3.1 & 3.2 Whole Number Addition and Subtraction Addition & Subtraction--binary operations Properties of Addition (with Whole numbers): - 1. Closure-- - 2. Commutativity-- - 3. Associativity-- - 4. Additive Identity-- Set Model | Measurement Model ### **Addition Thinking Strategies:** - 1. Doubles - 2. Add zero - 3. Commutativity/associativity - 4. Counting by 2s or 5s - 5. Doubles +/- 1 - 6. Grouping by tens - 7. Counting on Ex Find three different ways to add: 5 + 9 14 + 28 + 36 51 + 89 $5_6 + 2_6$ $17_8 + 32_8$ 3.1 & 3.2 January 29, 2014 # <u>Subtraction</u> Take-away approach Missing addend approach 3.1 & 3.2 January 29, 2014 #### Four-fact families: TABLE 4.1. A Taxonomy of Addition and Subtraction Word Problems | CHANGE-ADD-TO with | UNKNOWN OUTCOME | UNKNOWN CHANGE | UNKNOWN START | | |-----------------------|--|---|--|--| | | Alexi had 5 candies. Barb gave
him 3 more. How many candies
does he have altogether now? | Alexi had 5 candies. Barb gave
him some more. Now he has
8 altogether. How many
candies did Barb give him? | Alexi had some candies. Barb gave him 3 more. Now he has 8 altogether. How many candies did he start with? | | | CHANGE-TAKE-AWAY with | UNKNOWN OUTCOME | UNKNOWN CHANGE | UNKNOWN START | | | | Alexi had 8 candies. He gave 5
to Barb. How many candies
does he have left? | Alexi had 8 candies. He gave
some to Barb. Now he has 3
left. How many candies did he
give to Barb? | Alexi had some candies. He gave 5 to Barb. Now he has 3 left. How many candies did he start with? | | | PART-PART-WHOLE with | UNKNOWN WHOLE | UNKNOWN SECOND PART | UNKNOWN FIRST PART | | | | Alexi had 5 fireballs and 3
lollipops. How much candy did
he have altogether? | Alexi had 5 fireballs and some
lollipops. He had 8 candies
altogether. How many were
lollipops? | Alexi had some fireballs and
3 lollipops. He had 8 candie
altogether. How many were
lollipops? | | | EQUALIZE with COMPARE with | UNKNOWN DIFFERENCE | UNKNOWN SECOND PART | UNKNOWN FIRST PART | | |-----------------------------|---|---|---|--| | | Alexi had 8 candies. Barb had
5. How many more does Barb
have to buy to have as many as
Alexi? | Alexi had 8 candies. Barb had
to get 3 more candies to have
the same number as Alexi.
How many candies did Barb
start with? | Alexi had some candies.
Barb, who had 5 candies,
had to get 3 more to have
the same number as Alexi.
How many candies did Alex
have? | | | | UNKNOWN DIFFERENCE | UNKNOWN SECOND PART | UNKNOWN FIRST PART | | | | Alexi had 8 candies. Barb had 5. How many more candies did Alexi have than Barb? | Alexi had 8 candies. He had 3
more than Barb. How many
candies did Barb have? | Alexi had some candies. He
had 3 more than Barb who
had 5. How many candies
did Alexi have? | | Note. The examples shown above for EQUALIZE and COMPARE problems are the "more" versions. "Less" versions could also be written for each. For example, the less version of the EQUALIZE with UNKNOWN DIFFERENCE would read: Alexi had 8 candies. Barb had 5. How many does Alexi have to give up to have as many as Barb? Algorithm-- | | | | | • | | |-----------------------|--------|--------|----|--------|---| | Α | \sim | \sim | 11 | \sim | n | | $\boldsymbol{\vdash}$ | u | u | | | | | | | | | | | (a) base pieces (b) chip abacus (f) standard algorithm (c) place-value representation (d) intermediate algorithm (e) lattice method ## <u>Subtraction</u> (a) base pieces (e) standard algorithm (b) chip abacus (c) place-value representation (d) intermediate algorithm ## More examples: $$3. 225_6 + 341_6$$ 5. $$2120_3 + 212_3$$ 8. $$101010001_2 + 111111_2$$ 5. $$2120_3 + 212_3$$ 8. $$101010001_2 + 111111_2$$ What are these kids thinking?