

## **Solutions for practice problems in 3.1 Exponential Functions**

## 1. Sketch the graph:

$$f(x) = 2^{x-1}$$





2. If you invest \$2000 at 3% compounded quarterly, how much will you have after ten years? What if you invest it in a continuously compounded account at the same interest rate?

Remember:

$$A = P \left( 1 + \frac{r}{n} \right)^{nt}$$

...where "A" is the ending amount, "P" is the beginning amount (or "principal"), "r" is the interest rate (expressed as a decimal), "n" is the number of compoundings a year, and "t" is the total number of years. In our case:

*P*=\$2000

r=0.03

n=4

t=10

b

$$A = $2000 (1 + \frac{0.03}{4})^{4.10}$$

$$= $2000 (1 + 0.0075)^{40} =$$

$$= $2000 \cdot 1.0075^{40} = $2000 \cdot 1.3483$$

$$= $2696.6$$

The continuous-growth formula is first given in the above form " $A = Pe^{rt}$ ", using "r" for the growth rate

$$A = $2000.2 = $2000.e$$

$$= $2000.1.3499 = $2699.8$$

3. The population of a small town is 3,000. If the annual growth rate is 2.3%, what will the population be in 15 years?

$$A = P(1+r)^{t} =$$

$$= 3000 (1+0.023)^{15}$$

$$= 3000 \cdot 1.023^{5}$$

$$= 4249.45$$

If we not four days longer we'll have 4220 people in our town.