10.5 Polar Coordinates

lype of Figure	General Case	$\theta_0 = 0$	$\theta_0 = \pi/2$
Line	$r = \frac{d}{\cos(\theta - \theta_0)}$	$r = \frac{d}{\cos \theta}$	d $r = \frac{d}{\sin \theta}$
Circle	$r = 2a \cos(\theta - \theta_0)$	$0 = 2a \cos\theta$	$ \begin{array}{c c} & & \\$
Tables $(0 < e < 1)$ Tables $(e = 1)$ Tables $(e > 1)$	$r = \frac{ed}{1 + e \cos(\theta - \theta_0)}$	$r = \frac{ed}{1 + e \cos \theta}$	$r = \frac{cd}{1 + c\sin\theta}$

Ex 1: Plot and give three other ways to write these points in polar coordinates.

(a)
$$\left(-1, \frac{15}{4}\pi\right)$$

(b)
$$\left(-2\sqrt{2}, \frac{19}{2}\pi\right)$$

Formulas Polar to

Cartesian/Rectangular Coordinates:

$$\begin{aligned}
x &= r \cos \theta \\
y &= r \sin \theta
\end{aligned}$$

Cartesian/Rectangular to Polar Coordinates:

$$r^2 = x^2 + y^2$$
$$\tan \theta = \frac{y}{x}$$

Ex 2: Convert these points from polar coordinates to rectangular coordinates.

(a)
$$\left(-1, \frac{15}{4}\pi\right)$$

(b)
$$\left(-2\sqrt{2}, \frac{19}{2}\pi\right)$$

Ex 3: Convert these points from rectangular coordinates to polar coordinates. (a) (0,-2) (b) $(5\sqrt{2},-5\sqrt{2})$

(a)
$$(0,-2)$$

(b)
$$(5\sqrt{2}, -5\sqrt{2})$$

Ex 4: Name each curve and draw a quick sketch of the curve.

(a)
$$r = \frac{-9}{\cos \theta}$$

(b)	$r=-4\cos\theta$
-----	------------------

$$c) r = \frac{4}{2 + \cos\left(\theta - \frac{\pi}{6}\right)}$$

$$(d) \quad r = \frac{4}{2 + 2\cos\left(\theta - \frac{\pi}{6}\right)}$$

(e)
$$r = \frac{4}{2 + 4\cos\left(\theta - \frac{\pi}{6}\right)}$$

10.6 Graphs of Polar Equations

Ex 1: Name and sketch each graph. Look for symmetry.

(a)
$$r=4-3\sin\theta$$

Limacon:

$$r = a \pm b \cos \theta$$
 or $r = a \pm b \sin \theta$

<u>Lemniscate</u>:

$$r^2 = \pm a \cos(2\theta)$$
 or $r^2 = \pm a \sin(2\theta)$

(b) $r = 2 - 2\cos\theta$

Rose:

$$r = a\cos(n\theta)$$
 or $r = a\sin(n\theta)$

if n is odd, then there are n leaves (or petals)

if n is even, then there are 2n leaves (or petals

Spiral: $r = a\theta$

Ex 1 (continued):

(c)	$r^2 = -9\cos(2\theta)$	(d)	$r = 4\cos(3\theta)$

Ex 2: Sketch the curves and find the points of intersection.

$$r = 6\sin\theta$$
 and $r = \frac{6}{1 + 2\sin\theta}$

10.7 Calculus in Polar Coordinates

Ex 1: Find the area inside the small loop of $r=2-4\cos\theta$.

Area "between" two polar curves:

(1)
$$A = \frac{1}{2} \int_{\alpha}^{\beta} \text{radius}^2 d\theta$$

where $\text{radius}^2 = (f(\theta))^2$

if it's just one region with only one curve boundary

or possibly
(2) $A = \frac{1}{2} \int_{\alpha}^{\beta} (\text{outer radius}^2 - \text{inner radius}^2) d\theta$ where outer radius² = $(f(\theta))^2$ and inner radius² = $(g(\theta))^2$

<u>Tangent Line Slope:</u>

Given $r = f(\theta)$ curve, slope is $m = \frac{dy/d\theta}{dx/d\theta} = \frac{f(\theta)\cos\theta + f'(\theta)\sin\theta}{-f(\theta)\sin\theta + f'(\theta)\cos\theta}$

Ex 2: Setup the integral for the area in Quadrant 2 inside $r=2+2\sin\theta$ and outside $r=2+2\cos\theta$.

Ex 3: Find the slope of the tangent line to (a)
$$r=4-3\cos\theta$$
 at $\theta=\frac{\pi}{3}$.

(b)
$$r = \sin(2\theta)$$
 at $\theta = \frac{\pi}{3}$.

Ex 4: A goat is tethered to the edge of a circular pond of radius a by a rope of length ka (for some constant k such that $0 < k \le 2$. Find its grazing area.

