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Anıl Cengiz * and Sean D. Lawley †

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA

(Received 23 March 2024; revised 29 August 2024; accepted 16 October 2024; published 20 November 2024)

The imperfect narrow escape problem considers the mean first passage time (MFPT) of a Brownian particle
through one of several small, partially reactive traps on an otherwise reflecting boundary within a confining
domain. Mathematically, this problem is equivalent to Poisson’s equation with mixed Neumann-Robin bound-
ary conditions. Here, we obtain this MFPT in general three-dimensional domains by using strong localized
perturbation theory in the small trap limit. These leading-order results involve factors, which are analogous to
electrostatic capacitances, and we use Brownian local time theory and kinetic Monte Carlo (KMC) algorithms
to rapidly compute these factors. Furthermore, we use a heuristic approximation of such a capacitance to obtain
a simple, approximate MFPT, which is valid for any trap reactivity. In addition, we develop KMC algorithms to
efficiently simulate the full problem and find excellent agreement with our asymptotic approximations.
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I. INTRODUCTION

The narrow escape problem, first posed by Rayleigh [1],
refers to the escape time of a Brownian particle confined in
a bounded domain whose boundary is reflecting except for
some number of small absorbing windows (traps) through
which the particle can escape. This problem is of particular
interest in cell biology as ions, neurotransmitters, and sub-
strate molecules have all been modeled as Brownian particles
looking to bind small targets such as protein channels, recep-
tors, or enzymes on a cell membrane [2,3]. In these diverse
biophysical scenarios, the timescales of critical intracellular
processes are thus governed by the time it takes a diffusing
particle to find a small target.

There have been extensive studies on the narrow escape
problem in two-dimensional and three-dimensional domains
in the case of “perfect” absorption, i.e., when the Brownian
particle gets absorbed immediately upon first contact with
a trap. In the small trap limit, the leading-order asymptotic
behavior of the mean first passage time (MFPT) of exit in
arbitrary domains and the higher-order terms in select geome-
tries have been derived for systems with perfectly absorbing
traps [3–8]. However, targets like protein channels or recep-
tors/enzymes may often be better modeled as having finite
reactivity, since the particles may not always be captured
shortly after their first encounter with the traps [9]. Orienta-
tional constraints on the diffusing particles [10] and energetic
activation barriers for the traps [11] might require the diffus-
ing particle to make multiple visits to the trap before getting
absorbed. The so-called “imperfect” narrow escape problem
arises in such cases [12] and currently has fewer available
results compared to the perfect narrow escape problem. In the
limit of large domain volume, this imperfect narrow escape
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problem was studied in Ref. [13] in three dimensions and
in Ref. [12] in two and three dimensions. The kinetics of
imperfect reactions have been investigated in Refs. [14–17]
for particular geometries in cylindrical and spherical domains
exploiting domain-dependent eigenfunctions and the uniform
flux approximation. Diffusion to partially absorbing traps has
also been studied in the context of boundary homogenization
[18,19]. Other aspects of diffusion-controlled reactions with
finite reactivity were also discussed in [20,21].

In this paper, we derive the leading-order asymptotic
behavior of the MFPT in imperfect narrow escape problems
in three-dimensional domains of arbitrary geometry. We
use the method of strong localized perturbation theory
(SLPT) [5,6,22,23] to estimate the MFPT in the limit of
vanishing trap size. To briefly summarize our main results,
suppose the Brownian particle diffuses with diffusivity
D > 0 in a bounded, three-dimensional domain � ⊂ R3

with volume |�|. The boundary is reflecting except for
N � 1 small, well-separated, locally circular traps with
common permeability κ̃ > 0. The traps have radii a1, . . . , aN

with ai/an = O(1) and average radius much less than the
lengthscale of the confining domain,

a := 1

N

N∑
n=1

an � |�|1/3. (1)

Denoting the MFPT by v and assuming that the Brownian
particle does not start near a trap, we obtain the following
asymptotic behavior of the MFPT in the small trap limit in (1):

v ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|�|
4DNa if aκ̃/D � 1,

|�|
2πD

∑N
n=1 anc2(1,an κ̃/D)

if aκ̃/D = O(1),

|�|
2πK κ̃

∑N
n=1 a2

n
if aκ̃/D � 1,

(2)

where c2(1, anκ̃/D) is analogous to the electrostatic
capacitance of a unit disk with dimensionless permeability
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anκ̃/D and K ≈ 0.5854 is analogous to the electrostatic
capacitance of a unit disk with a fixed unit flux (see Sec. II
for details). While we do not have an exact formula for the
function c2 or the constant K , we use a kinetic Monte Carlo
(KMC) algorithm to rapidly compute these factors.

Furthermore, using a previously posited heuristic formula
for c2 [19] and assuming that all the traps are the same size
(i.e., ai = a for i = 1, . . . , N), we find that the MFPT is well
approximated in the small trap limit in (1) by

v ≈ |�|
4DNa

(
1 + 2

Kπ

D

aκ̃

)
, (3)

where we again have K ≈ 0.5854. Notice that (3) agrees with
(2) in both the aκ̃/D � 1 regime (high absorption) and the
aκ̃/D � 1 regime (low absorption). Furthermore, we show
that the estimate (3) differs from (2) by no more than 5%
regardless of the value of aκ̃/D. We emphasize that (3) is
valid for any trap arrangement, provided the traps are well
separated.

The result in (3) has a simple interpretation. The first term
in (3) is the MFPT in the case of perfectly absorbing traps [8]
and thus represents the time for the particle to first hit the trap.
The second term in (3) assumes that the particle starts on the
trap and accounts for the additional time to be absorbed that
stems from the finite-trap permeability.

The rest of the paper is structured as follows. In Sec. II,
we formulate the imperfect narrow escape problem and use
the method of SLPT to treat the problem in the three sepa-
rate absorption regimes in (2). We derive expressions for the
MFPT in all three regimes as a function of the trap perme-
ability and the capacitance of the corresponding generalized
electrified disk problem, which can be rapidly computed by
KMC algorithms or approximated via prior estimates [19].
In Sec. III, we compare our analytical results on the MFPT
to numerical results obtained by KMC simulations of the
full stochastic system. We also discuss how this framework
allows us to observe the scaling law recently proposed by
Guérin et al. (2023) for a particle starting at the boundary of a
partially absorbing trap [12]. In Sec. IV, we describe the KMC
algorithms used to compute the capacitance of the required
electrified disk problems and to simulate the full problem in
the case of a three-dimensional rectangular domain with a
single, partially absorbing trap. These KMC algorithms break
down the Brownian search process into subprocesses whose
probability distributions are well characterized [19,24]. We
conclude in Sec. V by discussing the implications and limi-
tations of our paper. The Appendices collect some technical
points of the analysis and the numerical algorithms.

II. MATHEMATICAL ANALYSIS

A. Problem formulation

Consider a Brownian particle diffusing in a bounded, three-
dimensional domain � ⊂ R3. Suppose the boundary ∂� is
smooth and consists of a reflective portion ∂�R and N � 1
small traps ∂�A = ∪N

n=1∂�n so that ∂� = ∂�R ∪ ∂�A. As-
sume that the traps are partially absorbing, locally circular,
and centered at xn ∈ ∂� with radius an for n = 1, . . . , N .
Define the MFPT v(x) as the expected time taken by the

Brownian particle starting at x ∈ � to exit the domain through
one of the traps. Denoting the diffusivity of the particle
by D and the “permeability” (or “reactivity” or “trapping
rate”) of the traps by κ̃ , the MFPT v(x) satisfies the follow-
ing Poisson equation with mixed Robin-Neumann boundary
conditions [25]:

D�v = −1, x ∈ �,

D∂nv =
{

0, x ∈ ∂�R,

−κ̃v, x ∈ ∂�A,
(4)

where ∂n denotes the normal derivative.
To simplify the analysis, we nondimensionalize the prob-

lem by rescaling space by L and rescaling time by L2/D [i.e.,
x → x/L and t → t/(L2/D)], where

L := |�|1/3

denotes the characteristic lengthscale of the domain. The di-
mensionless problem thus has unit diffusivity in a domain of
unit volume and the traps have average radius

ε := a

L
=

1
N

∑N
n=1 an

L
and dimensionless permeability

κ := κ̃L

D
.

The dimensionless problem is then described by

�v = −1, x ∈ �,

∂nv =
{

0, x ∈ ∂�R,

−κv, x ∈ ∂�A.
(5)

For simplicity, we use � to denote both the dimensional and
dimensionless domain (and similarly for ∂�, ∂�R, ∂�A, and
∂�n). We also sometimes retain |�| in formulas below even
though this volume has been set to unity in our nondimension-
alization.

Below, we use SLPT to study the MFPT in the small trap
limit of ε � 1. We assume that the absorbing traps are well
separated in the sense that

‖xn − xm‖ = O(1), if n �= m,

and that the traps have similar sizes, i.e., an/a = O(1) for
n = 1, . . . , N .

B. Strong localized perturbation analysis

The method of SLPT involves matching an outer solution
to an inner solution around a trap. The series expansion for
the outer solution depends on the relative size of the trap and
its permeability. Therefore, we treat this problem in three sep-
arate absorption regimes: Case 1: κε � 1 (high absorption),
Case 2: κε = O(1) (medium absorption), and Case 3: κε � 1
(low absorption).

1. Case 1: κε � 1

In the outer region away from an O(ε) neighborhood of any
trap, we expand the outer solution to (5) as

v ∼ ε−1v0 + v1 + h.o.t., (6)
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where h.o.t. represents higher-order terms. Here, v0 is an
unknown constant, and v1 is a function to be determined.
Substituting (6) into (5) and matching the O(1) terms yields

�v1 = −1, x ∈ �, (7)

∂nv1 = 0, x ∈ ∂� \ {x1, . . . , xN }. (8)

Notice that from the perspective of the outer solution, the traps
have shrunk to points.

In the inner region near the nth trap, we introduce the local
variables,

y := ε−1(x − xn), w(y) := v(xn + εy), (9)

and pose the following inner expansion:

w ∼ ε−1w0 + h.o.t. (10)

We denote the magnified trap, which is a disk of radius

αn := an/a,

by ∂�A,0 = ε−1∂�n, the magnified reflective region as ∂�R,0

and the magnified domain (half of three-dimensional space)
as ∂�0. Applying the Laplacian with respect to y to w and
using (5) yields �yw = ε2�w = −ε2. Then, applying �y on
the inner expansion in (10), we obtain the following problem:

�yw0 = 0, y ∈ �0,

∂nw0 =
{

0, y ∈ ∂�R,0,

−εκw0, y ∈ ∂�A,0.
(11)

The matching condition ensures that the near-field behav-
ior of the outer solution as x → xn agrees with the far-field
behavior of the inner solution as ‖y‖ → ∞,

ε−1v0 + v1 + h.o.t. ∼ ε−1w0 + h.o.t. (12)

Matching the O(ε−1) terms imposes that v0 ∼ w0 as ‖y‖ →
∞. Define a function wc by

w0 = v0(1 − wc). (13)

It follows that wc must satisfy

�ywc = 0, y ∈ �0,

∂nwc = 0, y ∈ ∂�R,0,

wc = 1, y ∈ ∂�A,0,

wc → 0, as ‖y‖ → ∞. (14)

To derive the boundary conditions in (14), differentiate (13)
and use (11) to obtain

∂nwc = −1

v0
∂nw0

= −1

v0

{−εκw0, y ∈ ∂�A,0,

0, y ∈ ∂�R,0,

=
{
εκ (1 − wc), y ∈ ∂�A,0,

0, y ∈ ∂�R,0.
(15)

Taking εκ → ∞ gives the boundary conditions in (14) for
Case 1 (εκ � 1).

The problem in (14) is the so-called electrified disk
problem in electrostatics [26]. The far-field behavior of the

solution has the following form:

wc ∼ c1(αn)

‖y‖ + O(‖y‖−2) as ‖y‖ → ∞, (16)

where we refer to the constant c1(αn) as the capacitance. The
subscript 1 denotes that this is for Case 1, and αn is the radius
of the disk ∂�A,0. It is well known that the capacitance for the
electrified disk problem is [7]

c1(r) = 2r/π, for all r > 0.

The far-field behavior in (16), the relation (15), and the
matching condition (12) yield the following singularity con-
dition on v1:

v1 ∼ − v0c1(αn)

‖x − xn‖ as x → xn. (17)

The problem for v1 in (7) and (8) and the singular behavior in
(17) can be written in distributional form as

�v1 = −1, x ∈ �,

∂nv1 = −
N∑

n=1

2πv0c1(αn)δ(x − xn), x ∈ ∂�. (18)

Integrating Poisson’s equation in (18) and using the diver-
gence theorem implies that

v0 = |�|
2π

∑N
n=1 c1(αn)

. (19)

Recalling the expansion (6), the leading-order behavior of the
MFPT in (5) when κε � 1 is thus given by

v ∼ |�|
2πε

∑N
n=1 c1(αn)

= |�|
4ε

∑N
n=1 αn

as ε → 0.

We can dimensionalize this MFPT expression to write the
MFPT solution to the dimensional problem in (4) in the
aκ̃/D � 1 regime as

v ∼ |�|
4DNa

as
a

L
→ 0. (20)

Naturally, (20) reproduces the MFPT in the case of perfectly
absorbing traps [8].

Observe that (20) can be written as

v ∼ 1/

(
N∑

n=1

1/v(n)

)
as

a

L
→ 0, (21)

if we define

v(n) := |�|
4Dan

is the asymptotic MFPT to absorption by the nth trap (ignoring
other traps). That is, Nv is the harmonic mean of the MFPTs
to each of the N traps, which is reminiscent of the parallel
connection of resistances in electrostatics.

2. Case 2: κε = O(1)

The analysis of Case 2 (εκ = O(1)) proceeds along iden-
tical lines as Case 1 (εκ � 1), except the problem (14) is
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replaced by

�ywc = 0, y ∈ �0,

∂nwc = 0, y ∈ ∂�R,0,

∂nwc = εκ (1 − wc), y ∈ ∂�A,0,

wc → 0, as ‖y‖ → ∞. (22)

By analogy to (14), we refer to (23) as a “generalized electri-
fied disk problem.” Note that the boundary conditions in (23)
follows immediately from (15).

Similar to (16), the far-field behavior of the solution to (23)
has the following form:

wc ∼ c2(αn, εκ )

‖y‖ + O(‖y‖−2) as ‖y‖ → ∞,

where we refer to the constant c2(αn, εκ ) as the capacitance.
We note that similar far-field behavior of certain PDE solu-
tions was also found in [12,13]. Notice that c2 is a function
of the radius αn of the disk ∂�A,0 and the permeability εκ

appearing in (23). Below, we show how to either compute this
capacitance using a KMC algorithm or approximate its value
using a simple heuristic formula.

Proceeding along identical lines as in Case 1, except
replacing c1(αn) by c2(αn, εκ ), yields the following leading-
order behavior of the MFPT in (5) when κε = O(1):

v ∼ |�|
2πε

∑N
n=1 c2(αn, εκ )

as ε → 0.

We can dimensionalize this MFPT expression to write the
MFPT solution to the dimensional problem in (4) in the
aκ̃/D = O(1) regime as

v ∼ |�|
2πD

∑N
n=1 anc2(1, anκ̃/D)

as
a

L
→ 0. (23)

Observe that (23) implies that (21) holds if we define the
asymptotic MFPT to the nth trap (ignoring other traps),

v(n) := |�|
2πDanc2(1, anκ̃/D)

.

3. Case 3: κε � 1

To handle Case 3 (κε � 1), we assume that

κ = εs, for some s > −1.

In the outer region away from an O(ε) neighborhood of xn, we
expand the outer solution as

v ∼ ε−s−2v0 + v1 + h.o.t. (24)

Here, v0 is an unknown constant and v1 is a function to be
determined. Substituting (24) into (5) and matching the O(1)
terms, we again obtain the outer problem in (7) and (8).

In the inner region near the nth trap, we use the local
variables in (9) and pose the following inner expansion:

v ∼ ε−s−2w0 + h.o.t. (25)

Using the relationship �yw = −ε2 and the inner expansion in
(25), we obtain the problem in (11). The matching condition
ensures that the near-field behavior of the outer solution as

x → xn must agree with the far-field behavior of the inner
solution as ‖y‖ → ∞,

ε−s−2v0 + v1 + h.o.t. ∼ ε−s−2w0 + h.o.t. (26)

The matching condition on the O(ε−s−2) terms imposes that
v0 ∼ w0 as ‖y‖ → ∞. Define a function wc by

w0 = v0(1 − εκwc). (27)

It follows that wc must satisfy

�ywc = 0, y ∈ �0,

∂nwc = 0, y ∈ ∂�R,0,

∂nwc = 1, y ∈ ∂�A,0,

wc → 0, as ‖y‖ → ∞.

(28)

To derive the boundary conditions in (28), differentiate (27)
and use (11) to obtain

∂nwc = −1

εκv0
∂nw0

= −1

εκv0

{
0, y ∈ ∂�R,0,

−εκw0, y ∈ ∂�A,0,

=
{

0, y ∈ ∂�R,0,

1 − εκwc, y ∈ ∂�A,0.

Taking εκ → 0 yields the boundary conditions in (28).
Similar to (16), the far-field behavior of the solution to (28)

has the following form:

wc ∼ c3(αn)

‖y‖ + O(‖y‖−2) as ‖y‖ → ∞,

where we refer to the constant c3(αn) as the capacitance of the
generalized electrified disk problem in (28). In this case, the
capacitance is (see the Appendix C or Ref. [19])

c3(αn) = α2
nK, (29)

where K depends on the expected local time of a Brow-
nian particle on a unit disk and is documented to be
K ≈ 0.5854 [19].

Matching the O(1) terms (26) yields the singularity condi-
tion in (17) with c3 replacing c1. Again writing this singularity
condition in the distributional form in (18) and using the
divergence theorem yields the formula for v0 in (18) (with
c3 replacing c1). The constant K in (29) can be computed
to an arbitrary accuracy using the KMC algorithm discussed
in Appendix C. The leading-order behavior of the MFPT in
problem (5) when κε � 1 is thus given by

v ∼ |�|
2πε2κK

∑N
n=1 α2

n

as ε → 0.

We can dimensionalize this MFPT expression to write the
MFPT solution to the dimensional problem in (4) in the
aκ̃/D � 1 regime as

v ∼ |�|
2πK κ̃

∑N
n=1 a2

n

as
a

L
→ 0. (30)
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TABLE I. Dimensionless MFPT asymptotics as ε → 0 if the
Brownian particle does not start in an O(ε) neighborhood of any trap.

Parameter regime Leading-order MFPT

Case 1: εκ � 1 (high absorption)
|�|

4ε
∑N

n=1 αn

Case 2: εκ = O(1) (medium absorption)
|�|

2πε
∑N

n=1 c2(αn, εκ )

Case 3: εκ � 1 (low absorption)
|�|

2πε2Kκ
∑N

n=1 α2
n

Observe that (30) implies that (21) holds if we define the
asymptotic MFPT to the nth trap (ignoring other traps),

v(n) := |�|
2πK κ̃a2

n

.

C. A heuristic to combine the three cases

Our asymptotic estimates of the dimensionless MFPT for
the three cases are reported in Table I. We emphasize that
these MFPT results assume that the Brownian particle does
not start in an O(ε) neighborhood of any trap. Furthermore,
these MFPT results also hold if the Brownian particle is
initially uniformly distributed in the domain �, since the
probability that a particle starts in an O(ε) neighborhood of
any trap is O(ε) in this uniform case.

There are two limitations, which makes the results in Ta-
ble I cumbersome to use. First, Table I shows that depending
on the relative sizes of ε and κ , the asymptotic behavior of
the MFPT is described by different expressions. Second, we
do not have an exact formula for the capacitance c2(αn, εκ )
appearing in Case 2 [εκ = O(1), i.e., medium absorption]. We
now present a heuristic estimate of c2 to ameliorate both of
these problems.

The capacitance c2 can be computed using a KMC al-
gorithm (detailed below). The following heuristic, sigmoidal
estimate of c2 was first posited in [19],

csig(κ ′) := (2/π )κ ′

κ ′ + 2/(πK )
≈ c2(1, κ ′), (31)

where K ≈ 0.5854 is the constant appearing in Case 3. The
simple estimate (31) is quite accurate. Indeed, the relative
error between c2(1, κ ′) and csig(κ ′) is always less than 5%,

|c2(1, κ ′) − csig(κ ′)|
c2(1, κ ′)

� 5%, (32)

and the maximum relative occurs for κ ′ ≈ 1 (see Fig. 3 in
[19]). Note that it is enough to consider c2(1, κ ′) as a function
only of its second argument (here, denoted κ ′ > 0) since a
simple scaling argument applied to (23) shows that

c2(r, κ ′) = lc2(r/l, lκ ′), for all r, κ ′, l > 0. (33)

Using the scaling (33) and the sigmoidal estimate in (31)
for Case 2 yields the following estimate of the dimensionless

MFPT:

v ≈
(

N∑
n=1

1/vn

)−1

, where vn = |�|
4αnε

(
1 + 2

πKαnεκ

)
.

(34)

When εκ = O(1), the expression in (34) approximates the ex-
pression the MFPT for Case 2 in Table I using the capacitance
approximation in (31). Furthermore, notice that (34) reduces
to the expressions in Table I for Case 1 and Case 3 in the
respective regimes of εκ � 1 and εκ � 1. Summarizing, the
single, analytical expression in (34) approximates the MFPT
for all three cases. In addition, it follows from the error bound
in (32) that the expression (34) never deviates from the ex-
pressions in Table I by more than 5%.

If all the traps have the same size (i.e., αn = 1 for n =
1, . . . , N), then the expression in (34) simplifies to

v ≈ 1

N

|�|
4ε

(
1 + 2

πKεκ

)
. (35)

The result in (35) has a simple interpretation. The first term is
the MFPT in the case of perfectly absorbing traps [8] and thus
represents the time for the particle to first hit the trap. The sec-
ond term then accounts for the additional time to be absorbed
that stems from the finite-trap permeability assuming that the
particle starts on the trap.

III. COMPARISON TO NUMERICAL SIMULATIONS

In this section, we compare the analytical results derived in
Sec. II to numerical simulations.

A. Full stochastic system

We compare the accuracy of the analytical asymptotic re-
sults in Table I to the numerical results that we generate by
simulating the full imperfect narrow escape problem in (5).
As we detail in Sec. IV below, we use KMC algorithms to
rapidly simulate the full stochastic system. In these simu-
lations, the domain is a rectangular prism defined by � =
(−1, 1) × (−1, 1) × (0,

√
2) ⊂ R3. There is N = 1 trap, and

it is located at the “bottom” of the domain,

∂�A = ∂�1 = {(x, y, 0) : x2 + y2 < a2}.
In each simulation, the initial position of the Brownian par-
ticle is chosen randomly from a uniform distribution. As
described in Sec. II, the MFPT results in Table I assume that
the particle does not start in an O(ε) neighborhood of any
trap. However, the MFPT results in Table I still hold in the
case of a particle that starts uniformly since there is merely
an O(ε) probability that such a uniformly distributed particle
starts in an O(ε) neighborhood of any trap. The trap radius ε

and trap permeability κ are varied in the simulations to explore
the dependence on trap radius and absorption regimes.

Figure 1 compares the analytical results derived using the
method of SLPT to the numerical results obtained by KMC
algorithms. In the figures, the relative errors of the analytical
results never exceed 10%.
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FIG. 1. SLPT Results vs KMC simulation Results. We compare
the analytical results derived using the method of SLPT to the
heuristic formula in (3) and the numerical results obtained by KMC
simulations. The solid lines represent the asymptotic results, the
dashed lines represent the heuristic result, and the markers represent
the numerical results. We take N = 1, D = 1 for all cases, and
κ̃ = 1/a2 in Case 1, κ̃ = 1/a in Case 2, and κ̃ = 1 in Case 3.

B. Special case: Particles initialized at trap boundary

In the preceding subsection, we assumed that the Brownian
particle was initially uniformly distributed in the domain.
Guérin et al. [12] recently considered an interesting alternative
scenario in which the particle starts at the boundary or “edge”
of a partially reactive trap. In this case, their analysis found
the following anomalous scaling for large reactivity and fixed
ε � 1 (using the dimensionless problem of Sec. II):

v ∼ |�|
2ε

√
2πκε

as κ → ∞. (36)

We now use the matched asymptotic analysis of Sec. II and
the KMC algorithms of Sec. IV to investigate (36).

The inner expansion in (10) describes the MFPT of a par-
ticle that starts near a trap. For simplicity, we follow [12] and
assume that there is N = 1 trap, which is centered at x1 ∈ ∂�.
Hence, assuming that the particle starts at a point x0 near the
“edge” of the trap, we use (10), (13), and (20) to approximate
the MFPT for fixed ε � 1 and κ → ∞ as

v(x0) ∼ v0

ε
(1 − wc(y0)) ∼ |�|

4ε
(1 − wc(y0)), (37)

where wc satisfies (23) and y0 = (x0 − x1)/ε. Therefore, we
can estimate the MFPT for a particle initialized near the trap
boundary by calculating wc(y0).

In Fig. 2, we plot the estimate in (37) for various initial
trap locations using a KMC algorithm (detailed below) to
calculate wc(y0). This plot shows excellent agreement with
the result of Guérin et al. [12] in (36), and demonstrates how

FIG. 2. SLPT results in (37) computed by KMC simulations
agree with the formula in (36) from Guérin et al. (2023) [12] and
approximations in (38) and (39) for particles that start near the trap
boundary. The particle’s initial position y0 is on the plane containing
the trap (a unit disk) at a distance d + 1 from the center of the trap.
In particular, d > 0 means the particle starts outside of the trap, and
d < 0 means it starts on the trap. We take ε = 10−2 and |�| = 4

√
2.

the scaling deviates from (36) when the particle is initialized
further from the “edge” of the trap. In particular, for the calcu-
lation of wc(y0), the trap is a partially absorbing unit disk with
dimensionless reactivity εκ on an otherwise reflecting plane
[recall that wc(y0) concerns the inner problem]. The markers
in Fig. 2 are (37) with initial particle position y0 on the plane
containing the trap, located at a distance d + 1 from the center
of the trap. In particular, the green “x" (“+") markers are for
d = −10−5 ( d = +10−5), meaning that the particle starts on
the inside (outside) edge of the trap. As expected, these green
markers agree with the anomalous scaling in (36) found in
[12]. However, Fig. 2 shows that the MFPT scaling deviates
from (36) if the particle starts slightly further from the trap
edge. Specifically, the deviation from (36) is noticeable for
κ � 105 when the initial position is d = ±10−3 from the trap
edge (purple triangle markers).

For d = +10−1, the MFPT is roughly constant for large κ .
This can be understood by noting that in this case, the FPT
is dominated by the time required to first hit the trap (since
large κ means it is quickly absorbed after hitting the trap), and
this first hitting time is of course independent of κ . Further,
for large κ and d = +10−1, the probability of absorption
wc(y0) is approximately the probability of eventually hitting
the target, which is approximately the capacitance of a unit
disk, 2/π . Indeed, plugging wc(y0) ≈ 2/π into (37) yields

v(x0) ∼ |�|
4ε

(1 − 2/π ), (38)

which agrees reasonably well with the blue diamond markers.
For d = −10−1, the blue square markers in Fig. 2 show

that the MFPT in (37) agrees with the 1/κ scaling of

|�|
4ε

2

Kπεκ
. (39)
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The estimate (39) is obtained from (35) by simply subtracting
|�|/(4ε) (the time a particle takes to diffuse to the trap starting
from the bulk) since the particle starts sufficiently far in the
interior of the trap for d = −10−1.

IV. KINETIC MONTE CARLO

In this section, we develop kinetic Monte Carlo (KMC)
algorithms to run efficient particle-based simulations. These
simulations compute the capacitance values shown in the
analytical results and numerically simulate the MFPT in a
particular domain geometry. These algorithms break down the
diffusive search process into stages for which the associated
probability distributions can be computed analytically. The
basic idea of the methods dates back to the so-called walk-
on-spheres method of Muller [27]. In this specific context, the
methods are based on the KMC method devised by Bernoff,
Lindsay, and Schmidt (2018) [24] and later developed in [19].

The algorithms for the capacitance problems and the full
diffusion problem all rely on the same stages discussed below.
For the capacitance problems, we take the domain to be half
of three-dimensional space. For the MFPT simulation, we take
the domain to be a rectangular prism, and we refer to the side
of the prism that has the partially absorbing region as “the
plane”. The KMC algorithm breaks down the diffusive search
process into three stages:

I. Project from bulk to plane. The particle starts away from
the plane where it is free to diffuse, and it is propagated down
to the plane. The time taken by the particle to first touch
the plane and its location on the plane are drawn from exact
probability distributions and recorded. The algorithm then
proceeds to Stage II if the particle is outside of the absorbing
region and to Stage III if the particle is inside the absorbing
region.

II. Reflect off to space. The particle is on a reflective sur-
face, and we propagate it to a hemisphere whose radius is
the particle’s distance to the trap boundary. The location of
the particle on the hemisphere and the time it takes to reach
the sphere are sampled using exact probability distributions.
The algorithm is terminated if the particle has traveled beyond
a preset threshold to emulate wandering off to infinity. If the
particle has not traveled beyond that threshold, the algorithm
returns to Stage I.

III. Interact with absorbing trap. The particle is now on the
absorbing trap. If the trap is fully absorbing, the particle gets
absorbed, and the total amount of time the particle has spent in
the domain is recorded, and the algorithm is terminated. If the
trap is partially absorbing, the FPT to the disk whose radius
is the distance to the trap boundary is sampled using an exact
probability distribution. For that amount of time, the particle
is interacting with a partially absorbing disk. Therefore, we
sample the survival probability of the particle using the solu-
tion to a one-dimensional diffusion problem with a partially
absorbing boundary condition. If the particle is sampled to be
absorbed in that amount of time, the total time is recorded,
and the algorithm is terminated. If the particle has survived
that time, then it is propagated to a cylinder whose radius is
equal to the particle’s distance to the trap boundary and whose
height is drawn from an exact probability distribution. The

time taken by the particle is then recorded, and the algorithm
returns to Stage I.

The details of the algorithms and the exact distributions
used are given in the Appendices. The cumulative distri-
butions in the algorithms are all precomputed before the
algorithm starts running for a set of time and position values.
Then we use the method of inverse transform sampling on the
cumulative distributions for sampling times or positions. For
inverse transform sampling, we use a binary search algorithm
for computational efficiency.

V. CONCLUSIONS

In this paper, we studied the three-dimensional imperfect
narrow escape problem for an arbitrary geometry with par-
tially absorbing traps. Using the method of SLPT, we derived
expressions for the leading-order asymptotic behavior of a
Brownian particle’s MFPT of exit in the limit of vanishing
trap size for different absorption regimes. We used KMC
algorithms to compute the capacitance values appearing in
the analytical results and to numerically verify the analytical
expression in a simple domain geometry (a rectangular prism
with a single trap).

Our analysis yielded the following simple estimate of the
MFPT for N identical, well-separated small traps, which is
valid in any absorption regime,

v ≈ |�|
4DNa

(
1 + 2

Kπ

D

aκ̃

)
, (40)

where K ≈ 0.5854. The estimate (40) resembles the following
formula posited in [13] {see Eq. (57) in [13]} for a similar
problem with a disk-shaped target on the boundary of the
domain,

v ≈ |�|
4DNa

(
1 + 4

π

D

aκ̃

)
. (41)

Indeed, (40) differs from (41) only in the numerical prefactor
of 2/(Kπ ) ≈ 1.09 versus 4/π ≈ 1.27 in the second term. The
greatest discrepancy between (40) and (41) is 17% and occurs
in the low absorption regime of aκ̃/D � 1. Further, while
(40) employed a heuristic estimate, this heuristic estimate is
exact in the low-absorption regime of aκ̃/D � 1. We note
that our simulation results in Fig. 1 agree with (40) rather
than (41) [except in the high-absorption regime aκ̃/D � 1 in
which (40) and (41) are equivalent].

The estimate (41) can be quickly derived using a recent
and very general result of Chaigneau and Grebenkov [28]. For
partially reactive targets located in the interior of the domain,
these authors found the following MFPT estimate [28]:

v ≈ |�|
DC

(
1 + DC

κ|
|
)

, (42)

where |
| is the surface area of the target and C is its harmonic
capacity (defined such that the capacity of a sphere of radius
a is 4πa). If we take the target to be a one-sided disk of radius
a, then C = 4a and |
| = πa2 and (42) yields (41). Although
the estimate (42) was not claimed to be valid when the target
is on the boundary {(42) was derived assuming that the target
is far from the boundary [28]}, it is interesting that it is always
within 17% of our estimate (40) for targets on the boundary.
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Guérin et al. [12] recently investigated the imperfect nar-
row escape problem with a single trap and generated exact
analytical asymptotic results in two-dimensional and three-
dimensional domains in the limit of high confining volume
and high absorption. Their asymptotic results provide higher-
order correction terms to the leading-order term and reveal the
dependence of the particle’s initial distance from the trap.

The first-order asymptotic results for the MFPT of es-
cape in this paper are applicable to domains of all shapes.
The geometry of the domain, however, is important for the
higher-order terms. One immediate extension of this paper
is thus to compute the higher-order terms for the MFPT for
different geometries using the specific Green’s functions for
that geometry [5].

The narrow escape scenario discussed in this paper could
be modified to model more general biochemical scenarios.
Diffusing proteins are known to exist in a number of con-
formational states with varying reactivity levels with ligands
[29]. In order to capture the dynamic reactivity level of the
proteins, one could change the assumption about the sim-
ple Robin-Neumann boundary conditions. The traps can be
modeled to exhibit Markovian switching between different
reactivity states. Similar problems of stochastic gating have
been discussed in Refs. [30–34], and it would be interesting
to extend the SLPT framework and the KMC algorithms used
in this paper to account for such gating.
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APPENDIX A: CAPACITANCE COMPUTATION
FOR CASE 1 (κε � 1)

The KMC algorithm in this appendix simulates the prob-
lem described in (14). The algorithm implements the general
method devised by Bernoff, Lindsay, and Schmidt [24]. Fur-
thermore, the capacitance for this specific problem is known
exactly and thus the simulations are not necessary. Neverthe-
less, we describe the algorithm to set up the exposition in the
more complicated scenarios in the following appendices.

The domain is the infinite half-space, and the trap is a disk
of radius α > 0, which is perfectly absorbing. The algorithm
leverages the fact that the solution to (14) has a probabilistic
interpretation. In particular, wc(y) is the probability that a
Brownian particle starting at y eventually hits the trap. To find
an analytical expression for capacitance, we first define the
wc(ρ) to be the average of wc over the surface of a hemisphere
H of radius ρ > α centered at the origin, H = {(p, q, η) ∈
R3 :

√
p2 + q2 + η2 = ρ, η � 0}. Integrating the PDE in (14)

over the surface of the hemisphere H , using the divergence
theorem and that ∂ηwc = 0 for ρ > 1 and η = 0, we get∫∫

H
�wc dS =

∫
∂H

∇wc · d �r =
∫

∂H
∂ηwc dr = 0,

with ∂H denoting the boundary of H , ∂H = {(p, q, η) ∈ R3 :√
p2 + q2 = ρ2, η = 0}. Because of the radial symmetry of

wc, we can drop the angular derivatives in the Laplacian �wc

in the above integral. We then interchange the integration and
differentiation and use the definition of wc(ρ) to rewrite the
surface integral as

0 =
∫∫

H
�wcdS =

(
2

ρ
∂ρ + ∂2

ρ

)
wc(ρ).

Using the far-field condition in (16), the solution to this dif-
ferential equation satisfies

wc(ρ) = c1(αn)

ρ
, ρ > 1.

We can therefore use KMC simulations to numerically es-
timate wc(ρ) and scale it with ρ to compute c1(α). For
convenience, we choose ρ = α = 1 in our simulations; thus
Stage I initializes the particle uniformly on a hemisphere of
unit radius. The particle starts in the bulk, and its position is
[p0 q0 η0]�, where η0 > 0. The cumulative distribution
for the time the particle takes to reach the plane η = 0 in Stage
I is computed via [35]

tto plane = 1

4

(
η0

erfc−1(U )

)2

, (A1)

where U is a uniformly distributed random variable on [0, 1].
Then the propagation in Stage I can be described by the
mapping ⎡

⎢⎣
p

q

η

⎤
⎥⎦ →

⎡
⎢⎣p + ξ1

√
2tto plane

q + ξ2
√

2tto plane

0

⎤
⎥⎦, (A2)

where ξ1, ξ2 are independent, standard normal random vari-
ables.

The algorithm now checks whether the particle lands inside
or outside the trap. If the particle lands inside the trap, then the
algorithm moves to Stage III. The particle, thus, immediately
gets absorbed, so the algorithm terminates and the absorption
boolean is recorded as true. If the particle lands outside the
trap, then the algorithm moves to Stage II, and the particle
is propagated to a hemisphere whose radius is the particle’s
distance from the trap. The propagation in Stage II can be
described by the mapping

⎡
⎢⎣

p

q

0

⎤
⎥⎦ →

⎡
⎢⎣

p

q

0

⎤
⎥⎦ + r

⎡
⎢⎢⎢⎢⎣

ξ1/

√
ξ 2

1 + ξ 2
2 + ξ 2

3

ξ2/

√
ξ 2

1 + ξ 2
2 + ξ 2

3

ξ3/

√
ξ 2

1 + ξ 2
2 + ξ 2

3

⎤
⎥⎥⎥⎥⎦, (A3)

where r = (‖[p, q, 0]�‖ − α) is the distance to the trap
boundary, α is the radius of the trap in the inner problem, and
ξ1, ξ2, ξ3 are standard normal random variables.

The particle’s distance away from the origin is then
checked to see if the particle traveled beyond a threshold r∞
(we set r∞ = 1010 in our simulations). If the particle has not
traveled beyond that threshold, the algorithm returns to Stage
I. If the particle has traveled beyond that threshold, we assume
that it traveled to infinity. Therefore, the algorithm terminates,
and the absorption Boolean is recorded as false. We notet that
the probability of a particle starting at a distance r∞ from
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the trap being absorbed is on the order of 1/r∞. Thus, our
assumption that particles reaching this threshold never hit the
trap introduces an error on the order of 1/r∞ = 10−10.

After the algorithm runs for many trials, the capacitance
value is computed by finding the ratio of trials in which the
particle gets absorbed to the total number of trials.

APPENDIX B: CAPACITANCE COMPUTATION
FOR CASE 2 (κε = O(1))

The KMC algorithm in this appendix simulates the prob-
lem described in (23), again using that the solution wc(y)
to (23) is the probability that a Brownian particle starting
from y eventually gets absorbed at the partially absorbing
trap. The domain is the infinite half-space, and the trap is a
partially absorbing disk of radius α > 0. In contrast to the
previous apeendix, we are not aware of an exact formula
for the capacitance of this problem and thus a simulation
algorithm is necessary. The algorithm follows a method
used in [19]. The analytical relationship between capacitance
and average value of wc over the surface of a hemisphere
of radius ρ > α can be derived by following the steps in
Appendix A,

wc(ρ) = c2(α, εκ )

ρ
.

Thus, we can similarly choose ρ = 1 and use KMC simula-
tions to estimate wc(1) = c2(1, εκ ). The particle is similarly
initialized uniformly on a hemisphere of radius 1. The Stage
I and II propagations are exactly the same as the previous
algorithm and we use the mappings in (A2) and (A3). We also
similarly check if the particle traveled beyond r∞ = 1010. If
so, we terminate the algorithm and set the absorption boolean
equal to false.

If the particle gets mapped to the inside of the trap, then
the algorithm moves to Stage III. Because the absorbing trap
is not perfectly absorbing, the particle now is not immediately
absorbed. We thus compute the distance to the trap boundary
and scale the pre-computed cumulative distribution for the
FPT to the unit disk with that distance. We then use inverse
binary sampling to sample the time to reach the disk.

The precomputed cumulative distribution of the FPT to the
unit disk is [36]

Pdisk(τ ) =
∞∑

r=1

2 exp
( − q2

r τ/2
)

qrJ1(qr )
, (B1)

where J1 is the first-order Bessel function of the first kind and
qr are the ordered positive roots of J0, the zero-order Bessel
function of the first kind. Thus, for the particle at [p0, q0, 0]�,
the time to reach a disk that touches the trap boundary is

tto disk = (‖[p0, q0, 0]�‖ − α)2P−1
disk(U ) (B2)

where U is uniformly distributed on [0, 1] and P−1
disk denotes

the inverse of (B1).
During this time tto disk, the particle is necessarily above the

partially absorbing boundary. Thus, this problem is described
by a one-dimensional diffusion problem on the half-line with
a partially absorbing boundary condition at 0 and a Dirac delta

function initial position,

∂tρ = ∂ηηρ, η > 0, t > 0,

∂ηρ(0, t ) = kρ, t > 0,

ρ(η, 0) = δ(η), η > 0,

where ρ(η, t ) is the particle density at position η and time t .
The probability that the particle has not been absorbed by time
t and is below height z is then

Ppartial(t, z) =
∫ z

0
ρ(t, s) ds

= erfcx(k
√

t ) − exp

(
− z2

4t

)
erfcx

(
z + 2tk

2
√

t

)
,

where erfcx(x) = exp(x2)(1 − erf(x)).
We check if the particle is absorbed during time tto disk

by checking if U > Ppartial(tto disk,∞), when U is uniformly
distributed on [0, 1]. If the particle is absorbed, we terminate
the algorithm, and the absorption boolean is recorded as true.
If the particle is not absorbed, we sample the height of the
particle by finding ηnext such that

Ppartial(tto disk, ηnext ) = U .

Then, we use the following mapping to propagate the particle
to the bulk: ⎡

⎣p
q
0

⎤
⎦ →

⎡
⎣p

q
0

⎤
⎦ +

⎡
⎣r cos(2πξ )

r sin(2πξ )
ηnext

⎤
⎦, (B3)

where r = (α − ‖[p, q, 0]�‖) is the distance to the trap
boundary, α is the radius of the trap in the inner problem, and
ξ is a random variable uniformly distributed over [0, 2π ].

After the particle is propagated, the particle’s distance
away from the origin is checked to see if the particle traveled
beyond the preset threshold. If the particle has not traveled
beyond that threshold, the algorithm returns to Stage I. If the
particle has traveled beyond that threshold, we assume that it
traveled to infinity. Therefore, the algorithm terminates and
the absorption Boolean is recorded as false.

After the algorithm runs for many trials, the capacitance
value is computed by finding the ratio of trials in which the
particle gets absorbed to the total number of trials.

APPENDIX C: CAPACITANCE COMPUTATION
FOR CASE 3 (κε � 1)

The KMC algorithm in this appendix simulates the prob-
lem described in (28). The domain is the infinite half-space,
and the trap is reflecting. Unlike in the previous two algo-
rithms, the solution wc(y) of (28) is the expected local time
that a particle spends on the disk ∂�A before it wanders off to
infinity, conditioned that it starts at y [25].

To find the capacitance, the algorithm follows a method
used in [19]. Similar to the previous two algorithms, we
define wc(ρ) to be the average of wc over the surface of a
hemisphere H or radius ρ > α centered at the origin, and we
take α = 1 without loss of generality. Following the steps in
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Appendix A, we again obtain

wc(ρ) = c3(1)

ρ
= K

ρ
, ρ > 1,

for some constant K [the relation (29) then follows from a
simple scaling argument]. We can, therefore, use KMC sim-
ulations to numerically estimate wc(ρ) and scale it with ρ to
compute K . We choose ρ = 1 in our simulations; thus Stage
I initializes the particle uniformly on a hemisphere of radius
1. The Stage I and II propagations are exactly the same as
the previous algorithm and we use the mappings in (A2) and
(A3) for Stage I and Stage II, respectively. We also similarly
check if the particle has traveled beyond a threshold value and
terminate the algorithm if it did and record the accumulated
local time. In Stage III, we compute tto disk, the time the parti-
cle takes to reach a disk whose radius is the distance to the trap
boundary, as discussed in Stage II and Eq. (B2). Before time
tto disk, the particle is necessarily above the trap and the prob-
lem is thus effectively one dimensional. The probability that
the particle accumulates more than � local time is then [37]

Plocal(�) = 1 − erf

(
�

2
√

tto disk

)
,

and thus we can sample the change in local time as

� = 2
√

tto diskerf−1(U ),

where U is uniformly distributed on [0, 1]. Conditioned on
the change in local time �, the probability that the particle is
at height η at time tto disk is [37]

Ppos(η) = 1 − exp

(
�2 − (η + �)2

4tto disk

)
.

We thus sample the new height of the particle as

ηnext =
√

�2 − 4tto disk ln(1 − U ) − �

where U is uniformly distributed on [0, 1]. Then, we use the
mapping in (B3) to propagate the particle to the bulk with
r, α, ζ , ξ as defined in (B3).

After the particle is propagated, the particle’s distance
away from the origin is checked to see if the particle traveled
beyond the preset threshold r∞. If the particle has not traveled
beyond that threshold, the algorithm returns to Stage I. If
the particle has traveled beyond the threshold, we assume
that the particle traveled to infinity. Therefore, the algorithm
terminates, and the final value of the local time is recorded.
After the algorithm runs for many trials, the capacitance value
is calculated to be the average local time over these trials.

APPENDIX D: FULL SIMULATION

The KMC algorithm in this appendix simulates the
problem described in (5). We take the domain to be a rect-
angular prism, defined by � = (−h, h) × (−h, h) × (0, L).
We assume that there is only one partially absorbing trap

∂�ε = {(x, y, 0) : x2 + y2 � ε2}. The rest of the prism surface
∂�R is reflective. In order to minimize the number of compu-
tations required in the algorithm, we exploit the radial sym-
metry of this problem. We periodically extend the domain and
study the problem when the z = 0 plane has infinitely many
partially absorbing traps placed on a square grid with grid size
2h. This allows us to circumvent computing reflections from
the sides of the prism as we can also always mod out the x, y
positions of the particle by 2h to place the particle back in our
original prism.

In this algorithm, the goal is to compute the total time the
particle spends in the domain before it gets absorbed by the
trap. Thus, we record the time the particle spends in each stage
of the algorithm and compute the total sum of those times.

We initialize the particle uniformly in the prism domain.
Then, Stage I similarly propagates the particle from the bulk
to the plane. Since we now have a bounded domain, we cannot
use the Stage I propagation formula in (A1) for tto plane. We
describe the problem as a 1D survival probability problem on
the bounded domain [0, 2L], where both ends of the domain
are perfectly absorbing. This problem is studied in [38], and
we precompute the given analytical solution on the [0, L]
domain. The problem and the solution are described by

∂t St = ∂zzS, 0 < z < 2L, t � 0

S(0, t ) = 0, t � 0

S(2L, t ) = 0, t � 0

S(z, 0) = 1, 0 < z < 2L

S(z, t ) = 1 −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑∞
k=1

(
1 − e−k2π2 Dt

L2

)
2

kπ
sin(kπ z

L )

+
(

1 − e−k2π2 Dt
L2

)
2

kπ
sin (kπ

(
1 − z

L

)
)

∑∞
k=−∞ sgn(2k + z

L )erfc

(
|2k+ z

L |√
4 Dt

L2

)

+sgn(2k + (1 − z
L ))erfc

(
|2k+(1− z

L )|√
4 Dt

L2

)

where the first sum converges fast for large t and the sec-
ond one converges fast for small t . Before the algorithm is
run, this cumulative distribution for the survival probability
is precomputed for a set of t, z values, and the two formulas
above are used for the 0 < t < 1 and t � 1 regimes. We then
pick the S values for which 0 � z � L since this survival
probability problem was solved on the 0 � z � 2L domain.
We then sample a time from this distribution by the equation

tto plane = S−1(U )

where U is uniformly distributed on [0, 1]. Then we use the
mapping in (A2) to propagate the particle to the z = 0 plane.
As there is no guarantee that this mapping would not place
the particle outside the prism, we use the following mapping
to make sure that the particle stays inside the prism defined by
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(−h, h) × (−h, h) × (0, L):

[p, q, z]� → [mod(p, 2h), mod(q, 2h), z]� (D1)

where mod(a, b) is defined as the modulo operation:
mod(a, b) = a − b(floor(b/a)). tto plane value is recorded and
depending on the particle’s new position with the mapping in
(D1), the algorithm either moves on to Stage II if the particle
is outside the trap or to Stage III if the particle is inside
the trap.

Stage II mapping is the same as the one described in
the previous algorithm, but now we also compute the time
for the particle to diffuse to the hemisphere as we want to
record the time for each step. The MFPT to a sphere of radius
R is a well-characterized problem and it has the following
cumulative distribution [35]:

P(t, R) =

⎧⎪⎨
⎪⎩

1 + 2
∑∞

n=1(−1)n exp
(

−n2π2t
R2

)
2R 1√

πt

∑∞
n=0 exp

(
−R2(n+ 1

2 )2

t

)

where the first sum converges fast for large t and the second
converges fast for small t . Before the algorithm is run, this cu-
mulative distribution is computed for a set of t values and the
two formulas above are used for 0 < t < 1 and t � 1 regimes.
We sample a time from this distribution by the equation

tto hemisphere = (‖[p, q, 0]�‖ − α)2P−1(U, 1)

where U is uniformly distributed on [0,1]. tto hemisphere is
then recorded and the particle is placed uniformly on the
hemisphere using the mapping in (A3) and ensured to be
inside the prism by the modulo mapping in (D1).

In Stage III, as we have done in the previous algorithm,
we compute the time tto disk by the formula in (B2). During
tto disk, the particle only sees the partially absorbing boundary
at one end and the reflective boundary at the other end. There-
fore, we can model the particle’s behavior as a 1D diffusion
problem on a bounded domain with a delta-function initial

density,

∂tρ = ∂zzρ, 0 < z < L, t � 0

ρz(0, t ) = 0, t � 0

ρz(L, t ) = −κρ, t � 0

ρ(z, 0) = δ(z), 0 � z � L (D2)

where ρ(z, t ) is the particle’s density at position z and time t .
The solution to this problem can be computed via sep-

aration of variables, and the cumulative distribution for the
survival probability of the particle can be found by integrating
the solution with respect to z,

S(z, t ) =
∫ z

0
ρ(s, t ) ds

=
∞∑

n=1

4 cos(μnL)

2μnL + sin(2μnL)
exp

( − μ2
nt

)
sin(μnz)

where {μn}∞n=1 satisfies the transcendental equation
tan(μnL) = κ

μn
.

We now check if the particle has been absorbed or not by
checking if U > S(L, t ) where U is uniformly distributed on
[0,1]. If U > S(L, t ), then the particle has been absorbed, so
we sum the times the particle spent in different stages of the
algorithm and record that total time. If U � S(L, t ), then the
particle has not been absorbed, so we sample a z position at
time tto disk,

znext = L − S−1(U, tto disk)

where S−1 is the inverse of S with respect to z. Notice we
are subtracting the sampled position from L to account for the
fact that we modeled the reflective boundary to be at 0 and the
partially absorbing boundary at L in (D2), while our problem
has the boundaries flipped. We then use the mapping in (B3)
with ηnext = znext to propagate the particle to a new position
and then use the modulo mapping in (D1) to make sure that
the particle is inside the prism domain. The algorithm now
returns to Stage I.

After the algorithm runs for many trials, the MFPT is
computed to be the average FPT of these trials.
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