

Existing
$$B \neq Image(f)$$
, $A = domain(f)$
but induction $f(x)=y \quad x \in A, \quad y \in B$
 $I = v \text{ ang}(f) \subset B$ If f' exists, then
 $f:A \Rightarrow I$ $f'': I \Rightarrow A$
 $(nod f'': B \Rightarrow A)$
 $E \times 9$ $I = I \text{ means} \quad \forall x \exists ! f(x)$
 $E \times 11:$
 $(a) f(x) = x^2 - x$, $f \Rightarrow E$
 $f: \mathbb{R} \Rightarrow [\frac{1}{4}, \infty)$ $f'(x) \quad \text{exists}$
 $f^{-1}(x) \quad \text{bNE}$ $(\frac{1}{2}, -\frac{1}{4})$
 $(b) f(x) = x^2 - x, \quad f: (-\infty, \frac{1}{2}] \Rightarrow [-\frac{1}{4}, \infty)$ $f'(x) \quad \text{exists}$
 $y = x^2 - x \quad \frac{1}{4} + y = x^2 - x + \frac{1}{4}$
 $y = x(x-1) \quad \frac{1}{4} + y = (x - \frac{1}{2})^2$
 $-\sqrt{\frac{1}{4}} + y = x - \frac{1}{2}$
 $\frac{1}{2} - \sqrt{\frac{1}{4}} + y = x$
 $f^{-1}(x) = \frac{1}{2} - \sqrt{\frac{1}{4}} + x$ domain: $[\frac{1}{4}, \infty)$ $\sqrt{rango:} (-\infty, \frac{1}{2}]$

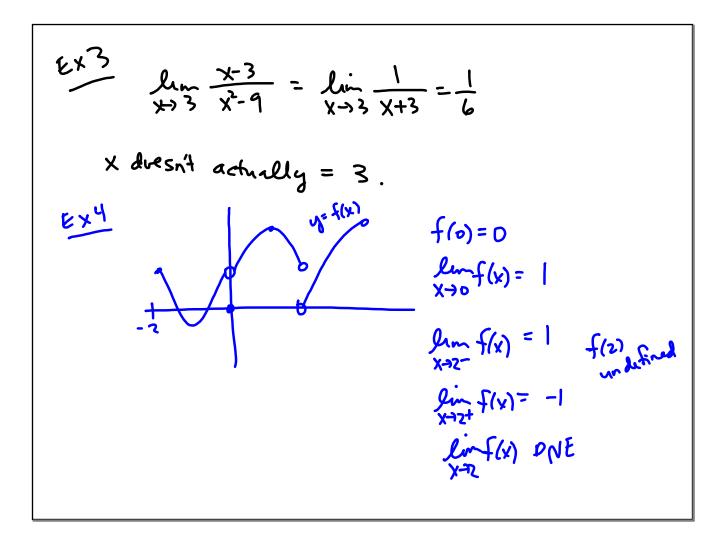
Math6100

(c)
$$f(y) = x^{3} - x$$
 $f: [\frac{1}{2}, b) \rightarrow [\frac{1}{4}, b^{\alpha}]$
 $f'(x) dves exist
 $f'(x) = \frac{1}{2} + \sqrt{\frac{1}{4} + x}$
 $\frac{2.2 \text{ Limits of } fn s}{f(x) = \frac{x^{2}(x+1)(x+3)}{x^{2}(x+1)(x+1)}}$ (a) domain $f(x) = \frac{1}{2} + \sqrt{\frac{1}{4} + x}$
 $\frac{2.2 \text{ Limits of } fn s}{f(x) = \frac{x^{2}(x+1)(x+3)}{x^{2}(x+1)(x+1)}}$ (a) domain $f(x) = \frac{1}{2} + \sqrt{\frac{1}{4} + x}$
(b) $f(x) = \frac{(x+3)}{x+1}, x+0, 1$ yes
(c) $\dim_{1} f(x) = \lim_{x\to 0^{-1}} \frac{x+3}{x+1} = \frac{3}{2} \lim_{x\to 1^{-1}} \frac{f(x) = 2}{x+1^{2}} + \frac{x+3}{x+1} = \frac{4}{2} = 2$
 $\lim_{x\to 0^{-1}} \frac{f(x)}{x+1} = 3$ $\lim_{x\to 1^{-1}} \frac{f(x) = 2}{x+1^{2}} + \frac{x+3}{x+1} = \frac{4}{2} = 2$
 $\lim_{x\to 0^{-1}} \frac{f(x)}{x+1} = 3$ $\lim_{x\to 1^{-1}} \frac{f(x) = 2}{x+1^{2}} + \frac{x+3}{x+1} = \frac{4}{2} = 2$
 $\lim_{x\to 0^{-1}} \frac{f(x)}{x+1} = \frac{1}{x+1} + \frac{1}{x+1$$

$$E X^{2} f(x) = \frac{(x+2)^{2}(x+3)}{(x+4)(x+2)}$$
(a) domain $[x|x \neq 4, -2]$
(b) $f(x) = \frac{(x+2)(x+3)}{x+4}$, $x \neq -2$
(c) $x = -2$ lim $f(x) = 0$ hole at $x = -2$
(d) $x = -2$ lim $f(x) = 0$ hole at $x = -2$

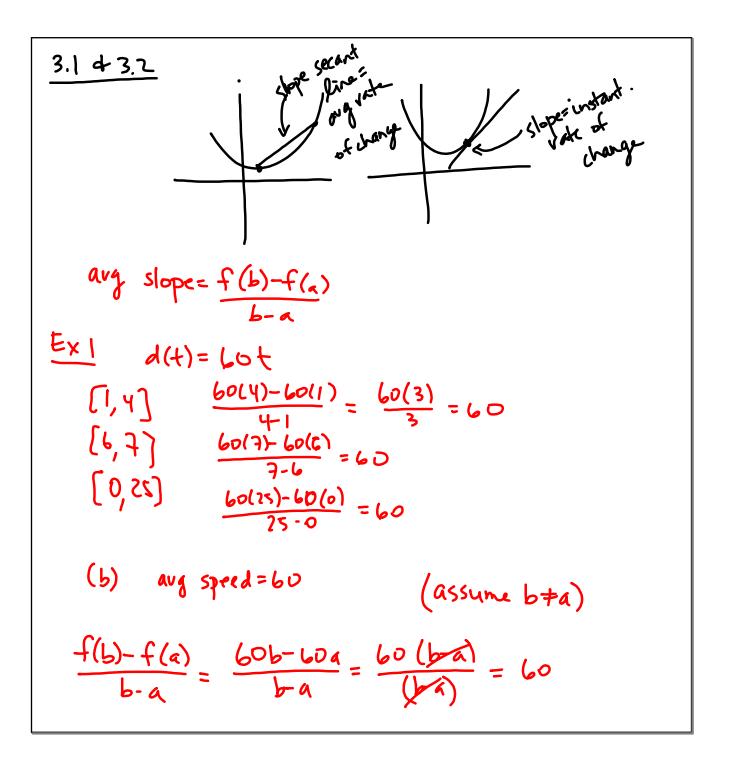
$$x = 4 \quad VA \qquad lim \frac{(x+2)(x+3)}{x+4} = \infty$$

$$\lim_{x \to 4^{+}} \frac{f(x)}{x+4} = -\infty$$



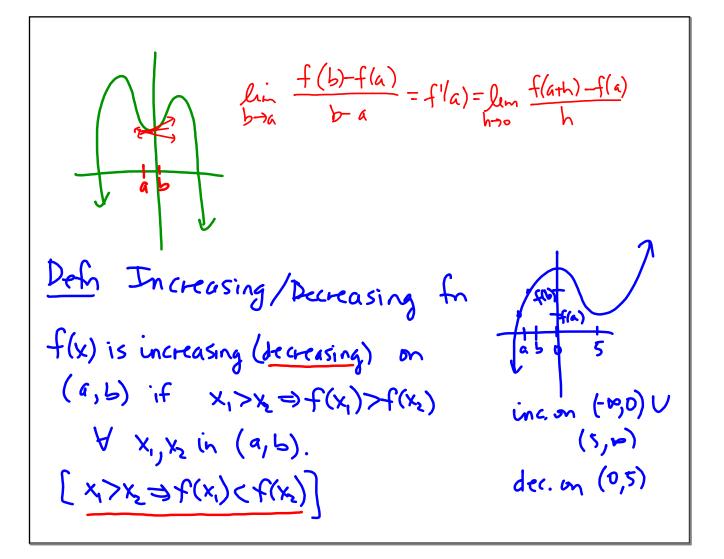
2.3 Continuity

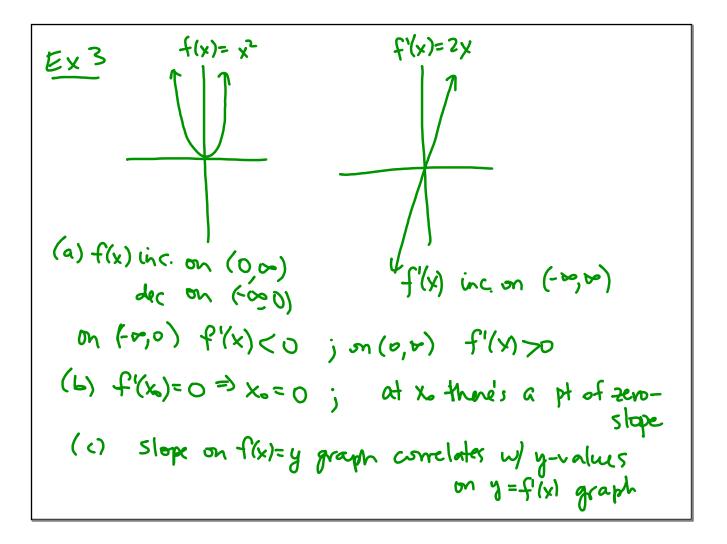
$$f(x)$$
 cond. at $x=c$ iff $\lim_{x \to c} f(x)=f(c)$.
 $(1) \lim_{x \to c} f(x) = xidts(4 is x \to c)$
 $(1) \lim_{x \to c} f(x) = xidts(4 is x \to c)$
 $(2) \lim_{x \to c} f(x) = xidts(4 is x \to c)$
 $(2) \int (c) = xidts(4 is x \to c)$
 $(2) \int (c) = xidts(4 is x \to c)$
 $(2) \int (c) = xidts(4 is x \to c)$
 $(2) \int (c) = xidts(4 is x \to c)$
 $(2) \int (c) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(2) \int (x) = xidts(4 is x \to c)$
 $(3) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 $(4) \int (x) = xidts(4 is x \to c)$
 (4)



Ex² (a)
$$g(x) = mx+c$$

$$\frac{g(b)-g(a)}{b-a} = \frac{mb+z-(ma+x)}{b-a} = \frac{m(b-a)}{b-a} = m \begin{pmatrix} assume \\ b+a \end{pmatrix}$$
(b) $\frac{g(b)-g(a)}{b-a} = m$
 $g(b)-g(a) = m \begin{pmatrix} g(b)-g(x) \\ b-x \end{pmatrix} = m \\ g(b)-g(a) = mbmatc-c \\ g(b)-g(x) = m(b-x) \end{pmatrix}$
(b) $\frac{g(b)-g(x)}{g(b)-g(x)} = m(b-x)$
 $g(b)-g(a) = mbmatc-c \\ g(b)-mb = g(x)-mx \\ g(b)-g(a) = (mb+c) (ma+c) \\ g(b)-mb = g(x) \end{pmatrix}$
(c) (a) proved \Rightarrow
(b) $v \in S$
So yes





Math6100

Exy slope of zero defines horizontal line can remove: differentiable EXS: t() f'(3) undefined (rest slope) (no unique tangent line) f'(x) fine everywhere f'(-2) and f'(3) undefined 3 (no unique tangent) f'l-2) un defined because f(x) is discont. at x=-2 In general, if f'(c) is undefined, then one of these is true. O f(x) is discontinuous at X=C or (2) no unique tangent line (it's too "pointy") or 3 tangent line is vertical.

True or False?
True Diff => Cont
othurs are false

$$\frac{E \times 6}{(a)} \quad f(x) = hx$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \quad \text{or } \lim_{c \to x} \frac{f(c) - f(x)}{c \cdot x}$$

$$f'(x) = \lim_{h \to 0} \frac{|x+h| - |x|}{h} \frac{|x+h| + |x|}{(x+h| + |x|)} = \lim_{h \to 0} \frac{|x+h|^2 - |x|^2}{h(|x+h| + |x|)}$$

$$= \lim_{h \to 0} \frac{x + 2xh + h^2 - x^2}{h(|x+h| + |x|)} = \lim_{h \to 0} \frac{k(2x+h)}{k(|x+h| + |x|)}$$

$$= \lim_{h \to 0} \frac{2x+h}{|x+h| + |x|} = \frac{2x}{2|x|} = \frac{x}{|x|} = \frac{|x|}{x}$$

٦

(b)
$$f(x)=2x^{2}-1$$

 $f'(x)=\lim_{h\to 0} \frac{2(x+h)^{2}-1-(2x^{2}-1)}{h} = \lim_{h\to 0} \frac{2(x+y)^{2}+1}{h}$
 $=\lim_{h\to 0} \frac{1}{h} = \frac{1}{$

(4)
$$f(x) = s_{ih} x$$

 $f'(x) = l_{ih} \frac{s_{ih}(x+h) - s_{ih} x}{h} = l_{ih} \frac{s_{ih}(cos(h) + s_{ih}(h)cos(x-s_{ih})x)}{h}$
 $= l_{h} \frac{s_{ih}(x)(\frac{cos(h) - 1}{h}) + cos(s_{ih}(h))}{h}$
 $= s_{ih} x \left(l_{ih} \frac{cos(h) - 1}{h} \right) + cos(s_{ih}(h)) = cos(x)$
 $l_{h} = s_{ih} \frac{s_{ih}(x)}{h} \frac{cos(h) - 1}{h} + cos(h) + cos(h) = cos(x)$
 $l_{h} = s_{ih} \frac{s_{ih}(x)}{h} \frac{cos(h) + 1}{h} = l_{h} \frac{cos^{2}h}{h} \frac{-1}{h}$
 $l_{h} = l_{h} \frac{cos(h) - 1}{h} \left(\frac{cos(h) + 1}{cos(h) + 1} \right) = l_{h} \frac{cos^{2}h}{h} \frac{-1}{h}$
 $= l_{h} \frac{s_{ih}(x)}{h} \left(\frac{-s_{ih}(k)}{h} \right) = l_{h} = 0$