3.1 & 3.2 Whole Number Addition and Subtraction

Addition & Subtraction--binary operations

reguire two #s to act on ex 3+5
W={0,1,2,3,...}

Properties of Addition (with Whole numbers): "Whole # are closed under addition"

- 1. Closure -- if I add any 2 whole #5, I get back a whole
- 2. Commutativity-- order doesn't matter; a+b=b+a
- 4. Additive identity-0 a+0=0+a=a

 (Dpreserves the identity of any # its added to)

Set Model

<u>8</u>3+4 = 7

Measurement Model

Addition Thinking Strategies:

2. Add zero
$$19 + 23 = |9+| + 23 - 1 = 20 + 22 = 42$$

3. Commutativity/associativity
$$\frac{7+5+4+2}{2} = 7+4+2+2$$

4. Counting by 2s or 5s
$$|3+8=2|$$
 = 7+9+21 = 7+30 = 37

5. Doubles +/- 1
$$7+6 = (6+1)+6=13$$

Ex Find three different ways to add:

Ex Find three different ways to add:

$$5+9$$
 0 $5-1+9+1 = 4+10=14$ 0

$$51+89$$
 ① $50+90=140$ ③ $50+90$ then count by tens

Subtraction

Take-away approach

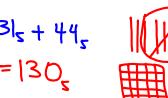
(use w/ set or measurement model) 5-3=2

Missing addend approach

Four-fact families:

TABLE 4.1. A Taxonomy of Addition and Subtraction Word Problems

CHANGE-ADD-TO with	UNKNOWN OUTCOME	UNKNOWN CHANGE	UNKNOWN START
	Alexi had 5 candies. Barb gave him 3 more. How many candies does he have altogether now?	Alexi had 5 candies. Barb gave him some more. Now he has 8 altogether. How many candies did Barb give him?	Alexi had some candies. Barb gave him 3 more. Now he has 8 altogether. How many candies did he start with?
CHANGE-TAKE-AWAY with	UNKNOWN OUTCOME	UNKNOWN CHANGE	UNKNOWN START
	Alexi had 8 candies. He gave 5 to Barb. How many candies does he have left?	Alexi had 8 candies. He gave some to Barb. Now he has 3 left. How many candies did he give to Barb?	Alexi had some candies. He gave 5 to Barb. Now he has 3 left. How many candies did he start with?
PART-PART-WHOLE with	UNKNOWN WHOLE	UNKNOWN SECOND PART	UNKNOWN FIRST PART
	Alexi had 5 fireballs and 3 lollipops. How much candy did he have altogether?	Alexi had 5 fireballs and some lollipops. He had 8 candies altogether. How many were lollipops?	Alexi had some fireballs and 3 lollipops. He had 8 candie altogether. How many were lollipops?

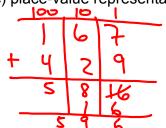

EQUALIZE with	UNKNOWN DIFFERENCE	UNKNOWN SECOND PART	UNKNOWN FIRST PART
COMPARE with	Alexi had 8 candies. Barb had 5. How many more does Barb have to buy to have as many as Alexi?	Alexi had 8 candies. Barb had to get 3 more candies to have the same number as Alexi. How many candies did Barb start with?	Alexi had some candies. Barb, who had 5 candies, had to get 3 more to have the same number as Alexi. How many candies did Alexi have?
	UNKNOWN DIFFERENCE	UNKNOWN SECOND PART	UNKNOWN FIRST PART
	Alexi had 8 candies. Barb had 5. How many more candies did Alexi have than Barb?	Alexi had 8 candies. He had 3 more than Barb. How many candies did Barb have?	Alexi had some candies. He had 3 more than Barb who had 5. How many candies did Alexi have?

Note. The examples shown above for EQUALIZE and COMPARE problems are the "more" versions. "Less" versions could also be written for each. For example, the less version of the EQUALIZE with UNKNOWN DIFFERENCE would read: Alexi had 8 candies. Barb had 5. How many does Alexi have to give up to have as many as Barb?

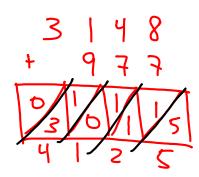
Algorithm -- series of steps to follow; "a recipe for a math problem"

Addition

(a) base pieces



(b) chip abacus


(c) place-value representation

(d) intermediate algorithm

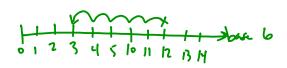
(e) lattice method

(f) standard algorithm

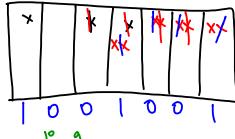
Subtraction

(a) base pieces

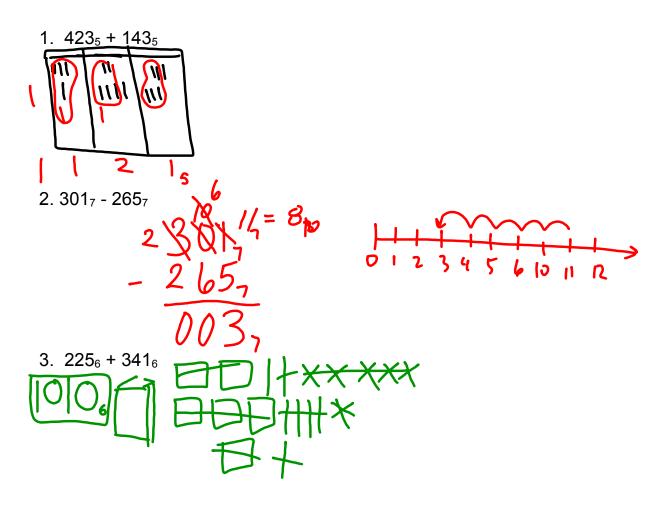
(e) standard algorithm

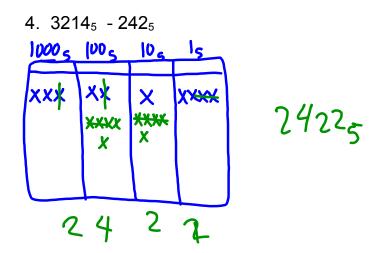

(b) chip abacus

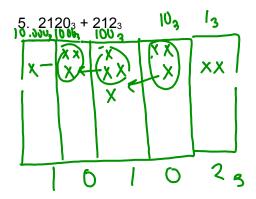
$$|20|_3 - 222_3 = 202_3$$



(c) place-value representation

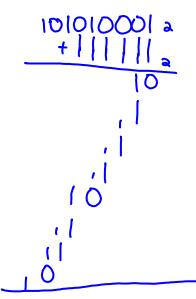





(d) intermediate algorithm

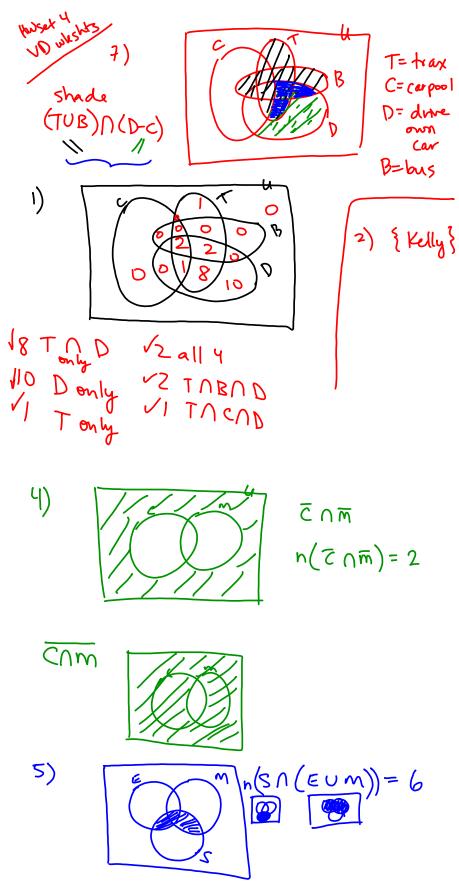
More examples:

- 6. 12210₃ 201₃


 122¹/₁0₃

 201

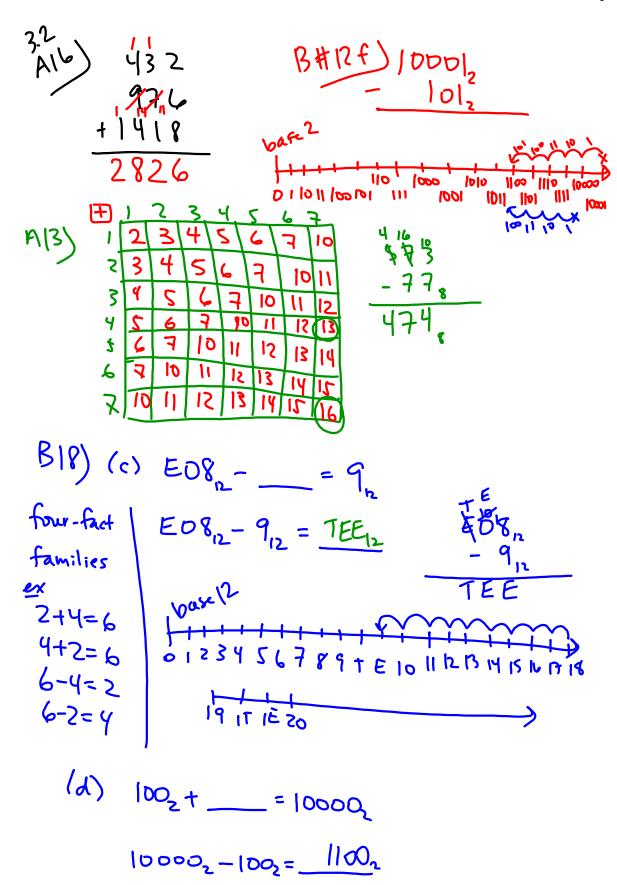
 12002
- 7. 31124 3314 34/24 - 3314 21214


8. 101010001₂ + 111111₂

1100100002

What are these kids thinking?

3.1 & 3.2 February 07, 2014



3.18W
AS) (a)
$$B = \{0\}$$
 yrs
(b) $T = \{3n \mid n \in W\} = \{0,3,6,9,...\}$
(d) $V = \{3,5,7\}$ no
 $3+5=8 \neq V$
(f) $C = \{0,1\}$ no
 $|+|=2 \neq C$

A6) A is closed under addition and contains 2 and 3

A10) a < b when a can be subtracted from b, and still give back a whole #.

3.1 (e)
$$x+8=5+(x+3)$$

 $x+8=x+8$
 $x=x$ $x \in \mathbb{N}$
(g) $x-3=x+1$
 $-3 \neq 1 \implies N.S.$
 $m \in \# Y$ (b) $a-b-c=a-(b+c)$
 $b+c$ 3 3
 $x+8=x+8$
 $x=x$ $x \in \mathbb{N}$
 $x=x$ $x \in \mathbb{N$

15 cookies and 8 children. Each child gets one cookie, How many cookies are left?

Having is 15 miles away from SLC. He drove another 8 miles. How many miles are left?

+ the state of the