Name. _____

Calculus III 2210-4 Sample Midterm Exam 2 Exam Date: 4 November 2005

Instructions: This in-class exam is 50 minutes. No calculators, notes, tables or books. No answer check is expected. Details count 75%. The answer counts 25%.

1. (Vector geometry in \mathcal{R}^3) Complete two of the following.

(a) Find the volume of a parallelepiped with edges $3\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$, $-\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $3\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$. See 14.3-18.

(b) Prove $|\mathbf{u} \times \mathbf{v}|^2 = |\mathbf{u}|^2 |\mathbf{v}|^2 - (\mathbf{u} \cdot \mathbf{v})^2$. See 14.3-25.

(c) Find the parametric equation of the line through (1, 1, 0) normal to the plane 2x + 4y + z = 5.

- (d) Find the equation of the plane through the three points (1, 1, 0), (1, 2, 0), (0, 1, 1).
- 2. (Coordinate systems) Complete two of the following.
 - (a) Change $x^2 y^2 = 25$ to cylindrical coordinates.
 - (b) Change $x^2 + y^2 + 2z^2 = 25$ to spherical coordinates.
 - (c) Find the center and radius of the sphere with equation $x^2+y^2+z^2-6x+2y-8z=0$.
- 3. (Level sets) Complete two of the following.
 - (a) Sketch the level curves of $z = x^2/y$ for z = -1, 1, 2.

(b) Describe geometrically the level surface $16x^2 + 16y^2 - 9z^2 = k$ for all real values of k.

(c) Find a normal to the level curve $x^2/y = 4$ at each point (x, y).

4. (Derivatives) Complete two of the following.

(a) Find f_x , f_{xy} for $f = (x^3 + y^2)^5$. (b) Let $f(x, y) = xy^2/(x + 2 + y^4)$. Is f continuous at (0, 0)? Discuss continuity of the partial derivative f_{xy} .

(c) Define f_x using Newton quotients and limits.

(d) Find the gradient of $f(x, y, z) = (x + 2y + 3z)^2 e^{3x+4y+5z}$ at x = y = z = 0.

5. (Chain rule) Complete two of the following.

- (a) Suppose $x \sin y + y \cos x = 10$. Find a formula for dy/dx.
- (b) Let $w = e^{x^2 + y^2}$, $x = t^3$, $y = t^2$, z = t. Find dw/dt.
- (c) Let w = u/v, $u = x^2 3y$, v = xyz. Find the partials of w in variables x, y, z.