ON THE GEOMETRIC APPROACH TO THE DISCRETE SERIES
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Dedicated to the memory of Harish-Chandra, in admiration.

1. INTRODUCTION

Let Gy be a connected semisimple Lie group with finite center. Discrete series
representations of G are the irreducible unitary representations of Gg with square
integrable matrix coeflficients. They appear discretely in the decomposition of the
regular representation of Gy on L?(Gy); i.e., their Plancherel measure is positive.
In his two seminal papers [9] and [II], Harish-Chandra determined the necessary
and sufficient condition for Gy to admit discrete series representations. Let Ky be
a maximal compact subgroup of Gy. Then Gy has discrete series if and only if
the ranks of Gy and K| are equal. In this situation, a maximal torus Ty in K is
a (compact) Cartan subgroup in Go. A discrete series representation has to have
a regular real infinitesimal character. Moreover, the (distribution) character of a
discrete series representation must be a tempered invariant eigendistribution on Gy.

In the first paper [9], Harish-Chandra establishes that every tempered invariant
eigendistribution with regular real infinitesimal character is completely determined
by its restriction to the elliptic set; i.e., the set of conjugacy classes represented by
regular elements of 7. He also describes all of these restrictions explicitly. While
the first statement is a straightforward application of Harish-Chandra’s “matching
conditions”, the exhaustion part in the second statement is technically difficult.

In the second paper [I1], Harish-Chandra relates the above invariant eigendis-
tributions to the characters of discrete series representations, by giving explicit
formulas for the restriction of the latter to the elliptic set in Gy. In particular, the
characters of discrete series span the space of tempered invariant eigendistributions
with regular real infinitesimal character. This part of the proof is intertwined with
the proof of the “discrete part” of the Plancherel formula for Go and an analogue
of the orthogonality relations for discrete series characters (compare [18]). The
flowchart of the argument is conceptually very similar to Hermann Weyl’s proof
of the character formula for irreducible finite-dimensional representations of con-
nected compact Lie groups (though the adaptation to the discrete series requires
new ideas and introduces tremendous technical complications).

In [T5], a different approach to the discrete series is introduced. It is based on the
localization theory of Harish-Chandra modules developed by Alexander Beilinson
and Joseph Bernstein [2], [3]. Let g be the complexified Lie algebra of Gy and X the
flag variety of g. Let K be the complexification of Ky. Under certain positivity con-
ditions, they establish the equivalence of categories of Harish-Chandra sheaves (i.e.,
K-equivariant coherent D-modules) on X with the categories of Harish-Chandra
modules of the pair (g, K'). Using the connection of n-homology (for n corresponding
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to the nilpotent subgroup in Iwasawa decomposition of Gy) with leading exponents
in the Harish-Chandra expansion of matrix coefficients [23| 11.2, Thm. 1], [6l 8.24],
one establishes the relationship between the support of the localizations of an ir-
reducible Harish-Chandra module and asymptotics of its matrix coefficients. This
result gives a geometric proof of the existence criterion for discrete series. Moreover,
it establishes that the discrete series are global sections of (irreducible) standard
Harish-Chandra sheaves Z(Q, 7) attached to closed K-orbits @ in the flag variety
X and irreducible K-equivariant connections 7 on ) compatible with a real regular
infinitesimal character. A simple counting argument shows that Harish-Chandra’s
list of irreducible characters of discrete series agrees with the geometric construction
via D-modules, but the explicit connection is not immediately clear.

In this paper we make this connection explicit. Our argument is based on a
simple geometric formula for the n-homology of modules over the enveloping algebra
U(g) for a regular infinitesimal character proved in Theorem Let x be a point
in the flag variety, b, the corresponding Borel subalgebra of g and n, = [b,, b,]. Let
N, be the unipotent subgroup corresponding to n,; its orbits in X define a Bruhat
stratification of X. Roughly speaking, the weight subspaces of n,-homology of a
Harish-Chandra module are determined by the (derived) direct images to a point
of restrictions of the corresponding Harish-Chandra sheaf to each Bruhat cell. In
Section[d] we use this formula to reprove a result of Wilfried Schmid which describes
the n-homology of the discrete series representations I'(X,Z(Q, 7)) with respect to
nilpotent radical n of a Borel subalgebra b which is stable under the action of the
Cartan involution attached to K. Using a special case of the Osborne conjecture
[17], this gives the formula for the character of these representations on the elliptic
set in Gg. This proof is formally similar to the deduction of the Weyl character
formula from Kostant’s formula for n-homology of irreducible finite-dimensional
representations of connected compact Lie groups. Establishing the formula for the
character of T'(X,Z(Q, 7)) makes the map from geometric parameters of discrete
series into Harish-Chandra parameters completely explicit. As a consequence it
also implies that the space of all tempered invariant eigendistributions on Gy with
a given regular infinitesimal character is spanned by the characters of discrete series;
what immediately implies the most difficult technical result in [9] (the existence of
tempered invariant eigendistributions Oy in [0, Thm. 3]).

The machinery established above allows us to prove some other results on the
discrete series by geometric methods. As an illustration, we explain in Section [f]
how a natural K-equivariant filtration of standard Harish-Chandra sheaves Z(Q, 7)
leads to a very simple proof of Blattner’s conjecture [16].

Our arguments can be extended to the Harish-Chandra class of reductive Lie
groups as explained in an appendix to [I4] and [12]. To simplify the notation and
reduce a number of technical issues, we leave this as an exercise to an interested
reader.

During two weeks in October 2023, one of us (D. M.) visited at Harish-Chandra
Research Institute in Prayagraj, UP, India, during Centennial Celebration of the
birth of Harish-Chandra. In the first week, during the workshop “Representation
theory of real Lie groups and automorphic forms”, he gave a series of lectures on
the modern view of basic results of Harish-Chandra on representation theory of
reductive Lie groups. During the lectures and in inspiring discussions after them,
the audience asked a lot of questions about the relation between the original results
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of Harish-Chandra and their “modern” interpretation. The present paper is an
attempt to answer some of these questions related to discrete series in a coherent
fashion. We thank the organizers for their hospitality and inspiring atmosphere
during the workshop.

The first draft of the paper was written while the authors were visiting Sydney
Mathematical Research Institute at the University of Sydney. We thank them for
their hospitality and stimulating atmosphere.

2. A GEOMETRIC FORMULA FOR n-HOMOLOGY

2.1. Geometric preliminaries. We start with recalling some basic geometric
setup (one can consult [22, Ch. IT] for more details). Let g be a complex semisimple
Lie algebra and X its flag variety. For any x € X, we denote by b, the correspond-
ing Borel subalgebra. Denote by B the tautological vector subbundle of the trivial
bundle X x g over X with fiber b, over z € X. For any = € X, we denote by
n, = [by, b,]. Let A be the vector subbundle of B with fibers n,, z € X. Then the
quotient vector bundle H = B/N is trivial. We denote by b the space of its global
sections. We call h the (abstract) Cartan algebra of g. Let ¢ be a Cartan subalgebra
of g contained in b,. Then there is a canonical linear isomorphism of ¢ with . The
dual isomorphism of h* with ¢* we call the specialization at x € X.

Let U(g) be the enveloping algebra of g and Z(g) its center. We have the
canonical Harish-Chandra homomorphism v : Z(g) — U(h) [5, Ch. VII, §6, no. 4],
defined in the following way. For any = € X, Z(g) is contained in the sum of the
subalgebra U(b,) and the right ideal n,U(g) of U(g). Hence, we have the natural
projection of Z(g) into U(b,)/(n,U(g) NU(by)) = U(by)/nU(by) = U(c). Tts
composition with the natural isomorphism of U(¢) with 2(h) is independent of
and, by definition, equal to .

The specialization h* — ¢* identifies the roots of the pair (g, ¢) with a reduced
root system ¥ in h* which we call the root system of g. We choose a positive set of
roots ¥ in ¥ such that, for any z € X, the root subspaces corresponding to the
specialization of these roots span n,. Let II be the set of simple roots determined
by 7. Denote by W the Weyl group of ¥ and S the set of reflections with respect
to simple roots in II. We denote by £ : W — Z the corresponding length function
on W. Let p be the half sum of roots in ©7F.

Since b is abelian, the enveloping algebra U (h) is equal to the symmetric algebra
S(h) of b, which is isomorphic to the algebra of all polynomials on h*. Therefore,
for any A € h*, the composition ¢y of the homomorphism ~ : Z(g) — U(h) with
the evaluation at A+ p is a character of Z(g). By a classic result of Harish-Chandra
[5l Ch. VIII, §2, no. 5, Cor. 1 of Thm. 2], ker py = kery,, if and only if there
exists w € W such that A = wu. This map establishes a bijection of W-orbits
in b* and maximal ideals in Z(g). Let § = WA C b* be a W-orbit, and denote
by Jy = kerp, the corresponding maximal ideal in Z(g). We denote by Uy the
quotient U(g)/Jol(g).

2.2. Localization of Up-modules. For any A € h*, Beilinson and Bernstein [2]
constructed a twisted sheaf of differential operators D) on the flag variety X with a
natural algebra homomorphism U (g) — T'(X, D). Moreover, this homomorphism
factors through Uy and the induced map Uy — T'(X, D,) is an isomorphism [22]
Ch. II, Thm. 6.1.(i)].
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Denote by M(Uy) the category of Uy-modules, and by M(D,) the category of
(quasicoherent) Dy-modules on X. One define the functors

F(X,*)

M(Dy) M(Up)

Ax
where I'(X, —) is the functor of global sections and
A\(V)=Dyr®y, V

for a module V' in M(Up). The functor Ay is called the localization at A. Clearly,
the functor Ay is a left adjoint of I'(X, —).

Let X" be the dual root system of ¥. Denote by a” the dual root of a. We say
that A € b* is regular if a”(A) # 0 for any « € X.

Assume that the orbit 6 consists of regular elements of h*. Then Uy has finite
cohomological dimension [22, Ch. ITI, Thm. 1.4]. Therefore there exists the left
derived functor LA, between bounded derived categories D’(Dy) of M(D)) and
D®(Uy) of M(Uy). This functor is a left adjoint of the functor RI' from D®(D,)
into D®(Up). Beilinson and Bernstein proved the following result [3].

Theorem 2.1. Let 0 be a reqular W-orbit in b* and A € 8. Then the functors
RT
DYDy) T D(Up)
LAy

are mutually quasiinverse equivalences of categories.

We say that A € h* is antidominant if o™ () ¢ {1,2,...} for all « € . For
antidominant A, the above theorem is a direct consequence of the following result

2].
Theorem 2.2. Let \ € h* be antidominant and reqular. Then the functors

N(X,—)

M(Dy) M(Uy)

Ax
are mutually quasi-inverse equivalences of categories.

One can view this result as a vast generalization of the Borel-Weil theorem.

2.3. Intertwining functors. Let A € h* be regular. For any w € W, the functor
LAy o0 RT : D*(Dy) — D%(D,) is an equivalence of categories by Theorem

In [3], Beilinson and Bernstein describe this functor geometrically under some
additional conditions. We sketch their construction here (compare [22, Ch. III,
Sec. 3]). Let Z,, be the variety of pairs of Borel subalgebras in relative position w
in X x X. Then Z,, w € W, are the orbits for the diagonal action of the group
Int(g) of inner automorphisms of g on X x X. Denote by p; : Z,, — X and
p2 : Z, — X the restrictions of the projections to the first, resp. second factor in
X x X. Then p; and po are locally trivial fibrations with fibers which are affine
spaces of dimension ¢(w) [22 Ch. III, 3.2]. In particular, dim Z,, = ¢{(w) 4+ dim X
for any w € W.

The twisted sheaf of differential operators D) on X determines a compatible
twisted sheaf DY’ on Z,, for i = 1,2. Let p3 : M(Dy) — M(D5?) be the D-module
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inverse image functor. This functor is exact and therefore determines trivially the
functor between corresponding derived categories of D-modules. Analogously, we
have the direct image functor p; 4 : D®(DPY) — D®(D,»). Since the twisted
sheaves of differential operators DY* and D”' differ by a twist by the invertible
Oz,,-module T, = p;(O(p — wp)), we can define the functor

V' — p14+(Tw ®0,, p3 (V)

from D®(Dy) into D®(Dy,y).
There exists a right exact functor I, : M(Dy) — M(Dy) such that its left
derived functor LI, : D¥(D,) — D®(D,) is the functor above

LI,(V') = p1+(Tw ®o,, p3 (V"))

for any V' in D?(D,). The functor LI, is the intertwining functor corresponding
towe W.

For any subset © of X7, we say that A\ € b* is ©-antidominant if a”()) is not a
strictly positive integer for any o € ©. Put

v ={ae Xt |wae-XT}
for w € W. The following result is what we alluded to above.

Theorem 2.3. Let w € W and let X € h* be ¥} -antidominant and regular. Then
the functors LI, o LAy and LAy are isomorphic.

In particular, we have the following.

Corollary 2.4. Letw € W and A € h* be regular antidominant. Then the functors
LA and LI, o Ay are isomorphic.

Hence, the localization Ay(V) of a Uy-module V, for a regular antidominant
A € 0, determines all (derived) localizations LPA,\(V), p € Z.

2.4. n-homology. Let 6 be a W-orbit consisting of regular elements. Let V' be an
object in M(Up).

Let x € X. As before, we pick a Cartan subalgebra ¢ of g contained in b,.
The Lie algebra homology groups H.(n,,V) are c-modules. Via the dual of the
specialization map, we can view them as h-modules.

By a result of Casselman and Osborne [7], [24], (compare [22, Ch. III, 2.4]), we
know that the Lie algebra homology groups H.(n;, V') are semisimple h-modules. If
we denote by H,(ng,V)(,) the p-eigenspace of Hy,(ng, V) for any p € h*, we have

Hp(n:m V) = @ Hp<nw’v)(w)\+/3)
weW

for any p € Z+.

Therefore, to calculate Lie algebra homology H.(n,,V) we have to calculate
H.(ng, V)(wxtp) for all w € W. In this section, we prove a formula for this calcu-
lation (Theorem below).

For an abelian category A we denote by D : A — DY(A) the functor which
sends an object A of A into the complex D(A) which is A in degree 0 and 0 in
other degrees.

Let Ox be the sheaf of regular functions on X and Ox , the stalk of Ox at
x € X. Let V be an Ox-module. For z € X, we denote by V, the stalk of V at x.
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Also, we denote by m, the maximal ideal in Ox , consisting of germs vanishing at
x. The geometric fiber T,,(V) of V is Ox 5 /My Qo , Va-

First, we observe that the above components of n,-homology are related to de-
rived geometric fibers of derived localizations. We have the following formula

Hy(ng, V) (usp) = HP(LT,(LAL(D(V))))

for any pu € 6 and p € Z, [22] Ch. III, 2.6]. Combining this with Corollary we
see that for regular antidominant A,

Hy(ne, V) watp) = H V(LT (L1 (D(AN(V)))))

for any Up-module V.

Let i, : {x} — X be the canonical inclusion. Then the D-module inverse image
functor Li} is equal to LT}.

It follows that

(LT 0 LL,)(V') = (Liy o LI,)(V') = (Liff 0 p14)(Tw @0, 3 (V')

for any bounded complex V" in D?(Dy).

Moreover, Y = p; *({z}) is a closed ¢(w)-dimensional affine subspace in Z,,. The
codimension of Y in Z,, is dim X.

Denote by j : Y — Z,, the natural inclusion. Let ¢; : Y — X the restriction
of p; : Zy, —> X to Y for ¢ = 1,2. Then we have the commutative diagram

Yy — . 2z,

o | |7

op == X

Hence, Y = {z} xx Z,. Then, by base change ([4, Ch. 6, 8.4], [20, Ch. IV,
Thm. 10.2]), we have
Lij opry = qup o Lj+.
This in turn implies that
(LT; 0 LL,)(V') = (@14 0 Lj*)(Tw @04, p3 (V') = 01+(7"(Tw) ®oy Li* (p3 (V')
= 1+ (Tw) ®oy L(p205)" (V) = 1+ (7" (T) @0y Laz (V')

since pj is an exact functor.

Lemma 2.5. We have

‘7*(7;1)) = OY-
Proof. Let N, be the unipotent subgroup of Int(g) corresponding to n,. Clearly,
Y is an Ng-orbit in Z,, under the restriction of the action of Int(g) on X x X.

Also, j*(Ty) is an N -equivariant invertible Oy-module. Since N, is unipotent, it
follows that it is isomorphic to Oy-. O

Hence we finally get
(LTy 0 LL,) (V') = 14 (Laz (V)))-

Let B, be the Borel subgroup of Int(g) corresponding to . Then B, acts on
X and its orbits are the Bruhat cells C(w), w € W. Let i, : C(w) — X be the
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natural inclusion. Then the map k : y — (x,y) is an isomorphism of C(w) onto
Y. Moreover, we have gs 0 k = pg 0 j o k = iy,. It follows that

k*(Lgs (V) = L(gz 0 k)* (V') = Lif, (V)
and
Lay (V') = ky(Liy, (V).
Hence
(LTy 0 LL,) (V') = qu4 (k4 (Liy,(V))) = (g1 0 k) * (Lig, (V).
The map g1 o k is a map of C(w) into the point x. If we denote this map by
T : C(w) — {pt}, we finally get the following formula

(LT; 0 LLy)(V') = mu, 4 (Liy, (V')

Putting this together with the first part of the calculation, we get the following
result.

Theorem 2.6. Let A € 0 be antidominant and regular. Then for any x € X,
w € W, and Ug-module V', we have

Hy(02, V) wntp) = H P (T4 (Lig, (D(AN(V)))))
foranypeZy.

3. CLOSED K-ORBITS IN THE EQUAL RANK CASE

Let Gy be a connected semisimple Lie group with finite center. Let K be a
maximal compact subgroup of Gy. In this section we assume we are in the equal
rank case; i.e., that rank Gy = rank K. Let Ty be a maximal torus in Ky. Then Tj
is a compact Cartan subgroup of Gy. Let g, ¢ and t be the complexified Lie algebras
of Gy, Ky and T} respectively. Denote by K the complexification of K. Then the
connected algebraic group K acts naturally on the flag variety X of g. In this
section we describe the structure of closed K-orbits in X, and their stratification
given by a Bruhat stratification of X.

3.1. Description of closed orbits. Denote by ¢ the Cartan involution of g de-
termined by €. Then o fixes €. Therefore, it also fixes t. Let R be the root system
in t* of the pair (g,t). Let € R, and  in the root subspace g,. Then for any
n € t, we have

a(n)a(§) = o(a(nf) = al(n,€]) = n,o(£)].

Hence o (&) is also in g,. In particular, it has to be proportional to £. Hence, o
is either 1 or —1 on g,. A root o € R is compact (imaginary) in the first case,
and noncompact (imaginary) in the second case. Denote by R. C R the set of all

compact roots. Since
E = t EB @ gCH

aER,
the set R. is naturally identified with the root system of (¢,t). The complement
R — R. = R, is the set of all noncompact roots.

It is well known that the group K acts on X with finitely many orbits (see,
for example, [22, Ch. IV, Prop. 2.2]). Since we want to describe the K-orbits in
the flag variety X of g, without any loss of generality we can assume that K is a
subgroup of the group Int(g).
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Let Q be the subvariety of all o-stable Borel subalgebras in X. Clearly, €2 is a
union of K-orbits. More precisely, by [15, Lem. 6.16], € is the union of all closed
K-orbits in X. Hence, the closed K-orbits are the connected components of 2.

Fix a closed K-orbit @ in X and a point « € Q. Let S, be the stabilizer of z in K.
Its Lie algebra s, is equal to €Nb,. Hence, it is a solvable Lie algebra. On the other
hand, since @ is a closed K-orbit, @) is a projective variety. Hence S, must be a
parabolic subgroup of K. It follows that S, is a Borel subgroup of K and s, = £€Nb,
is a Borel subalgebra of €. Therefore the orbit map K > k — k -z € @ factors
through the flag variety X of €. The induced map Xx — @ is an isomorphism
which is the inverse of the map @ > y — £€Nb, € Xkg.

We have proved the following result.

Theorem 3.1. (i) The variety Q is the disjoint union of all closed K-orbits
in the flag variety X .
(ii) Let Q be a closed K-orbit in X. Then the map b, — b, N ¢ defines a
K -equivariant isomorphism of Q with the flag variety X of €.

Now we remark that any closed K-orbit () contains a point = such that b,
contains the Cartan subalgebra t. Let y be a point in . Then b, N ¢ is a Borel
subalgebra of £. Let ¢ be a Cartan subalgebra of £ contained in b,. Then, since all
Cartan subalgebras of £ are K-conjugate, ¢ is K-conjugate of t. It follows that a
K-conjugate b, of b, contains t and z € Q.

Let b be a Borel subalgebra of ¢ containing t. Then any Borel subalgebra of g
containing b contains the Cartan subalgebra t and it is o-stable. Therefore, it is
in Q. Moreover, by Theorem the number of closed K-orbits is equal to the
cardinality of the set {z € X | b, N¢ = b}. This number is equal to the number
of sets of positive roots Rt in R which contain a fixed set of positive roots RI in
R.. It follows that it is equal to the number of Weyl chambers of R contained in
a fixed Weyl chamber of R.. Let Wx be the Weyl group of £. By specialization at
x, it can be identified with a subgroup of W. This immediately implies that the
number of closed K-orbits is equal to Card(W/Wg ) = Card(W)/ Card(Wk).

Proposition 3.2. The number of closed K-orbits in X is equal to Card(W/Wk).

3.2. A stratification of closed K-orbits. Let b be a Borel subalgebra containing
t. Then it is o-stable and therefore determines a point in a closed K-orbit in X.
Moreover, bt is a Borel subalgebra of ¢ containing t. We consider the specialization
h* — t* determined by b. This defines an isomorphism of W with the Weyl group
of the root system R in t*. Moreover, it identifies Wx with a subgroup of W
generated by reflections with respect to compact roots. The set of positive roots
Y1 determines a set of compact positive roots. This set determines a set of simple
roots in the root system of compact roots. Corresponding reflections generate Wi
and define the length function £x on Wg.

Let B be the Borel subgroup of Int(g) corresponding to b. Denote by C(w) the
B-orbit in X corresponding the element w € W. Let Bi be the Borel subgroup of
K corresponding to b N €. Then By is a subgroup of B.

We denote by Ck(w), w € Wi, the Bruhat cells in the flag variety Xy of ¢
corresponding to the action of Bx. As we proved in Theorem (ii), for any
closed K-orbit @, the map z — b, N ¢ is a K-equivariant isomorphism of () onto
Xpk. Clearly, for any w € Wy, it induces by restriction an isomorphism of a Bg-
orbit Dg(w) in @ onto Cx (w). Therefore, @ is the union of Card(Wx) Bg-orbits.
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By Theorem 3.1} (i) and Proposition 3.2} we see that € is the union of Card(W) B-
orbits. Clearly, the Borel subalgebras of g containing t represent all Bruhat cells
C(w), w € W, in X with respect to the action of B. Therefore, the intersection
QN C(w) is nonempty for any w € W. Moreover, for any w € W, the intersection
QN C(w) is Bg-invariant and therefore a union of Bi-orbits. This in turn implies
that QN C(w) is a Bg-orbit for any w € W.

Let @ be a closed K-orbit. By the above discussion and Theorem [3.1] we see
that there exists a unique point z € @ which is fixed by By . Therefore, there exists
a unique u € W such that @ N C(u) = {z}. We summarize this discussion in the
following lemma.

Lemma 3.3. Let Q) be a closed K-orbit in X.
(i) There is a unique u € W such that Q N C(u) is a point.
(ii) The orbit Q intersects Bruhat cell C(v), v € W, if and only if v = wu for
some w € Wk .
(iii) The variety QNC(wu) is a B -orbit in Q for any w € W . More precisely,
we have Dgo(w) = Q N C(wu) for all w € Wk.
(iv) We have dim Dg(w) = lx (w).

4. CALCULATION OF n-HOMOLOGY FOR THE DISCRETE SERIES

Using Theorem [2.6] we can prove a result of Wilfried Schmid on n-homology of
discrete series representations [25]. To illustrate the simplicity of our argument,
we first treat the special case of irreducible finite-dimensional representations of
a connected compact semisimple Lie groups due to Bertram Kostant [19]. The
method of the proof in both cases is essentially identical.

4.1. Kostant’s theorem. Let b be a Borel subalgebra of g. Let n be the nilpotent
radical of b. Let I’ be an irreducible finite-dimensional representation with lowest
weight A. Then, by the Borel-Weil theorem, we have F' = I'(X, O()\)) [22, Ch. II,
Thm. 5.1]. Moreover, O()) is a Dy_,-module. As we remarked before, since A — p
is regular, we have

Hp(n, F) = @ Hp(n, F)(w()\,p)+p).
weW
Moreover, we have Ay_,(F) = O(\). Therefore, it follows that Lij(D(O(X))) =
D(O¢w))- This implies that
Hy(n, F)wr-p)+p) = H P (Tw, 4+ (D(Oc(w))))-
Lemma 4.1. We have
Tw,4+(D(Oc(w))) = D(C)[{(w)].

Proof. This follows from [20, Ch. I, Thm. 11.2 and Lem. 11.4]. O

This implies that Hy(n, F)(w()\,p)+p) =0if p # ¢(w) and H@(w)(ﬂ, F)(w()\,pﬂ,p) =

C.
Putting this all together, we get

Hp(n,F)z @ (Cw()\,p)+p
weW (p)

where W (p) is the subset of W consisting of all elements w such that (w) = p. We
have proven the following result.



10 D. MILICIC AND A. ROMANOV

Theorem 4.2 (Kostant). Let F' be an irreducible finite-dimensional representation
with lowest weight \. Then
= B Cuone

weW (p)
forpeZ,.
This is Kostant’s result mentioned above.

4.2. Schmid’s result. Now we discuss a generalization of Kostant’s result corre-
sponding to the n-homology of discrete series representations. This result has been
proved by Schmid [25, Thm. 4.1].

We first recall the geometric version of the classification of discrete series rep-
resentations of a connected semisimple Lie group Go with finite center [I5]. First,
the discrete series representations exist if and only if the rank of Gy is equal to
the rank K. In this situation, we follow the notation from the introduction to the
preceding section.

Let V be the Harish-Chandra module of a discrete series representation of Gj.
Assume that V' is in M(Up). Then 6 is a regular W-orbit of a unique real strongly
antidominant A € h*; i.e., @ (A) < 0 for any « in X (see [15, Thm. 12.4]). More-
over, there exists a unique closed K-orbit ) and a unique irreducible K-equivariant
connection on ) compatible with A+p such that V' = T'(X,Z(Q, 7)) [158, Thm. 12.5].

Let b be a o-stable Borel subalgebra of g. Let n = [b, b].

Denote by ig : @ — X the natural immersion of @, and, for any v € W,
by i, : C(v) — X the natural immersion of the Bruhat cell (with respect to b)
C(v) into X. Since @ is the support of Z(Q, ), the restriction of Z(Q,7) to the
complement of @ is 0. Therefore Li; (Z(Q, 7)) = 0 for any v such that C(v)NQ = 0.
Hence, in this case, H,(n,T'(X,Z(Q, 7)))(wrtp) = 0 for p € Z,, by Theorem

Let v € W be such that QNC(v) # 0. As we explained in Lemmal[3.3] there ex1sts
a unique u € W such that @ N C(u) is a point. Then v = wu, for some w € Wi,
and Dg(w) is a smooth subvariety of (). Denote by a : DQ(w) — C(wu) and
b: Dgo(w) — Q the natural immersions. Then we have the commutative diagram

Dg(w) —2 = C(wu)

| Jiw

Q — X
Q

ie., Dgo(w) is the fiber product @ ®x C(wu). By base change [20, Ch. IV,
Thm. 10.2], we have
Riiw 0iQ,+ = a4 O Rb'.
Moreover, we have Lit, = Ri!,[dim X — dim C(wu)] and Lb* = Rb'[dimQ —
dim Dg(w)]. Therefore, we have
Ly, (D(Z(Q, 7)) = Liy (D(iq.+(7))) = Liy, (i +(D(7)))

= leu(m +(D(T)))[dlmX {(wu)]

= . (RY (D(r)))[dim X — €(wn))

= ay (LbT(D(7)))[dim X — £(wu)][— dim Q + dim Dg(w)]

=ay (LbT(D(7)))[dim X — dim X — £(wu) + L5 (w)].
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Since 7 is a connection on ), we have
Lif (D(Z(Q, 7)) = ay (D(b™ (7)))[dim X — dim X — £(wu) + £x (w)].
Denote by ¢ the map of Dg(w) into a point {pt}. Using Lemma this finally
leads to
Tt (L (DI(Q,7)))) = Mt (as (D (7)) [dim X — dim Xy — €(wu) + £ (w)]
= (7w 0 @)+ (D(Opg(w)))[dim X — dim X — £(wu) + £k (w)]
= ¢4 (D(Opy(w)))[dim X — dim X g — £(wu) + £ (w)]
= D(C)[dim X — dim X g — £(wu) + g (w)][lx (w)]
= D(C)[dim X — dim X — l(wu) + 20k (w)].
Finally, dim X is equal to the number of all positive roots; i.e., to half of the number
of all roots. Analogously, dim X g is equal to the half of the number of all compact
roots. Hence, the difference dim X — dim Xk is equal to the half of the number of

all noncompact roots, i.e., & dim(g/t).
Applying again Theorem [2.6] we have

Hy(n, D(X, Z(Q: 7)) (wurtp) = H P (Ww 4 (Liy, (D(Z(Q, 7)))))

_Jo if p # 1 dim(g/t) — ((wu) + 20k (w);
C if p=3dim(g/e) — L(wu) + 20k (w)

for any w € W.
This proves the following resultﬂ

Theorem 4.3 (Schmid). Let V be a discrete series representation such that V =
NX,Z(Q,1)).
Then, if v ¢ Wku,
Hp(na V)(v/\er) =0,
for allp € Z,.. Moreover, for w € Wy, we have

0 ifp# 5dim(g/t) — ((wu) + 20k (w);
C ifp=3dim(g/e) — L(wu) + 20k (w).

4.3. Kostant’s result and the BGG resolution. In this section we interpret
the calculation of n-homology of finite-dimensional representations using the BGG
resolution. This gives us a more precise version of the result, we see that each
cohomology class corresponds to a Bruhat cell in X.

Let A be an antidominant weight. Then, the Dy_,-module O(X) can be repre-
sented in D?(Dy_,) by its Cousin resolution corresponding to the stratification of
X by Bruhat cells C'(w) as explained in Appendix

Let C(w) be a Bruhat cell in X and i,, : C(w) — X the natural inclusion. The
cell C(w) admits unique irreducible N-equivariant connection O¢ (. Its direct
image Z(w, A — p) = iw,+(Oc(w)) is a standard Dy _ ,-module attached to C(w) [22]
Ch. V, Sec. 1].

The Cousin resolution (see Theorem in Appendix) is a complex C* such that

CP = @ Z(w,A—p)

weW (dim X —p)

Hp(na V)(quer) = {

1Clearly7 if Go is compact, this specializes to Kostant’s result.
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for any p € Z,, with explicitly given differentials.

Clearly, there is a natural monomorphism from O(X) into the standard Dy_,-
module Z(wg, A — p) attached to the open Bruhat cell C(wy) (where wg is the
longest element of the Weyl group W). Therefore, there is a natural morphism e
of D(O(N)) into C* in D*(D,_,). Theorem says that e is an isomorphism.

Let 6 be the Weyl group orbit of A — p. Since the functor I' is exact for an-
tidominant A\, C° = I['(X,C’) is isomorphic to D(F) in D®(Uy) where F is the
finite-dimensional U(g)-module with lowest weight J\; i.e., we get a resolution of F’
by modules C?, p € Z,. By [22] Ch. V, 1.14], we know that

= D Iwh-p)

weW (dim X —p)

for all p € Z,. Here I(u) are the duals of the Verma modules M (1) in the category
of highest weight modules. This is the BGG resolution of F. E|
By Theorem we have

Hy (0, I(w(A = ) wr—p)+p) = H P (o4 (Li (D(Z(w, A = p))))).
By base change,
Lif (D(Z(w, A~ p))) = 0
if v # w. Hence, we have
Hp(n, I(w(A = p))) (w(r—p)+p) = 0

for all p e Zy if v # w.
On the other hand, if v = w we have Li} = Ri! [dim X — /(w)], and

Lif (D(Z(w, \=p))) = Ril,(D(Z(w, A—p)))[dim X —£(w)] = D(Oc(y))[dlim X—(w)]
by Kashiwara’s equivalence of categories. By Lemma this implies that

Tt (L (D(Z(w, A = p)))) = D(C)[dim X].
Hence, we conclude that

C if p=dimX;

Hy (0, 1w = ) wr-y40) = {O ey

Therefore, we proved the following result.

Lemma 4.4. Let A be an antidominant weight. Then

(Cw _ z'fp:dimX;
Hp(n,l(w(A—p)))Z{O he if p # dim X

This implies the following result.

Corollary 4.5. Let \ be an antidominant weight. Then

Hy(n,C9) = @wGW(dimqu) Coir—p)4p Hfp=dimX;
n 0 if p # dim X.

2More precisely, this is the dual of the original BGG resolution.
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By the above discussion, the n-homology of F' is given by the hypercohomology
of the n-homology functor for the complex C".

More precisely, the n-homology is the left derived functor of the functor V ——
V/nV from M(Up) into the category M, (U(h)) of semisimple U (h)-modules. We
can view this functor as an exact functor from D(Up) into D®(Ms(U(H))).

Let w € W. Then we can consider the composition of this functor with the
functor of taking the weight subspace of the weight w(A — p) + p. This is an exact
functor S from DP(Uy) into the bounded derived category of vector spaces D°(C).
Clearly, we have

Hy(0, V) wir gy 1) = Hop(S(D(V))).

Therefore, we see that
H_p(S(D(C?))) = Hp(n, C?) (w(r—p)+p)

0 ifp#dimX or g # dimX — {(w);
C ifp=dimX and ¢ =dim X — {(w).

It follows that
S(D(C?)) =0
if ¢ #dim X — ¢(w); and
S(D(CHmX=tw)y) = D(C)[dim X].

We interrupt the proof to prove a simple result in homological algebra. An
interested reader can easily supply an alternate argument via spectral sequences.

Let A and B be two abelian categories. We denote by D?(A) and D*(B) their
bounded derived categories. Let F' : D*(A) — D®(B) be an exact functor between
these triangulated categories.

Lemma 4.6. Let C" be a complex in D°(A). Assume that there exists an integer
po such that F(D(CP)) =0 for all p # py. Then

F(C7) = F(D(C))[=pol-

Proof. We use freely the results on stupid truncations from [21, Ch. III, 4.4 and
4.5].

For any complex X  in DY(A) and an integer s we denote by o>4(X') and
0<s(X") its stupid truncations. Then we have the distinguished triangle of stupid
truncations

o<s—1(X7)

(1]

o>5(X7) X

Assume first that F(D(C?)) = 0 for all p € Z. We claim that F(C") = 0 in this
case.

The proof is by induction the length of C". If C* = 0, the claim is obvious. If
¢(C") =1, we have C" = D(C?)[—q| for some g € Z. Therefore, we have

F(C7) = F(D(C)[=q]) = F(D(C?))[~¢] = 0.
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This establishes the claim in this case. Assume now that ¢(C") > 1. Then there
exists s € Z such that the lengths of o<;_1(C") and 0>,(C") are strictly less than
¢(C"). By the induction assumption, we see that F'(o<s_1(C")) = F(0>s(C")) = 0.
From the distinguished triangle of stupid truncations we conclude that F(C") = 0.

Now we can discuss the general case. If CPo # 0, ¢(C") is greater or equal
to 1. If £(C") = 1, we have C° = D(CP)[—pg]. Therefore, we have F(C") =
F(D(C?))[—po). Then there exists s € Z such that the lengths of o<,_1(C") and
0>5(C") are strictly less than ¢(C"). Moreover, either py < s or pg > s.

In the first case, by the induction assumption, F(o<s_1(C")) = F(D(C??))[—po].
Moreover, by the above claim F(0>4(C")) = 0. From the distinguished triangle of
stupid truncations we conclude that F(C") = F(o<s-1(C")) = F(D(C?°))[—po].

In the second case, by the induction assumption, F(o>s(C")) = F(D(C??))[—po].
Moreover, by the above claim F(c<s_1(C")) = 0. From the distinguished triangle of
stupid truncations we conclude that F(C") = F(0>4(C")) = F(D(C?))[—po]. O

Now we go back to the discussion of n-homology. By Lemma [4.6|it follows that
S(C") = D(C)[dim X][— dim X 4 £(w)] = D(C)[¢(w)].

Since D(F') is isomorphic to its BGG-resolution C" in D®(Uy), we see that S(D(F)) =
D(C)[¢(w)]. This implies that

Hy(n, F) w(r—p)+p) = H-p(S(D(F))) = H-,(S(C"))

0 if p#L(w);

= H_,(D(C)[{(w)]) = {C if p = 0(w).

This finally leads to

Hp(n,F @ H nF)(w()\ p)+p) @ (C (A=p)+p>
weW weW (p)

i.e., Kostant’s theorem (Theorem [4.2]).
Therefore, this calculation shows that each dual Verma module in the BGG-
resolution of F' gives exactly one cohomology class in n-homology of F.

4.4. Schmid’s result and the Trauber resolution. In this section we interpret
the calculation of n-homology of discrete series representations using the Trauber
resolution [26]. This argument is very similar to that in Section

Let A be antidominant and regular. Then, the Dy-module Z(Q, 7) can be repre-
sented in D®(D,) by its Cousin resolution corresponding to the stratification of @Q
by Bg-orbits Dg(w) as explained in the Appendix

Let Dg(w), w € Wk, be a Bg-orbit in X. Denote by Ng the unipotent radical
of Bx. Then Dg(w) admits unique irreducible Nx-equivariant connection Op,, (w)-
Its direct image J(w, A) is a standard Dy-module attached to Dg(w).

The Cousin resolution of Z(Q, 7) from Theorem is a complex D" such that

DP = @ J(w, \)
wEWk (dim Q—p)

for any p € Z,, with explicitly given differentials.
Clearly, there is a natural monomorphism Z(Q, 7) into the standard Dy-module
J (wo, A) attached to the open Bg-orbit Dg(wo) (here wy is the longest element of
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the Weyl group Wg now). Therefore, there is a natural morphism € of D(Z(Q, 7))
into D" in D®(Dy). The main result of says that € is an isomorphism.

Let 6 be the Weyl group orbit of A. Since the functor I' is exact for antidomi-
nant A\, D' = I'(X,D’) is isomorphic to D(T(X,Z(Q,7))) in D*(Uy), i.e., we get a
resolution of I'(X,Z(Q, 7)) by modules D?, p € Z,. This is the Trauber resolution
of the discrete series I'(X,Z(Q, 7)) [26].

We put

J(w,A) =T(X, T (w, \))
for any w € W.
By Theorem [2.6] we have

Hy(n, J(w, A)) (oasp) = H P (o4 (Liy (D(T (w, N)))))
for any v € W. By base change, we get
Lij (D(J (w,\))) =0

if v # wu.
Hence, we have
Hp(na J(w’ )‘))(UAer) =0
for all p € Z if v # wu.
On the other hand, if v = wu we have

Lit, (D(J(w,\)) = Ri',, (D(J (w,\)))[dim X — £(wu)].

wu wu

Denote by j,, the immersion of Dg(w) into C(wu). Then we have
D(J(w,A) = iq.+(juw.+ (D(Opg(w))));

since Dg(w) is affine and @ is affinely imbedded. Therefore, using the commutative
diagram from Section [£.2] we have

Ri@qt (D(j(wv /\))) = Riiuu(iQ7+(jUJ,+(D(ODQ(w)))))
= a1 (RY (ju,+(D(Opgw))))) = a(D(Opg(w)))

by base change and Kashiwara’s equivalence of categories. If we denote ¢ = m, 0 a
by Lemma this implies that

w4 (L (D(T (w, N)))) = 7o 4 (a4 (D(Opg () [dim X — £(wu)]
= ¢+ (D(Opg (w)))[dim X — £(wu)]
— D(C)[dim X — E(uw)|[txc(w)]
= D(C)[dim X — £(wu) + Lk (w)].

Hence, we conclude that

H, (0, J (1, \)) _JC ifp=dim X — {(wu) + Lk (w);
PR AV t0) =0 0 i p £ dim X — O(wu) + L (w).

Therefore, we proved the following result.
Lemma 4.7. Let A be an antidominant weight and w € Wy . Then

(Cwuk-l-p pr =dim X — é(wu) + Uk (’LU),

Hp(n, J(w, A)) = {0 if p# dim X — l(wu) + Lk (w).
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By the above discussion, the n-homology of I'(X,Z(Q, 7)) is given by the hyper-
cohomology of the n-homology functor for the complex D".

Let v € W. As in Section we consider the exact functor S from D®(Uy) into
bounded derived category of vector spaces D°(C).

Therefore, we see that

H_,(S(D(D))) = Hp(n, D) (ux+p)
)0 ifv#Fwu, we Wk, or p#dim X — l(wu) + £k (w) or g # dim Q — Lx(w);
| C ifv=wu, we Wk, p=dimX — {(wu) + (g (w) and ¢ = dim Q — Lx (w).

If v ¢ Wiu, we see that S(D(D?)) = 0. By Lemmal[4.6]it follows that S(D") = 0.
Since D(T'(X,Z(Q, 7))) is isomorphic to its Trauber resolution D" in D®(Up), we see
that S(D(I'(X,Z(Q,7)))) = 0. Therefore, we see that H,(n,I'(X,Z(Q,7))) (wrtp) =
0if v ¢ Wigu forallp e Z,.

Assume that v = wu, w € Wy. It follows that

S(D(D?)) =0
if ¢ # dim Q — £k (w); and
S(D(DYm@=tx(w))y = D(C)[dim X — L(wu) + L (w)].

By Lemma [£.0] it follows that

S(D") = D(C)[dim X — {(wu) + lx (w)][— dim Q + {x (w)]
D(C)[dim X — dim Xg — £(wu) + 20k (w)]
D

(C)[5 dim(g/€) — £(wu) + 205 (w)].

Since D(I'(X,Z(Q,7))) is isomorphic to its Trauber resolution D in D®(Uy), we
see that S(D(T'(X,Z(Q,7)))) = D(C)[4 dim(g/€) — £(wv) 4+ 20k (w)]. This implies
that

Hy(n, D(X, Z(Q, 7)) (wurtp) = Hp(S(DI(X, Z(Q, 7))))) = H-p(S(D"))
= H_,(D(C)[3 di (9/’»’)—4(wU)+2€K( )]

)
_ )0 ifp# 1 dim(g/t) — ((wu) + 20k (w);
C if p=3dim(g/€) — L(wu) + 20k (w).

This is exactly Schmid’s theorem (Theorem [4.3)).
Therefore, this calculation shows that each module J(w, A) in the Trauber reso-
lution contributes exactly one cohomology class in n-homology of I'(X, Z(Q, 7)).

5. CHARACTER FORMULAS

In this section we calculate the characters of discrete series representations
I'(X,Z(Q, 7)) on the elliptic set. We start with the trivial (and well-known) exam-
ple of a compact Lie group Gy. In this case, our result is just the well-known Weyl
character formula.
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5.1. Case of compact groups. Let Gy be a connected compact semisimple Lie
group with complexified Lie algebra g. We fix a maximal tours T in Go. Let t C g
be its complexified Lie algebra. Fix a set of positive roots BT in the root system R
of (g,t). Then, t and the root subspaces of g, corresponding to roots a € Rt span
a Borel subalgebra b. We put n = [b, b].

Let F' be the irreducible finite-dimensional representation of Gy with lowest
weight A € h*. We want to determine the character ch(F) of F'. Since all conjugacy
classes in G intersect Tp, it is enough to give a formula for ch(F') on Tp.

Clearly, F and the standard complex C"(n, F), with C?(n, F) = A" n@F, p € Z,
have natural structures of finite-dimensional representations of T'. Therefore, their
characters chy are well-defined. By Euler’s principle, we have

S (1) cha (€7 (n, F)) = S (1) ch (Hy (n, F))
p=0 p=0
where n = dimn.
Moreover, we have

chr(C7P(n, F)) = chy (;\n@F) = chyp (/P\n> - ch(F)

on Ty. Hence, it follows that

> (1P chr(Hy(n, F)) =Y (=1)P chy(CP(n, F))
p=0 p=0
= ch(F)- zn:(—np chr (/\ n> .
p=0

This finally implies the following formula
> p=o(=1)P chy (Hp(n, F))

ch(F) = > or_o(=1)7 chr (A" n)

on To.

Let e# : T' — C* be the morphism with the differential corresponding under
specialization to p € h*. Then the weights in A”n are the sums of all sets of p
different roots from RT; i.e, we have

p
Lz ()
PCR*, Card(P)=p \a€P

Therefore, we have

> (1 (/\) S| ¥ (H )

p=0 p=0 PCR*, Card(P)=p \a€eP

> = (H<e“>)

p=0 \ PeR*, Card(P)=p \a€P

Sy (1) - o

PCRt \a€eP aERT
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Hence, we have

> po(—1)P chr (Hp(n, Fy))
[loer+ (1 —e)

on Ty. Using Kostant’s theorem [4.2) we get

chp(Hy(n, F)) = Z evA=p)te
weW (p)

ch(F) =

and finally

n

D (1P chp(Hy(n, F)) = Y (=) Wev@mete,
p=0 weW
Putting everything together, we conclude that

Zwew(_l)f(w)em%*p)ﬂ)
[loens (1 =€)

This finally implies the following result.

ch(F) =

Theorem 5.1 (Weyl). Let F be the irreducible finite-dimensional representation
of g with lowest weight \. Then

Zwew(_l)é(w)ew@—p)ﬂ
[locr+ (1 —e%)

ch(F) =

on the maximal torus Ty in Gy.

5.2. Discrete series. The formal Euler characteristic argument in the case of
compact Gy clearly does not work in the case of the discrete series of a noncompact
G since they are infinite-dimensional. It is replaced by an argument based on the
Osborne formula [17]E|

Let Gy be a connected semisimple Lie group and K| its maximal compact sub-
group. Let C§°(Gg) be the space of complex-valued smooth functions on Gy with
compact support, equipped with the usual topology. The continuous dual of that
space is the space of distributions on Gy. Let V be a Harish-Chandra module of
finite length, then the Harish-Chandra character ch(V) of V' is a distribution on
Go BIf]

The characters are invariant under inner automorphisms of G, therefore they are
invariant distributions on Go. The center Z(g) of U(g) is naturally identified with
the invariant differential operators on Gy. If V' is an irreducible Harish-Chandra
module in M(Up), its character ch(V') is annihilated by the maximal ideal Jy in
Z(g); i.e., it is an invariant eigendistribution on Gy. We denote the space of all
invariant eigendistributions annihilated by Jy by £(Gp,6). Harish-Chandra has
shown that any distribution T in £(Gy, 0) is given by

C5(Go) 2 f—T(f) = ; f(9)01(g) dulg)

3Actually, we need only a special case for compact Cartan subgroups [I7, 7.27], which is already
implicit in [25].

4Harish-Chandra defines the character for a representation of Go on a Hilbert space. By [6]
Proposition 8.23|, every Harish-Chandra module V of finite length is the module of Ko-finite vec-
tors of a subrepresentation of a representation of Gy induced by a finite dimensional representation
of a minimal parabolic subgroup Py of Gg. Therefore, Harish-Chandra’s construction applies to
the closure of V. Moreover, the character is the sum of Ky-finite matrix coefficients which are
completely determined by the Harish-Chandra module [6, Thm. 8.7].
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where p is a fixed Haar measure on Gy and Or is a locally integrable real analytic
function on the set Gy, of all regular elements in G [10, Thm. 2].

Therefore, for any irreducible Harish-Chandra module V' the character ch(V) is
given by

C5°(Go) 3 f s ch(V)(f) = /G £(9)0v () du(g)

for a locally integrable real analytic function ©y on the set Gj, of all regular elements
in Go.

From now on, we assume that ranks of Gy and Ky are equal. Let Ty be a
maximal torus in Ky. An element g € G is elliptic if its adjoint action Ad(g) on g
is semisimple and its eigenvalues are complex numbers of absolute value 1. Denote
by E the set of all regular elliptic elements in Gy. Also denote by T} the set of
regular elements in Ty. Clearly, E' is an open set in G, invariant under conjugation
by elements of Gy, and every conjugacy class in E intersects Tp.

The restriction to E of the function Oy, for an irreducible Harish-Chandra mod-
ule is a real analytic function on E constant on conjugacy classes. The Osborne
formula describes this function explicitly. Let b be a Borel subalgebra in X such
that t C b and n = [b, b]. Then, we have
> p—o(—1)P chr(Hy(n, V)

[aer+ (1 —e2)
on the regular elements in a compact Cartan subgroup Ty of Gg. This is the special
case of the Osborne formula we alluded to above. It is a generalization of the
formula we used in calculations for compact group Gy in the preceding section.

Now, we are going to apply this formula to the case of the discrete series repre-
sentation V = I'(X,Z(Q, 7)) as discussed in Section |4 Assume that b is a Borel
subalgebra corresponding to a point in Q.

Let € : W — {%1} be the character of the Weyl group W given by e(w) =
det(w), w € W. Then, €(s) = —1 for any reflection s in W. Therefore, we
have e(w) = (—=1)!™) for any w € W. In addition, since e(s) = —1 for any
reflection s with respect to a compact root, the restriction of € to Wg is equal
to the corresponding character of Weyl group Wy. First, by Theorem the
numerator in the Osborne formula is equal to

> (F1)P chr(Hy(nD(X, Z(Q, 7))

PELy

Ov|ry =

Yo DP( Y chr(Hy(n (X Z(Q, 7)) watn))

PEZ4 weWg
Z ( Z (=1)* ChT(Hp(nvF(XvI(QvT)))(wA-‘rp))
weWk pEZy
Z <_1)%dim(z/e)—é(w)+2ex(w)ewx+p
weWg
— (_1)%dim(g/{?) Z (_1)¢(w)ew/\+p
weWg
— (_1)%dim(s/€) Z (—1)tx () gwurtp
weEWK

This finally implies the following result.
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Theorem 5.2. On the regular elements of the compact Cartan subgroup Ty the
character of the discrete series representation V =T(X,Z(Q,T)) is given by

175 (w)ewk—i-p

®V|T’ _ (_1)% dim(g/€) Z’UJGWK (_1)
’ [aer+(1—e%)
5.3. Relation with Harish-Chandra parametrization. In this section, we re-
late the information from [5.2] with Harish-Chandra’s results on discrete series char-
acters.

In [11]], Harish-Chandra introduced the Schwartz space C(Gy) consisting of complex-
valued rapidly decreasing smooth functions on Gy. It contains C§°(Gyp) as a dense
subspace. A distribution on Gy is tempered if it extends to a continuous linear
form on C(Gy). We denote by Eiemp(Go,8) the subspace of £(Gy, ) consisting of
tempered invariant eigendistributions.

If Gy and K have the same rank, the set of regular elliptic elements F is open
in G and one can consider the restriction map from the space of invariant eigendis-
tributions on Gy to the space of invariant eigendistributions on FE.

Harish-Chandra proved the following resultﬂ

Theorem 5.3. Let 0 be a W-orbit in h* consisting of regular real elements. Then
the restriction map to E is injective on Eemp(Go, 0).

Since the characters of discrete series are tempered invariant eigendistributions
[T1, Lem. 76], they are completely determined by their restrictions to E. In partic-
ular, we have the following version of

Theorem 5.4. The character of the discrete series representation V =T(X,Z(Q, 7))
is the unique tempered invariant eigendistribution ch(V') satisfying

ZK(w)ewA+p

1 4im Zw K(_1>
Oviry = (-1t mioy Zuears U
aceRT € )

This is equivalent to the Harish-Chandra formula for the characters of discrete
series [IT, Theorem 16]. This establishes a precise connection between the geometric
parametrization and Harish-Chandra’s parametrization of the discrete series.

Moreover, this proves the existence of tempered invariant distributions © in [9
Thm. 3] which is the central result of that paper.

In addition, it implies that for any W-orbit 6 in h* consisting of regular real
elements, the space of all tempered invariant eigendistributions on Gy is spanned
by the characters of the discrete series which are in M (Up).

6. THE BLATTNER CONJECTURE

As before, let Gy be a connected semisimple Lie group with finite center and
Kj its maximal compact subgroup. Also, we assume that the ranks of Gy and
Ky are equal, so Gg admits discrete series representations. The formula for the
multiplicity of a finite-dimensional irreducible representations of Ky in a discrete
series representation of Gg was conjectured by Robert Blattner. His conjecture was
proved by Hecht and Schmid in [16]E| We shall give a very simple proof of that
formula using the geometric realization of discrete series.

5An equivalent result was proven later by Atiyah and Schmid in [I] by different methods.
6Their proof assumes that the group G is linear. Our argument removes that condition.
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6.1. Filtration by normal degree. First we recall a natural filtration of a D-
module direct image for a closed immersion. Let Y be a smooth algebraic variety
and Z a closed smooth subvariety of Y. Denote by ¢ : Z — Y the inclusion
morphism of Z into Y. Let Ty (resp. Tz) be the tangent sheaf to Y (resp. Z).
Denote by i*(7y) the O-module inverse image of 7y . Define the normal sheaf to
Z as Nzy = i*(Ty)/Tz. Moreover, we denote by wy (resp. wz) the invertible
O-module of sections top degree differential forms on Y (resp. Z). Also, we put
wzy =i*(wy) ®o, (wz)™ "

Let D be a twisted sheaf of differential operators on Y. Let D! be the corre-
sponding twisted sheaf of differential operators on Z [22]. Let i, be the sheaf direct
image functor and i, the O-module direct image functor. Then the D-module direct
image functor

it (V) = ie(V ®pi Dz_y)

is an exact functor from the category of right D*-modules into the category of right
D-modules. As explained in the Appendix to [I4], one defines a natural filtration of
Dz_y by left Di- and i~'Oy-modules. By tensoring, we get a natural Oy-module
filtration of ¢4 (V) which we call the filtration by normal degree. The corresponding
graded module is

Grip (V) =ie(V®o, SNzy)) = i.(V®o, S(Nzy))

(here S(N7zy) is the symmetric algebra of Nzy). Since the opposite sheaf of
rings of D is also a sheaf of twisted differential operators, we can easily adapt this
construction to left D-modules as explained in [3]. Going to left modules contributes
a twist by wz|y in above formula and we get that

Grip (V) =i.(V®o, wzly ®o, SNzy)).

6.2. Proof of the Blattner formula. Let Ty be the Cartan subgroup of Kj.
Denote, as before, by K and T the complexifications of Ky and Ty. Denote by ¢
and t the Lie algebras of K and T.

Let @ be a closed K-orbit in the flag variety X of g. Let R be the root system of
(g,t) in t*. We fix a set of positive roots R} of the system of compact roots R. in
R. Then, by the discussion in Section [3] for any closed K-orbit in the flag variety
X there exists a unique set of positive roots RT in R such that R = R, N R* and
the Borel subalgebra b spanned by t and root subspaces corresponding to roots in
Rt isin Q.

Let z be a point in @) corresponding to the Borel subalgebra b. The tangent
space T,,(X) at x to X is identified with n. This isomorphism identifies the tangent
space to the orbit @ at x with . p+ 8—a- This implies the following result.

Lemma 6.1. (i) The geometric fiber T, (wg|x) of wg|x at x is isomorphic to
—2p+2pc. = —2pn.
(ii) The geometric fiber of No|x is isomorphic to @QER:[ J_a-

Let 7 be an irreducible K-homogeneous connection on () compatible with A+ p.
If we consider the normal degree filtration of the standard Harish-Chandra sheaf
Z(Q, ), we get the short exact sequence

0— Fp_l I(Qﬂ') — FPI(Q,T) — ’i.(WQ‘X Rog T B0g SP(NQ‘X)) — 0.
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The last sheaf is an O x-module and by the Leray spectral sequence
HP(X,is(wgx ®oq TR0 SP(Ngx))) = HP (X, i.(wg|x ®o, T Qo SP(Ngix)))
= HP(Q,UJQ|X ®(9Q T ®(9Q SP(Nle))

since 7 is an affine morphism.
Clearly, we have 7 = Og(A + p). Moreover, by Lemma[6.1}(i), we have

wo|x Vo, T Qoq SP(NQ|X) = O0g(A+ pec — pn) ®oq SP(NQ\X)-

This K-equivariant coherent Ogp-module has finite-dimensional cohomology; i.e.,
HP?(Q,wgix ®o, T ®0, SP(Ng|x)) are finite-dimensional algebraic representations
of K for any p € Z,. From the long exact sequence of cohomology associated
to the above short exact sequence, we conclude that HY(X,F,Z(Q, 7)) are finite-
dimensional algebraic representations of K. Since K is reductive, all representations
in this long exact sequence are semisimple finite-dimensional algebraic representa-
tion of K.

Let v be a Rf-antidominant weight and F, the irreducible finite-dimensional
representation with lowest weight v. By applying the functor Homg (F,,, —) we get
again a long exact sequence of finite-dimensional vector spaces. Using the Euler
principle, we conclude that

> (—1)? dim Homg (F,,, H)(X,F, Z(Q,7)))
qEZ

= Z(—l)q dimHOHlK(Fy, Hq(X7 prlz(Q7T)))
q€Z

+ > (=1)?dimHomg (F,, HY(Q, Og(A + pe — pn) R0, S”(Ng|x)))-
qEZ

The geometric fiber T, (SP(Ng|x)) is a representation of the stabilizer of = in K.
Since it is a Borel subgroup of K, by Lie’s theorem, there exists a finite filtration
of T,(SP(Ng|x)) by K-equivariant Og-modules. By Lemma (ii), the graded
Og-module is the direct sum of Og (A + p. — pn — k) wWhere & is a sum of p positive
noncompact roots.

By induction on the length of this filtration, using again the Euler principle, we
conclude that

> (~1)*dim Homy (B, HU(Q, Og(A + pe = pu) @0q S"(Noix)))
qE€ZL

= Z Z(—l)q dim Homg (F,, H(Q, Og(A + pc — pn — K)))
K q€EZ
where the sum goes over all sums x of p noncompact positive roots.

By the Borel-Weil-Bott theorem, the cohomology of Og(A+ p.— pn — k) vanishes
if A — p, — K is not regular with respect to R.. Otherwise, if A — p,, — k is regular
and equal to w(v —p.), w € W, it follows that H*")(Q, Og(A+p. — pn —k)) = F,
and the other cohomologies vanish.

Let P be the function on h* defined in the following way: For any u we set
P(p) to be the number of ways one can represent u as a non-negative integer linear
combination of the positive noncompact roots. Also, set P, to be the function on
h* defined in the following way: For any u, P,(u) is the number of ways one can
represent u as a sum of p positive noncompact roots. Clearly, we have P = Z;io P,.
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Therefore, we have

Z(_l)q dim HomK(Fm Hq(Qv OQ()‘ + pe — pn) ®0g SP(NQ\X)))
qE€ZL

= > (=D ™P(A = pp — w(v - p))-
weWg

By induction we see that

Z( 1)?dim Homg (F,, HY(X,Fp, Z(Q, T) Z Z V) Py(A=pp—w(v—pe)).

qEZ s=0weWg

Since cohomology commutes with direct limits, by taking the limit as p — oo, we
get

> (1) dimHomg (F,, HY(X,Z(Q, 7)) = Y (=) ™PA = p, — w(v - pc)).
q€Z weWg

Finally, since A is antidominant, higher cohomologies of the standard Harish-
Chandra sheaf Z(Q, 7) vanish and we see that

dim Homg (F,, D(X,Z(Q, 7)) = Y (1) ™ P\ = p, —w(v — p)).
weWg

Theorem 6.2 (Hecht-Schmid). Let v be an antidominant weight for the root system
R, and F, the finite-dimensional irreducible algebraic representation of K. Then
the multiplicity of the representation F, in the restriction of the discrete series
representation V. =T(X,Z(Q, 7)) to K is equal to

S () IPO = py — wl — o))

weEWg

This is Blattner’s formula.

APPENDIX A. COUSIN RESOLUTION

In this appendix, for the convenience of the reader, we prove the well known
results about Cousin resolutions in D-module setting (for references, see [13], [26]).

A.1. Stratifications. Let X be a smooth algebraic varietym over C. A subvariety
Y of X is affinely imbedded if for any affine open set U in X the set U NY is affine.
Clearly, if Y is an affinely imbedded subvariety and U an open set in X, then Y NU
is affinely imbedded in U.

Closed subvarieties of X are affinely imbedded in X. Also, affine subvarieties are
affinely imbedded in X. The canonical inclusions of affinely imbedded subvarieties
are affine morphisms.

Let

X:FoDFlDFQD"'DFnDFnJrl:w

be a decreasing filtration of X by closed algebraic subvarieties satisfying the fol-
lowing condition:

(S) Fp — Fpy1 is a nonempty smooth affinely imbedded subvariety of X of
dimension dim X — p for 0 < p < n.

"Our varieties do not have to be connected.



24 D. MILICIC AND A. ROMANOV

Then we call (F;0 < p < n+ 1) a stratification of X of length n. We call the
smooth affinely imbedded subvariety S, = Z, — Z, 11 the (dim X — p)-dimensional
stratum of X.

Let 0 < ¢ <nand X; = X — Fyy;. Then X, is smooth subvariety of X and
(Fp — Fy41;0<p<gqg+ 1) is a stratification of X of length q.

A.2. Local cohomology. Let Dx the sheaf of differential operators in X. Let Y
be a closed smooth subvariety of X. Let U = X — Y be the complement of Y. Let
1:Y — X and j: U — X be the canonical inclusions.

Denote by M(Dx), M(Dy) and M(Dy) the corresponding categories of qua-
sicoherent D-modules, and by D%(Dx), D’(Dy) and D®(Dy) the corresponding
derived categories. Then the direct image functor iy : M(Dy) — M(Dx) is
exact and lifts to an exact functor i, : D?(Dy) — D®(Dx). Also, the direct im-
age functor j; : M(Dy) — M(Dx) is the ordinary sheaf-theoretic direct image
functor j,, it is left exact and its derived functor is Rj, : D*(Dy) — D(Dy).

Let I'y : M(Dx) — M(Dx) be the functor which associates to each quasico-
herent Dx-module F the subsheaf of all local sections I'y (F) with support in Y.
Let RI'y : D*(Dx) — D®(Dx) the corresponding functor of local cohomology.

Let 7 be an object in D’(Dx). Then we have the canonical distinguished
triangle

R]o F |U

LN

by [4, VI.8.3]. In addition, we have
RIy(F) =iy (Ri'(F)).
If m =dim X —dimY, we have

f .
Rpi!((’)x) _ {0 or p # m;

Oy forp=m;

ie.,

RIy(D(Ox)) = D(it(Oy))[—m].
Specializing the above distinguished triangle for 7' = D(Ox) we get the distin-
guished triangle

Rje(D(Ov))

D(iy(Oy))[—m] D(Ox)
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Assume that Y is of codimension 1 in X; i.e., m = 1. Then, applying the cohomol-
ogy functor to this distinguished triangle, we get the long exact sequence:
o —= 00— 0x — Jo(Oy) — i+ (Oy) — 00— ...
<o —0— RPj(Opy) — 0 — ...
Therefore, we get the exact sequence
0 — Ox — jo(Oy) — i4(Oy) — 0

and RPje(Oy) =0 for p > 1.
Analogously, if m > 1, we get that

Ox for p = 0;
RPje(Oy) = Qi (Oy) forp=m —1;
0 otherwise.

Hence, we proved the following result.
Lemma A.1. Let m =dim X —dimY. Then:
(i) If m =1, we have the exact sequence
0—O0Ox — j.(OU) — i+(0y) —0

and RPje(Oy) =0 for p > 0.
(ii) If m > 1, we have

Ox forp=0;
RPje(Ou) = i+(Oy) forp=m—1;
0 otherwise.

A.3. Cousin resolution. Let X be a smooth algebraic variety with a stratification
(Fp;0 < p <n+1). Denote by iy : S, — X, 0 < p < n, the canonical inclusions
of strata into X.

Theorem A.2. There exists a canonical exact sequence
0— Ox —i9+(0gy) = 11,4(0g,) = -+ = 15, +(Og,) — 0.
Therefore, the complex
o= 0—=140,4(0g,) > i1,4(0sy) = -+ =i 4(0s,) 20— ...

is a resolution of Ox in M(Dx). This resolution is called the Cousin resolution of
Ox.

We prove the theorem by induction in n. If n = 1, we have Fy = X and F; =Y
is a smooth closed subvariety in X. Moreover, So = X —Y = U and S; =Y.
Therefore, the Cousin resolution reduces to Lemma [A.1] (i).

Assume that n > 1 and that the statement holds for n — 1. Let U = X,,_1
and denote by j : U — X the natural inclusion. Then (F, — F,,;0 < p < n)
define a stratification of U. Denote by j, : S, — U the natural inclusions. By the
induction assumption, we have the exact sequence

0= Ouv = jo+(0sy) = j1,+(0s,) = -+ = jn-14(0s,_,) = 0
Therefore, we have a quasiisomorphism of D(Oy) into the complex

o= 0= J0,+(0sy) = J1,4(0s,) = -+ = jn—1,4(0g, ,) = 0— ...
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By our assumption j, : S, — U and i, : S, — X are affine morphisms. There-
fore, the functors j, , : M(Dg,) — M(Dy) and iy 4 : M(Ds,) — M(Dx) are
exact. Since Rjq 0 jp.+ = ip 4+, it follows that the modules j, (V) are acyclic for
Je for any Dg -module V. Therefore, by acting on the above complex by j,, we get
the complex

o= 0= 140,4(0g,) = 01,4(0sy) =& -+ = ip_14(0g, ,) = 0— ...

which computes Rjo(D(Op)). Since U = X — S,,, by Lemma [A1](ii), the ker-
nel of the morphism g +(Os,) — i1,4(Og,) has to be Ox, and the cokernel of
the morphism 4,2 +(Og, ,) — in—1,+(Og, ,) has to be i, (Og,). This clearly
establishes the induction step.

A.4. Variants. In the main text we use the “twisted” versions of Theorem
First, let £ be an invertible O x-module on X and D, the sheaf of differential

operators on L. By tensoring by £, we get immediately the following version of
Theorem [A2]

Theorem A.3. There exists a canonical exact sequence
0 £ = g4 (i3(£)) = 14 (71(£)) = - = ins (i (L)) = 0

Finally, let Y be a smooth closed subvariety of X. Denote by ¢ : ¥ — X
the canonical inclusion and by D? the twisted sheaf of differential operators on Y
induced by the twisted sheaf of differential operators D on X [22, 1.1]. Let £ be
an invertible Oy-module on Y. Assume that D is the twisted sheaf of differential
operators on X such that D' = D,.

Let (Fp;0 < p < n+ 1) be a stratification of Y. Denote by i, : S; — X and
k, : S, — Y the natural inclusions of strata S,, 0 < p < n, into X (resp. Y).
Then, applying the Kashiwara equivalence of categories to closed immersion 7, from
Theorem we get the following result.

Theorem A.4. There exists a canonical exact sequence
0 =i (L) = io4 (kg (L)) = i1 4 (K1(L)) = -+ = in 4 (K (L)) = 0
in M(D).
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