
Math 1210 Midterm Review
(Sections 3.4, 3.6, 3.8, 3.9, 4.1, 4.2, 4.3, 4.4)

Spring 2016 Instructor: Kelly MacArthur

uID: Special Number:

Instructions: Please show all of your work. All answers should be completely simplified,
unless otherwise stated. Report answers as exact, i.e., no approximations. No calculators
or electronics of any kind are allowed.

1. Find the antiderivative of each of the following. Do not forget the constant term.

(a) f(x) = 2x7+3
x3

Solution:
∫
f(x)dx =

∫
(2x4 + 3x−3)dx = 2

5
x5 − 3

2
x−2 + C

(b) f(x) = 3x8+x2+1
x2

Solution:
∫
f(x)dx =

∫
(3x6 + 1 + x−2)dx = 3

7
x7 + x− 1

x
+ C

(c) f(x) = (x2 + 5)10x

Solution: Let u = x2 + 5, then∫
f(x)dx =

∫
1
2
u10du

= u11

22
+ C = (x2+5)11

22
+ C

(d) f(x) = (x3 + 6x)5(x2 + 2)

Solution: Let u = x3 + 6x,∫
f(x)dx =

∫
1
3
u5du

= u6

18
+ C = (x3+6x)6

18
+ C

(e) f(x) = sin9 x cosx

Solution: Let u = sinx,∫
f(x)dx =

∫
u9du

= u10

10
+ C = (sinx)10

10
+ C

2. Solve the following differential equations.



(a) dy
dx

= x2 + 1, y(1) = 1

Solution: dy = (x2 + 1)dx
y =

∫
(x2 + 1)dx = 1

3
x3 + x+ C

Since y(1) = 1, 1 = 1
3

+ 1 + C C = −1
3

The solution is y = 1
3
x3 + x− 1

3

(b) dy
dx

=
√

x
y
, x > 0, y > 0, y(1) = 4

Solution:
√
ydy =

√
xdx∫ √

ydy =
∫ √

xdx
2
3
y3/2 = 2

3
x3/2 + C

Since y(1) = 4, 2
3
43/2 = 2

3
+ C,C = 14

3
2
3
y3/2 = 2

3
x3/2 + 14

3
or y3/2 = x3/2 + 7.

The solution is explicitly given by y = (x3/2 + 7)2/3

(c) du
dt

= u3(t3 − t), u(1) = 4

Solution: u−3du = (t3 − t)dt∫
u−3du =

∫
(t3 − t)dt

−1
2
u−2 = 1

4
t4 − 1

2
t2 + C

Since u(1) = 4, −1
2

= 64− 8 + C,C = −561
2

u−2 = −1
2
t4 + t2 + 113

This is an implicit solution.

(d) dz
dt

= t2z2, z(1) = 1
3

Solution: z−2dz = t2dt∫
z−2dz =

∫
t2dt

−1
z

= 1
3
t3 + C

Since z(1) = 1
3
, −3 = 1

3
+ C,C = −10

3
.

The solution is explictly given by z = 3
−t3+10

.

(e) dy
dx

= y2x(x2 + 2), y(1) = 1

Solution: y−2dy = (x3 + 2x)dx∫
y−2dy =

∫
(x3 + 2x)dx

− 1
y

= 1
4
x4 + x2 + C

Since y(1) = 1, −1 = 1
4

+ 1 + C,C = −9
4
.

− 1
y

= 1
4
x4 + x2 − 9

4
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The solution is explicitly given by y = − 4
x4+4x2−9

3. An application of the mean value theorem
Suppose f(x) is an everywhere differentiable function defined on the whole real line and
|f ′(x)| ≤ 10 for all x. Show that |f(7)− f(5)| ≤ 20.

Solution: By the mean value theorem, |f(7) − f(5)| = (7 − 5)|f ′(θ)| for some θ
between 5 and 7. Since |f ′(x)| ≤ 10 for all x, |f(7) − f(5)| = (7 − 5)|f ′(θ)| ≤
(7− 5)× 10 = 20

4. An application of the intermediate value theorem
Show that f(x) = 2x3 − 9x2 + 1 = 0 has exactly one solution on each of the intervals
(−1, 0),(0, 1), and (4, 5).

Solution: f(−1) = −10,f(0) = 1,f(4) = −15,f(5) = 26.
So f(−1)f(0) < 0, f(0)f(1) < 0, f(4)f(5) < 0.
Note that f(x) is continuous everywhere. By the intermediate value theorem, there
exists a real root in each of the indicated intervals.
f ′(x) = 6x2 − 18x. It can be checked the derivative does not change sign on each
of (−1, 0),(0, 1), and (4, 5). So f(x) = 0 has exactly one solution in each of these
intervals.

5. Find the values of the following sums, assuming
∑100

i=1 ai = 30 and
∑100

i=1 bi = 40

(a)
∑100

n=1(3an + 4bn)

Solution:
∑100

n=1(3an + 4bn) = 3
∑100

n=1 an + 4
∑100

n=1 bn = 3× 30 + 4× 40 = 250

(b)
∑99

n=0(4an+1 − 3bn+1)

Solution:
∑99

n=0(4an+1−3bn+1) = 4
∑100

n=1 an−3
∑100

n=1 bn = 4×30−3×40 = 0

(c)
∑100

n=1(n− 1)(4n+ 2)

Solution:
∑100

n=1(n−1)(4n+2) =
∑100

n=1(4n
2−2n−2) = 4

∑100
n=1 n

2−2
∑100

n=1 n−
200 = 4× 100(101)(201)

6
+ 101(100)− 200 = 1363300
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(d)
∑100

n=1((2n− 1)2 + an)

Solution:
∑100

n=1(4n
2 − 4n+ 1) +

∑100
n=1 an = 4

∑100
n=1 n

2 − 4
∑100

n=1 n+ 100 + 30

= 4× 100(101)(201)
6

− 2× 100(101) + 130 = 1353400− 20200 + 130 = 1333330

(e)
∑100

n=1(3an + n2 − n)

Solution: = 3
∑100

n=1 an +
∑100

n=1 n
2 −

∑100
n=1 n = 3 × 30 + 100(101)(201)/6 +

100(101)/2 = 90 + 338350− 5050 = 333390

6. Definite integrals
Calculate the following integrals by using (1) the definition and (2) techniques for
computing integrals.

(a)
∫ 2

0
(x2 + 1)dx by using the definition

Solution:
∫ 2

0
(x2 + 1)dx = limn→∞

2
n

∑n
i=1[(

2i
n

)2 + 1]

= limn→∞( 2
n

∑n
i=1 4 i2

n2 + n) = limn→∞[ 8
n3

n(n+1)(2n+1)
6

+ 2]
= (16/6) + 2 = (8/3) + 2 = 14/3

(b)
∫ 2

0
(x2 + 1)dx by direct calculation

Solution:
∫ 2

0
(x2 + 1)dx = (x

3

3
+ x)|2x=0 = (16/6) + 2 = (8/3) + 2 = 14/3

(c)
∫ 10

−10(x
2 + x)dx by using the definition

Solution:
∫ 10

−10(x
2 + x)dx = limn→∞

20
n

[
∑n

i=1(−10 + 20i
n

)2 + (−10 + 20i
n

)]

= limn→∞
20
n

[100
∑n

i=1(
2i
n
− 1)2 + 10

∑n
i=1(

2i
n
− 1)]

= limn→∞
20
n

[100
∑n

i=1(
4i2

n2 − 4i
n

+ 1) + 20
∑n

i=1
i
n
− 10n]

= limn→∞
20
n

[400
n2

∑n
i=1 i

2 − 400
n

∑n
i=1 i+ 100n+ 20

n

∑n
i=1 i− 10n]

= limn→∞
20
n

[400
n2

n(n+1)(2n+1)
6

− 380
n

n(n+1)
2

+ 90n]
= 20×400×2

6
− 20×380

2
+ 90× 20

= (16000/6)− 3800 + 1800 = (8000/3)− 2000 = 2000/3

(d)
∫ 10

−10(x
2 + x)dx by direct calculation

Solution: Note that f(x) = x2 is an even function and g(x) = x is an odd

function. Furthermore, the domain is symmetric about zero.
∫ 10

−10(x
2 + x)dx =

2
∫ 10

0
x2dx = 2

3
x3|10x=0 = 2000/3
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7. Integrals of odd and even functions
Let f be an odd function and g be an even function, and suppose that∫ 1

0
|f(x)|dx =

∫ 1

0
g(x)dx = 3. Use geometric reasoning to calculate each of the

following:

(a)
∫ 1

−1 f(x)dx

Solution: Since f(x) is an odd function and the domain is symmetric about

zero,
∫ 1

−1 f(x)dx = 0

(b)
∫ 1

−1 g(x)dx

Solution: Since g(x) is an even function and the domain is symmetric about

zero,
∫ 1

−1 g(x)dx = 2
∫ 1

0
g(x)dx = 6

(c)
∫ 1

−1 |f(x)|dx

Solution: Since |f(x)| is an even function and the domain is symmetric about

zero,
∫ 1

−1 |f(x)|dx = 2
∫ 1

0
|f(x)|dx = 6

(d)
∫ 1

−1[−g(x)]dx

Solution: Since −g(x) is an even function and the domain is symmetric about

zero,
∫ 1

−1[−g(x)]dx = 2
∫ 1

0
[−g(x)]dx = −2

∫ 1

0
[g(x)]dx = −6

(e)
∫ 1

−1 xg(x)dx

Solution: Since xg(x) is an odd function and the domain is symmetric about

zero,
∫ 1

−1 xg(x)dx = 0

(f)
∫ 1

−1 f
3(x)g(x)dx

Solution: Since f 3(x)g(x) is an odd function and the domain is symmetric

about zero,
∫ 1

−1 f
3(x)g(x)dx = 0
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8. Use The First Fundamental Theorem Of Calculus to find the derivatives of
the following functions.

(a) G(x) =
∫ 1

x
2tdt

Solution: G′(x) = −2x by the fisrt fundamental theorem of calculus.

(b) G(x) =
∫ x

0
(2t2 +

√
t)dt

Solution: G′(x) = (2x2 +
√
x) by the fisrt fundamental theorem of calculus.

(c) G(x) =
∫ x

−x2
1

1+t2
dt

Solution: G′(x) = 1
1+x2 − 1

1+(−x2)2
(−2x) = 1

1+x2 + 2x
1+x4

by the first fundamental theorem of calculus and the chain rule.

(d) G(x) =
∫ x2

1
x2tdt

Solution: Note G(x) = x2
∫ x2

1
tdt.

By the product rule, the first fundamental theorem of calculus, and the chain
rule,

G′(x) = 2x
∫ x2

1
tdt+ (x2)(x2)(2x)

= (2x) t
2

2
|x2

t=1 + 2x5 = (2x)(x4 − 1)/2 + 2x5 = x5 − x+ 2x5 = 3x5 − x

Page 6



9. Newton’s method
Approximate the real root of f(x) = 4x3 + x − 5 = 0 accurate to four decimal places.
Choose x0 = 2 as your initial value. Please do use Newton’s method to find the real root
even if you might or might not see what the real root is. The purpose of this exercise is
to give a practice of Newton’s method.

Solution: By the Newton’s method formula, xn+1 = xn − f(xn)
f ′(xn)

= xn − 4x3
n+xn−5
12x2

n+1

= 8x3
n+5

12x2
n+1

After a few steps of interation, we will see that xn stays stable at 1. The
following is a Matlab7.0 code to illustrate this.

y = zeros(10, 1);%Define 10 numbers each of which is zero.
>> y(1, 1) = 2;%Change the first number to be 2.

>> fori = 1 : 10
y(i+ 1, 1) = (8 ∗ (y(i, 1)3) + 5)/(12 ∗ (y(i, 1)2) + 1);

end%The iteration process.
>> y% Show the values of the ten numbers after the iteration process.

The computer reports y =

2.0000 1.4082 1.1026 1.0087 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

We see that after 5 steps of interation, the approximate solution stays at 1, which is
the real solution to the equation.
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10. Comprehensives
Show that the rectangle with maximum perimeter that can be inscribed in a circle is a
square.

Solution: Without loss of generality, suppose we are working with the unit circle.
Assume the dimensions of the rectangle are a and b. Then by the Pythogorean
theorem, the diameter of the circle =

√
a2 + b2 = 2. Our goal is to maximize the

perimeter of the rectangle = 2a + 2b. By the relation between a and b we have just
got, we can write f(a) = 2a + 2b = 2(a +

√
4− a2). Set f ′(a) = 2(1 − a√

4−a2 ) = 0

to get a =
√

2. Since we can check f ′(a) > 0 for a ∈ (0,
√

2) and f ′(a) < 0 for
a >
√

2, it is justified that a =
√

2 is a global maximum point for f(a). Note that
when a =

√
2, we have a = b =

√
2 by the Pythogorean theorem, which implies the

rectangle is a square when its perimeter is maximized.
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11. Comprehensives
Find the equation of the line that is tangent to the ellipse 25x2 + 16y2 = 400 in the first
quadrant and forms with the coordinate axes the triangle with smallest possible area.

Solution: First, take the derivative with respect to x at a point on the ellipse that
is also in the first quadrant say (x0, y0) for both sides of the equation.We get 50x0 +
32y0

dy
dx
|x=x0 = 0. The slope of the tangent line at (x0, y0) is therefore dy

dx
|x=x0 = −25x0

16y0
.

The equation of the tangent line is given by y− y0 = −25x0

16y0
(x− x0). Set y = 0, then

−y0 = −25x0

16y0
(x− x0). We get that the x− intercept is (

16y20+25x2
0

25x0
, 0) = 400

25x0
= 16/x0.

(16y20 + 25x20 = 400 since (x0, y0) is on the ellipse.) Similarly, we can get that the
y−intercept is (0, 25/y0). So the area of the indicated triangle = (16/x0)(25/y0)/2 =
200/(x0y0).To minimize the area of the indicated triangle is equivalent to maximize
the function f(x, y) = xy under the restricition 25x2+16y2 = 400. Use a substitution

to write g(x) = f(x, y) = xy = x
√

400−25x2

16
= x
√

400− 25x2/4 = 5x
√
16−x2

4
. We can

equivalently maximize h(x) = x
√

16− x2. Set h′(x) =
√

16− x2 − x2
√
16−x2 = 0 to

get x = 2
√

2.(The equation has a negative root also which is ignored since we only
consider points on the first quadrant. We can check h′(x) > 0 for x < 2

√
2 and

h′(x) < 0 for x > 2
√

2. This justifies that x = 2
√

2 is a global maximum point for

h(x). The corresponding y-coodinate is y =
√

400−25x2

16
= 5

√
2

2
. Plug (2

√
2, 5
√
2

2
) for

(x0, y0) into the tangent line equation y−y0 = −25x0

16y0
(x−x0). We get the tangent line

that makes an indicated triangle with the smallest possible area is y = −5
4
x+ 5

√
2
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12. Comprehensives
A flower bed will be in the shape of a sector of a circle(a pie-shaped region) of radius
r and vertex angle θ. Find r and θ if its area is a constant A and the perimeter is a
minimum.

Solution: This question requires us to minimize f(r, θ) = (2 + θ)r under the re-
striction A = θr2/2. By replacing θ with 2A

r2
, we can write g(r) = f(r, θ) =

(2 + θ)r = (2 + 2A
r2

)r = 2r + 2A
r

. We can instead minimize h(r) = r + A/r. Set

h′(r) = 1 − A/(r2) = 0 to get r =
√
A. We can check h′(r) < 0 for r <

√
A and

h′(r) > 0 for r >
√
A. This justifies r =

√
A is a global minimum point for h(r).

The required radius is thus r =
√
A and correspondingly, θ = 2.
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