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Order to disorder in quasiperiodic composites
David Morison1, N. Benjamin Murphy2, Elena Cherkaev2 & Kenneth M. Golden2✉

From quasicrystalline alloys to twisted bilayer graphene, the study of material properties

arising from quasiperiodic structure has driven advances in theory and applied science. Here

we introduce a class of two-phase composites, structured by deterministic Moiré patterns,

and we find that these composites display exotic behavior in their bulk electrical, magnetic,

diffusive, thermal, and optical properties. With a slight change in the twist angle, the

microstructure goes from periodic to quasiperiodic, and the transport properties switch from

those of ordered to randomly disordered materials. This transition is apparent when we distill

the relationship between classical transport coefficients and microgeometry into the spectral

properties of an operator analogous to the Hamiltonian in quantum physics. We observe this

order to disorder transition in terms of band gaps, field localization, and mobility edges

analogous to Anderson transitions — even though there are no wave scattering or inter-

ference effects at play here.
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In the late 1980s it was shown that in a composite patterned
after a crystal, such as a dielectric material with a periodic
lattice of voids, electromagnetic waves of certain frequencies

and directions could be prohibited from propagating within the
structure1,2. This observation established a powerful analogy
relating photonic band gaps to electronic band gaps in metals
and other condensed matter. Thus solid state physics and
Anderson localization was brought to optics1–4, leading to the
development of photonic crystals and theories of controlling the
flow of light through structured media. The discovery of
quasicrystals5–7 demonstrated that geometries with predictable
long range order but no periodicity could play an important role
in physics and materials science. This led to the development of
photonic quasicrystals8–17, with the conceptual framework again
provided by the analogy with quantum transport in solid-state
physics.

Motivated by these findings and the highly active field of
twisted graphene bilayers18, with Moiré patterns tuned by the
twist angle to take periodic and aperiodic geometries, here we
construct a class of deterministic, two-phase Moiré-structured
composite materials in two dimensions. This construction enables
us to study in several physical settings how classical transport
behaves in the transition from periodicity to aperiodicity. Indeed,
rather than a governing wave equation like Schrödinger’s equa-
tion for quantum transport or the classical wave equation for
electromagnetic transport17,19–21, problems involving electrical
conductivity σ, thermal conductivity κ, complex permittivity ϵ in
the quasistatic limit, or diffusivity D can all be formulated in
terms of the same divergence form second-order elliptic equation
(2) below, and do not involve any wave interference or scattering
effects. Bulk behavior is analyzed in terms of the Bergman-Milton
(or Stieltjes integral) representation, which holds for the effective
parameters σ*, κ*, ϵ*, D*, etc.22–25. It involves a spectral measure
μ of a self-adjoint operator G, which plays the role of the quan-
tum physics Hamiltonian and depends only on the mixture
geometry. In discrete settings, G is a real-symmetric matrix. The
measure μ, local electric field E, displacement D= ϵE and current
J= σE are all determined by the eigenvalues and eigenvectors of
G. One of our main results is that through this spectral distillation
and recent results on computing μ26 and analyzing its behavior
with random matrix theory27, we establish a powerful analogy
between various classical transport processes in periodic and
quasiperiodic composites, and quantum transport with localiza-
tion and band gaps in solid state physics, as was done for optics in
photonic crystals and quasicrystals in the scattering regime. We
emphasize, however, that our results apply broadly to transport
phenomena in settings described by Eq. (2), with no restriction
on the length scales in the systems involved, except for the
condition imposed on the microstructural scale by the quasistatic
assumption that must be satisfied in the context of complex
permittivity.

Results and discussion
We find that as the geometry is tuned from periodic to quasi-
periodic, the eigenvalues, eigenmodes, profile of ϵ*, and locali-
zation properties of E undergo an order-to-disorder transition
analogous to the Anderson transition. Our results are described in
the (quasistatic) electromagnetic case, but we keep in mind their
broad applicability. Spectral measures for periodic systems have
sharp resonances that induce dramatic variability in band and
absorption characteristics, and in profiles of ϵ*. Regions of
extended eigenstates are separated by “mobility edges” of loca-
lized states, and E is localized for certain frequencies and exten-
ded for others. As the geometry is tuned to aperiodicity, the

behavior of μ and ϵ* resembles that of the 2D random percolation
model at its threshold, with a regularly distributed mixture of
localized and extended eigenstates giving rise to tenuously con-
nected current paths, pronounced spectral endpoint behavior,
and Wigner-Dyson eigenvalue statistics with strong level
repulsion27.

Our investigation here of quasiperiodic media was motivated
not only by the findings for random media in ref. 27, but by much
earlier studies which revealed sensitive, discontinuous depen-
dence of bulk transport on the variations in local properties28,29.
For example, it was found in one dimension with local con-
ductivity σðxÞ ¼ 3þ cos x þ cos kx, which is periodic for k
rational and quasiperiodic for k irrational, that the effective
conductivity σ*(k) is discontinuous in k28, with 2D examples in
ref. 29. These studies, in turn, were motivated by the discovery of
quasicrystals and findings on the spectrum of Hamiltonians with
quasiperiodic potentials30–32.

The spectral characteristics considered here govern the optical
properties of nanostructured bimetallic films33,34 and deposi-
tions of nanosized metal particles on thin dielectric
substrates35–38, which change as a function of heterogeneous
surface structure composition and geometry. This enables tun-
ability of their optical responses for nano-plasmonic device
applications33–38. The long wavelength quasistatic assumption
holds in the visible range39, and these systems are described
macroscopically by the Stieltjes integral representations for ϵ* or
σ*. Resonances in μ explain giant surface-enhanced Raman
scattering observed in semicontinuous films34,40,41, and induce
strong fluctuations in E and the dielectric profile of ϵ*, associated
with the excitation of collective electronic surface plasmon
modes39. We numerically explore these phenomena in 2D
impedance networks with quasiperiodic microgeometry and
discuss our results using Anderson transition interpretations of
random matrix theory.

Effective transport in composites with Moiré-structured
microgeometry
We begin by introducing a class of 2D two-component compo-
sites whose microgeometries are based on Moiré patterns, and are
tunable to be periodic or aperiodic.

Constructing Moiré patterns. Consider the square bond lattice
joining nearest neighbor points in Z2, with standard basis vectors
e1 and e2, and the scaled rotation transformation T defined for
ðx; yÞ 2 R2 by

T : ðx; yÞ 7! ða; bÞ ; T ¼ r
cos θ � sin θ

sin θ cos θ

� �
: ð1Þ

The mixture geometry of the two phases is determined by the
characteristic function χ1, taking the value χ1= 1 in material
phase 1 and zero otherwise, with χ2= 1− χ1. The system
microgeometry is constructed from the periodic function
ψða; bÞ ¼ cosð2πaÞ cosð2πbÞ and the condition χ1(x, y)= 1 for
all ðx; yÞ 2 R2 such that ψ(T(x, y)) ≥ ψ0, and is zero otherwise.
We focus on the value ψ0= 0, which generates in the underlying
bond lattice a discretized composite microstructure with a
fraction p ≈ 1/2 of type one bonds. We do so to compare features
of deterministically tuned quasiperiodic systems to those of the
random percolation model near the percolation transition
p= pc= 1/242,43.

Primitive translation vectors for ψ are t1= (1/2, 1/2) and
t2= (1/2,−1/2). When r and θ are chosen such that T : ðme1 þ
ne2Þ 7! ðm0t1 þ n0t2Þ for integer values of m; n;m0 and n0, then χ1
has a finite period of, at most, K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ n2
p

, and has infinite
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period otherwise. The arrangement of r and θ such that K <∞ is
fractal in nature, as shown in Fig. 1. The arrangement of (r, θ)
values associated with finite periods is similar to fractal
distributions defined in terms of rational numbers on the real
line, such as Thomae’s function29.

An integral representation for effective transport coefficients.
The effective behavior of macroscopic transport in two-phase
composite materials is described by homogenized coefficients
including electrical and thermal conductivity, diffusivity, complex
permittivity, and magnetic permeability. These can all be defined
in terms of the same elliptic partial differential equation25,43. For
complex permittivity in the quasistatic regime, such as the metal-
dielectric mixtures in visible light discussed above, the system is
described locally by

∇ � ðϵ∇ϕÞ ¼ 0; ð2Þ

with potential ϕ, electric field E=−∇ϕ, displacement D= ϵE,
and local complex permittivity ϵ(x, y) taking frequency-
dependent values ϵ1(ω) or ϵ2(ω), where 〈E〉= E0 and 〈⋅〉
denotes spatial average. The fields E and D satisfy ∇ × E= 0 and
∇⋅D= 0, with ϵ= ϵ1χ1+ ϵ2χ2. See refs. 24–26 for a “weak” for-
mulation of this problem that rigorously accounts for the dis-
continuous, and thus non-differentiable nature of the parameter
ϵ(x, y) in Eq. (2).

The effective permittivity matrix ϵ* can be defined by
〈D〉= ϵ*〈E〉 with 〈E〉= E0, where E0= E0 ek for some standard
basis vector ek, k= 1, . . . , d, where d is dimension. Equivalently, it
can be defined in terms of system energy using hD � Ei ¼ ϵ�kkE

2
0,

where ϵ�kk is the kth diagonal coefficient of the matrix ϵ*, which
we denote by ϵ� ¼ ϵ�kk. Thus, the effective parameter characterizes
a homogeneous medium immersed in a uniform field E0 that
behaves macroscopically and energetically as does the inhomo-
geneous composite medium.

The key step in the analytic continuation method22–26 is the
Stieltjes integral representation for ϵ*,

FðsÞ ¼ 1� ϵ�

ϵ2
¼

Z 1

0

dμðλÞ
s� λ

; s ¼ 1
1� ϵ1=ϵ2

: ð3Þ

Here, FðsÞ ¼ hχ1E � E0i=ðsE2
0Þ and− F(s) plays the role of an

effective electric susceptibility. Equation (3) follows from applying
the operator−∇(−Δ)−1 to Eq. (2) and writing it as ΓD= 0 ,
where Γ=−∇(−Δ)−1∇⋅ is an orthogonal projection onto curl-
free fields and is based on convolution with the Green’s function
for the Laplacian Δ=∇2 24,26. Then using ϵ= ϵ1χ1+ ϵ2χ2=
ϵ2(1− χ1/s) and Γ∇ϕ=∇ϕ yields the resolvent representation

χ1E ¼ sðsI � GÞ�1χ1E0; G ¼ χ1Γχ1; ð4Þ
involving the self-adjoint operator G= χ1Γχ124,26. Applying the
spectral theorem to FðsÞ ¼ hχ1E � E0i=ðsE2

0Þ then yields24,26

equation (3), where μ is a spectral measure of the operator G.
A key feature of Eqs. (3) and (4) is that the material parameters

in s and the applied field strength E0 are separated from the
geometric complexity of the system, which is encoded in the
properties of the spectral measure μ and its moments
μn ¼

R 1
0 λn dμðλÞ. For example, μ0= 〈χ1〉= p, the volume frac-

tion (or area fraction) of medium 1. All of the effective
coefficients of the composite material mentioned above are
represented by Stieltjes integrals with the same μ44.

While the measure μ can include discrete and/or continuous
components25, it reduces to a weighted sum of Dirac δ-functions
δ(λ− λj) for media such as laminates, hierarchical coated
cylinder and sphere assemblages, and finite RLC impedance
networks22–26. Here, we investigate effective transport properties
of square two-component impedance networks in 2D of size M
with periodic and quasiperiodic microgeometry. In this setting,
G= χ1Γχ1 is a real-symmetric matrix of size N= 2M2, χ1 is a
diagonal matrix with 1’s and 0’s along the diagonal corresponding
to impedance type, and Γ ¼ ∇ð∇T∇Þ�1∇T is a projection matrix,
where ∇ is a finite difference matrix representation of the
differential operator ∇ 26. The measure μ is determined by the
eigenvalues λj and eigenvectors vj of N1 ×N1 submatrices of Γ
with rows and columns corresponding to the diagonal compo-
nents ½χ1�jj ¼ 1, with

dμðλÞ ¼∑
j
mj δðλ� λjÞ dλ; mj ¼ vj � χ1êk

� �2
; ð5Þ

j= 1,…,N1, N1 ≈ pN (total number of ϵ1 bonds), and êk is a
standard basis vector in RN1 26,27. In this case, Eqs. (3) and (4)
become finite sums with

FðsÞ ¼ 1� ϵ�

ϵ2
¼∑

j

mj

s� λj
; χ1E ¼ sE0∑

j

ðvj � χ1êkÞ
s� λj

vj;

ð6Þ
given explicitly in terms of the λj and eigenvectors vj of G26.

In the next section, we compute the spectral measure μ, hence
the local fields and the effective complex permittivity ϵ* for the
Moiré-structured class of composite materials described by Eq. (1)
above. We interpret the frequency dependent behavior of physical
quantities such as the phase and amplitude of ϵ*, and localization
and intensity of E and D, in terms of spectral properties of μ and
Anderson transition interpretations of random matrix theory.

Analysis
The Moiré system introduced above is parameterized by r > 0 and
0 ≤ θ < 2π, which generates a diverse assortment of periodic
(“finite period”) and quasiperiodic (“infinte period”) micro-
geometries. To numerically calculate mathematical and physical
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Fig. 1 Fractal arrangement of periodic systems. Sequential insets zooming
into smaller regions of parameter space. Dots identify Moiré parameter
(r, θ) values corresponding to systems with periodic microgeometry, where
short and large periods are identified by large and small dots, respectively,
revealing self similar, fractal arrangements of periodic systems.
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quantities, we consider finite subsets of these systems as RLC
impedance networks. Different types of microgeometries in this
class are displayed in Fig. 2a with small enough system sizes to
resolve the small-scale geometry while still illustrating the large
variety in structure, hinting at the geometric richness of our
Moiré composites. The bond color indicates the modulus value of
E, i.e., ∣χ1E∣, calculated via Eq. (6). Since χ1D= ϵ1χ1E these colors
also specify displacement values with a change in scale by ∣ϵ1∣. We
therefore normalize the computed fields to take values in the unit
interval.

It was shown in ref. 26 that expressions known in closed form
for the 2D percolation model in the infinite volume limit are well
approximated by ensemble averages of systems of size ≈70 and by
single systems of size ≈200. The Moiré-structured composites
studied here can have coherent structures on large length scales.
However, we found for a system size of 199 that fluctuations
present for smaller systems have essentially stabilized, with
numerical results visually identical for larger system sizes,
e.g., ≈250. A systematic study of system size dependence of
quantities and finite size effects is interesting and useful but
beyond the scope of the current manuscript.

Transport behavior in microstructures along a short trajectory
in parameter space. In this section, we investigate a small swath
of the large parameter space, for r ¼ ffiffiffiffiffi

10
p

=3 and θ ¼
arctanð1=3Þ þ ϕ for 0° ≤ ϕ ≤ 2°, starting from a short period sys-
tem. Figures 2b and 3a display examples of this region of para-
meter space and show that such a small change in the Moiré twist
angle θ gives rise to a dramatic transition in composite

microgeometry — from a short period system with orderly field
(or current) paths to quasiperiodic systems with disorderly,
meandering paths similar to those exhibited by the random
percolation model near p= pc.

When the fields are plotted versus s(ω), 0≤Re sðωÞ≤ 1 with
Im sðωÞ � 1 a frequency dependent localization/delocalization
transition of fields is revealed for small values of ϕ∈ [0, 2], as
shown in Figure 2b for ϕ= 1/8 and 1/2. In contrast, the fields for
angles closer to ϕ= 2 are more disordered and resemble those in
the random percolation model, and are qualitatively similar to the
rightmost panel in Figure 2b for all 0<Re s≤ 1. We investigate
these and other phenomena through mathematical and physical
quantities such as the spectral measure μ, correlations of its
eigenvalues, localization of its eigenvectors, phase and magnitude
of ϵ*, localization and intensity of E, etc.

A large variety of physical phenomena exhibited by inhomo-
geneous materials can be described by two-component RLC
impedance networks40. Each of the two components is created by
combining a resistor R, inductor L, and capacitor C in a way that
achieves an impedance characteristic of the material being
modeled. For example, a Drude-metal/dielectric composite is
modeled by R and L in series, in parallel with C for one
component, and C for the other39, yielding a plasma frequency
ω2
p ¼ 1=LC and relaxation time τ= L/R. As Kirchhoff’s network

laws are discrete versions of the curl-free and divergence-free
conditions on the fields in Eq. (1), these RLC impedance networks
really do resemble the continuum composites they are intended to
model39.

Indeed, the AC response and polarization effects observed in a
variety of conductor-dielectric mixtures at low frequencies are
modeled by an R− C network, while metal-dielectric composites
exhibiting collective electronic modes at higher, optical frequen-
cies such as (surface) plasmon resonances are modeled by an
RL− C network40,41. The dependence of s(ω) on frequency ω is
model specific. For the R− C and RL− C models, 0≤Re s < 1 for
0 ≤ ω <∞ and δ ≤ Im s < 0, where ∣δ∣ can be chosen as small as
desired, with Re s ! 1 and Im s ! 0 as ω increases40,41. In order
to give a model independent description of the phenomena
investigated here, we plot s-dependent quantities using
0≤Re s≤ 1 and Im s ¼ 0:001 fixed. For the sake of discussion,
we describe our results in terms of the optical regime for the
Drude model for gold/vacuum composites, which roughly
corresponds to the interval Re s ⪅ 0.2. The optical regime for
other material combinations corresponds to values of Re s
throughout the unit interval45.

As the frequency changes and s(ω) sweeps across the complex
plane, with s(0)= 0, the spectral measure μ, distribution of its
eigenvalues, and localization properties of its eigenvectors,
shown in Fig. 3, govern the frequency dependence of the phase
and magnitude of ϵ* and the intensity and localization of E and
D, shown in Fig. 4, according to the formulas in Eq. (6).
Keeping these formulas with Im sðωÞ � 1 in mind, we call
resonant frequencies the values of ω where Re sðωÞ � λj and the
masses mj of μ are largest (shown in red in Fig. 3) and/or there’s
a large density of eigenvalues λj with moderate to large values
of mj.

For the short period system with ϕ= 0 shown in Figure 3a, the
spectral measure μ in Figure 3b is comprised of sharply peaked
resonances. As ϕ increases and the composite microgeometry
becomes quasiperiodic, the resonant frequencies away from ω= 0
(λ= 0) spread out, change frequency locations, and diminish in
strength. As ϕ→ 2, the resonances in μ continue to spread out
until all but the Drude resonance at ω= 0 diminish, and μ and ϵ*

begin to resemble those of the random percolation model for
p= pc , shown in the rightmost panels of Fig. 3.

Fig. 2 Quasiperiodic composite microgeometry and Anderson localization
of fields. Moiré interference patterns generated by the transformation Eq.
(1) give rise to a large class of composite materials with periodic and
quasiperiodic microgeometry. (a) Various example subsections arising
from different Moiré parameter pairs (r, θ). Microgeometries in (a) are
shown with square system sizes 53 for the far left and 73 for all others,
small enough to resolve the small-scale detail yet illustrate the large
geometric variety. Geometry is illustrated by rendering χ1= 1 bonds and
omitting χ1= 0 bonds. Cool and warm colors correspond to near-zero and
large values of electric field ∣χ1E∣ or displacement ∣χ1D∣, respectively, with
the color bar at the top showing the saturated linear scale, normalized to
the unit interval. (b) Anderson localization of fields in quasiperiodic media.
Departure from short period system geometry is parameterized by ϕ.
Composite microgeometry parameterized by r ¼

ffiffiffiffiffi
10

p
=3 and θ ¼

arctanð1=3Þ þ ϕ for 0°≤ ϕ≤ 2° with system size 199. For small values of ϕ,
the fields exhibit a frequency dependent transition from localized (loc) to
extended (ext). Identical values of ϕ correspond to identical
microgeometries, and the differences in the values of ∣χ1E∣ are solely due to
frequency ω dependent material properties for different values of ω. As
ϕ→ 2, the local fields become similar for all frequencies away from ω= 0,
qualitatively resembling the rightmost panel in (b) (as well as that of the
percolation model near the percolation threshold p= pc27). The inverse
participation ratio (IPR) providess quantitative description of this
localization phenomenon.
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Resonances in μ have a physical interpretation in terms of
relaxation times in the transient response in the R− C model, or
in terms of dielectric resonances in the RL− C model40,41. The
dielectric resonances observed for the RL− C model with
percolative geometry have been argued to provide a natural
explanation for the anomalous fluctuations of the local electric
field E, which are responsible for giant surface-enhanced Raman
scattering observed, for example, in semicontinuous metal
films41. We show that the resonances in μ shown in Fig. 3 give
rise to dramatic fluctuations in the amplitude and phase of ϵ* and
the intensity of the fields E and D.

The inverse participation ratio (IPR) characterizes vector
localization phenomenon. For an N1-dimensional unit vector u

it is given by IPRðuÞ ¼ ∑iu
4
i , where ui is the ith component of the

vector u, i= 1,…,N1, and satisfies IPR(u)= 1 for a completely
localized vector with only one non-zero component and
IPR(u)= 1/N1 for a completely extended vector with all
components equal in value27. For matrices in the Gaussian
orthogonal ensemble (GOE), the eigenvectors are quite extended
with a mean asymptotic IPR value of IPRGOE= 3/N1

27.
Figure 3c displays IPR(vj) for the eigenvectors vj, j= 1,…,N1,

of G for various values of ϕ, as a function of the eigenvalues λj.
The red dots in Fig. 3b, c for ϕ= 0 and 1/8 show that resonant
frequencies correspond either to very extended eigenvectors or
“mobility edges” where the values IPR(vj) have large variability

Fig. 3 Frequency profile of the spectral measure and eigenvector localization. Composite microgeometry and fields, spectral measure μ, and eigenvector
inverse participation ration (IPR) plotted for various values of the Moiré twist angle θ, for 0°≤ ϕ≤ 2°, scale parameter r ¼

ffiffiffiffiffi
10

p
=3, and square system of

size 73 in (a) to show detail and of size 199 in (b) and (c). The color bars in the upper left of the panels are for reference and indicate Re sðωÞ corresponding
to impedances throughout the optical frequency range for a Drude model of a gold/vacuum composite. (a) Composite microgeometry and field intensity.
Cool and warm colors correspond to near-zero and large values of electric filed ∣χ1E∣ or displacement ∣χ1D∣, respectively, with color bar at the top showing
the saturated linear scale. (b) Masses mj of measure μ plotted versus eigenvalues 0≤λj≤1 of the matrix G. Red dots indicate the largest masses, used as
indicators in (c) below. (c) IPR values for the eigenvectors vj of G, IPR(v), plotted versus λj. Green and black horizontal lines indicate IPR values for Gaussian
orthogonal ensemble (GOE) vectors and completely extended vectors, 3/N1 and 1/N1, respectively. These quantities for the random percolation model at
the percolation transition, p= pc= 1/2, are shown in the rightmost panels for comparison.

Fig. 4 Frequency dependence of dielectric profile and field localization. Relative effective complex permittivity ϵ*/ϵ2 and inverse participation ratio (IPR) of the
modulus of the electric field, ∣χ1E∣, normalized to unity, IPR(E), plotted versus 0 � Re s � 1 for Im s ¼ 0:001 and various values of the Moiré twist angle θ and
r ¼

ffiffiffiffiffi
10

p
=3, for change in twist angle 0°≤ϕ≤ 2°. The color bars in the upper left of the panels are for reference and indicate Re sðωÞ for the optical frequency

range for impedances corresponding to the Drude model for a gold/vacuum composite. (a) Amplitude and phase of ϵ*/ϵ2. (b) IPR(E) or equivalently IPR(D). These
quantities for the random percolation model at the percolation transition, p= pc= 1/2, are shown in the rightmost panels for comparison. The red dots in (a) and
(b) identify values of dependant variable Re s used in Fig. 2b: for ϕ= 1/8, Re s ¼ 0:063; 0:115, for ϕ= 1/2, Re s ¼ 0:055; 0:111, and for ϕ= 2, Re s ¼ 0:111.
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for small changes in λj. As ϕ increases and the microgeometry
becomes quasiperiodic, the mobility edges diminish as the values
IPR(vj) become more regularly distributed and qualitatively
similar for all 0<Re sðωÞ≤ 1 away from the Drude peak at ω= 0,
as shown in the two rightmost panels of Fig. 3b. As ϕ→ 2, the
IPR(vj) resemble those of the random percolation model at its
threshold p= pc= 1/2, as shown in the rightmost panel of Fig. 3c.

The frequencies corresponding to resonances of μ and field
delocalization are tunable through the quasiperiodic microgeo-
metry via the scale parameter r and Moiré twist angle θ in (1),
which is critical to potential engineering applications — given a
desired frequency dependence for the profile of ϵ* and field
localization, values of r and θ can be selected accordingly. This is
illustrated in Fig. 5 which displays the θ-dependence of the
eigenvalue density ρ(λ, θ) in (a), the spectral function μ(λ, θ) in
(b), the magnitude and phase of the relative effective permittivity
ϵ*/ϵ2 in (c) and (d) and the IPR in (e), with r ¼ ffiffiffi

5
p

=2 fixed. Short
period systems are indicated by dark horizontal streaks due to
associated isolated resonances in μ, with localized regions of
yellow. Figure 5a shows that some of these resonances in μ(λ, θ)
are due to resonances in ρ(λ, θ). However, in Figure 5b, the
significance of the measure mass becomes apparent, which can
diminish eigenvalue resonances or even create resonances in
μ(λ, θ) in regions of low eigenvalue density — also illustrated in
the leftmost panel of Figure 3b by the individual eigenvalue
λj ≈ 0.32 with relatively large spectral mass mj≳ 0.1. The influence
of μ on ϵ*/ϵ2 is striking with resonances and features in ∣ϵ*/ϵ2∣
following those in μ, and with an antisymmetry in phase(ϵ*/ϵ2)
about Re s � 0:5. The IPR values displayed in Fig. 5e again
illustrate that resonances in μ are associated either with extremely
extended eigenvectors or mobility edges, with large variability in
IPR values for a small change in λ. The symmetry ρ(λ)= ρ(1− λ)
well known for the percolation model26,41 is evident in Fig. 5a for
quasiperiodic geometry, and also has symmetry for θ between π/8
and 3π/16 reminiscent of, but distinctly different from, the
Hofstadter-like spectral butterflies observed in the spectra for
twisted bilayers and Bloch electrons in magnetic fields21. The

distinct anomaly in the other figure panels associated with this
“butterfly" is due to a region of parameter space associated with
very short system period. A careful comparison of the visual
features between the eigenvalue density and eigenvector IPR
strongly suggests significant correlations between the eigenvalues
and eigenvectors.

The eigenvector expansion of χ1E in Eq. (6) provides a clear
connection between resonant frequencies and large field intensity
when Im sðωÞ � 1. However, our analysis of Fig. 3 also indicates
these resonant frequencies correspond to fields that are either
extended throughout the medium, as in the leftmost panel of
Fig. 3a, or to a mixture of localized and extended states giving rise
to more spatially varied field characteristics in both the intensity
and localization, as in the leftmost panel of Fig. 2b, with sensitive
dependence on frequency.

We now make this correspondence more precise in an analysis
of the magnitude and phase of ϵ* and the localization of E and D.
They are displayed in Fig. 4 for various values of the Moiré twist
angle θ, for 0° ≤ ϕ ≤ 2°, as a function of Re sðωÞ. The Drude peak
at ω= 0 (s(0)= 0) present for all values of ϕ indicates the
composite is conducting for ω= 039. For ϕ= 0, at the resonant
frequencies both μ and ∣ϵ*∣ are sharply peaked and ϵ* diverges as
Im s ! 0. These frequencies correspond to the so-called surface
plasmon resonance, which characteristically shows up as a strong
absorption line in experiments39. At these resonant frequencies ϵ*

also undergoes a dramatic switch in phase which gives rise to an
“optical transition,” where the material response changes from
inductive (metallic) to capacitive (dielectric) — a phenomenon
observed in optical cermets40. These phase switches also occur at
the troughs of ∣ϵ*∣, where ∣ϵ*∣ and the mass of μ are small. At
these band gap frequencies the material behaves effectively like an
electrical insulator. As ϕ increases, the transition frequencies still
correspond to the peaks and troughs in ∣ϵ*∣, though the frequency
dependence of these features becomes more irregular.

The IPR for ∣χ1E∣ (normalized to unit length) provides a
measurement of localization for the electric field itself –
equivalently for the normalized displacement field χ1D= ϵ1χ1E.

Fig. 5 Twist angle dependence. (a) Eigenvalue density ρ(λ, θ) (a histogram representation of the density of states∑jδ(λ− λj)/N1), (b) the spectral function
μ(λ, θ) (a kernel estimate representation of the spectral measure), (c) magnitude and (d) phase of relative effective complex permittivity ϵ*/ϵ2, and (e) a
histogram-like representation of the inverse participation ratio (IPR) (median IPR of eigenstates associated with each bin – to distinguish mobility edges),
all plotted versus the Moiré twist angle θ for scale parameter r ¼ ffiffiffi

5
p

=2. We plot these quantities for one full period 0≤ θ≤ π/4. (a), (b), and (e) are
plotted versus eigenvalue 0≤ λ≤ 1, while (c) and (d) are plotted versus 0≤ Re s≤1 for Im s ¼ 0:001. Low and high density for ρ and μ and are indicated by
dark blue and yellow, respectively, as shown by the color bars (with linear scale in (a), (c), and (e) and log10 scale in (b) and (e), slightly saturated at the
ends to reveal more detail). Short period systems appear as horizontal streaks; for ρ and μ sharp isolated resonances are identified by localized yellow
resonant peaks surrounded by dark blue troughs with values orders of magnitude smaller. The influence of μ on ϵ*/ϵ2 is clear, with striking similarities. For
the IPR in (e) extended and localized vectors are identified by dark blue (with GOE value labeled) and yellow, with mobility edges indicated by sudden
changes from one extreme to the other. Some of the θ values associated with these short period systems are identified by black tick marks on the right,
labeled by the bound K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
on the system period.
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Figures 3c and 4b show there is a close relationship between the
eigenvector IPR, IPR(v), plotted versus λj and the electric field
IPR, IPR(E), plotted versus Re sðωÞ, as anticipated above.
Specifically, there are frequency regions where the eigenmodes
and the electric field are simultaneously localized or extended.
Moreover, for ϕ= 0, 1/8, and 1/2 there are several clear mobility
edges in IPR(E), following those in IPR(v), showing high
variability in field localization for small changes in s(ω), which
also correspond to resonant frequencies and high variability in
field intensity.

Physical implications. In Figure 2b the localized (loc) and
extended (ext) fields for ϕ= 1/8, 1/2, and 2 were computed for
values of Re sðωÞ with optical frequencies ω — indicated by red
dots in Figure 4. Comparing these two figures for the panels with
values ϕ= 1/8 and 1/2 further demonstrates the frequency-
dependent localization/delocalization transition in the displace-
ment field for the same microstructure. Moreover, the panels for
localized (loc) fields in Figure 2b also correspond to resonant
peaks in μ in Fig. 3b, which accounts for the high variability in the
field intensity in Figure 2b and the amplitude of ϵ* in Fig. 4a.
Furthermore, Fig. 4 for ϕ= 1/8 and 1/2, shows that toward the
infrared end of the spectrum the displacement field is extended
and the response of ϵ* is inductive (metallic), while toward the
ultraviolet end of the spectrum the displacement field is more
localized and the response of ϵ* is capacitive (dielectric). There
are also band gap frequencies in the optical range.

As ϕ surpasses 1/8, band gap frequencies are absent. The larger
checkerboard scale for ∣χ1E∣ shown in Fig. 2b decreases in size and
all the material characteristics described above begin to
qualitatively resemble those of the random percolation model
for p= pc as ϕ→ 2. The more regularly distributed eigenvector
localization gives rise to spatially varied, meandering, tenuously
connected field paths as shown in the corresponding panels of
Fig. 3a.

These observations indicate a high degree of tunability in the
frequency dependence of the phase and magnitude of ϵ* and the
localization and intensity of E and D. The resonant and band gap
frequencies present for small ϕ are tunable through the
microstructure itself via the scale r and Moiré twist angle θ in
Eq. (1). We predict that these material characteristics can be
reproduced experimentally and tuned by fabrication methods
used for etched metallic substrates. (In ref. 46, a small change in
Moiré twist angle for bilayer graphene induces a change in
conductivity similar to what we observe here for ϵ*). Since the
transformation in Eq. (1) is deterministic, one can also obtain
material characteristics similar to those of random systems in a
predictable, reproducible manner. This tunability makes our
Moiré-type composite class an ideal test bed for potential
engineering applications.

Random matrix theory analysis. Statistical quantities for the
eigenvalues λj of μ provide insights into why the high-density
resonances of μ, present for the short period system with ϕ= 0,
spread out as ϕ increases and the system becomes quasiperiodic.
The nearest neighbor eigenvalue spacing distribution (ESD) P(z)
was initially introduced in random matrix theory to describe
fluctuations of characteristic quantities for random systems, but
has since accurately described quantities for non-random systems
with sufficient complexity47. The ESD probes short-range corre-
lations of eigenvalues47. For highly correlated Wigner-Dyson
(WD) spectra exhibited by, for example, the Gaussian orthogonal
ensemble (GOE) of real-symmetric random matrices, the ESD is
accurately approximated by PðzÞ � ðπz=2Þ expð�πz2=2Þ, Wign-
er’s surmise, which illustrates eigenvalue repulsion, vanishing

linearly as spacings z→ 047,48. In contrast, the ESD for uncor-
related Poisson spectra, PðzÞ ¼ expð�zÞ, allows for significant
level degeneracy47.

Figure 6 a displays the ESD for the eigenvalues λj of G for
several values of 0° ≤ ϕ ≤ 2°. The blue dash-dot curve is the ESD
for Poisson spectra, while the green dashed curve is the ESD for
the GOE. For ϕ= 0, 1/64, and 1/32, the sharply peaked
resonances in μ with high eigenvalue density give rise to a
significant probability of zero spacings, with P(0)≳ 0.4. However,
as ϕ increases and the composite microgeometry becomes
quasiperiodic, the behavior of the ESDs starts to be characterized
by weakly correlated Poisson-like statistics48, also observed for
eigenvalues of G for the low volume fraction percolation model27.
They increase linearly from zero but the initial slope of P(z) is
steeper than in the WD case, implying less level repulsion. As
ϕ→ 2, the slope of P(z) decreases, indicating an increase in level
repulsion, causing the eigenvalues of μ to spread out as the ESD
transitions toward obeying that of the GOE, characterized by
highly correlated eigenvalues with strong level repulsion.

A broader overview of the Moiré parameter space. We conclude
this section with a discussion of Fig. 6b, which displays the
average eigenvector IPR with yellow hues corresponding to short
period systems with highly extended eigenmodes — hence dis-
placement fields — and mobility edges, and dark green to blue
hues corresponding to quasiperiodic, random-like systems with
more regularly distributed eigenmodes and meandering, tenu-
ously connected field paths. Our results here are only a snapshot,
which nevertheless reveals the great diversity of this class of
composite materials with myriad microgeometric variations, each
with a potentially distinct frequency dependence in both the
phase and magnitude of ϵ* and the localization and intensity of E
and D. Figure 1 shows that the arrangement of finite period
systems is fractal in nature. It is clear from Figs. 1 and 6b that we
have merely scratched the surface in describing this fascinating
class of composite materials with tuneable capabilities in both
frequency and geometry, potentially enabling materials to be
fabricated that achieve desired field characteristics and dielectric
responses suitable for a broad range of engineering applications.

Conclusion
A class of Moiré-structured 2D composite materials is introduced.
Bulk transport is explored using a Stieltjes integral representation
for the effective transport coefficients, and the complex permit-
tivity ϵ* in particular. The representation involves a spectral
measure μ of a real-symmetric matrix G, and a summation for-
mula for the displacement field D, involving the eigenvalues λi
and eigenvectors vi of G. The localization properties of D and the
dielectric profile for ϵ* are analyzed as the Moiré twist angle θ
varies 2 degrees. This small change in θ gives rise to a sharp
transition in the microgeometry of the composite material, from
periodic to quasiperiodic as the period increases ad infinitum.
Short period systems are characterized by sharp resonances in μ
which give rise to optical frequencies ω where ϵ* is sharply
peaked (so-called surface plasmon resonance frequencies) and ϵ*

undergoes an “optical transition” from inductive (metallic) to
capacitive (dielectric). Band gap optical frequencies are also
observed. Moreover, D is highly extended for certain ranges of
frequency, separated by small “mobility edge” frequency regions
of large localization variability, that follow the resonant peaks of μ
with high intensity regions of D. These characteristics make the
dielectric profile and field response highly tunable, a desired
feature in engineering applications. As the system is tuned to
quasiperiodicity, an increase in eigenvalue repulsion, as measured
by the eigenvalue spacing distribution (ESD), causes the sharp

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00898-z ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:148 | https://doi.org/10.1038/s42005-022-00898-z | www.nature.com/commsphys 7

www.nature.com/commsphys
www.nature.com/commsphys


resonances of μ to spread out, while the localization character-
istics of D and the dielectric profile of ϵ* begin to qualitatively
resemble those of the percolation model near its transition point.
It is suggested that these material characteristics could be
reproduced experimentally and tuned by fabrication methods
used for etched metallic substrates.

Code availability
Mathematical and numerical methods used to compute the spectral measures and
associated spectral statistics displayed in this manuscript are detailed in ref. 26. Associated
code will be made available upon reasonable request.

Data availability
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reasonable request.
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