Solutions for practice in 6.2 Arithmetic Sequences and Series

1. If $a_4 = 12$ and $a_7 = 3$ in an arithmetic sequence, write the first seven terms of the sequence.

sequence.

$$a_{4} = 12$$
) same diff
 $a_{5} =$) same diff
 $a_{6} =$) same diff
 $a_{6} =$) same diff
is $a_{7} = 3$ is each diff
 $a_{7} = 3$ is $a_{7} = 3$

$$a_{7} = 3$$
 $a_{6} = 6$ $a_{5} = 9$ $a_{4} = 12$
 $a_{3} = 15$ $a_{2} = 18$ $a_{1} = 21$

2. Determine the 80^{th} term and the sum of 80 terms of this sequence: 18, 13, 8, 3, ...

$$a_1 = 18$$
 $d = -5$
 $a_1 = a_1 + (n-1) d$
 $a_{80} = 18 + (80-1) \cdot (-6)$
 $a_{80} = 18 - 80 \cdot 6 + 5$
 $a_{80} = 23 - 400$
 $a_{80} = 377$

$$S_{n} = \frac{n}{2} (a_{1} + a_{n})$$

$$S_{80} = \frac{80}{2} (18 - 377) = \frac{40 \cdot (-359)}{2} = \frac{-14360}{2}$$

3. Write in sigma notation and find the indicated nth partial sum of this arithmetic sequence: 0.5, 0.9, 1.3, 1.7, ,,,

$$a_1 = 0.5$$
 $d = 0.4$

$$= \frac{10}{2} \left(0.5 + (i-1)0.4 \right) = \frac{10}{2} \left(0.5 + 0.5 + 0.5 + 0.04 \right) = 5 \left(1 + 3.6 \right)$$

$$= 5 - 4.6 = 23$$

4.
$$\sum_{k=1}^{4} 2k - 3 = (2 \cdot 1 + 2 \cdot 2 + 2 \cdot 3 + 2 \cdot 4) - 3$$
$$= (2 + 4 + 6 + 8) - 3 = 20 - 3 = 17$$

5. In the last lesson, you decided to save for your trip to Europe. You opened a savings account with \$1.00 and on each subsequent day, you deposited a dollar more than on the previous day. How much have you contributed by the end of one year?

We want to know
$$365$$
 $a_1 = 1$
 $a_2 = 2$
 $a_3 = 3$
 $a_4 = 4$
 $a_1 = 1$

We want to know 365
 $a_1 = 365$
 $a_1 = 365$

$$S_{365} = \frac{365}{2} \left[2.1 + 364.1 \right]$$

$$a_{1} (365-1)$$

$$= \frac{365}{2} \cdot 366 = 365.183$$

$$= 66795$$