
- 1. (15 points) Consider the quadratic function $g(x) = 2x^2 12x + 9$.
 - (a) g(-2) =
 - (b) State the roots of this function in reduced radical form.

- (c) State the y-intercept.
- (d) Determine the vertex.
- (e) Sketch the graph of this function.

2. (15 points) Let
$$f(x) = \frac{x(x-2)}{(x+1)(x-3)}$$
.

- (a) Write the equations for the vertical asymptotes (poles).
- (b) Write the equation for the horizontal asymptotes.
- (c) Find the y-intercept
- (d) Find the x-intercepts.
- (e) Sketch the graph of this function.

3. (15 points) Solve each of these for x. Beware of domain restrictions.

(a)
$$\ln(x+1) + \ln(x-1) = \ln 3$$

(b)
$$8 = 4e^{3x}$$

(c)
$$\log_2\left(\frac{1}{64}\right) = x$$

4. (8 points) Solve
$$\begin{cases} x^2 - y = -3 \\ 2x + y = 18 \end{cases}$$

5. (7 points) Determine all three roots of this equation, writing them in reduced radical form.

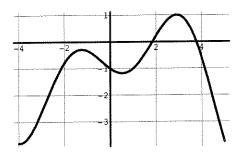
$$x^3 + x^2 + x - 3 = 0.$$

6. Let
$$A = \begin{bmatrix} 1 & 1 & -5 \\ 1 & 0 & -2 \\ 2 & -1 & -4 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 5 \\ 2 & -4 \end{bmatrix}$, and $C = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$.

(a) Find the determinants of A and B.

(b) Find the inverse of B.

(c) Write a set of linear equations in x and y using matrices B and C.


(d) Solve your system for x and y.

- 7. (6 points) For the sequence, $a_n = (-1)^n (3n 2)$,
 - (a) Write the first five terms of this sequence.

(b)
$$\sum_{j=1}^{5} a_j =$$

8. (4 points) Expand and write in decreasing powers of x: $(2x - y)^4$.

9. (15 points) Let $f(x) = \sqrt{6-5x}$, and let g(x) be the function in the graph:

Find these:

(a)
$$f(-2) =$$

(b)
$$g(3) =$$

- (c) The x-intercepts of g(x) are
- (d) The y-intercept of f(x) is

(e)
$$g \circ f(-2) =$$

(f) Find the inverse of f(x), and state the domain of the inverse.