﬂn(") - ef,"))] dosD .. dow

resides.
Notice that when z{? = exp(if{? — ¢{?) the formula (3.7) for h{® reduces

to
- —i[exp{i%(ﬂf") + is}"))} - exp{ —i%(ﬂj(‘” + is}"’)}]
hit = [exp{i%(ﬁj(") + isf.q))} + exp{—ﬁ%(ej(q) + ig}.‘l))}]

= tan(3(6(® + ie?)).
So from (3.12) and (3.8) we find that
ity (60, 08, 08,0+, 0)

(3.14) = lim (27r)_"+1fm[mq(tan%(01(") + igl®),

D, D 0*

o, tank (69 + )] 46D - - d6l).
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Taking complex conjugates we obtain the alternative expression

dﬂq(01("’,- S, 049, 059, - ..,0“(q))

(3.15) = - lim

of, .., D -0"

(277)-n+ljm[mq(tan%(gl(q) + i),

.-+, tand(649 + ,-qu)))] doso ... 4o

for the measure.
Of course, the measure must satisfy the Fourier constraints
frn—lexp{ (k{960 + ... +k'(|q)0n(q))} d“q(gl(q)’. -, 0@) =0
(3.16)

unless (k{"),- kO kD k,(ﬂ)) ez"luzrt,

Furthermore, since the wedge bounds (1.24) imply that m (k(9) is real and
non-negative when the conductivity ratios h}") are real and non-negative, it
follows that the measure dp (69, - -, 6{?) is zero on the subregion

(3.17) Ti'={0g0@<n}x - x {056 <)
of the torus 77~%. In some sense the subregion T"~! is like a multidimensional

square “patch” on the torus 7771, The measure must vanish on this patch.

4. Additional Constraints on the Measure in the Asymmetric
Representation Formula

The measure p ¢ is clearly positive, satisfies the Fourier constraints (3.16), and
is zero on the region T"~1. There are, however, additional constraints which arise
because we have not accounted for all the analytic properties of the conductivity
function. Specifically we have not accounted for the fact that

(4.1) Fmm,(hP) > 0
on the domain
(4.2) Up=t = {SmhP) > 0} X - x {Fm hP > 0)

for p =1 up to p = n and not just for p = g.
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Equivalently we have not accounted for the fact that the family of measures
1, are positive and satisfy the Fourier constraints for p = 1 up to p = » and not
just for p = g. Let us suppose that p # ¢ and let us try to express p, in terms
of p,.

The first step is to obtain a relation between the angular parameters on the
two tori. The identity

(4.3) 0,/0, = (oj/op)/(aq/op)

implies

hiD spip) h i # p,
(4.4) po = |/ when TP

/ 1/hip when j = p.

Hence we have

tan%oj(‘l) == tan%ﬂj(m/taﬂ%aq(p), J o p
(4.5)
= g — (P}
0;4) = q qu .

This non-linear map defines a correspondence between points on the torus on
which p, resides and points on the torus on which p, resides.

Notice that when ") =0 and 6"+ 0 for all j+gq we have 61 =
(w, m,- - -, m) irrespective of the values of 0j(1’), i.e., many points get mapped to a
single point. Similarly when ” =7 and 6{? # « for all j+ g we have
89 = (0,0,--,0) irrespective of the values of §{”). To avoid complications
resulting from this non-uniqueness, which would prolong the analysis, let us only
consider “suitable” conductivity functions. A “suitable” conductivity function is
one for which the distribution functions

g,(6,- -, 8M)
(4.6) ; La)) 4 80 19(0) 4+ ;8
= lim Im|m,((tan30?) + i8(,- - -, (tan36N) + i8] )]
8D ... 800t
exist for all i, and for which there is negligible contribution to the measure in the
vicinity of points where 67 = « or 0 for some j, specifically for which

(4.7) lim [ dp(68,-+-,80) =0,
e=0 Se, s

(4.8) lim [ dp, (6", -, 60) =0,
€0 Sn’../
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for all i and all j, where S, ; and S/ ; are the strips

S,;={0g6"<2a}x- x{n-—e<fP<m+e}

(4.9) X"’X{Oég,,(i)<27r},
Sii={0sf<2m}x - x {-e<f0 <e)
X oo X {Oéon(i)<2'”},

of width 2¢ around the torus 771,
Even if a conductivity function 6*(oy, 0,,- -+, 0,) is not suitable, there may
exist a sequence of suitable conductivity functions o*(oy, 05, -, 6,) which

converge pointwise to 6*(oy, 0y,- «, 0,) as n = 0. Then o*(0y, 65, * -, 6,) can be

approximated by o*(0y, 0,,- -, 6,) by taking 7 sufficiently small. For example,
the sequence of conductivity functions

(4.10) “n*(“b Uza"'aﬂn) = [“102 C’n]n[o*("h“z""’Un)]l_m,

may be suitable for 1/n 2 7 > 0 even when ¢*(a;, 0,,* - -, 0,) is not. In particu-
lar, for r = 2, the conductivity functions

(4.11) o = (010) "[3(or + )]
are suitable for > n > 0 even though
(4.12) o* = 1o, + 0,)

is not: the measures du,(8") and dp,(6{?) of the conductivity function o* have
Dirac delta function distributions at 8 =« and at ® = 7 whereas the
measures of o* do not. (Their distribution functions become more sharply
peaked as  — 0.)

We expect that any conductivity function can be expressed as the limit of a
sequence of suitable conductivity functions. If this is true then there is no loss of
generality when we restrict our analysis to the class of suitable conductivity
functions,

Since there is negligible contribution to the measure in the vicinity of points
where §(7) = 7 or 0 for some j, let us suppose that

(4.13) 9,"’) #0 or « forall j=p,

or equivalently that h}”) # 0 or oo for all j # p. Thus we shall focus on finding

the relation between the measures p., and p » on all regions of the torus except on
those surfaces excluded by (4.13).
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It follows from (3.14) and (4.6) that
(4.14) dp, (60, 8)) = (2m) "+ g, (00, -+, 60) dbSD - 6.
Now the homogeneity property of the conductivity function implies
(4.15) mp(hip)’. .., hff)) = hff’)mq(h{"),-- . hf,q)),

where the conductivity ratios h(? are given in terms of the ratios h$P) via (4.4).
Consequently from (4.6) and (4.15) we deduce that

gp(gl(p),...,grfp))

= lim fm[((tan%l?q(”)) + iB,SI’))

3{[1)’. ..'B'SP)__.()Jr
(4.16) qu((tan%ﬂf")) +i8(®,- - -, (tanif@) + iB,f‘”)]

= tan§0;P>8 lim  Sm|[m,((tan36(?) + i8{7,

(9. .. 5P 0%
., (tan 26@) + i8{)],
where the quantities

2 .
[b‘j(”) tan65P — 87 tan%@“”]/[tan%()q(”)] when j # p,
(417) 8@ =

~8‘§1’)/[tan%0q(”)]2 when j = p,

are infinitesimal. To establish a direct correspondence between the two dlstr'll?u-
tion functions g, (657, -+, 6) and g, (89, -+, 8(9)) we need to let the positive

itesi i at the resultin
infinitesimals (P, - -, 8{) approach zero in such a way %1 he re wheﬁ
infinitesimals 8{?,- -+, 8{? all have the same sign. This can be achieve

tan}0” < 0, i.e., when
(4.18) hiP < 0.

Under the conditions (4.13) and (4.18) the infinitesimals 8(@,- -+, 8 will be
negative provided we let 8{?),- - -, §{P) approach zero with

(4.19) 87 > §{P) tan$0(P/tan3 657
for all j # g. Then (4.16) implies

(4.20) gp(91“”,' . .,g"(p)) =\tan§oq(”|gq(01(‘l),- ., 09).
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Now suppose, alternatively, that
(4.21) hff’) > 0.
Two possibilities can then occur: either h§1’) > 0 for all j, in which case
(4.22) gp(gl(p),...’ gn(p)) = 84(01("),' . .’gn(q)) = 0;
or h$”) < 0 for some j # q. In the second case it follows from (4.4) that
(4.23) hP = WP /hP < 0
and consequently (4.20) and (4.5) imply
gp(gl(p)’. . .’g"(p)) =|tan%0j(")|gj(3fj),' . .’gn(f))
(4.24) = |tan6$| | tantg g, (60, - -, 40)
=|tan%0q(1’) ng(gl(q),. <, 889).

In summary, the relation (4.20) between the distribution functions
g,(6{P, .- 8Py and 8,(8{9,- - -, 8(D) holds irrespective of the sign of AP,
Thus the measure p » 1S positive if and only if the measure p, is positive: qno
add.it.ional constraints are imposed on the measure by requi;ling that u  be
positive for all p # g. Presumably, this result extends beyond the clas{; of
suitable conductivity functions and holds for any conductivity function.

The Fourier constraints on the measure 1, In conjunction with (4.20) imply
that, for all p # ¢,

fT"_ldﬂf’) doge) .- dgo)| tanf(P exp[i (kPO + . .. +k@P)]
(4.25) ng(2 tan‘l[taniﬂl(f’)/tan%ﬂq(-”)],- e — H;P),
,2tan‘l[tan%ﬁn(”)/tan%ﬂq(l’)]) =0

unless (kl(‘?),- o kDL kD k'(’q)) ezrtyznt,

This imposes a set of non-

trivial constraints on the distribution function
8q(01(q),' ., g}fq),. .-, g"(q)). Bec

ause of their complexity, it is questionable whether
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these constraints could be used in a constructive manner. Let us theref_ore seek
another representation of the conductivity function for which the constraints take
a simpler form.

5. A Symmetric Representation Formula for the Conductivity Function

A symmetric representation, which treats all variables of 'the conc!ucti\fity
function 6*(ay, 0,, - -, 0,) on an equal basis, is easily obtained if we avoid using
the homogeneity relation to eliminate one of the variables. We then find a
representation for the function in terms of a measure on the torus T". The
homogeneity relation gives an additional constraint on the measure.

Since the dissipation property implies 6*(0y, 05, - -, 6,) has positive real part
on the domain

(5.1) H"= {Reo, >0} X {Rea,>0} X -+ X {Req,> 0},
let us introduce the variables

(5.2) z;=(1~ oj)/(l + a;)

in terms of which

(5.3) o= (1 —z)/(1 +z)

These are suitable variables because the fractional linear trapsformatign '(5.2)
maps the right half-plane H onto the unit disk D with .the points o; = 0, i, o,
anc? 1 getting mapped to z; =1, =i, =1 and 0, respectively. It follows that the
function

= a* -z 1-2 1-2,
(5.4) f(z) =0 T+z°'1+z,° 142z,

has positive real part on the unit polydisk D", Hence from Theorem 1 the
conductivity function has the representation

G*( U]_a 0’21‘ t 0y 0")

(55) " (1+0)
B f"[_l " 2l}—=-]:l (1 +'0’/¢) - (1 - :k)exp(—iﬂk) ] d“(al’ 02’ ? an))




664 G. W. MILTON AND K. GOLDEN

where the measure
d:u‘(ﬁb by, -, ‘9n)

= lim  (27) 7" Re[f(exp{if, — &},

. 6y —0

<+ ,exp{if, —¢,}] d6, --- d6

n

() =, lm (0" Relor(~itnd(s, + ix),

oo, —itani(4, + ie,))] d8, -+ d6,

= im  (27) " Sm[o*(tani(8, + ig,),

&t g0t

<+, tan3 (6, + ie,))] db, -+ df

n

satisfies the Fourier constraints

5 Qi kyro ke, = _[T"exp{i(klﬂl + o +k,8,)) du(6,,8,,-,86.)

=0 unless (ky, ky,--,k,) €2" UZ".
The homogeneity relation (1.19) with A = —1 implies

(5.8) 0*(01"’2,"""") = _“*(“Ula—%"" -0,)

4 n

and it follows directly from (5.6) that the measure is symmetric in the sense that

(5.9) w(8y, 85,0, 60,) = p(2w ~ 6,27 — 0,270 —8,).

n

I(llonsequently all the non-zero Fourier coefficients of the measure are real and we
ave

(510)  ap 4o = fT"cos(k101+ s k,f,) du(8,,8,, -, 8.),

(5.11)

a =
—ku—kz,“':—k,. akl:ki»"'r /C,,'
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From the representation formula (5.5) and the symmetry (5.9) of the measure
it follows that the conductivity function is necessarily real symmetric. We have

a*(ol’ 02’.-.’o'n)
" (1+35,) ]
= -1+2 = = - d 6:0""’071
fT" kE[l (1+a,) ~ (1-a,)exp{if,)} w0, )
(5.12)
" (1+4d,) ]
= -1+2 o - s d 0’0""5911
[ sy =a=—snen=my | (0 b b)
= 6*(6),0,, -, 0,).

The measure p satisfies some other simple constraints. The normalization
constraint (1.20) on the conductivity function together with (5.5) implies

(5.13) andu(()l,Hz,- -, 8,) =o*(1,1,---,1) = 1.

Thus the measure g has unit mass.

The wedge bound (1.24) implies o* is purely real when the conductivities
0y, 0y, * *, 6, are all purely real and non-negative or all purely real and non-posi-
tive. Consequently we have

(514) du(8,,0,,-+,6,) =0 when (6,,6,,---,6,) € TL UT.,

where
(5.15) T_';-—-={0§01<7r}><---><{0=_<_0"<7r},
(5.16) T"={7<f g2r} X xX{w<, <27},

are subregions of the torus T”. Thus the measure vanishes on two multi-dimen-

sional square “patches” on the torus.
To see what other constraints the homogeneity relation imposes upon the
measure, let us, for simplicity, assume that the distribution function

g(al" ! "071)

= lim  Sm[o*(tank(8, + igy), - -, tan3(6, + ie,))]

gyt e gy 0

(5.17)

exists. It then clearly follows that

(518) dIJ'(ola 02" T 0::) = (271)_"g(01, 027' Ty 0") d81 d02 e dan
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and using the homogeneity relation we deduce that, for all A € R,
g(013' " 0")

= (1/A) lim o Fm[o*(Atani(6, + ig),
(5.19)

-+, Aani(0, + ie,))]
= (1/A)g(2tan"}(Atanig, ), --,2tan"}(Atan}d,)).

”1_"hus the homogeneity relation imposes a non-trivial constraint on the distribu-
tion function. Given the distribution function at a point (8, 8,,--+,8,) on the
torus (c?ther than those points where 6,=0 or 7 for all j) we can use"(5.18) to
determine the distribution function along an associated trajectory of points
(2tan"}(Atanid,),---,2 tan"'(A tan}6,)) parameterized by A.

One advantage of the symmetric representation is that the Fourier coefficients
of the measure have a direct interpretation in terms of the coefficients in the
pertqrbatlon expansion of the effective conductivity of a nearly homogenecus
multlco.mponent composite. To develop this expansion, notice that the formal
expression (1.16) for the effective conductivity o* with oy = —1 reduces to

n -1
o*=-—1+er*-[Z(1+oj)_lxj—I’} e* dx
(5.20) ah

n -1
=—1—2/e*.\p_zzjxj e* dx,
Q j=1

where z, is given by (5.2), ¥ is the operator
(5.21) ¥=2I-1,

and we h =yn
satisﬁ; ave used the fact that 7 = X7_,((1 + 9)/(1 + 0,))x ;. The operator ¥

(5.22) \I,Z =]

3

ie., it is its own inverse. It follows that

n

-1
I-y zjxj‘I'J

j=1

n -1
[‘I' - X Z,-x,} =¥
j=1

(5.23)
n n

=¥ 4+ sz‘I'xj‘I'+ hN Zz,zj‘lfxi\ij‘I'+ R
j=1

i=1 j=1
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By substituting this into (5.20) and noting that
(5.24) Pe* = —e*,

we obtain the perturbation expansion

n L

o =142 z(e*, x¥e*) +2 1, ¥ zz,(e*, x,¥x,;¥e*)

J=1 i=1j=1

(5.25)

n n n
+23 Y % Zizjzl(e*a XI\I,Xj\I'Xl\I,e*) SR

jel je=1 =1

where the brackets denote the inner product
(5.26) (h.g) = th(x) - g(x) dx

between any two vector-valued Q-periodic functions.
From (2.10) and (5.5) we have the alternative perturbation expansion

* _ \ ki ks ... Sk
(5.27) " = ) Chy kg 21 227 Zy"s
kykge o k20
where
(5.28) ¢ _ | 40,000 if k= =k,=0,
. kyykgyer, Ky 2a, 4 .. otherwise.
Ty 22777 Py

By comparing this with (5.25) and equating coefficients we obtain formulae for all
the Fourier coefficients. For example we find that

(5.29) a0,0,-",O = 1’
k
(530) ag...0, kj,0,+4,0 = (9*, (X]‘I') ’e*),
(5-31) a3,1,0,0,,0 = (e*, XllPXz‘I'e*) + (3*, Xz‘I’Xl‘I'e*),

and so forth.
For any medium, the first-order coefficients in (5.25) can be easily computed,

(5.32) (e, x¥e*) = —p;,

where p; is the volume fraction of component j. If the medium is further
assumed to be statistically isotropic, then the second order coefficients can be
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computed as well (see, e.g., [2], [12]),

- 21’in Pt

(5.33) (‘—’*,X;‘I’xj‘l’e*) _ 7 d ] )
Z(Pi'—.pi) L

pit —a =l

where d is the dimensionality of the system. For two-component media, (5.25) to
second order becomes

0* =1—2[pyz + p,z,]

2 2
(534) 2[212(;;1 + _____P;Pz) + zzz(p2 + Plpz) + zlzz(l - ____4P611P2)]

d
+ e

]

and for three-component media,

o*=1-2[pyz; + pyz, + D323]

4
+ 2[2122(171 +p - P;‘Dz) + 2123(p1 + py — %)

d
(5.35)
4 2 p, — p?
+2223(P2 +p3 — %‘3') + 212(P1 + —-——-—(pld pl))
2(p, - pd)

2
+Z§(Pz+ = )+z32(p3+ ey

Appendix

Proof of an Elementary Bound on 0*, As mentioned in the Introduction, one
of the pnncipal uses of representation formulas for o* has been to derive bo’unds
on ¢* assuming various amounts of geometrical information, as well as knowl-
edge of the ;. In this appendix we prove a bound on any f(z) in Theorem 1 with
Fom f(0) = 0 which assumes knowledge of the z’s, and that the mass of the
measure in (2.6) is equal to 1. The extremal measures which yield this bound were
used by Golden [10]-{12] to conjecture optimal bounds on o*. These bounds on
o* were subsequently proven by Bergman and Milton [4], [21].

. "I"he proofs of our result here and the related bounds on ¢* are based on the
trajectory” method of Bergman [2), [4], where f as a function of m variables is

treated as a function of a single variable by consider
. : sideri
one-dimensional trajectory through C™. ’ "e Jon & (complex)
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Before stating and proving our results, we would like to describe why it has
some mathematical interest independent of the context of composite materials.
Let M{" = {positive measures ¢ on T ™ satisfying the Fourier condition (2.8) and
ag,g,..0 = 1}. Since M" is convex and compact (in the weak* topology over
continuous functions on T™), it has extreme points. The simplest examples of
extreme points of M{" are of the form

dé dé
(A1) p=8ps(dby) X 2_,,,2 X X525,

and permutations of these, where 8y is a single point measure concentrated at
6*  [0,27). However, Rudin [22] and McDonald [19] have given examples of
other extreme points of M, m z 2, not of the form (A.1), and the full set of
extreme points is unknown. (For m = 1 the only extreme points of M{ are single
point measures 8, 6;* € [0,27).) The bound that we are interested in is just the
range B of values of f(£) in (2.6) for fixed £ € D™ as p varies throughout M"
Now, for fixed Z € D™, (2.6) defines a linear functional

(A2) f(w): M > C.

The image B of M{" under f; is obviously a compact convex subset of C.
However, since it is not known what all the extreme points of M;" are, it is not a
priori clear what the extreme points of B should be. Nevertheless, we prove in a
simple manner that B is a particular closed disc in the right half-plane,
and furthermore, that the circular boundary C of B is parametrized (when Z =+ 0
and max, g ;< ,{12,]} = |z]) by the measures in (A.1) as 6;* varies between 0 and
27r. Thus the functional f;(p) sees only the simplest extreme points of M{" since
B is the convex hull of the images of the measures in (A.1).
Without loss of generality, we take £ f(0) = 0 in (2.6). We now state

THEOREM 2. Let = (z,7++,2,) € D™ mz1, be fixed with £+ 0 and
max, ¢ ;< m{12;[} = |21} Then the range B of values of f(z) in (2.6) (with
I f(0) = 0) as p varies in M{" is a closed disc in the right-half plane with
boundary C which is a circle that is symmetric about the real axis and intersects it at
the points a and 1/a, where a = (1 + |z())/(1 — |z,). Moreover, C is parametrized
by measures of the form (A1) as 6:* varies between 0 and 2.

Proof: For simplicity, we give the proof for D%, but this same proof goes

through essentially unchanged for D™. For fixed (zy, z,) € D%, with |z = |z,
let a = z,/z;, so that |a| < 1. Now define the following for z € D'

(A.3) g(z) =f(z,az).

Since az € D' when z € D! and since f is holomorphic and has positive real
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part on D2, it follows that g(z) is holomorphic in D! and has positive real part
there. Consequently (see [1]), there is a » € M, the set of positive measures on
[0,24r), such that

et + g
e — 2

(A.4) g(z) =f0 dv(1).

By expanding both sides of (A.3) in powers of z, it is easy to see that v belongs to
the set M} ¢ M, ie., the measures in M! with unit mass,

(A.5) foz"dv =1.

For a'my.ﬁxed z € D, the range B(z) of g(z) in (A4) as v varies in M} is a
clolse.d disc in the right half-plane. This follows since the set of extreme points of
Ml is 'equal to {p(dt), 0 < 6* < 27}, and the kernel in (A.4) is fractional
linear in e’, with e’ # z, for any 6 € [0,27). The boundary C(z) of B(z) is
easily seen to be a circle which is symmetric about the real axis and intersects it
at the points b and 1/b, where b = (1 +1z[)/(1 ~ |z|). These two points are
generated by the above extreme measures with §* = argz and 6* = 7 + arg z
respectively, where “arg” denotes argument. ,

Now to each p & M there corresponds a » & M{. For any fixed z € D, the
vah.xes of f(z, az), as p in (2.6) varies in M, lie inside B(z). In particular’, by
taking z = z,, we establish that f(zy, z,) € B(z;) when |z,| < lz1).

That the boundary C(z,) of B(z,) is attained by measures pE M™ is easily

seen by substituting measures of the form (A.1) i to (2 i i
e oy, (A.1) into (2.6). After integration we

(A.6) fa,z) = (1+ ze=) /(1 - ze™i),

This generates the entire boundary C(z,) as 6i* is varied in 0 < 0 < 24,

Applying Theorem 2 to o* in (5.5) immediately yields a bc_)—un(li on o* which
assumes @pwledge only of the ¢,, and nothing about the geometry. This bound
however, is not optimal. The optimal bound was conjectured by Golden [10]-[1 2i
and was subsequently proven by Milton [21].
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