
Math1050 Kelly MacArthur First Day Assignment

Things you already know from Math1010. :)

1. Evaluate/simplify these expressions and place the letter corresponding to teach one on the number line below. (Place a dot on the number line and the letter above it, as shown in the example.) Also, fill in the table telling the smallest set the number belongs to. Choose from these number sets: \mathbf{R} = real numbers, \mathbf{Q} = rational numbers, \mathbf{I} = irrational numbers, \mathbf{Z} = integers, \mathbf{W} = whole numbers

Number to evaluate and plot:	Set:
A. $-\sqrt{2}$	
B. -2^2	
C. 5^{0}	
D. $\pi-1$	
E0.3	
$F. 0.\overline{3}$	
G. $\sqrt{7-3}$	
H. 3-6	
I. $\frac{ x }{x}$ if x is negative	
J. $\frac{ x }{x}$ if x is positive	
K. Additive Identity	
L. Additive inverse of $\frac{3}{4}$	
M. Multiplicative Identity	
N. Multiplicative inverse of $\frac{3}{4}$	
O. $\frac{0}{4}$	
P. $\frac{4}{0}$	
Q. $\frac{0}{0}$	
R. 0.9	
Example S. $\frac{8}{2} = 4$	W

- 2. List all the integers in these intervals.
- (a) (-3, 4]
- (b) [1, 5]
- (c) $(5,\infty)$
- (d) (3, 4)
- (e) $(-\infty, 1]$
- 3. Using $5x^3-2x+4=0$, fill in an example of each of these questions, to practice your understanding of the vocabulary words. (For instance, if I asked for "degree," you'd say 3 is the degree.)

Vocabulary Word	Example
Equation	
Expression	
Term	
Factor	
Constant	
Coefficient	
Exponent	

- 4. Use the order of operations to evaluate these expressions.
- (a) $3.5-6 \div 4+2$
- (b) $4+3\cdot 2^3 \div 4-2$
- (c) $\frac{2x^3-x}{yz+y}$ if x=-2, y=3, z=-6
- 5. Evaluate these power (exponent) expressions.
- (a) $64^{\frac{2}{3}}$
- (b) $64^{\frac{3}{2}}$
- (c) $64^{\frac{-2}{3}}$
- (d) $64^{\frac{-3}{2}}$
- (e) $-64^{\frac{3}{2}}$
- (f) $(-64)^{\frac{2}{3}}$

6. Simplify, by rationalizing the denominator.

(a)
$$\frac{5}{\sqrt{10}}$$

(b)
$$\frac{3}{\sqrt{5}-2}$$

$$(c) \quad \frac{\sqrt{2x^3}}{\sqrt{8x^6}}$$

7. Simplify and write each expression with positive, rational exponents.

(a)
$$\frac{5^{\frac{-1}{2}}(5x^{\frac{5}{2}})}{(5x)^{\frac{3}{2}}}$$

(b)
$$\sqrt[3]{\sqrt{8x^3 y^6}}$$

(c)
$$\frac{32 \cdot 8 \cdot 2^4}{64 \cdot 16 \cdot 2^{-3}}$$
 (Hint: Rewrite this as 2 to some power.)