
Math2210  Midterm 3 (12.9, 13.1-13.4, 13.6-13.9)              Spring, 2015        Instructor:  Kelly MacArthur

uid number: ________________     Special number: __________   

Instructions:   
• Please show all of your work as partial credit will be given where appropriate, and there 

may be no credit given for problems where there is no work shown.

•  All answers should be completely simplified, unless otherwise stated.   

• There are no calculators or any sort of electronics allowed on this exam. Make sure all 
cell phones are put away and out of sight.  If you have a cell phone out at any point, for 
any reason, you will receive a zero on this exam.

• You will be given an opportunity to ask clarifying questions about the instructions at 
exactly 8:40 a.m. (for a couple minutes).  The questions will be answered for the entire 
class. After that, no further questions will be allowed, for any reason.

• You must show us your U of U student ID card when finished with the exam.

• The exam key will be posted on Canvas by noon.

• You may ask for scratch paper. You may use NO other scratch paper.  Please transfer all 
finished work onto the proper page in the test for us to grade there.  We will not grade 
the work on the scratch page.

• You are allowed to use one 8.5x11 inch piece of paper with notes for your reference 
during the exam. 

(This exam totals 70 points, not including the extra credit problem.)
STUDENT—PLEASE DO NOT WRITE BELOW THIS LINE.  THIS TABLE IS TO BE USED FOR GRADING.

Problem Score

1

2

3

4

5

6

EC (from
Canvas)

Raw total (out of 70):

Total Percentage:

1



1.   True or False questions.

(a) (1 pt)  ∫
a

b

∫
c

d

g(x , y)dx dy=(∫
a

b

g (x , y )dx )(∫
c

d

g (x , y)dy )        T      or     F        (circle one)

(b) (1 pt) ∫
a

b

∫
c

d

g(x )h( y )dy dx=(∫
a

b

g ( x)dx )(∫
c

d

h( y )dy )                T      or     F        (circle one)

(c) (1 pt) {(ρ ,ϕ ,θ ) :ϕ=π
2
} =  {( r ,θ , z ) : z=0} =  {( x , y , z ) : z=0}  T     or   F     (circle one)

(d) (2 pts) ∫
0

2

∫
−1

1

sin (x3 y3)dx dy=0        T      or     F        (circle one)

Explain your reasoning: ___________________________________________________________

(e) (2 pts) ∫
−1

1

∫
−1

1

ex
2+2y

2

dy dx=4∫
0

1

∫
0

1

e x
2+2y

2

dy dx                  T      or     F        (circle one)

Explain your reasoning: ___________________________________________________________

(f) (2 pts) ∫
−1

1

∫
−1

1

ex+2y dy dx=4∫
0

1

∫
0

1

ex+2y dy dx         T      or     F        (circle one)

Explain your reasoning: ___________________________________________________________

(g) (1 pt) ∫
a

b

∫
a

b

f (x ) f ( y)dx dy=(∫
a

b

f (x )dx)
2

                     T      or     F        (circle one)

2



2.  (10 pts) Setup the triple integral to determine the volume of the solid bounded by the 
plane z=2 and the surface (x−1)2+ y2=13−z . (I want the solid that's above the 
plane and below the paraboloid.) (Do not evaluate.)

Volume Integral: ______________________________________________________
(Do NOT evaluate/compute the integral. Just set it up.)
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3.  For the integral V =∫
0

3

∫
3

12−y2

∫
0

√12− z−y2

f (x , y , z)   dx dz dy , do the following.

(a)  (10 pts)  Rewrite it, changing the order of integration to dz dy dx .  
(Hint:  Drawing the solid will be very useful here.)

Answer (a): __________________________________________________
     (b)  (10 pts)  Rewrite it using cylindrical coordinates. 

Answer (b): ______________________________________________________

4



4.  (10 pts)  Use a triple integral  in spherical coordinates to find the volume of the solid inside 
the sphere x2+ y2+z2=25 and outside the cone z=√3 (x2+ y 2) and above the xy-
plane.

Answer: ______________________________________________________
(You need to actually compute this integral.)

5



5.  (10 pts)  Find the surface area of the surface z=x 2+ y2 that is cut by the plane z=4 . 
(Note:  Pay attention. Don't give me volume. Give me surface area!)

Surface Area: ________________________________
             (You need to actually compute this integral.)
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6.    (10 pts) A right circular cylindrical can is to hold 4π cubic inches of frozen orange juice.  
The cost per square inch of constructing the metal top and bottom is 10 cents and the cost per 
square inch of  constructing the cardboard side is 5 cents.  What are the dimensions of the least 
expensive can?  How do you know it's the minimum cost and not the maximum cost?

(Hint:  This is the Lagrange multiplier problem. 
Ask yourself:  (1) What are you trying to minimize? Find a function for that. That's your f.
(2) What is the constraint that you must satisfy. Write an equation for that.  That's your g. 
You should get two functions, f and g, in terms of r and h.)

Answer:   r =  __________ inches, h = __________ inches
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