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Localization and standard modules for real semisimple
Lie groups II: Irreducibility and classification
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Wolf ∗

Abstract: Let G0 be a connected semisimple Lie group with finite
center. We fix a maximal compact subgroup K0 of G0. Let g be
the complexified Lie algebra of G0 and K the complexification of
K0. Harish-Chandra explained how the study of representations
of G0 can be reduced to the study of Harish-Chandra modules for
(g, K). Beilinson and Bernstein introduced the localization functor
from the category of Harish-Chandra modules into the category of
Harish-Chandra sheaves – K-equivariant D-modules on the flag
variety of g.

This paper is a continuation of [12], where we calculated the
cohomology of “standard” Harish-Chandra sheaves. First, using
geometric techniques, we prove a necessary and sufficient condi-
tion for the irreducibility of standard Harish-Chandra sheaves. Ir-
reducible Harish-Chandra sheaves are unique irreducible submod-
ules of standard Harish-Chandra sheaves. Under a positivity condi-
tion, global sections of irreducible Harish-Chandra sheaves are irre-
ducible Harish-Chandra modules or zero. This leads to a geometric
classification of irreducible Harish-Chandra modules. In addition,
we establish a relationship between supports of irreducible Harish-
Chandra sheaves and asymptotic behavior of matrix coefficients
of their global sections. This leads to unified geometric proofs of
classical results on classification of irreducible tempered Harish-
Chandra modules and discrete series.
Keywords: D-modules, Harish-Chandra modules, Tempered mod-
ules, Discrete series.

1. Introduction

This paper is the continuation of [12], in which we related two constructions
of representations of a connected semisimple Lie group with finite center G0.
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We fix a maximal compact subgroup K0 in G0, which is unique up to G0-
conjugacy. We denote by K its complexification. As a matter of notation, we
write g, k, for the complexified Lie algebras of real Lie groups G0, K0.

In this paper, we give unified geometric proofs of various known, but
widely scattered results about Harish-Chandra modules of (g, K). The point
of departure is the localization construction of Beilinson and Bernstein.

Let X be the flag variety of g. For any point x ∈ X, let bx be the
corresponding Borel subalgebra of g. Also, let nx = [bx, bx]. We denote by h

the abstract Cartan algebra of g (compare [12]). The dual h∗ is spanned by
the (abstract) root system Σ of roots. It contains a set Σ+ of positive roots,
which specializes at each point x ∈ X to the roots corresponding to the root
subspaces spanning nx.

To each λ ∈ h∗, Beilinson and Bernstein attach a twisted sheaf of differ-
ential operators Dλ on the flag variety X. As discussed in [12], the maximal
ideals of the center Z(g) of the enveloping algebra U(g) of g are parametrized
by the orbits of the Weyl group W of of the root system Σ in h∗. Let θ be
the orbit of some λ in h∗. Denote by Uθ the quotient of U(g) by the two-sided
ideal generated by the maximal ideal Iθ in Z(g) attached to the orbit θ. Then,
we have Γ(X,Dλ) = Uθ.

For each λ in h∗, we can consider the category Mqc(Dλ) of (quasicoher-
ent) Dλ-modules on X and the category M(Uθ) of Uθ-modules. Clearly, the
functor of global sections Γ(X,−) : Mqc(Dλ) −→ M(Uθ) has a left adjoint
functor ∆λ defined by ∆λ(V ) = Dλ ⊗Uθ

V for any Uθ-module V . This is
the localization functor of Beilinson and Bernstein [3]. Localization functors
are an equivalence of the category M(Uθ) with the category of Mqc(Dλ) for
regular and antidominant λ ∈ h∗.

We can consider the derived categories D∗(Dλ) and D∗(Uθ) of the cate-
gories Mqc(Dλ) and M(Uθ) respectively. The derived functors RΓ and L∆λ

are adjoint functors between these categories. For regular λ ∈ h∗, they are
equivalences of categories.

As discussed in [12], we can define analogous categories Mfg(Uθ, K) of
finitely generated Uθ-modules and Mcoh(Dλ, K) of coherent Dλ-modules with
compatible actions of K. We call the objects of these categories Harish-
Chandra modules and Harish-Chandra sheaves respectively. The above re-
sults extend formally to these categories. For example, localization functors
are an equivalence of the category of Harish-Chandra modules with the cate-
gory of Harish-Chandra sheaves for regular and antidominant λ ∈ h∗. Harish-
Chandra sheaves are holonomic Dλ-modules. Therefore, Mcoh(Dλ, K) is an
artinian and noetherian category. Moreover, its irreducible objects are easily
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classified. As explained in [12], they are attached on to the set of geomet-
ric data consisting of pairs (Q, τ) where Q is a K-orbit in X and τ is a
K-equivariant irreducible connection on Q compatible with the twist. The
Dλ-module direct image of the connection τ is the standard Harish-Chandra
sheaf I(Q, τ) attached to (Q, τ). It has the unique irreducible Harish-Chandra
subsheaf L(Q, τ). All irreducible Harish-Chandra sheaves in Mcoh(Dλ, K) are
isomorphic to some L(Q, τ).

Now we describe in some detail the results discussed in the paper. The
(derived) localizations L∆λ of Uθ-modules for different λ ∈ θ are related by
the intertwining functors LIw of Beilinson and Bernstein [4]. Their construc-
tion and basic results are discussed in Section 2. In Section 3 we prove a
quantitative analogue of the main result in [4] which relates support of the
localization of an irreducible Uθ-module V for strongly antidominant λ with
possible weights of the Lie algebra homology H0(nx, V ) for a dense set of
x ∈ X.

Our leading principle is that information contained in the localizations
L∆wλ(V ), for some Harish-Chandra module (π, V ) for specific w ∈ W can
give more obvious information about Harish-Chandra module than the local-
ization ∆λ(V ) for an antidominant λ. A typical example is the main result in
Section 8, which gives a necessary and sufficient condition for irreducibility
of standard Harish-Chandra sheaves. Localization functors satisfy a product
formula which allows a reduction to the case of reflections with respect to
a simple root α. By considering the fibration of the flag variety X over the
generalized flag variety Xα attached to a simple root α we can easily see that
failure of the conditions for root α implies the reducibility. The general cri-
terion for irreducibility follows from this remark and an inductive argument
using intertwining functors. This irreducibility result is a D-module analogue
of the irreducibility result of Speh and Vogan in [20]. An attempt to under-
stand this result was one of starting points of this part of our project. They
remarked that the situation is much more complicated for singular infinitesi-
mal characters. This suggested that this is naturally a result about standard
Harish-Chandra sheaves and not corresponding modules. The complications
at singular infinitesimal character are caused by the failure of equivalence of
categories in this case.

As we already remarked, the geometric classification of irreducible Harish-
Chandra sheaves is straightforward. If λ is antidominant, the category of
Harish-Chandra modules is the quotient of the category of Harish-Chandra
sheaves by the subcategory of all Harish-Chandra sheaves with no global sec-
tions. Therefore, irreducible Harish-Chandra modules are all nonvanishing
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modules Γ(X,L(Q, τ)). Hence, to have a classification of irreducible Harish-
Chandra modules, we have to characterize all L(Q, τ) with nonvanishing
global sections. This is done in Section 9.

Finally, in Sections 11 and 12, we reprove in our setting the classical
results of Harish-Chandra on asymptotic of matrix coefficients of irreducible
Harish-Chandra modules. Again, assume for simplicity that G0 is a connected
semisimple Lie group with maximal compact subgroup K0. Let G0 = K0A0N0
be the Iwasawa decomposition of G0. Then, N0 determines a set of positive
(restricted) roots. Harish-Chandra considered the K0-finite matrix coefficients
of a Harish-Chandra module (π, V ) on the corresponding negative chamber
in A0 (for details, consult [8]). The growth of these coefficients at infinity is
determined by “leading exponents”. In [8], it is established that these linear
forms on the Lie algebra of A0 are in the set of all weights of H0(n0, V ), where
n0 is the Lie algebra of N0. By [16, Theorem II. 2.1], they correspond precisely
to the “minimal” weights with respect to a natural ordering. This establishes
a connection between growth conditions of K0-finite matrix coefficients and
n0-homology.

The Lie algebra n0 is contained in a Borel subalgebra of g which lies
in the open orbit of K in the flag variety X. Therefore, to determine the
“leading exponents” of (π, V ), we have to understand the localizations of
(π, V ) supported on the full flag variety X. The main result of Section 3
implies therefore the precise estimates for possible “leading exponents” of
irreducible Harish-Chandra modules. This allows to reprove the results of
Harish-Chandra on classification of discrete series of G0 [10]. First, they ex-
ist if and only if rank g = rankK. Second, they correspond (for regular and
strongly antidominant λ) to standard Harish-Chandra sheaves I(Q, τ) at-
tached to closed K-orbits Q.

We also characterize tempered Harish-Chandra modules in terms of van-
ishing of a simple invariant which we call Langlands invariant. As a conse-
quence, we see that irreducible tempered Harish-Chandra modules are global
sections of specific irreducible standard Harish-Chandra sheaves I(Q, τ) for
strongly antidominant λ. This explains relative simplicity of tempered spec-
trum of G0.

If Langlands invariant of an irreducible Harish-Chandra module is not
zero, it determines the data necessary to characterize it as a Langlands repre-
sentation [13]. We shall discuss the details of this correspondence in a further
publication.
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2. Generalities on intertwining functors

Let θ be a Weyl group orbit in h∗. We consider the category M(Uθ) of Uθ-
modules. For each λ ∈ θ we also consider the category Mqc(Dλ) of (quasico-
herent) Dλ-modules. Assigning to a Dλ-module V its global sections Γ(X,V)
defines a functor Γ : Mqc(Dλ) −→ M(Uθ). Its left adjoint is the localization
functor ∆λ : M(Uθ) −→ Mqc(Dλ) given by ∆λ(V ) = Dλ ⊗Uθ

V .
Let Σλ be the set of roots integral with respect to λ, i.e.,

Σλ = {α ∈ Σ | α (̌λ) ∈ Z}.

Then the subgroup Wλ of the Weyl group W generated by the reflections
with respect to the roots from Σλ is equal to

Wλ = {w ∈ W | wλ− λ ∈ Q(Σ)},

where Q(Σ) is the root lattice of Σ in h∗ ([7], Ch. VI, §2, Ex. 2). Let Πλ be
the set of simple roots in the root system Σλ attached to the set of positive
roots Σ+

λ = Σλ ∩ Σ+. Denote by ℓλ : Wλ −→ Z+ the corresponding length
function.

We say that λ is antidominant if α (̌λ) is not a strictly positive integer
for any α ∈ Σ+. For arbitrary λ we define

n(λ) = min{ℓλ(w) | wλ is antidominant, w ∈ Wλ}.

The following result was established in [4] and [11].

Theorem 2.1. Let λ ∈ h∗ and θ = W · λ. Then

(i) The right cohomological dimension of Γ : Mqc(Dλ) −→ M(Uθ) is ≤
n(λ).

(ii) The left cohomological dimension of ∆λ : M(Uθ) −→ Mqc(Dλ) is finite
if and only if λ is regular.

(iii) If λ is regular, the left cohomological dimension of ∆λ is ≤ n(λ).

Consider the derived category D(Uθ) of complexes of Uθ-modules and the
derived category D(Dλ) of complexes of Dλ-modules. By (i), there exists the
derived functor RΓ : D(Dλ) −→ D(Uθ). This functor also induces functors
between the corresponding full subcategories of bounded complexes. On the
other hand, for arbitrary λ, there exists also the derived functor of localization
functor L∆λ : D−(Uθ) −→ D−(Dλ) between derived categories of complexes
bounded from above.
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If λ is regular, the left cohomological dimension of ∆λ is finite by (ii), and
L∆λ extends to the derived functor between D(Dλ) and D(Uθ). Moreover, it
maps bounded complexes into bounded complexes.

We have the following result [4].

Theorem 2.2. Let λ ∈ h∗ be regular and θ = W · λ. Then RΓ : Db(Dλ) −→
Db(Uθ) and L∆λ : Db(Uθ) −→ Db(Dλ) are mutually quasiinverse equivalences
of categories.

This implies, in particular, that for any two λ, µ ∈ θ, the categories
Db(Dλ) and Db(Dµ) are equivalent. This equivalence is given by the functor
L∆µ ◦ RΓ from Db(Dλ) into Db(Dµ). In this section we describe a functor,
defined in geometric terms, which is (under certain conditions) isomorphic to
this functor. This is the intertwining functor of Beilinson and Bernstein [4].

Most of the following results on the intertwining functors are due to Beilin-
son and Bernstein and were announced in [4], [2]. Complete details can be
found in [15].

We start with some geometric remarks. Define the action of G = Int(g)
on X ×X by

g · (x, x′) = (g · x, g · x′)

for g ∈ G and (x, x′) ∈ X ×X. The G-orbits in X ×X can be parametrized
in the following way. First we introduce a relation between Borel subalgebras
in g. Let b and b′ be two Borel subalgebras in g, n and n′ their nilpotent
radicals and N and N ′ the corresponding subgroups of G. Let c be a Cartan
subalgebra of g contained in b ∩ b′. Denote by R the root system of (g, c)
in c∗ and by R+ the set of positive roots determined by b. This determines
a specialization of the Cartan triple (h∗,Σ,Σ+) into (c∗, R,R+) [12]. On the
other hand, b′ determines another set of positive roots inR, which corresponds
via this specialization to w(Σ+) for some uniquely determined w ∈ W . The
element w ∈ W does not depend on the choice of c, and we say that b′ is in
relative position w with respect to b.

Let

Zw = {(x, x′) ∈ X ×X | bx′ is in the relative position w with respect to bx}

for w ∈ W . Then the map w −→ Zw is a bijection of W onto the set of
G-orbits in X × X, hence the sets Zw, w ∈ W , are smooth subvarieties of
X ×X.

Denote by p1 and p2 the projections of Zw onto the first and second factor
in the product X × X, respectively. The fibrations pi : Zw −→ X, i = 1, 2,
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are locally trivial with fibers isomorphic to ℓ(w)-dimensional affine spaces.
Hence, they are affine morphisms.

Let ΩZw|X be the invertible OZw -module of top degree relative differential
forms for the projection p1 : Zw −→ X. Let Tw be its inverse. Since the
tangent space at (x, x′) ∈ Zw to the fiber of p1 can be identified with nx/(nx ∩
nx′), and ρ− wρ is the sum of roots in Σ+ ∩ (−w(Σ+)), we see that

Tw = p∗
1(O(ρ− wρ)).

It is easy to check that
(Dwλ)p1 = (Dp2

λ )Tw

([12], Appendix A). Since the morphism p2 : Zw −→ X is a surjective
submersion, the inverse image p+

2 is an exact functor from Mqc(Dλ) into
Mqc((Dλ)p2). Twisting by Tw defines an exact functor V −→ Tw ⊗OZw

p+
2 (V)

from M(Dλ) into Mqc((Dwλ)p1) ([12], A.3.3.1). Therefore, we have a functor
V · −→ Tw ⊗OZw

p+
2 (V ·) from Db(Dλ) into Db((Dwλ)p1). Composing it with the

direct image functor Rp1+ : Db((Dwλ)p1) −→ Db(Dwλ), we get the functor
Jw : Db(Dλ) −→ Db(Dwλ) by the formula

Jw(V ·) = Rp1+(Tw ⊗OZw
p+

2 (V ·))

for any V · ∈ Db(Dλ). Let V ∈ Mqc(Dλ). Since p1 is an affine morphism with
ℓ(w)-dimensional fibers, it follows that H i(Jw(D(V))) vanishes for i < −ℓ(w)
and i > 0. Moreover, the functor

Iw(V) = R0p1+(Tw ⊗OZw
p+

2 (V))

from Mqc(Dλ) into Mqc(Dwλ) is right exact. This is the intertwining functor
(attached to w ∈ W ) between Mqc(Dλ) and Mqc(Dwλ). One knows that Jw

is actually the left derived functor LIw of Iw ([4], [15]); moreover,

Proposition 2.3. Let w ∈ W and λ ∈ h∗. Then LIw = Jw : Db(Dλ) −→
Db(Dwλ) is an equivalence of categories.

We denote by P (Σ) the weight lattice of Σ. For a weight ν ∈ P (Σ) we
denote by O(ν) the corresponding homogeneous invertible OX -module. From
the construction of the intertwining functors one can easily check that they
behave nicely with respect to twists by homogeneous invertible OX -modules:

Lemma 2.4. Let w ∈ W , λ ∈ h∗ and ν ∈ P (Σ). Then

LIw(V ·(ν)) = LIw(V ·)(wν)
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for any V · ∈ Db(Dλ).
Intertwining functors satisfy a natural “product formula”. To formulate

it we need some additional geometric information on G-orbits in X ×X. Let
w,w′ ∈ W . Denote by p1 and p2 the projections of Zw into X, and by p′

1
and p′

2 the corresponding projections of Zw′ into X. Let Zw′ ×X Zw be the
fiber product of Zw′ and Zw with respect to the morphisms p′

2 and p1. Denote
by q′ : Zw′ ×X Zw −→ Zw′ and q : Zw′ ×X Zw −→ Zw the corresponding
projections to the first, resp. second factor. Finally, the morphisms p′

1 ◦ q′ :
Zw′ ×X Zw −→ X and p2 ◦ q : Zw′ ×X Zw −→ X determine a morphism
r : Zw′ ×X Zw −→ X × X. Therefore, we have the following commutative
diagram.

X ×X

Zw′ ×X Zw

r

OO

q′

||

q

""
Zw′

p′
1

��

p′
2

""

Zw

p1

||

p2

��
X X X

All morphisms in the diagram are G-equivariant. From the construction it
follows that the image of r is contained in Zw′w, and by the G-equivariance of
r it is a surjection of Zw′ ×XZw onto Zw′w. Assume in addition that w,w′ ∈ W
are such that ℓ(w′w) = ℓ(w′) + ℓ(w). Then r : Zw′ ×X Zw −→ Zw′w is an
isomorphism. Therefore, if we assume that w,w′, w′′ ∈ W satisfy w′′ = w′w
and ℓ(w′′) = ℓ(w′) + ℓ(w), we can identify Zw′′ and Zw′ ×X Zw. Under this
identification the projections p′′

1 and p′′
2 of Zw′′ into X correspond to the maps

p′
1 ◦ q′ and p2 ◦ q. This leads to the following result.

Proposition 2.5. Let w,w′ ∈ W be such that ℓ(w′w) = ℓ(w′) + ℓ(w).
Then, for any λ ∈ h∗, the functors LIw′ ◦ LIw and LIw′w from Db(Dλ) into
Db(Dw′wλ) are isomorphic; in particular the functors Iw′ ◦ Iw and Iw′w from
Mqc(Dλ) into Mqc(Dw′wλ) are isomorphic.
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Let α ∈ Σ+. We say that λ ∈ h∗ is α-antidominant if α (̌λ) is not a strictly
positive integer. For any S ⊂ Σ+, we say that λ ∈ h∗ is S-antidominant if it
is α-antidominant for all α ∈ S. Put

Σ+
w = {α ∈ Σ+ |wα ∈ −Σ+} = Σ+ ∩ (−w−1(Σ+))

for any w ∈ W . Then
Σ+

w−1 = −w(Σ+
w),

and if w,w′ ∈ W are such that ℓ(w′w) = ℓ(w′) + ℓ(w),

Σ+
w′w = w−1(Σ+

w′) ∪ Σ+
w

by ([7], Ch. VI, §1, no. 6, Cor. 2. of Prop. 17). In this situation, if λ ∈ h∗ is
Σ+

w′w-antidominant, then wλ is Σ+
w′-antidominant.

Since the left cohomological dimension of Iw is ≤ ℓ(w), LIw extends to a
functor from D(Dλ) into D(Dwλ) which is also an equivalence of categories.
The next result gives one of the fundamental properties of this functor.

Theorem 2.6. Let w ∈ W and let λ ∈ h∗ be Σ+
w-antidominant. Then the

functors LIw ◦ L∆λ and L∆wλ from D−(Uθ) into D−(Dwλ) are isomorphic.

If we also assume regularity, we get the result of Beilinson and Bernstein
we mentioned before.

Theorem 2.7. Let w ∈ W and λ ∈ h∗ be Σ+
w-antidominant and regular. Then

LIw is an equivalence of the category Db(Dλ) with Db(Dwλ), isomorphic to
L∆wλ ◦RΓ.

We can also give a more precise estimate of the left cohomological dimen-
sion of the intertwining functors.

Theorem 2.8. Let w ∈ W and λ ∈ h∗. Then the left cohomological dimension
of Iw is ≤ Card(Σ+

w ∩ Σλ).

In particular, we have the following important consequence.

Corollary 2.9. Let w ∈ W and λ ∈ h∗ be such that Σ+
w ∩ Σλ = ∅. Then

Iw : Mqc(Dλ) −→ Mqc(Dwλ) is an equivalence of categories and Iw−1 is its
quasi-inverse, i.e., the compositions Iw ◦ Iw−1 and Iw−1 ◦ Iw are isomorphic
to the identity functors.

Also, for a regular λ, we see from the equivalence of derived categories 2.2
and 2.7 that RΓ ◦LIw is a functor isomorphic to RΓ. By a twisting argument
on can actually remove this restriction, i.e., we have the following result.
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Theorem 2.10. Let w ∈ W and λ ∈ h∗ be Σ+
w-antidominant. Then the

functors RΓ ◦ LIw and RΓ from Db(Dλ) into Db(Uθ) are isomorphic.

This theorem implies a spectral sequence, which collapses when all but
one of the derived intertwining functors of a Dλ-module V vanish, either as a
consequence of 2.10, or by explicit verification:

Corollary 2.11. Suppose λ ∈ h∗ is Σ+
w-antidominant. Suppose further that

LpIw(V) = 0 for p ̸= −q ∈ −Z+. Then

Hp(X,L−qIw(V)) ∼= Hp−q(X,V), p ∈ Z+,

as Uθ-modules.

Let Mcoh(Dλ) be the category of coherent Dλ-modules and Db
coh(Dλ)

the corresponding bounded derived category. It is equivalent with the full
subcategory of Db(Dλ) consisting of complexes with coherent cohomology
([5], VI.2.11). If θ is the Weyl group orbit of λ we can also consider the
bounded derived category Db

fg(Uθ) of finitely generated Uθ-modules. Again,
it is equivalent with the full subcategory of Db(Uθ) consisting of complexes
with finitely generated cohomology. The functor RΓ maps complexes from
Db

coh(Dλ) into complexes from Db
fg(Uθ). If λ is regular, the localization functor

L∆λ maps complexes from Db
fg(Uθ) into complexes from Db

coh(Dλ). Hence, by
2.4 and 2.7, we see that LIw : Db

coh(Dλ) −→ Db
coh(Dwλ) for arbitrary w ∈ W

and λ ∈ h∗. This is clearly an equivalence of categories. Now we want to
describe the quasiinverse of this functor.

First, we recall the twisted version of the D-module duality functor. Let
λ ∈ h∗. It is well-known that the opposite sheaf of rings D◦

λ of Dλ is iso-
morphic to D−λ ([12], A.2). Therefore, we can view the sheaf HomDλ

(V ,Dλ)
of right Dλ-modules as a left D−λ-module. If V is a coherent Dλ-module,
HomDλ

(V ,Dλ) is a coherent D−λ-module. Moreover, for any complex V ·, we
have the duality functor

D : Db
coh(Dλ) −→ Db

coh(D−λ)

given by
D(V ·) = RHomDλ

(V ·, D(Dλ))[dimX].

One can check that this duality operation behaves well with respect to ten-
soring, i.e., for any weight ν ∈ P (Σ), the following diagram of functors is



Irreducibility and classification 11

commutative
Db

coh(Dλ) D−−−−→ Db
coh(D−λ)

−(ν)
y y−(−ν)

Db
coh(Dλ+ν) −−−−→

D
Db

coh(D−λ−ν)

.

Assume for a moment that λ is regular antidominant. Since it is equivalent
to Mfg(Uθ), the category Mcoh(Dλ) has enough projective objects. Moreover,
they are direct summands of Dp

λ for some p ∈ Z+. Hence, if P is a projective
object in Mcoh(Dλ) and x an arbitrary point in X, the stalk Px of P is a
projective Dλ,x-module. Since the twisting with O(ν), for a weight ν ∈ P (Σ),
is an equivalence of Mcoh(Dλ) with Mcoh(Dλ+ν), we see that the category
Mcoh(Dλ) has enough projectives for arbitrary λ ∈ h∗. Moreover, if P is a
projective object in Mcoh(Dλ), its stalk Px is a projective Dλ,x-module for
any x ∈ X. Therefore, ExtpDλ

(P ,Dλ)x = Extp
Dλ,x

(Px,Dλ,x) = 0 for p > 0, the
“local to global” spectral sequence

Hp(X, ExtqDλ
(P ,Dλ)) ⇒ Extp+q

Dλ
(P ,Dλ),

degenerates, and we conclude that

Hp(X,HomDλ
(P ,Dλ)) = 0, for p > 0;

i.e., HomDλ
(P ,Dλ) is acyclic for the functor of global sections Γ.

Consider the functor V · 7−→ RHomDλ
(V ·, D(Dλ)) from D−

coh(Dλ) into
D+

coh(D−λ) and the functor RΓ from D+
coh(D−λ) into D+(Uθ). Then the above

remark implies that

RΓ(RHomDλ
(V ·, D(Dλ))) = RHomDλ

(V ·, D(Dλ)).

This yields the following result.

Lemma 2.12. We have the isomorphism

RΓ(D(V ·)) = RHomDλ
(V ·, D(Dλ))[dimX]

of functors from Db
coh(Dλ) into Db(Uθ).

Let θ be the Weyl group orbit of λ and −θ be the orbit of −λ. For
regular orbit θ, the homological dimension of the ring Uθ is finite. Moreover,
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the principal antiautomorphism of U(g) induces an isomorphism of the ring
opposite to Uθ with U−θ. We define a contravariant duality functor

Dalg(V ·) = RHomUθ
(V ·, D(Uθ))

from Db
fg(Uθ) into Db

fg(U−θ).
Let V · be a complex of finitely generated Uθ-modules bounded from above.

Then there exists a complex F · bounded from above, consisting of free Uθ-
modules of finite rank and a morphism of complexes F · −→ V ·. Therefore,

RΓ(D(L∆λ(V ·))) = RΓ(D(∆λ(F ·))) = RHomDλ
(∆λ(F ·), D(Dλ))[dimX]

= Hom·
Dλ

(∆λ(F ·), D(Dλ))[dimX] = Hom·
Uθ

(F ·, D(Uθ))[dimX]
= RHomUθ

(F ·, D(Uθ))[dimX] = Dalg(V ·)[dimX].

Since L∆λ is an equivalence ofDb
fg(Uθ) withDb

coh(Dλ) we get the following
result.

Lemma 2.13. Let λ ∈ h∗ be regular, then the following diagram of functor
commutes

Db
coh(Dλ) D−−−−→ Db

coh(D−λ)

RΓ
y yRΓ

Db
fg(Uθ) −−−−−−−→

Dalg [dim X]
Db

fg(U−θ)

.

Let α be a simple root. If λ is α-antidominant, by 2.10, we have

RΓ(V ·) = RΓ(LIsα(V ·)).

Hence, we have

RΓ(D(V ·)) = Dalg(RΓ(V ·))[dimX]
= Dalg(RΓ(LIsα(V ·)))[dimX] = RΓ(D(LIsα(V ·))).

Here D(V ·) is in Db
coh(D−λ) and D(LIsα(V ·)) is in Db

coh(D−sαλ). Since −sαλ

is α-antidominant, applying again 2.10, it follows that

RΓ(D(V ·)) = RΓ(LIsαD(LIsα(V ·))).
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Since D(V ·) and LIsαD(LIsα(V ·)) are in Db
coh(D−λ) and RΓ is an equivalence

of categories, we have

D(V ·) = LIsα(D(LIsα(V ·))).

Therefore,
LIsα ◦ (D ◦ LIsα ◦ D) ∼= id

on Db
coh(D−λ). Because all of these functors commute with twists, it follows

that this relation holds for arbitrary λ.
This implies that in general

LIw ◦ (D ◦ LIw−1 ◦ D) ∼= id.

Therefore, we proved the following result.

Theorem 2.14. The functor

D ◦ LIw−1 ◦ D : Db
coh(Dwλ) −→ Db

coh(Dλ)

is a quasiinverse of the intertwining functor LIw : Db
coh(Dλ) −→ Db

coh(Dwλ).

Finally, we want to discuss the behavior of global sections of Dλ-modules
for (not necessarily regular) antidominant λ ∈ h∗. Since the localization func-
tor ∆λ is the left adjoint of Γ, we have the adjunction morphisms ∆λ◦Γ −→ id
of functors on M(Uθ) and id −→ Γ ◦ ∆λ of functors on M(Dλ). By (i), Γ is
exact in this situation and the functor Γ ◦ ∆λ is right exact. Moreover, by [3],

(Γ ◦ ∆λ)(Uθ) = Γ(X,Dλ) = Uθ.

Hence, from the exact sequence

U (J)
θ −→ U (I)

θ −→ V −→ 0

we get the commutative diagram

U (J)
θ −−−−→ U (I)

θ −−−−→ V −−−−→ 0∥∥∥ ∥∥∥ y
U (J)

θ −−−−→ U (I)
θ −−−−→ Γ(X,∆λ(V )) −−−−→ 0

.

We conclude that the morphism V −→ Γ(X,∆λ(V )) is an isomorphism.
Therefore, the adjunction morphism id −→ Γ ◦ ∆λ is an isomorphism of
functors.
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Lemma 2.15. Let λ ∈ h∗ be antidominant and θ = W · λ. Then:

(i) for any irreducible Dλ-module V, either Γ(X,V) is an irreducible Uθ-
module or it is equal to zero;

(ii) for an irreducible Uθ-module V there exists a unique irreducible Dλ-
module V such that V = Γ(X,V).

Proof. Let V be an irreducible Dλ-module. Then the Dλ-submodule of V gen-
erated by Γ(X,V) can be either 0 or V . Obviously, the first case corresponds
to Γ(X,V) = 0.

Assume now that Γ(X,V) ̸= 0. Then the adjunction morphism from
∆λ(Γ(X,V)) to V is an epimorphism. Let K be the kernel of this morphism.
Applying Γ to the corresponding short exact sequence

0 −→ K −→ ∆λ(Γ(X,V)) −→ V −→ 0

we get

0 −→ Γ(X,K) −→ Γ(X,∆λ(Γ(X,V))) −→ Γ(X,V) −→ 0,

and since Γ ◦ ∆λ
∼= id, we see that Γ(X,K) = 0. Let C be any quasico-

herent submodule of ∆λ(Γ(X,V)). Then either C ⊂ K and Γ(X, C) = 0, or
the morphism of C into V is surjective. Since Γ is exact, the natural map
Γ(X, C) −→ Γ(X,V) is an isomorphism in the latter case.

Assume now that U is a nonzero quotient of Γ(X,V). Then ∆λ(U) is
a quotient of ∆λ(Γ(X,V)). Let W be the kernel of this epimorphism. By
the preceding remark, either Γ(X,W) = 0 or Γ(X,W) −→ Γ(X,V) is an
isomorphism. The latter case is ruled out since U ̸= 0, hence Γ(X,W) = 0
and U = Γ(X,V). Therefore, Γ(X,V) is irreducible. This completes the proof
of (i).

Let V be an irreducible Uθ-module. Then ∆λ(V ) is a coherent Dλ-module.
Let W be a maximal coherent Dλ-submodule and V the quotient of ∆λ(V )
by W . Then we have the exact sequence

0 −→ Γ(X,W) −→ Γ(X,∆λ(V )) −→ Γ(X,V) −→ 0.

Since Γ(X,∆λ(V )) = V , either Γ(X,W) = V or Γ(X,V) = V . Since ∆λ(V )
is, by definition, generated by its global sections, the first possibility is ruled
out. It follows that Γ(X,W) = 0 and Γ(X,V) = V . This proves the existence
part in (ii).

Let S be the family of all quasicoherent Dλ-submodules U of ∆λ(Γ(X,V))
ordered by inclusion. Since the functor Γ is exact, S has the largest element.
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Hence, we conclude that W is the largest coherent Dλ-submodule and V is
the unique irreducible quotient of ∆λ(V ). Let U be another irreducible Dλ-
module with Γ(X,U) = V . Then, by the proof of (i), U is a quotient of ∆λ(V ).
Therefore, U = V .

This reduces the problem of classification of irreducible Uθ-modules to
the problem of classification of irreducible Dλ-modules and the problem of
describing all irreducible Dλ-modules with no global sections. Now we prove
several simple results useful in studying the second problem (a more detailed
discussion can be found in [15]).

We need some preparation. Let F be a finite-dimensional g-module. Then
the sheaf F = OX ⊗C F has a natural structure of a sheaf of U(g)-modules.
Fix a base point x0 ∈ X. Let 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F be a maximal
bx0-invariant flag in F . Then nx0Fi ⊂ Fi−1 for 1 ≤ i ≤ m. Therefore, bx0/nx0

acts naturally on Fi/Fi−1, and this action induces, by specialization, an action
of the Cartan algebra h on Fi/Fi−1 given by a weight νi ∈ P (Σ). The sheaf
F is the sheaf of local sections of the trivial homogeneous vector bundle
X×F −→ X. Hence, the flag induces a filtration of F by the sheaves of local
sections Fi of homogeneous vector subbundles with fibers Fi, 1 ≤ i ≤ m,
at the base point x0. They are locally free coherent OX -modules and also
U(g)-modules. On the other hand, Fi/Fi−1 = O(νi) as a U(g)-module, i.e.,
Fi/Fi−1 is naturally a Dνi−ρ-module. Let V be a quasicoherent Dλ-module on
X. Then the OX -module V ⊗OX

F has a natural structure of a U(g)-module
given by

ξ(v ⊗ s) = ξv ⊗ s+ v ⊗ ξs

for ξ ∈ g, and local sections v and s of V and F , respectively. We can define its
U(g)-module filtration F(V ⊗OX

F) by the submodules V ⊗OX
Fi, 1 ≤ i ≤ m.

By the previous discussion, the corresponding graded module is Gr(V ⊗OX

F) =
⊕m

i=1 V(νi). Therefore, for any ξ ∈ Z(g), the product
∏

1≤i≤m(ξ −
χλ+νi(ξ)) annihilates V ⊗OX

F . Hence, V ⊗OX
F decomposes into the direct

sum of its generalized Z(g)-eigensheaves.
Let U be a U(g)-module and µ ∈ h∗. Denote by U[µ] the generalized

Z(g)-eigensheaf of U corresponding to χµ. Then

V ⊗OX
F =

⊕
ν

(V ⊗OX
F)[λ+ν],

where the sum is taken over the weights ν of F which represent the different
Weyl group orbits W · (λ+ ν).

We also need to recall some standard constructions from the theory of
derived categories. Let A be an abelian category and Db(A) the corresponding
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derived category of bounded complexes. Let D : A −→ Db(A) be the natural
functor which attaches to an object A the complex D(A) such that D(A)n = 0
for n ̸= 0 and D(A)0 = A. Then D is fully faithful.

Also, for any s ∈ Z, we define the truncation functors τ≥s and τ≤s on
Db(A) : if A· is a complex, τ≥s(A·) is a complex which is zero in degrees
less than s, τ≥s(A·)s = coker ds−1 and τ≥s(A·)q = Aq for q > s, with the
differentials induced by the differentials of A·. On the other hand, τ≤s(A·)
is a complex which is zero in degrees greater than s, τ≤s(A·)s = ker ds and
τ≤s(A·)q = Aq for q < s, with the differentials induced by the differentials
of A·. The natural morphisms τ≤s(A·) −→ A· and A· −→ τ≥s(A·) induce
isomorphisms on cohomology in degrees ≤ s and ≥ s respectively. Moreover,
for any complex A· we have the distinguished triangle:

τ≥s+1(A·)

[1]

��
τ≤s(A·) // A·

ZZ

in Db(A).
We return to the analysis of irreducible Dλ-modules. Let α ∈ Πλ. Then,

by 2.8, the left cohomological dimension of the intertwining functor Isα is
≤ 1.

Lemma 2.16. Let λ ∈ h∗, α ∈ Πλ and p = −α (̌λ) ∈ Z. Let V be an
irreducible Dλ-module. Then either

(i) Isα(V) = 0 and L−1Isα(V) = V(pα); or
(ii) L−1Isα(V) = 0. In this case, we have the exact sequence

0 −→ C −→ Isα(V) −→ V(pα) −→ 0

where C the largest proper coherent Dsαλ-submodule of Isα(V). In addi-
tion, Isα(C) = 0 and L−1Isα(C) = C(pα).

Proof. By 2.4, we can first assume that λ is antidominant and regular. Since
the left cohomological dimension of LIsα is ≤ 1, the complex LIsα(D(V))
can have nontrivial cohomology modules only in degrees −1 and 0. By the
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truncation construction for s = −1, we get the distinguished triangle

D(Isα(V))

[1]

||
D(L−1Isα(V))[1] // LIsα(D(V))

``

Applying to it the functor RΓ leads to the distinguished triangle

RΓ(D(Isα(V)))

[1]

||
RΓ(D(L−1Isα(V)))[1] // RΓ(LIsα(D(V)))

``

By 2.10, we conclude that that RΓ(LIsα(D(V))) = RΓ(D(V)) = D(Γ(X,V)).
In addition, since λ is antidominant and regular, we see that n(sαλ) = 1. By
2.1.(i), it follows that Hp(X,W) = 0 for p > 1 for any quasicoherent Dsαλ-
module W . Hence, from the long exact sequence of cohomology attached
to the above distinguished triangle, we conclude that Γ(X,L−1Isα(V)) = 0,
H1(X, Isα(V)) = 0 and

0 −→ H1(X,L−1Isα(V)) −→ Γ(X,V) −→ Γ(X, Isα(V)) −→ 0

is exact. Since Uθ-module Γ(X,V) is irreducible, either H1(X,L−1Isα(V)) = 0
or Γ(X, Isα(V)) = 0. Therefore, we have either RΓ(D(L−1Isα(V))) = 0 or
RΓ(D(Isα(V))) = 0. By the equivalence of derived categories this implies
that either Isα(V) = 0 or L−1Isα(V) = 0.

Again, by 2.4, we can assume that λ is antidominant and α (̌λ) = 0.
Moreover, we can assume that β (̌λ), for β ∈ Σ+

λ − {α}, are “very large”
integers. Let U be a Dλ-module. Let µ be a “small” dominant weight and F
the corresponding irreducible finite dimensional g-module. Let F = OX ⊗CF
be the sheaf of sections of the corresponding trivial vector bundle. As we
discussed before, this sheaf has a natural finite increasing filtration, which
induces the filtration F(U ⊗OX

F) with the graded module Gr(U ⊗OX
F) =
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⊕
ν U(ν). The center Z(g) acts on U(ν) with infinitesimal character χλ+ν .

Consider the graded components U(ν) on which the action is given by χλ+µ.
In these cases, we have w(λ+ ν) = λ+ µ for some w ∈ W . This implies that
wλ− λ = µ− wν ∈ Q(Σ) and w ∈ Wλ. Since µ is “small” and wν is another
weight of F , wλ−λ is also “small”. This implies that either w = 1 or w = sα.
Hence, the induced filtration of the sheaf (U ⊗OX

F)[λ+µ] is two-step, and the
corresponding graded sheaf is U(µ) ⊕ U(sαµ). Since µ is the highest weight
of F , we see that we have the following short exact sequence

0 −→ U(µ) −→ (U ⊗OX
F)[λ+µ] −→ U(sαµ) −→ 0.

Under our assumptions, λ + sαµ is regular and antidominant. Assume that
Γ(X,U) = 0. Then

Hp(X, (U⊗OX
F)[λ+µ]) = Hp(X, (U⊗OX

F))[λ+µ] = (Hp(X,U)⊗CF )[λ+µ] = 0.

Hence, from the long exact sequence of cohomology corresponding to this
short exact sequence, we see that Γ(X,U(µ)) = 0 and Γ(X,U(sαµ)) =
H1(X,U(µ)). Therefore, RΓ(D(U(sαµ))) = RΓ(D(U(µ))[1]). On the other
hand,

RΓ(D(U(sαµ))) = RΓ(LIsα(D(U(sαµ))))

by 2.10. By the equivalence of derived categories, it follows that

LIsα(D(U(sαµ))) = D(U(µ))[1].

By 2.4, we conclude that LIsα(D(U)) = D(U)[1].
When this discussion is applied to V , we see that Γ(X,V) = 0 implies (i).

Conversely, if (i) holds, by 2.10,

D(Γ(X,V)) = RΓ(D(V))
= RΓ(LIsα(D(V))) = RΓ(D(V))[1] = D(Γ(X,V))[1],

and Γ(X,V) = 0.
Therefore, if (i) does not hold, V = Γ(X,V) ̸= 0. By 2.15 and its proof,

V is irreducible and V is the unique irreducible quotient of ∆λ(V ). Hence,
by 2.6, Isα(V) is a quotient of Isα(∆λ(V )) = ∆λ(V ). Since Isα(V) ̸= 0, V
is the unique irreducible quotient of Isα(V). Let C be the largest coherent
Dsαλ-submodule of Isα(V). Then we have the exact sequence

0 −→ C −→ Isα(V) −→ V −→ 0.
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By applying Γ to it we see that Γ(X, C) = 0. By the above result, it follows
L−1Isα(C) = C.

Assume that λ is antidominant and α ∈ Πλ such that α (̌λ) = 0. Let
V be an irreducible Dλ-module. Then, as we have shown in the preceding
argument, Isα(V) = 0 implies that Γ(X,V) = 0. The converse also holds:

Proposition 2.17. Let λ ∈ h∗ be antidominant, θ = W ·λ and S = {α ∈ Πλ |
α (̌λ) = 0}. Let V be an irreducible Dλ-module. Then the following conditions
are equivalent:

(i) Γ(X,V) = 0;
(ii) there exists α ∈ S such that Isα(V) = 0.

Proof. As we remarked above, we just need to prove that (i) implies (ii). Let
W (λ) be the stabilizer of λ in W . Then W (λ) is generated by reflections
with respect to Σ(λ) = {α ∈ Σ | α (̌λ) = 0}. The root subsystem Σ(λ) is
contained in Σλ. Since λ is antidominant, any positive root in Σ(λ) is a sum
of roots from S, i.e., S is a basis of Σ(λ). It follows that W (λ) is generated
by reflections with respect to S. Therefore, the length function on W (λ) is
the restriction of ℓλ.

Assume that Isα(V) ̸= 0 for all α ∈ S. Let ν be a regular antidominant
weight. We claim that Γ(X,V(wν)) ̸= 0 for all w ∈ W (λ). The proof is by
induction in ℓλ(w). If ℓλ(w) = 0, w = 1, λ + ν is regular antidominant and
Γ(X,V(ν)) ̸= 0. Assume that the assertion holds for v ∈ W (λ), ℓλ(v) < k for
some k > 0. Let ℓλ(w) = k. Then w = sαw

′ with α ∈ S and w′ ∈ W (λ) such
that ℓλ(w′) = k − 1. Then, w′−1α ∈ Σ+

λ (see, for example, [7], Ch. VI, §1,
no. 6, Cor. 1 of Prop. 17.). This implies, by the antidominance of ν,

−p = α (̌λ+ w′ν) = α (̌w′ν) = (w′−1
α)̌ (ν) ∈ −Z+,

and λ+w′ν is α-antidominant. By the induction assumption, Γ(X,V(w′ν)) ̸=
0, and by 2.4 and 2.15.(ii) we have the exact sequence

0 −→ C(pα) −→ Isα(V(w′ν)) −→ V(wν) −→ 0,

and LIsα(D(C)) = D(C(pα))[1]. Therefore, by 2.10,

RΓ(D(C)) = RΓ(LIsα(D(C))) = RΓ(D(C(pα)))[1].

It follows that Γ(X, C(pα)) = 0. On the other hand, by the induction assump-
tion and 2.10, we have

Γ(X, Isα(V(w′ν))) = Γ(X,V(w′ν)) ̸= 0,
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so Γ(X,V(wν)) ̸= 0. This proves our earlier claim.
Let F be a finite-dimensional representation with lowest weight ν, and

put F = OX ⊗C F as before. Assume that (i) holds. Then V ⊗OX
F satisfies

Γ(X,V ⊗OX
F) = Γ(X,V) ⊗C F = 0,

hence Γ(X, (V ⊗OX
F)[λ+ν]) = 0. On the other hand, the filtration of V ⊗OX

F ,
which was discussed before, induces a filtration of (V ⊗OX

F)[λ+ν] such that
the corresponding graded sheaf is a direct sum of V(µ) for all weights µ of F
such that w(λ+ ν) = λ+ µ for some w ∈ W . This implies wλ− λ = µ−wν,
and w ∈ Wλ. The left side of the equality λ−w−1λ = w−1µ− ν is a negative
of a sum of roots from Πλ and the right side is a sum of roots from Π. It
follows that wλ = λ, i.e., w ∈ W (λ). Let w ∈ W (λ) be such that V(wν) is
a submodule of (V ⊗OX

F)[λ+ν]. Then, if (ii) is violated, Γ(X,V(wν)) ̸= 0
according to the earlier claim, contradicting Γ(X, (V ⊗OX

F)[λ+ν]) = 0.

To put 2.17 into perspective we should mention the following criterion
for vanishing of intertwining functors for simple reflections. In this paper, we
shall need only a special case, which we establish in 7.5, and which is an
unpublished result of Beilinson and Bernstein.

Let α ∈ Π, Xα the generalized flag variety of parabolic subalgebras of
type α and pα : X −→ Xα the canonical projection. We say that a D-module
V is of Xα-origin if it is equal to a twist p+

α (W)(µ), µ ∈ P (Σ), of the inverse
image p+

α (W) for some D-module W on Xα. The following result is proven in
[15].

Proposition 2.18. Let λ ∈ h∗ be antidominant, and α ∈ Π such that
α (̌λ) = 0. Let V be an irreducible Dλ-module. Then the following conditions
are equivalent:

(i) Isα(V) = 0;
(ii) V is of Xα-origin.

3. Supports and n-homology

In this section we prove some results relating the localization and n-homology
which follow from analysis of the action of intertwining functors. They are
inspired by the work of Beilinson and Bernstein on the generalization of the
subrepresentation theorem of Casselman [4]. Our main result can be viewed
as a quantitative version of their result.
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We start with some geometric preliminaries. Let ≤ be the Bruhat order
on W (determined by the reflections with respect to Π). Let S be a subset of
the flag variety X. For w ∈ W put

Ew(S) = {x ∈ X | bx is in relative position v with respect to by

for some v ≤ w, y ∈ S}.

Lemma 3.1. Let S be a subset of X and w ∈ W . Then:

(i) dimS ≤ dimEw(S) ≤ dimS + ℓ(w).
(ii) Ew(S̄) = Ew(S).

(iii) If S is a closed subset of X, Ew(S) is the closure of the set

{x ∈ X | bx is in relative position w with respect to some by, y ∈ S}.

(iv) If S is irreducible, Ew(S) is also irreducible.
(v) If w, v ∈ W are such that ℓ(wv) = ℓ(w) + ℓ(v),

Ewv(S) = Ew(Ev(S)).

Proof. Let α ∈ Π. Denote by Xα the generalized flag variety of parabolic
subalgebras of type α, and by pα : X −→ Xα the natural projection. Then
we have

Esα(S) = p−1
α (pα(S)).

Clearly, in this case, Esα(S) is closed (resp. irreducible) if S is closed (resp. ir-
reducible). Moreover, we see that

dimS ≤ dimEsα(S) ≤ dimS + 1.

Therefore, Esα(S̄) is closed. Hence, Esα(S) ⊂ Esα(S̄). On the other hand,
since S ⊂ Esα(S) it follows that S̄ ⊂ Esα(S). If x ∈ Esα(S), the whole fiber
p−1

α (pα(x)) is contained in Esα(S). This implies Esα(S̄) ⊂ Esα(S). This proves
(ii) for simple reflections.

Now we prove (v) by induction in the length of w ∈ W . First we claim
that the formula holds if w = sα, α ∈ Π. In this case, Esα(Ev(S)) consists
of all points x ∈ X such that either x ∈ Ev(S) or there exists y ∈ Ev(S)
such that bx is in relative position sα with respect to by. Hence, it consists of
all x ∈ X such that there exists y ∈ S and bx is in relative position u with
respect to by for either u ≤ v or u = sαu

′ with u′ ≤ v. In the second case, we
have either ℓ(u) = ℓ(u′) + 1 and u ≤ sαv or ℓ(u) = ℓ(u′) − 1 and u ≤ u′ ≤ v.
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Hence, Esα(Ev(S)) ⊂ Esαv(S). Conversely, if u ≤ sαv, we have either u ≤ v
or sαu ≤ v, hence Esα(Ev(S)) = Esαv(S).

Assume now that w is arbitrary. Then we can find α ∈ Π and w′ ∈ W
such that ℓ(w) = ℓ(w′) + 1. Therefore, by the induction assumption,

Ew(Ev(S)) = Esαw′(Ev(S)) = Esα(Ew′(Ev(S))) = Esα(Ew′v(S)),

which completes the proof of (v).
Now, for arbitrary w ∈ W , α ∈ Π, and w′ ∈ W such that ℓ(w) = ℓ(w′)+1,

we have Ew(S) = Esα(Ew′(S)). Using the first part of the proof and an
induction in ℓ(w), (i), (ii) and (iv) follow. In addition, we see that Ew(S) is
closed, if S is closed.

(iii) Let

V = {x ∈ X | bx is in relative position w with respect to some by, y ∈ S}.

Then V ⊂ Ew(S). Since Ew(S) is closed, V ⊂ Ew(S). Let y ∈ S. Then the
closure of the set of all x ∈ X such that bx is in relative position w with
respect to by is equal to Ew({x}). This implies

V ⊃
⋃

x∈S

Ew({x}) = Ew(S).

We say that w ∈ W is transversal to S ⊂ X if

dimEw(S) = dimS + ℓ(w).

If w is transversal to S, ℓ(w) ≤ codimS.

Lemma 3.2. Let S be a subset of X. Then

(i) w ∈ W is transversal to S if and only if it is transversal to S̄.
(ii) Let w, v ∈ W be such that ℓ(wv) = ℓ(w) + ℓ(v). Then the following

statements are equivalent:
(a) wv is transversal to S;
(b) v is transversal to S and w is transversal to Ev(S).

Proof. (i) By 3.1.(ii) we have

dimEw(S) = dimEw(S) = dimEw(S̄),
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and the assertion follows from the definition of transversality.
(ii) By 3.1.(i)

dimEwv(S) ≤ dimS + ℓ(wv) = dimS + ℓ(w) + ℓ(v),

and the equality holds if and only if wv is transversal to S. On the other
hand, by 3.1.(v),

dimEwv(S) = dimEw(Ev(S)) ≤ dimEv(S) + ℓ(w) ≤ dimS + ℓ(v) + ℓ(w).

Hence, if (a) holds, the last relation is an equality, i.e.,

dimEw(Ev(S)) = dimEv(S) + ℓ(w)

and
dimEv(S) = dimS + ℓ(v).

Hence, (b) holds.
Conversely, if (b) holds, we see immediately that wv is transversal to

S.

Lemma 3.3. Let S be an irreducible closed subvariety of X and w ∈ W .
Then there exists v ≤ w such that v is transversal to S and Ev(S) = Ew(S).

Proof. First we consider the case of w = sα, α ∈ Π. In this case Esα(S) =
p−1

α (pα(S)) is irreducible and closed, and we have two possibilities:

a) sα is transversal to S and dimEsα(S) = dimS + 1, or
b) sα is not transversal to S, dimEsα(S) = dimS and since S ⊂ Esα(S),

we have Esα(S) = S.

Now we prove the general statement by induction in ℓ(w). If ℓ(w) = 0, w = 1
and E1(S) = S, hence the assertion is obvious. Assume that ℓ(w) = k. Then
there exists w′ ∈ W and α ∈ Π such that w = sαw

′ and ℓ(w) = ℓ(w′) + 1.
In this case, Ew(S) = Esα(Ew′(S)) by 3.1.(v). By the induction assumption,
there exists v′ ∈ W , v′ ≤ w′ which is transversal to S and such that Ev′(S) =
Ew′(S).

Now, by the first part of the proof, if sα is not transversal to Ew′(S) we
have

Ew(S) = Esα(Ew′(S)) = Ew′(S) = Ev′(S).
Since v′ ≤ w′ ≤ w the assertion follows. If sα is transversal to Ew′(S), we
have

dimEw(S) = dimEsα(Ew′(S)) = dimEw′(S) + 1 = dimS + ℓ(v′) + 1.
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Put v = sαv
′. If we have ℓ(v) = ℓ(v′) − 1,

Ev′(S) = Esα(Ev(S)) = p−1
α (pα(Ev(S)))

by 3.1.(v) and

Esα(Ev′(S)) = p−1
α (pα(p−1

α (pα(Ev(S))))) = Ev′(S),

contrary to transversality of sα. Therefore, ℓ(v) = ℓ(v′) + 1, v ≤ w and
Ev(S) = Esα(Ev′(S)). We conclude that Ew(S) = Ev(S),

dimEv(S) = dimEw(S) = dimS + ℓ(v′) + 1 = dimS + ℓ(v)

and v is transversal to S.

As we remarked in §2, for any coherent Dλ-module V , the Dwλ-modules
LpIw(V), p ∈ Z, are also coherent.

If V is a coherent Dλ-module, the set {x ∈ X | Vx ̸= 0} is closed, and thus
coincides with the support supp V of V . We want to analyze how the action of
intertwining functors changes supports of coherent D-modules. First we point
out the following simple fact which is a direct consequence of the definition
of the intertwining functors and 3.1.(iii).

Lemma 3.4. For any V ∈ Mcoh(Dλ), p ∈ Z and w ∈ W , we have

suppLpIw(V) ⊂ Ew(supp V).

Lemma 3.5. Let V ∈ Mcoh(Dλ) and w ∈ W transversal to S = supp V.
Assume that S is irreducible. Then

supp Iw(V) = Ew(S),

and
dim supp Iw(V) = dimS + ℓ(w).

Proof. We prove this result by induction in ℓ(w). If ℓ(w) = 1, w = sα for
some α ∈ Π. In this case, the second statement is proved in [4]. By 3.4,
supp Isα(V) ⊂ Esα(S). Also, by 3.1, both sets are closed and Esα(S) is irre-
ducible. Since dim supp Iw(V) = dimS + 1 = dimEsα(S) by transversality,
the first statement follows.

Let w ∈ W with ℓ(w) = k > 1. Then w = sαw
′ with α ∈ Π and ℓ(w′) =

k− 1. Since w is transversal to S, w′ is transversal to S and sα is transversal
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to Ew′(S) by 3.2. By the induction assumption, supp Iw′(V) = Ew′(S). Hence,
by 2.5 and 3.1.(iv), we have

supp Iw(V) = supp Isα(Iw′(V)) = Esα(Ew′(S)) = Ew(S).

To any coherent Dλ-module we attach two subsets of the Weyl group W :

S(V) = {w ∈ W | supp Iw(V) = X}

and
E(V) = the set of minimal elements in S(V).

We have the following result. The statement (i) is the result of Beilinson and
Bernstein we mentioned before.

Proposition 3.6. Suppose V ∈ Mcoh(Dλ) has irreducible support. Then

(i) the set S(V) is nonempty;
(ii)

E(V) = {w ∈ W | w is transversal to suppV
and ℓ(w) = codim supp V},

i.e., E(V) consists of all w ∈ W transversal to supp V with the maximal
possible length.

Proof. Assume that w ∈ W is transversal to supp V and ℓ(w) = codim supp V .
Then, by 3.5, we conclude that w ∈ S(V). If v < w, ℓ(v) < codim supp V ,
and dim supp Iv(V) < dimX by 3.4. Hence, v /∈ S(V), i.e., w ∈ E(V).

Conversely, assume that w ∈ E(V). Then, by 3.4, we have Ew(supp V) =
X. Since the support of V is irreducible, by 3.3 we can find v ≤ w such
that v is transversal to supp V and Ev(supp V) = X. By 3.5 this implies
v ∈ S(V). Since w is a minimal element in S(V) we must have w = v, and w
is transversal to supp V . This proves (ii).

To show (i) it is enough to show that E(V) is nonempty. Clearly, if w0 is
the longest element in W , Ew0(S) = X. By 3.3, there exists w transversal to
S such that Ew(S) = X, hence the assertion follows from (ii).

We recall a simple relationship between localization and n-homology. Let
x ∈ X. Fix a Cartan subalgebra c in bx. Let θ be a Weyl group orbit in
h∗. Let V ∈ M(Uθ). The nx-homology modules Hp(nx, V ), p ∈ Z+, have a
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natural structure of c-modules, and via the specialization we can view them
as h-modules. According to a result of Casselman and Osborne, the modules
Hp(nx, V ) are annihilated by Pθ(ξ) =

∏
w∈W (ξ−(wλ+ρ)(ξ)) for all ξ ∈ h. For

a h-module U denote by U(µ) the generalized weight submodule corresponding
to the weight µ ∈ h∗. Then

Hp(nx, V ) =
∑

w∈W

Hp(nx, V )(wλ+ρ)

for any p ∈ Z+. Moreover, if λ ∈ h∗ is regular, linear forms wλ+ρ in Pθ are all
mutually different, hence the nx-homology modules Hp(nx, V ) are semisimple.
These modules are related to localization by the following result (see, for
example, [11]). For any OX -module F we denote by Tx(F) the geometric
fiber of F .

Lemma 3.7. Let λ ∈ h∗ be regular and θ = W ·λ. Then for any V ∈ M(Uθ)
we have the spectral sequence

LpTx(Lq∆λ(V )) =⇒ H−(p+q)(nx, V )(λ+ρ).

This result will allow us to extract information about n-homology from
localizations.

Unfortunately, as we remarked in 2.1.(ii), the behavior of localization
functor for singular infinitesimal characters is quite bad and the corresponding
relationship is much less useful. Therefore, to analyze n-homology in this case
we shall use the translation functor technique.

Let F be a finite-dimensional g-module and F = OX ⊗CF . The following
lemma is implicit in [3]. We include a proof for the sake of completeness.

Lemma 3.8. Let λ ∈ h∗, µ ∈ P (Σ) and w ∈ W be such that wλ and −wµ
are antidominant. Let F be the irreducible finite-dimensional g-module with
highest weight wµ. Then V −→ (V(−µ)⊗OX

F)[λ] is a covariant functor from
Mqc(Dλ) into itself, naturally equivalent to the identity functor.

Proof. The filtration of V(−µ) ⊗OX
F described in §2 has V(−µ + ν) as its

composition factors, where ν ranges over the set of all weights of F . Therefore,
Z(g) acts on them with the infinitesimal character χλ−µ+ν . Assume that

sλ = λ− µ+ ν

for some s ∈ W . Then, if we put s′ = wsw−1 and λ′ = wλ, we have

s′λ′ − λ′ = wν − wµ,
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and since wµ and wν are weights of F , s′λ′ −λ′ ∈ Q(Σ). Therefore, s′ ∈ Wλ′ .
Now, since wµ is the highest weight of F , wν−wµ is a sum of negative roots.
On the other hand, since λ′ is antidominant, s′λ′ − λ′ is a sum of roots in
Σ+

λ ⊂ Σ+. Therefore, sλ = λ and µ = ν, and the generalized eigensheaf of
V(−µ) ⊗OX

F corresponding to χλ is isomorphic to V .

Finally, we can formulate the result we need. Let V ̸= 0 be a finitely
generated Uθ-module. We say that λ ∈ θ is an exponent of V if the set

{x ∈ X |H0(nx, V )(λ+ρ) ̸= 0}

contains an open dense subset of X. Beilinson and Bernstein proved that the
set of exponents of V is nonempty [4]. In particular, the set of all x ∈ X such
that H0(nx, V ) ̸= 0 contains an open dense subset of X.

We say that λ ∈ h∗ is strongly antidominant if Reα (̌λ) ≤ 0 for any
α ∈ Σ+. Clearly, a strongly antidominant λ is antidominant.

We also define a partial ordering on h∗ by: λ ≼ µ if µ − λ is a linear
combination of simple roots in Π with coefficients with non-negative real
parts. This order relation is related to the ordering on the Weyl group W by
the following observation (see for example [9], 7.7.2).

Lemma 3.9. Let λ ∈ h∗ be strongly antidominant. Then for any v, w ∈ W ,
v ≤ w implies vλ ≼ wλ.

Proof. Clearly, it is enough to show that for any w ∈ W and α ∈ Π such that
ℓ(sαw) = ℓ(w) + 1, we have wλ ≼ sαwλ. But sαwλ = wλ− α (̌wλ)α, hence

sαwλ− wλ = (w−1α)̌ (λ)α,

and it is enough to prove that Re(w−1α)̌ (λ) ≥ 0. Since w−1α is in Σ+ (see,
for example, [7], Ch. VI, §1, no. 6, Cor. 2 of Prop. 17), this follows from the
strong antidominance of λ.

The next result is the sharpening of the result of Beilinson and Bernstein
we alluded to before.

Theorem 3.10. Let λ ∈ h∗ be strongly antidominant. Let V ∈ Mcoh(Dλ) be
such that S = supp V is irreducible. Put V = Γ(X,V).

(i) If ω is an exponent of V , there exists w ∈ W transversal to S with
ℓ(w) = codimS such that wλ ≼ ω.

(ii) Assume that V is irreducible and V ̸= 0. If w ∈ W is transversal to S
and ℓ(w) = codimS, then wλ is an exponent of V .
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We first prove (i). Let µ be a regular dominant weight and F the irre-
ducible finite-dimensional g-module with highest weight µ. Let F = OX ⊗CF .
Then λ−µ is regular and strongly antidominant. Let U = Γ(X,V(−µ)). Then,
by 3.8,

V = (V(−µ) ⊗OX
F)[λ].

This implies

V = Γ(X,V) = Γ(X, (V(−µ) ⊗OX
F)[λ])

= Γ(X,V(−µ) ⊗OX
F)[λ] = (Γ(X,V(−µ)) ⊗C F )[λ] = (U ⊗C F )[λ].

Let ω be an exponent of V , i.e., H0(nx, V )(ω+ρ) ̸= 0 for all x in some open
dense subset of X. Then

H0(nx, V ) = H0(nx, (U ⊗C F )[λ]) =
⊕
v∈W

H0(nx, U ⊗C F )(vλ+ρ),

and
H0(nx, V )(ω+ρ) = H0(nx, U ⊗C F )(ω+ρ).

Let (Fp; 1 ≤ p ≤ n) be an increasing bx-invariant maximal flag in F . It
induces a filtration (U ⊗C Fp; 1 ≤ p ≤ n) of the bx-module U ⊗C F . The cor-
responding graded module is the direct sum of modules of the form U ⊗CCν ,
where ν goes over the set of weights of F . Clearly, the semisimplification of
H0(nx, U⊗CF ) is a submodule of the direct sum of modules H0(nx, U)⊗CCν .
Since the infinitesimal character of U is regular, H0(nx, U) is a semisimple
h-module. This implies that the semisimplification of H0(nx, V )(ω+ρ) is a sub-
module of the direct sum of modules H0(nx, U)(ω−ν+ρ) ⊗C Cν . In particular,
if H0(nx, V )(ω+ρ) ̸= 0, H0(nx, U)(ω−ν+ρ) ̸= 0 for some weight ν of F . Since
the set of weights is finite, we can assume that H0(nx, U)(ω−ν+ρ) ̸= 0 for all x
in an open dense subset of X. On the other hand, ω− ν = v(λ− µ) for some
uniquely determined v ∈ W . This implies that v−1(ω − ν) = λ − µ. Since
ω = uλ for some u ∈ W , we see that

v−1uλ− λ = −(µ− v−1ν).

Since µ is the highest weight of F , the right side is the negative of a sum of
positive roots. Hence v−1u ∈ Wλ and since λ is antidominant, we see that the
left side is a sum of positive roots. It follows that both sides must be zero,
v−1u is in the stabilizer of λ and ω = uλ = vλ. Since λ−µ is regular, V(−µ) =
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∆λ−µ(U). Moreover, from 3.7 we conclude that supp ∆v(λ−µ)(U) = X. Since
Iv(V(−µ)) = Iv(∆λ−µ(U)) = ∆v(λ−µ)(U) by 2.6, we see that v ∈ S(V(−µ)) =
S(V). Hence, by 3.6 there exists w ≤ v such that w is transversal to S and
ℓ(w) = codimS. But, by 3.9, this implies wλ ≼ vλ = ω. This completes the
proof of 3.10.(i).

To prove 3.10.(ii) we need a curious result which is a formal consequence
of the equivalence of derived categories Db(Uθ) and Db(Dλ).

Lemma 3.11. Let λ ∈ h∗ be regular and θ = W ·λ. Let V be a Uθ-module and
p = min{q ∈ Z | L−q∆λ(V ) ̸= 0}. Assume that Hq(X,L−p∆λ(V )) = 0 for
q < p. Then there exists a nontrivial morphism of V into Hp(X,L−p∆λ(V )).

Proof. First a simple result about morphisms in derived categories. Let A be
an abelian category and Db(A) its derived category of bounded complexes.
Let C · and D· be two complexes in Db(A) and ϕ ∈ HomDb(A)(C ·, D·). Assume
that

a) Hq(C ·) = 0 for q > 0,
b) Hq(D·) = 0 for q < 0.

Then ϕ = 0 if and only if H0(ϕ) = 0.
To prove this we use the truncation functors τ≥s and τ≤s we introduced

in §2. By the hypothesis, τ≤0(C ·) −→ C · and D· −→ τ≥0(D·) are quasiiso-
morphisms, and by composing them with ϕ we can assume that Cq = 0 for
q > 0 and Dq = 0 for q < 0. By the definition of a morphism in derived
categories, there exists a complex B· ∈ Db(A) and morphisms of complexes
q : B· −→ C ·, f : B· −→ D·, where q is a quasiisomorphism, which represent
ϕ. By composing them with the truncation morphism τ≤0(B·) −→ B·, we see
that we can assume in addition that B· satisfies Bq = 0 for q > 0. But this
implies that f q = 0 for q ̸= 0, im f0 ⊂ ker d0 and im d−1 ⊂ ker f0. Hence
f0 = 0 is equivalent to H0(ϕ) = 0.

Consider now the truncation morphism

L∆λ(D(V )) −→ τ≥−p(L∆λ(D(V ))) = D(L−p∆λ(V ))[p].

By the assumption, it is not zero. By the equivalence of derived categories,
it leads to a nontrivial morphism ϕ : D(V ) −→ RΓ(D(L−p∆λ(V )[p]) =
RΓ(D(L−p∆λ(V ))[p]. It induces zero morphisms between the cohomology
modules of both complexes, except in degree zero where we get a mor-
phism of V into Hp(X,L−p∆λ(V )). Since cohomology modules of L−p∆λ(V )
vanish below degree p, the complex RΓ(D(L−p∆λ(V ))[p] satisfies the con-
dition (b). Hence, by the preceding result, the morphism H0(ϕ) of V into
RΓ(D(L−p∆λ(V )))[p]0 = Hp(X,L−p∆λ(V )) is nonzero.
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Now we can prove 3.10.(ii). If V is irreducible, V(−µ) is also irreducible
and their support S is irreducible. Hence, U is irreducible by the equivalence
of categories. Since w is transversal to S and ℓ(w) = codimS, by 3.5 we see
that supp ∆w(λ−µ)(U) = X. Put U = ∆w(λ−µ)(U). Since U is irreducible, by
applying 3.11 with p = 0, we get U ⊂ Γ(X,U).

Assume that s ∈ U is a global section of U which vanishes on the open
dense subset in X. Then it generates a submodule of global sections supported
in the complement of this open set. This submodule must be either equal to U
or to zero. The first possibility would imply that the localization ∆w(λ−µ)(U)
is also supported in the complement of this open set, contradicting our as-
sumption. Therefore this submodule is equal to zero, i.e., s = 0. This implies
that the support of any nonzero global section in U is equal to X. Let F be
the irreducible finite-dimensional representation of g with highest weight µ.
Then, as before, by 3.8,

U(wµ) = (U ⊗OX
F)[λ].

Hence, we see

Γ(X,U(wµ)) = Γ(X, (U ⊗OX
F)[λ])

= Γ(X,U ⊗OX
F)[λ] = (Γ(X,U) ⊗C F )[λ] ⊃ (U ⊗C F )[λ] = V.

Moreover, the support of any nonzero global section of U ⊗OX
F = U ⊗CF

which comes from U⊗CF is equal to X, and the support of any nonzero global
section of its subsheaf U(wµ) which belongs to (U ⊗C F )[λ] = V is also equal
to X. Since U(wµ) is coherent, there exists an open dense subset O in X such
that U(wµ)|O is a locally free OO-module ([5], VII.9.3). Therefore, on this set,
a section vanishes if and only if its values (i.e., its images in geometric fibers)
vanish everywhere. Hence, there exists an open dense subset O′ of O, such
that for x ∈ O′, some sections from V do not vanish at x. On the other hand,
for any x ∈ O′, the global sections in nxV vanish at that point. Therefore, for
x ∈ O′, the geometric fiber map U(wµ) 7−→ Tx(U(wµ)) induces a nonzero
map of V into Tx(U(wµ)), which factors through H0(nx, V ), and this factor
map is a morphism of bx-modules. It follows that H0(nx, V )(wλ+ρ) ̸= 0 for
x ∈ O′, i.e., wλ is an exponent of V . This completes the proof of 3.10.(ii).

4. Calculations for sl(2,C)

In this section we discuss the simplest case of g = sl(2,C). In this case the
group Int(g) of inner automorphisms of g can be identified with PSL(2,C),
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and we can identify the flag variety X of g with the one-dimensional projective
space P1. If we denote by [x0, x1] the projective coordinates of x ∈ P1, the
corresponding Borel subalgebra bx is the Lie subalgebra of sl(2,C) which
leaves the line x invariant.

First we want to classify all possible Harish-Chandra pairs (g, K) with
g = sl(2,C). We say that two Harish-Chandra pairs (g, K) and (g, K ′) are
conjugate if there exists an isomorphism ψ : K −→ K ′ and an inner auto-
morphism β of g such that β ◦ φ = φ′ ◦ ψ.

Let B be the Borel subgroup of PSL(2,C) corresponding to [1, 0], N
its unipotent radical and T the one-dimensional torus which stabilizes both
0 = [1, 0] and ∞ = [0, 1].

Lemma 4.1. Up to conjugacy, the only connected algebraic groups K such
that (g, K) is a Harish-Chandra pair are:

(i) N with φ = identity,
(ii) finite coverings of T with φ = covering map,

(iii) finite coverings of B with φ = covering map,
(iv) PSL(2,C) with φ = identity,
(v) SL(2,C) with φ = covering map.

Proof. Clearly, dimK > 0, since otherwise there would be infinitely many K-
orbits. Therefore, if the Lie algebra k of K is one-dimensional, the elements
of k are either all nilpotent, or they are all semisimple. This implies that k is
conjugate either to the Lie algebra of N or the Lie algebra of T . Since N is
simply connected, either (i) or (ii) holds.

If dim k = 2, k must be solvable, hence a Borel subalgebra. This implies
(iii). Finally, if dim k = 3, φ must be surjective, hence (iv) and (v) follows
from the fact that SL(2,C) is simply connected and its center is Z2.

Let (g, K) and (g, K ′) be two Harish-Chandra pairs and ι : K ′ −→ K
a morphism of algebraic groups with the property that φ ◦ ι = φ′. Then we
have a natural functor from the category Mcoh(Dλ, K) into Mcoh(Dλ, K

′).
If the groups K and K ′ are connected, this functor is fully faithful. To see
this, one can argue as follows. The corresponding statement for the categories
Mfg(Uθ, K) and M(Uθ, K

′) is clear. Therefore, by the equivalence of cate-
gories, it holds also for Mcoh(Dλ, K) and Mcoh(Dλ, K

′) if λ ∈ h∗ is antidom-
inant and regular. By twisting, this statement holds for arbitrary λ ∈ h∗.
Hence we can view Mcoh(Dλ, K

′) as a full subcategory of Mcoh(Dλ, K). In
particular, in the case of a connected group K, the general situation can be
reduced to (i) and (ii).
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We need to determine the structure of standard Harish-Chandra sheaves
in these cases. We start with (i).

First we want to construct a suitable trivializations of Dλ on the open
cover of P1 consisting of P1 − {0} and P1 − {∞}. We denote by α ∈ h∗ the
positive root of g and put ρ = 1

2α and t = α (̌λ). Denote by N̄ the unipotent
radical of the Borel subgroup of PSL(2,C) which stabilizes ∞ = [0, 1] in P1.
Then the subgroups N and N̄ correspond to the subgroups{(

1 x
0 1

) ∣∣∣∣ x ∈ C
}

and {(
1 0
y 1

) ∣∣∣∣ y ∈ C
}

of SL(2,C). Both are normalized by the image in PSL(2,C) of the torus

T =
{(

t 0
0 t−1

) ∣∣∣∣ t ∈ C∗
}
.

Let {E,F,H} denote the standard basis of sl(2,C):

E =
(

0 1
0 0

)
F =

(
0 0
1 0

)
H =

(
1 0
0 −1

)
.

They satisfy the commutation relations

[H,E] = 2E [H,F ] = −2F [E,F ] = H.

Also, E spans the Lie algebra of N , F spans the Lie algebra of N̄ and H
spans the Lie algebra of T . If we specialize at 0, H corresponds to the dual
root α ,̌ but if we specialize at ∞, H corresponds to the negative of α .̌

First we discuss P1 − {∞}. We define on it the usual coordinate z by
z([1, x1]) = x1. In this way one identifies P1 − {∞} with the complex plane
C, which is an N̄ -orbit. The matrix(

1 0
x 1

)

moves 0 into x, and this map is an isomorphism of N̄ onto C. Also, if ∂
denotes differentiation with respect to z considered as a vector field on C,
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then F corresponds to ∂ under the above isomorphism. Now H and E are
represented by first order differential operators on C, i.e.,

H = a∂ + b and E = c∂ + d

where a, b, c, d are polynomials. Clearly,

[H,F ] = [a∂ + b, ∂] = −a′∂ − b′

which implies a = 2z + a0 and b = b0 where a0 and b0 are constants. On the
other hand, in the geometric fiber of Dλ at 0, H − (t+ 1) maps into 0, which
implies a0 = 0 and b0 = t+ 1. It remains to determine E. We have

[E,F ] = [c∂ + d, ∂] = −c′∂ − d′,

which implies c = −z2 + c0 and d = −(t+ 1)z + d0; and

[H,E] = [2z∂ + (t+ 1),−z2∂ + c0∂ − (t+ 1)z + d0]
= −2[z∂, z2∂] + 2c0[z∂, ∂] − 2(t+ 1)z

= −2z2∂ − 2c0∂ − 2(t+ 1)z = 2(−z2∂ − c0∂ − (t+ 1)z),

which implies c0 = 0 and d0 = 0. Therefore, in our coordinate system the
basis of g is given by

E = −z2∂ − (t+ 1)z, F = ∂, H = 2z∂ + (t+ 1).

Consider now P1 − {0}. Let

w =
(

0 i
i 0

)
.

Then w ∈ SL(2,C), w−1 = −w and w[x0, x1] = [x1, x0] for any [x0, x1] ∈ P1.
In particular, the automorphism µ of P1 induced by w maps P1 − {∞} onto
P1 −{0}. Since Dλ is homogeneous, µ∗(Dλ) ∼= Dλ and µ∗(ξ) = Ad(w)ξ for any
ξ ∈ g. In particular, µ∗(E) = F , µ∗(F ) = E and µ∗(H) = −H. The natural
coordinate is ζ([x0, 1]) = x0 which identifies P1 − {0} with the complex plane
C. Since ζ(µ([x0, x1])) = ζ([x1, x0]) = x1 = z([x0, x1]), it follows that in this
coordinate system we have

E = ∂, F = −ζ2∂ − (t+ 1)ζ, H = −2ζ∂ − (t+ 1).
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On C∗ these two coordinate systems are related by ζ = 1
z . This implies

∂ζ = −z2∂z, i.e., on C∗ the second trivialization gives

E = −z2∂, F = ∂ − 1 + t

z
, H = 2z∂ − (t+ 1).

Therefore, the first and the second trivialization on C∗ are related by the
automorphism of DC∗ induced by

∂ −→ ∂ − 1 + t

z
= z1+t ∂ z−(1+t).

The N -orbits are 0 = [1, 0] and its complement X∗ = P1 − {0}. Since the
group N is unipotent, the representation which induces the connection at 0
is trivial. This implies that the standard Harish-Chandra sheaf I({0}, λ) is
isomorphic to the D-module of truncated Laurent series at 0. Its generator
z−1 is annihilated by E, and H acts on it by multiplication by t−1. Also, the
module is spanned by F nz−1 = (−1)nn!z−(n+1). This implies that the global
sections of I({0}, λ) are isomorphic to the Verma module M((t− 1)ρ+ ρ) =
M(tρ) = M(λ).

To see what happens with the standard Harish-Chandra sheaf on the open
N -orbit we first remark that I(X∗, λ)|X∗ = OX∗ in our second trivialization.
Since the irreducibility of Dλ-modules is a local property, to analyze the
reducibility of I(X∗, λ) it is enough to consider the restriction to P1 − {∞}
(since the restriction to P1 − {0} is obviously irreducible). Using the relation
between our trivializations, we see that we can view I(X∗, λ)|P1 − {∞} as
the DC-module which is the direct image of the module on C∗ generated by
z1+t. This module is irreducible if and only if t /∈ Z. If t ∈ Z, λ ∈ P (Σ)
and I(X∗, λ) contains the invertible homogeneous OX -module O(λ + ρ) as
its unique irreducible Dλ-submodule; i.e., we have the exact sequence

0 −→ O(λ+ ρ) −→ I(X∗, λ) −→ I({0}, λ) −→ 0.

To calculate Γ(X, I(X∗, λ)) we remark first that (with respect to the trivial-
ization on X∗) constant functions on X∗ are annihilated by E, and H acts on
them by multiplication with −(t+ 1). Moreover, Fζn = −(n+ t+ 1)ζn+1, for
n ∈ Z+, which implies Γ(X, I(X∗, λ)) is generated by 1 if t is not a negative
integer. Therefore, if α (̌λ) is not a negative integer, Γ(X, I(X∗, λ)) is the
Verma module M(−(t+ 1)ρ+ ρ) = M(−tρ) = M(−λ).

If t = −k, k a strictly positive integer, by the equivalence of categories,
Γ(X, I(X∗, λ)) is reducible, and it contains, as the unique g-submodule, the



Irreducibility and classification 35

finite-dimensional irreducible g-module with lowest weight λ + ρ. The quo-
tient of Γ(X, I(X∗, λ)) by this submodule is isomorphic to the Verma module
M(λ).

Lemma 4.2. Let λ ∈ h∗. Then:

(i) I({0}, λ) is an irreducible Dλ-module;
(ii) Γ(X, I({0}, λ)) = M(λ) and H i(X, I({0}, λ)) = 0 for i > 0.

(iii) If α (̌λ) is not an integer, I(X∗, λ) is an irreducible Dλ-module. If α (̌λ)
is an integer, we have the exact sequence

0 −→ O(λ+ ρ) −→ I(X∗, λ) −→ I({0}, λ) −→ 0

of Dλ-modules.
(iv) If α (̌λ) is not a strictly negative integer, we have Γ(X, I(X∗, λ)) =

M(−λ).
(v) If α (̌λ) is a strictly negative integer, we have an exact sequence of

g-modules

0 −→ Fλ+ρ −→ Γ(X, I(X∗, λ)) −→ M(λ) −→ 0

where Fλ+ρ is the finite-dimensional g-module with lowest weight λ+ρ.
(vi) H i(X, I(X∗, λ)) = 0 for i > 0.

This enables us to calculate the action of the intertwining functor I = Isα .

Lemma 4.3. Let λ ∈ h∗.

(i) If α (̌λ) is not an integer,

I(I({0}, λ)) = I(X∗,−λ) and I(I(X∗, λ)) = I({0},−λ).

(ii) If α (̌λ) is an integer,

I(O(λ+ ρ)) = 0 and L−1I(O(λ+ ρ)) = O(−λ+ ρ),

I(I({0}, λ)) = I(X∗,−λ) and L−1I(I({0}, λ)) = 0;

and

I(I(X∗, λ)) = I(X∗,−λ) and L−1I(I(X∗, λ)) = O(−λ+ ρ).
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Proof. (i) If α (̌λ) is not an integer, λ and −λ are antidominant, hence the
assertion follows from 4.2 and the equivalence of categories.

(ii) To prove the first statement, by 2.4 we can assume that λ is antidom-
inant and regular. Since in this situation

Γ(X,O(λ+ ρ)) = Fλ+ρ = H1(X,O(−λ+ ρ))

by the Borel-Weil-Bott theorem, the assertion follows from the equivalence of
derived categories and 2.10.

The second statement follows from 4.2, 2.10 and the equivalence of derived
categories. Finally, to get the third statement we use the short exact sequence
of 4.2.(iii). It implies the long exact sequence

0 −→ L−1I(O(λ+ ρ)) −→ L−1I(I(X∗, λ)) −→ L−1I(I({0}, λ)
−→ I(O(λ+ ρ)) −→ I(I(X∗, λ)) −→ I(I({0}, λ)) −→ 0.

If we apply the first statement, the assertion follows.

Before turning to the second basic case (ii), we digress to consider a
possibly non-connected group K (compare [12], Appendix B). First, let (g, K)
be a Harish-Chandra pair such that the unipotent radical of K is nontrivial.
In this case, by 4.1, the identity component of K is up to conjugacy either
equal to N or to a covering of B. Therefore, K has exactly two orbits in X.
By conjugating, we can assume that X∗ = P1 − {0} is the open orbit.

Lemma 4.4. Let τ be an irreducible K-homogeneous connection on X∗ com-
patible with λ + ρ ∈ h∗. Then I(X∗, τ) is an irreducible (Dλ, K)-module if
and only if α (̌λ) /∈ Z.

Proof. If we view I(X∗, τ) as a Dλ-module, it is a direct sum of finitely many
copies of I(X∗, λ). If α (̌λ) /∈ Z, I(X∗, λ) is irreducible by 4.2.(iii), hence
I(X∗, τ) has no quotients supported in 0. Therefore, L(X∗, τ) must be equal
to I(X∗, τ), i.e., I(X∗, τ) is irreducible.

Assume now that α (̌λ) ∈ Z. Then I(X∗, λ) contains O(λ + ρ) as a Dλ-
submodule. Hence, the module I(X∗, τ) contains the largest Dλ-submodule V
which is a connection. It is equal to the direct sum of the submodules O(λ+ρ)
for various copies of I(X∗, λ). The quotient of I(X∗, τ) by V is nontrivial and
supported in 0. Clearly, the K-action maps this connection into itself, i.e., it is
a (Dλ, K)-submodule. Therefore, V = L(X∗, τ) and I(X∗, τ) is reducible.
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Now suppose the connected component K0 of K is a cover of PSL(2,C).
In this case, K acts transitively on X. If K = K0, the standard modules are
O(λ+ ρ), λ ∈ P (Σ), and the action of the intertwining functor I is given by
4.3.(ii). In general, we have the following result.

Lemma 4.5. Let τ be a K-homogeneous connection on X compatible with
λ+ ρ ∈ h∗. Then p = −α (̌λ) ∈ Z and

LI(D(τ)) = D(τ(pα))[1].

Proof. Since τ must be a direct sum of K0-homogeneous invertible OX -
modules we conclude that p ∈ Z and τ , as a K0-homogeneous connection,
is a direct sum of copies of O(λ+ ρ).

Let C = kerφ. Then C is a normal subgroup of K. On the other hand,
since K0 is connected, it centralizes C. Therefore, the map C × K0 −→ K
given by (c, k) 7−→ ck is a surjective homomorphism. Its kernel is C0 = C∩K0
imbedded by the map c 7−→ (c, c−1) into C × K0. The subgroup C0 is the
kernel of the restriction of φ to the identity component K0 of K. This map
is a covering map and K0 is either SL(2,C) or PSL(2,C). Therefore, C0 is
either trivial or Z2. By construction, C0 is a normal subgroup of K, hence it
must be a central subgroup. Hence, by using the map C ×K0 −→ K we can
always reduce the situation to the case of K = C ×K0. In this situation the
result follows immediately as in 4.3.(ii).

Now the case (ii). Then K is an n-fold covering of the torus T in PSL(2,C)
and φ is the covering map. We realize K as C∗ and take φ(ζ)([x0, x1]) =
[x0, ζ

nx1]. Let ζ∂ζ be a basis vector of the Lie algebra k of K. Then the
differential of φ maps ζ∂ζ into 1

2nH. The K-orbits in this case are {0}, {∞}
and C∗, the stabilizers of {0} and {∞} are equal toK, and the stabilizer of any
point in C∗ is the group M of nth roots of 1. The irreducible representations
of K are ωk : ζ 7−→ ζk for k ∈ Z.

The only “new” standard Harish-Chandra sheaves arise on the open orbit
C∗. Let η0 be the trivial representation of M , η1 the identity representation of
M , and ηk = (η1)k, 2 ≤ k ≤ n−1, the remaining irreducible representations of
the cyclic group M . To analyze these Dλ-modules it is convenient to introduce
a trivialization of Dλ on C∗ = P1 − {0,∞} such that H corresponds to the
differential operator 2z∂ on C∗. We obtain this trivialization by restricting
the original z-trivialization to C∗ and twisting it by the automorphism

∂ 7−→ ∂ − 1 + t

2z = z
1+t

2 ∂ z− 1+t
2 .
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This gives a trivialization of Dλ|C∗ which satisfies

E = −z2∂ − 1 + t

2 z, F = ∂ − 1 + t

2 , H = 2z∂.

Denote by τk the K-equivariant connection on C∗ corresponding to the rep-
resentation ηk of M , and by I(C∗, ηk, λ) the corresponding standard Harish-
Chandra sheaf in Mcoh(Dλ, K). The global sections of τk on C∗ form the
linear space spanned by functions zp+ k

n , p ∈ Z. Therefore, the function zp+ k
n ,

p ∈ Z, is an eigenvector of H for eigenvalue 2(p + k
n) and K acts on it

via representation ωnp+k. To analyze the irreducibility of the standard Dλ-
module I(C∗, ηk, λ) we have to study its behavior at 0 and ∞. By the pre-
ceding discussion, if we use the z-trivialization of Dλ on C∗, I(C∗, ηk, λ)
looks like the DC-module which is the direct image of the DC∗-module gen-
erated by z

k
n

− 1+t
2 . This module is reducible if and only if it contains con-

stant functions, i.e., if and only if k
n − 1+t

2 is an integer. On the other hand,
µ∗(I(C∗, ηk, λ)) = I(C∗, ηn−k, λ), hence I(C∗, ηk, λ)|P1 − {0} is reducible if
and only if n−k

n − 1+t
2 is an integer, i.e., if and only if k

n + 1+t
2 is an integer.

Therefore, I(C∗, ηk, λ) is irreducible if and only if neither k
n − 1+t

2 nor k
n + 1+t

2
is an integer.

We can summarize this as follows.

Lemma 4.6. Let K be the n-fold covering of T , k ∈ {0, 1, . . . , n − 1} and
λ ∈ h∗. Then the following conditions are equivalent:

(i) α (̌λ) /∈
{

2k
n ,−

2k
n

}
+ 2Z + 1;

(ii) the standard module I(C∗, ηk, λ) is irreducible.

In the following, we shall refer to

α (̌λ) /∈
{2k
n
,−2k

n

}
+ 2Z + 1

as the parity condition.
If a standard module I(C∗, ηk, λ) is reducible, it has irreducible quotients

supported in {0,∞}. All such irreducible modules are obtained in this way:

Corollary 4.7. Every standard module supported in a closed K-orbit is iso-
morphic to a quotient of a unique standard module attached the open orbit
C∗.

Proof. For simplicity, assume that a standard module is supported in {0}.
An irreducible K-homogeneous connection on {0} compatible with λ + ρ is
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just an irreducible representation of K with differential equal to λ+ ρ (under
the specialization at 0). If ωk : ζ 7−→ ζk is this irreducible representation of
K, the compatibility implies that k = 1

2n(t + 1). Hence, for each λ there is
at most one standard module supported in {0}. Since ηk is the restriction
ωk to M , from the discussion preceding 4.6 we see that the standard module
I(C∗, ηk, λ) is reducible and has an irreducible quotient supported at {0}.
This irreducible module must be isomorphic to our standard module.

The global sections of I(C∗, ηk, λ) are the Uθ-module spanned by ep =
zp+ k

n , p ∈ Z, and the action of g is given by

Eep = −
(
p+ k

n
+ 1

2(1 + t)
)
ep+1,

Fep =
(
p+ k

n
− 1

2(1 + t)
)
ep−1,

Hep = 2
(
p+ k

n

)
ep.

This implies that this Uθ-module is irreducible if the parity condition holds.
Clearly, this condition is symmetric under the change t 7−→ −t. If it is

satisfied, we can define rational functions αp, p ∈ Z, such that

αp+1 =
p+ k

n + 1
2(1 + t)

p+ k
n + 1

2(1 − t)
αp

and change the basis by fp = αpep, p ∈ Z. This leads to

Efp = αpEep = − αp

αp+1

(
p+ k

n
+ 1

2(1 + t)
)
fp+1

= −
(
p+ k

n
+ 1

2(1 − t)
)
fp+1,

Ffp = αpFep = αp

αp−1

(
p+ k

n
− 1

2(1 + t)
)
fp−1 =

(
p+ k

n
− 1

2(1 − t)
)
fp−1,

Hfp = 2
(
p+ k

n

)
fp.

It follows that Γ(X, I(C∗, ηk, λ)) and Γ(X, I(C∗, ηk,−λ)) are isomorphic as
Uθ-modules. Also, since C∗ is an affine variety,

H i(X, I(C∗, ηk, λ)) = H i(C∗, τk) = 0
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for i > 0, and the same statement is true for I(C∗, ηk,−λ). Therefore,

RΓ(D(I(C∗, ηk, λ))) = RΓ(D(I(C∗, ηk,−λ))).

For regular antidominant λ satisfying the parity condition this implies, via
the equivalence of derived categories,

LI(D(I(C∗, ηk, λ))) = D(I(C∗, ηk,−λ)).

Therefore, by translation, this holds for arbitrary λ satisfying the parity con-
dition.

Lemma 4.8. Let K be the n-fold covering of T , k ∈ {0, 1, . . . , n − 1} and
λ ∈ h∗. Assume also that λ and k satisfy the parity condition. Then

LI(D(I(C∗, ηk, λ))) = D(I(C∗, ηk,−λ)).

Now we want to extend the last three results to the case of non-connected
K. Let (g, K) be a Harish-Chandra pair such that the identity component
K0 of K is the n-fold covering of the torus T . Then the image φ(K) of K in
PSL(2,C) is a subgroup of the normalizer N(T ) of the torus T . Since T is in
the image and T has index two in N(T ), we have two possibilities:

(a) φ(K) = T ;
(b) φ(K) = N(T ).

Let K1 = φ−1(T ). Then, in the case (a), K1 = K; and in the case (b), K1
has index two in K. Since K1 acts trivially on the Lie algebra of K, K0 is a
central subgroup of K1. Moreover, K1 is the centralizer of K0, since in the
case (b) K does not centralize K0.

By dimension reasons, the K0-orbit C∗ is also a K-orbit. Let S be the
stabilizer in K of 1 ∈ C∗, S1 = S ∩ K1 and S0 = S ∩ K0. Since S1 also
stabilizes 0 and ∞, it acts trivially on X. The orbit C∗ is connected, hence
the map K0 × S −→ K given by (k, s) 7−→ ks, is surjective. Therefore, in
case (b), S1 is a proper subgroup of S. Any representative of the nontrivial
element in S/S1 acts on C∗ as the inversion z 7−→ z−1, hence S stabilizes
only 1 and −1 in C∗.

Lemma 4.9. The restriction of any irreducible algebraic representation of S
to S0 is a direct sum of copies of ηk or a direct sum of copies of ηk ⊕ ηn−k for
some 0 ≤ k ≤ n− 1.
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Proof. In the case (a) the assertion is obvious since S0 is a central subgroup
of S.

In the case (b) S1 is a subgroup of index two in S, hence the restriction of
an irreducible representation of S to S1 is either irreducible or a direct sum
of two irreducible representations conjugated by the action of S/S1. In the
first case the restriction to S0 is a direct sum of copies of ηk for some k ∈ Z.
In the second case, the representation restricted to S0 is a direct sum of two
isotypic components of the same dimension corresponding to two irreducible
representations conjugated by the action of S/S1. Since the nontrivial element
of S/S1 acts as k 7−→ k−1 on S0, the orbit of ηk is equal to {ηk, ηn−k} and
the isotypic components correspond to these representations.

Since the parity condition is symmetric with respect to k 7−→ n−k, we see
that we can say that the pair (ω, λ), where ω is a finite-dimensional algebraic
representation of S and λ ∈ h∗, satisfies the parity condition if ω|S0 contains
only representations ηk, 0 ≤ k ≤ n − 1, such that the pairs (k, λ) satisfy the
parity condition. If ω is irreducible, by 4.9 it is enough that one irreducible
component ηk of ω|S0 is such that the pair (k, λ) satisfies the parity condition.

The next result generalizes 4.6 to this setting.

Proposition 4.10. Let ω be an irreducible representation of S, τ the corre-
sponding connection on C∗ and λ ∈ h∗. The following conditions are equiva-
lent:

(i) the pair (ω, λ) satisfies the parity condition;
(ii) the standard (Dλ, K)-module I(C∗, τ, λ) is irreducible.

Proof. The Dλ-module I(C∗, τ, λ) is the direct sum of I(C∗, ηk, λ), where ηk

goes over all irreducible components of ω|S0. Let L(C∗, τ, λ) be the unique
irreducible (Dλ, K)-submodule of I(C∗, τ, λ). Since L(C∗, τ, λ)|C∗ is τ and as
a K0-homogeneous connection τ corresponds to ω|S0, we see that the Dλ-
module L(C∗, τ, λ) must contain the direct sum V of all L(C∗, ηk, λ), where
ηk ranges over all irreducible components of ω|S0. On the other hand, the
action of K maps the irreducible Dλ-module L(C∗, ηk, λ) into a submodule
of V . Therefore, V is a (Dλ, K)-submodule of I(C∗, τ, λ), and must contain
L(C∗, τ, λ). It follows that V = L(C∗, τ, λ). Therefore, I(C∗, τ, λ) is irre-
ducible (Dλ, K)-module if and only if all I(C∗, ηk, λ), where ηk ranges over
all irreducible components of ω|S0, are irreducible Dλ-modules. By 4.6 and
4.9, this implies our assertion.

Let C be a closed K-orbit in X, i.e., either {0}, or {∞} or the union of
these two points. The next result generalizes 4.7.
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Lemma 4.11. Every standard module attached to C is isomorphic to a quo-
tient of a standard module on the open orbit C∗.

Proof. By twisting we can assume that λ is regular and dominant. In the
case (a), K is a quotient of the direct product K0 × S. Therefore, we can
assume that K = K0 × D for some finite group D and that φ|{1} × D = 1.
The orbit C consists of just one point and we can assume that C = {0}.
An irreducible K-homogeneous connection on C compatible with λ + ρ is
just an irreducible representation of K with differential equal to a direct
sum of copies of λ + ρ (under the specialization at 0). Such representation
is an exterior tensor product ω ⊠ δ of irreducible representations ω of K0
and δ of D. If ω = ωk, the compatibility implies that k = 1

2n(t + 1). If
we denote by I(C, ωk) the standard (g, K0)-module on C determined by ωk,
we have Γ(X, I(C, ω)) = Γ(X, I(C, ωk)) ⊠ δ where g acts only on the first
factor in the tensor product. On the other hand, ηk ⊠ δ is then an irreducible
representation of the stabilizer of 1 in K and determines an irreducible K-
homogeneous connection τ on C∗. Its global sections are

Γ(X, I(C∗, τ, λ)) = Γ(X, I(C∗, ηk, λ)) ⊠ δ,

and the assertion follows from 4.7 and the equivalence of categories.
In the case (b), we have C = {0,∞}. As we remarked in Appendix B of

[12], in this situation

Γ(X, I(C, ω)) = IndK
K1(Γ(X, I({0}, ω|{0})))

for any irreducible K-homogeneous connection ω on C. On the other hand,
by the first part of the proof, the module Γ(X, I({0}, ω|{0})) is a quotient
of Γ(X, I(C∗, τ, λ)) for some irreducible K1-homogeneous connection τ on
C∗. This connection corresponds to some irreducible representation γ of the
stabilizer S1 of 1 in K1. Let γ̃ = IndK

K1(γ). Then γ̃ is either irreducible or the
sum of two irreducible representations γ+ and γ−. Denote by τ̃ , resp. τ+ and
τ−, the corresponding irreducible K-homogeneous connections on C∗. One
can check that

IndK
K1(Γ(X, I(C∗, τ, λ))) = Γ(X, I(C∗, τ̃ , λ))

in the first case, and

IndK
K1(Γ(X, I(C∗, τ, λ))) = Γ(X, I(C∗, τ+, λ)) ⊕ Γ(X, I(C∗, τ−, λ))
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in the second case. Therefore, the module Γ(X, I(C, ω)) is a quotient of ei-
ther Γ(X, I(C∗, τ̃ , λ)) or Γ(X, I(C∗, τ+, λ))⊕Γ(X, I(C∗, τ−, λ)). The assertion
again follows from the equivalence of categories.

Now we generalize 4.8. A K-homogeneous connection τ on C∗ is deter-
mined by the representation ω of the stabilizer S in the geometric fiber T1(τ).
On the other hand, S also stabilizes the point −1. Therefore, there exists a
unique K-homogeneous connection τ̃ on C∗ determined by ω considered as
the representation of S in the geometric fiber T−1(τ̃). Since K0 is transitive on
C∗ and K1 is the centralizer of K0, it follows that τ ∼= τ̃ as K1-homogeneous
connections.

Proposition 4.12. Let ω is an irreducible representation of S and λ ∈ h∗.
Assume that the pair (ω, λ) satisfies the parity condition. Then

LI(D(I(C∗, τ, λ))) = D(I(C∗, τ̃ ,−λ)).

Proof. If (ω, λ) satisfies the parity condition, all ηk appearing in ω|S0 satisfy
this condition too. Therefore, I(I(C∗, τ, λ)) is as a D−λ-module equal to a
direct sum of finitely many I(C∗, ηk,−λ) for ηk contained in ω|S0, and the
higher derived intertwining functors vanish on I(C∗, τ, λ). Moreover,

I(I(C∗, τ, λ)) = I(C∗, τ ′,−λ),

where τ ′ is the K-equivariant connection which is the restriction of D−λ-
module I(I(C∗, τ, λ)) to C∗. By translation we can assume that λ is an-
tidominant and regular. Then by 2.10 we have

Γ(C∗, τ) = Γ(X, I(C∗, τ, λ)) = Γ(X, I(C∗, τ ′,−λ)) = Γ(C∗, τ ′),

as K-modules.
Assume first that we are in the case (a). In this situation K is a central

extension of K0. Therefore the map K0 × S −→ K given by (k, s) 7−→ ks is
a surjective homomorphism. This implies that any irreducible representation
of K can be viewed as an irreducible representation of K0 × S. Since K0
is commutative, the restriction of this representation to S is irreducible. By
Frobenius reciprocity, the preceding formula implies that the representations
of S determining τ and τ ′ are equivalent. Hence, in this case τ ∼= τ̃ .

Assume now that we are in the case (b). In this case K1 is a normal
subgroup of index two in K. Thus we can define a character δ of K which
is 1 on K1 and −1 outside K1. If π is an irreducible algebraic representation
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of K, π ⊗ δ is an irreducible algebraic representation of K. There are two
possibilities for π.

(i) π1 = π|K1 is irreducible. In this case, we can induce π|K1 to K. The
induced representation Ind(π1) contains exactly one copy of π by Frobenius
reciprocity. Since dim Ind(π1) = 2 dim π, Ind(π1) is reducible and it is a
sum of two irreducible representations of K. Let ν be the other irreducible
component of Ind(π1). Then ν|K1 = π1 by Frobenius reciprocity. Therefore,
ν|K1 = π|K1. Since the character of Ind(π1) vanishes outside K1, tr ν(k) =
− tr π(k) outside K1. Therefore, ν ∼= π ⊗ δ. On the other hand, ν ̸∼= π,
since Ind(π1) contains only one copy of π. Therefore, in this case there exists
exactly two irreducible representations extending π1 to K, the representation
π and π ⊗ δ. Since π|K0 is an isotypic K0-module, and K/K1 conjugates all
nontrivial characters of K0 into their inverses, we see that the restriction of
π to K0 is trivial.

(ii) π1 = π|K1 is reducible. In this case, π1 consists of two irreducible rep-
resentations ν+ and ν− of K1 conjugated by the action of K/K1. By Frobenius
reciprocity, π is contained in Ind(ν+) and Ind(ν−), but ν+ ̸∼= ν−. Since dim π =
dim Ind(ν+) = dim Ind(ν−), we conclude that π ∼= Ind(ν+) ∼= Ind(ν−). This
implies that the character of π vanishes outside K1 and π ∼= π ⊗ δ.

Assume that Γ(C∗, τ) contains at least one irreducible component π of the
type (i). In this case, π|K1 is irreducible, hence as in (a) we conclude that the
restriction of π to S1 is irreducible. This implies that the restriction of π to
S is irreducible. By Frobenius reciprocity, the representation ω defining τ is
equivalent to π|S. Since the same argument applies to Γ(C∗, τ ′), we conclude
τ ∼= τ ′. On the other hand, again by Frobenius reciprocity, we see that the
representation of S in T−1(τ) is also equivalent to π|S, and τ̃ ∼= τ ∼= τ ′. Also,
since π|K0 is trivial, ω|S0 is trivial in this case.

It remains to treat the case when all irreducible representations of K
in Γ(C∗, τ) are of type (ii). Then π|S ∼= Ind(ν+|S1) ∼= Ind(ν−|S1). If this
is an irreducible representation of S for some π in Γ(C∗, τ), the preceding
argument applies again and τ ∼= τ̃ . It remains to analyze the situation when
π|S is reducible for all π in Γ(C∗, τ). This implies that π|S contains two
irreducible subrepresentations σ+ and σ−. By Frobenius reciprocity, σ+|S1 ∼=
σ−|S1 ∼= ν+|S1 ∼= ν−|S1, and σ+ and σ− are not equivalent. As before, we
conclude that σ− ∼= σ+ ⊗ ι where ι = δ|S. Therefore, the representation ω

determining τ is either σ+ or σ+ ⊗ ι. Since K/K1 = S/S1 conjugates ν+|S1
and ν−|S1, if ν+|S0 is a direct sum of copies of ηk, ν−|S0 is a direct sum of
copies of ηn−k. Therefore, we also have ηk

∼= ηn−k. This is possible only if
ν+|S0 is either trivial or its kernel is of order two in S0.
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Since K0 × S1 −→ K1 is a surjective homomorphism, if ν+|S0 ∼= 1, there
exists an irreducible representation γ of K1 such that γ|K0 = 1 and γ|S1 =
ν+|S1. Since K/K1 conjugates ν+|S1 and ν−|S1 and they are equivalent, we
conclude that the conjugate of γ is equivalent to γ. By Frobenius reciprocity,
there exists an irreducible representation of K contained in Γ(X, τ) which,
restricted to K1, contains γ. By the preceding discussion, this representation
must be of the type (i) and we have a contradiction. Therefore, ker(ν+|S0)
is of index two in S0. Since this is a normal subgroup of K, we can divide
S0 by it and assume that S0 ∼= Z2. In this case, K0 is a two-fold cover of
T . Also, there exists an element ko of K which maps into the image of w
in PSL(2,C). It acts as z 7−→ z−1 on C∗, and therefore lies in S. Since T
acts with no fixed points on C∗, it follows that φ(K0) ∩ B1 is trivial. This
implies that φ(ko) is the only nontrivial element of φ(K) ∩B1. If we consider
I(C∗, τ, λ) as (Dλ, K1)-module, from the preceding argument we conclude
that the restrictions of each isotypic K1-submodule of Γ(X, I(C∗, τ, λ)) to S1
are mutually equivalent and irreducible. Therefore, we can assume that they
are all isomorphic to some irreducible S1-module V . Hence we see that the
global sections are spanned by ep ⊗ v, p ∈ Z and v ∈ V . Since φ(S1) = 1, the
actions of E, F and H are

E(ep ⊗ v) = −
(
p+ 1 + t

2

)
ep+1 ⊗ v,

F (ep ⊗ v) =
(
p− t

2

)
ep−1 ⊗ v,

H(ep ⊗ v) = (2p+ 1)ep ⊗ v,

for all p ∈ Z. Let R be the linear transformation which describes the action
of k0 on Γ(X, I(C∗, τ, λ)). Then,

R(ep ⊗ v) = e−p−1 ⊗Qpv

for some linear transformation Qp on V . By a direct calculation,

R−1ER(ep ⊗ v) = F (ep ⊗Q−1
p−1Qpv)

R−1FR(ep ⊗ v) = E(ep ⊗Q−1
p+1Qpv)

R−1HR(ep ⊗ v) = −H(ep ⊗ v)

for any p ∈ Z. Since Ad(w)(E) = F , Ad(w)F = E and Ad(w)(H) = −H, we
see that Qp = Q for all p ∈ Z. This implies that k0 acts as Q on the geometric
fiber T1(τ) ∼= V , and as −Q on T−1(τ) ∼= V .
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If we change the basis {ep | p ∈ Z} to the basis {fp | p ∈ Z} as before, we
get

T (fp ⊗ v) = α(e−p−1 ⊗Qv) = αp

α−p−1
(f−p−1 ⊗Qv).

On the other hand, for p ∈ N, we have

αp

α−p−1
= αp

αp−1
· αp−1

α−p
· α−p

α−p−1
=

(p+ t
2)

(p− t
2)

·
(−p+ t

2)
(−p− t

2)
· αp−1

α−p

= αp−1

α−p
= . . . = α0

α−1
= −1.

This implies
T (fp ⊗ v) = −(f−p−1 ⊗Qv)

for any p ∈ Z. Hence the actions of k0 on the fiber of τ and τ ′ at 1 differ in
sign. This implies τ ′ ∼= τ̃ in this case.

Corollary 4.13. Assume that the pair (ω, λ) satisfies the parity condition
and that p = −α (̌λ) ∈ Z. Then

LI(D(I(C∗, τ, λ))) = D(I(C∗, τ, λ)(pα)).

Proof. In the case (a), φ(K) = T . Since T acts with no fixed points on C∗, it
follows that φ(K) ∩ B1 is trivial. Hence, the representation of the stabilizer
S = φ−1(φ(K) ∩ B1) corresponding to the K-homogeneous OC∗-connection
i∗(O(pα)) is trivial. This proves that τ̃ ∼= τ ∼= τ ⊗OC∗ i

∗(O(pα)) in this case.
In the case (b), the element ko ofK maps into the image of w in PSL(2,C).

It acts as z 7−→ z−1 on C∗ and therefore lies in S. As in the preceding
argument, this implies that φ(ko) is the only nontrivial element of φ(K)∩B1.
Its square maps into the identity element of PSL(2,C), hence it acts as −1 in
the one-dimensional representation of S attached to the K-homogeneous OC∗-
connection i∗(O(α)). If p is even, the representation of the stabilizer attached
to i∗(O(pα)) is trivial and i∗(O(pα)) ∼= OC∗ . Since the parity condition holds,
2k ̸= n in this situation and kerω|S0 is not of index two in S0. Therefore, as
we have seen in the preceding argument, τ ∼= τ̃ and the assertion holds in this
case. If p is odd, by the parity condition k ̸= 0. Hence, either ω is induced
from an irreducible representation of S1 or kerω|S0 is of index two in S0. In
the first case, the representations of the stabilizer S at 1 and −1 attached to
τ are equivalent and ω ∼= ω ⊗ ι. Hence, τ̃ ∼= τ ⊗OC∗ i

∗(O(pα)) in this case.
In the second case, the representation of S at 1 corresponding to τ̃ is ω ⊗ ι,
hence τ̃ ∼= τ ⊗OC∗ i

∗(O(pα)) again.
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Finally, we want to make an observation about the action of the inter-
twining functor I on irreducible Harish-Chandra sheaves. In particular, we
want to establish an analogue of 2.18 in this case. First, by 2.8, L−1I ̸= 0
implies that α (̌λ) ∈ Z.

Lemma 4.14. Let p = −α (̌λ) ∈ Z. Let L(Q, τ) be an irreducible Harish-
Chandra sheaf. Then the following conditions are equivalent:

(i) I(L(Q, τ)) = 0;
(ii) either

(a) K contains a conjugate of N and Q is the open orbit in X; or

(b) the identity component of K covers a conjugate of T , Q is the open
orbit in X and the parity condition fails for τ .

Proof. Assume that K contains a conjugate of N and Q is not the open orbit.
Then Q is a point and I(L(Q, τ)) ̸= 0 by 4.3.(ii). If the identity component
of K covers T and Q is not the open orbit, Q is either a point or a pair of
points, hence the same argument applies. If Q is the open orbit and the parity
condition holds for τ , L(Q, τ) = I(Q, τ) by 4.10, and I(L(Q, τ)) ̸= 0 by 4.12.
Therefore, (i) implies (ii).

Assume that (ii) holds. By 2.4, we can assume that λ = −ρ. First, assume
that K contains N . Then, by replacing K by its identity component we see
that I(Q, τ) is isomorphic to a finite direct sum of I(X∗,−ρ). By 4.2.(iii), each
of these modules contains a copy of OX as the unique irreducible submodule,
we see that I(Q, τ) contains a connection C which is the direct sum of the
same number of copies of OX . The connection C is clearly K-homogeneous,
and the quotient of I(Q, τ) by C is supported in the complement of Q. Hence,
it is equal to L(Q, τ). By 4.3.(ii), we see that I(L(Q, τ)) = 0.

Assume now that (ii) holds and identity component of K covers T . Again,
by replacing K by its identity component we can assume that I(Q, τ) is, as
a Dλ-module, a finite direct sum of I(C∗, ηk, λ) (for possibly different k).
Moreover, the failure of the parity condition implies that k must be equal to
0. It follows that I(Q, τ) is a direct sum of finitely many copies of I(C∗, η0,−ρ)
as a DX -module. By 4.6, each of these modules contains a copy of OX as the
unique irreducible submodule, we see that I(Q, τ) contains a connection C
which is the direct sum of the same number of copies of OX . The connection C
is clearly K-homogeneous, and the quotient of I(Q, τ) by C is supported in the
complement of Q. Hence, it is equal to L(Q, τ). The assertion I(L(Q, τ)) = 0
again follows by applying 4.3.(ii).
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5. Some results on root systems with involution

In this section we prove some technical lemmas about root systems with
involution. Let V be a vector space over Q and Σ a (restricted) root system in
V . We assume that V is equipped with a natural inner product (. , .) invariant
under the action of Aut(Σ). Let σ be an involution on Σ, i.e., an automorphism
of the root system Σ such that σ2 = 1. A root α ∈ Σ is called imaginary if
σα = α, real if σα = −α and complex otherwise. If g is the complexified Lie
algebra of a real semisimple Lie group g0, σ a Cartan involution on g and c
the complexification of a σ-stable Cartan subalgebra c0 of g, the vector space
V over Q spanned by the roots of (g, c) in c∗ is a root system with involution
induced by the Cartan involution σ, and the notions of imaginary, real and
complex roots agree with the usual ones.

Denote by ΣI the set of imaginary roots, ΣR the set of real roots and ΣC
the set of complex roots in Σ. Let Σ+ be a set of positive roots in Σ. We say
that Σ+ is of Langlands type if for any positive complex root α the root σα is
negative; and that Σ+ is of Zuckerman type if for any positive complex root
α the root σα is positive.

If (Σ, σ) is a root system with involution, (Σ,−σ) is also a root system
with involution. The sets of complex roots are the same in both cases; and
real, respectively imaginary, roots for (Σ, σ) are imaginary, respectively real,
roots for (Σ,−σ). Thus, replacing the involution σ with −σ switches the
two types of sets of positive roots: a set of Langlands type, respectively of
Zuckerman type, for σ is a set of Zuckerman type, respectively of Langlands
type, for −σ.

Lemma 5.1. The root system Σ admits sets of positive roots of Langlands
type and of Zuckerman type.

Proof. Let V = V+ ⊕ V− be the decomposition of V into the σ-eigenspaces
with eigenvalues 1 and −1. Define a lexicographical ordering on V with respect
to a basis of V which consists of a basis of V+ followed by a basis of V−. Let
Σ+ be the corresponding set of positive roots. Then σα is a positive root for
any positive root α which is not real. Therefore, Σ+ is of Zuckerman type.
The existence of sets of positive roots of Langlands type follows by replacing
σ with −σ.

Now we want to refine the argument of the preceding lemma. Let ≫+ be
an order relation on V+, and ≫− be an order relation on V−, compatible with
the vector space structures on V+ and V− respectively. Then we can define
an order relation ≫+,− on V = V+ ⊕ V− as (v, w) ≫+,− (v′, w′) if and only if
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v − v′ ≫+ 0 if v ̸= v′, and w−w′ ≫− 0 if v = v′. Analogously, we can define
an order relation ≫−,+ on V by reversing the roles of V+ and V−.

Lemma 5.2. Let Σ+ be a set of positive roots in V and λ ∈ V such that
(α, λ) ≤ 0 for all α ∈ Σ+. Then there exists a set of positive roots Σ+,L of
Langlands type such that:

(L1) (α, λ) ≤ 0 for all imaginary roots in Σ+,L;
(L2) (α, λ− σλ) ≤ 0 for all nonimaginary roots in Σ+,L.

(I) Σ+ ∩ (−Σ+,L) consists of complex roots satisfying σα ∈ Σ+.

Proof. By continuity we may assume that λ is regular and λ − σλ is not
orthogonal to any nonimaginary roots. Then we can define an ordering on V−
by µ ≫− 0 if (µ, λ − σλ) ≤ 0 and an ordering ≫+ on V+ compatible with
Σ+ ∩ΣI . This gives the ordering ≫−,+ on V . Since λ−σλ is not orthogonal to
any nonimaginary root α, they are either positive or negative. On the other
hand, the order relation on imaginary roots is given by ≫+. Thus any root
is either positive or negative with respect to ≫−,+, hence the set of all roots
α ≫−,+ 0 is a set of positive roots. Clearly it satisfies the conditions (L1) and
(L2) of the lemma, and it is of Langlands type. In addition, if α is a positive
real root with respect to this ordering,

2(α, λ) = (α, λ− σλ) < 0.

Hence, α ∈ Σ+. This implies that roots in Σ+ ∩ (−Σ+,L) are complex. More-
over, if α belongs to Σ+ ∩ (−Σ+,L), σα ∈ Σ+,L and

0 > (σα, λ− σλ) = (α, σλ− λ),

which implies
(σα, λ) = (α, σλ− λ) + (α, λ) < 0

and σα ∈ Σ+.

Let Σ+ be a set of positive roots in Σ. Put

D(Σ+) = {α ∈ Σ+ | σα ∈ Σ+ and σα ̸= α}.

Proposition 5.3. Let Σ+ be a set of positive roots in Σ.

(i) There exists a set of positive roots of Langlands type Σ+,L such that

Σ+ ∩ (−Σ+,L) ⊂ D(Σ+).
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(ii) Let Σ+,L be a set of positive root of Langlands type such that S =
Σ+ ∩ (−Σ+,L) ⊂ D(Σ+). Then

S ∩ σS = ∅ and S ∪ σS = D(Σ+).

(iii) Let Σ+,′ be another set of positive roots in Σ such that S = Σ+∩(−Σ+,′)
satisfies

S ∩ σS = ∅ and S ∪ σS = D(Σ+).
Then Σ+,′ is a set of positive roots of Langlands type.

Proof. Suppose λ ∈ V satisfies (α, λ) < 0 for all α ∈ Σ+. Then (i) follows
from 5.2.

(ii) Let α ∈ S ∩ σS. Then

−α,−σα ∈ −S ⊂ Σ+,L.

Since Σ+,L is of Langlands type, this would imply that α is an imaginary root
contradicting α ∈ D(Σ+). Therefore, S ∩ σS is empty.

Let α ∈ D(Σ+). Then α ∈ Σ+,L or −α ∈ Σ+,L. In the first case, σα ∈
−Σ+,L and σα ∈ Σ+ ∩ (−Σ+,L) = S. In the second case, α ∈ Σ+ ∩ (−Σ+,L) =
S. Therefore, α ∈ S ∪ σS.

(iii) Let α be a complex root in Σ+,′.
Assume first that α ∈ −Σ+. Then −α ∈ S ⊂ D(Σ+). This implies that

−σα ∈ D(Σ+) ⊂ Σ+ and −σα /∈ S. Therefore −σα /∈ −Σ+,′, i.e., σα ∈
−Σ+,′.

Assume now that α ∈ D(Σ+). Since α ∈ Σ+,′, α /∈ S. Hence σα ∈ S, i.e.,
σα ∈ −Σ+,′.

Finally, assume that α ∈ Σ+ and α /∈ D(Σ+). In this case, σα ∈ −Σ+, i.e.,
−σα ∈ Σ+. If σα ∈ Σ+,′, −σα ∈ S ⊂ D(Σ+) and −α ∈ D(Σ+) contradicting
α ∈ Σ+. Therefore, σα ∈ −Σ+,′.

Consequently Σ+,′ is a set of positive roots of Langlands type.

Since the Weyl group W of Σ acts transitively on the sets of positive
roots, this result can be rephrased as follows.

Corollary 5.4. Let Σ+ be a set of positive roots in Σ. There exists w ∈ W
such that

Σ+
w ∩ σ(Σ+

w) = ∅ and Σ+
w ∪ σ(Σ+

w) = D(Σ+).
In particular, if D(Σ+) ̸= ∅, it must contain a simple root.

For any such w ∈ W , w−1(Σ+) is a set of positive roots of Langlands
type.
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Any set of positive roots of Langlands type Σ+,L satisfying

S = Σ+ ∩ (−Σ+,L) ⊂ D(Σ+)

defines a section S of the σ-orbits in D(Σ+). Such sections are not completely
arbitrary. Actually, they are all contained in a smaller subset of D(Σ+).

To analyze these sections in more detail we first have to study the case
of root systems of rank 2. If Σ is a root system of rank 2 with nonempty
D(Σ+), the involution σ must be different from ±1. On the other hand, if
α ∈ D(Σ+), α, σα,−α,−σα are complex roots. Moreover, if α and σα are
not strongly orthogonal, Σ contains at least a pair of either imaginary or real
roots. This implies that CardD(Σ+) is either 2 or 4.

Assume first that CardD(Σ+) = 2. Therefore, by 5.3, there exists a set
of positive roots of Langlands type Σ+,L in Σ such that S = Σ+ ∩ (−Σ+,L)
consists of only one root in D(Σ+). We can assume that S = {α}. Let w be
the element of the Weyl group of Σ with the property that w(Σ+,L) = Σ+.
Then S = Σ+

w . Since ℓ(w) = Card Σ+
w , we see that α ∈ Π and w = sα.

Therefore, S ⊂ D(Σ+) ∩ Π. The only ambiguity about S is in the case when
D(Σ+) = Π. This is possible only if both simple roots are of the same length,
i.e., we have the following cases:

(i) Σ is of type A1×A1 and Π = {α, σα};
(ii) Σ is of type A2 and Π = {α, σα}.

Assume that D(Σ+) = 4. Then Σ must contain at least eight complex
roots, and if it contains only eight roots all pairs α, σα must be strongly
orthogonal. This implies that Σ must be of type G2, and D(Σ+) consists of a
pair of short roots and a pair of long roots. The remaining four roots are two
pairs of mutually orthogonal roots: a pair of real roots and a pair of imaginary
roots. By 5.3, there exists a set of positive roots of Langlands type Σ+,L in
Σ such that S = Σ+ ∩ (−Σ+,L) consists of two roots in D(Σ+). Let w be the
element of the Weyl group of Σ with the property that w(Σ+,L) = Σ+. Then
S = Σ+

w , and we see that S contains a simple root. We can assume that this
root is α. Moreover, if β is the other simple root, S = {α, sαβ} and w = sαsβ.
If β is complex, β ∈ D(Σ+) and σ(Σ+) = Σ+, contradicting the existence of
a positive real root. The same is true if β is an imaginary root. Therefore β
is a real root. It follows that S is the uniquely determined subset of D(Σ+)
which consists of the one complex simple root α and the root which is the
reflection of the other simple root β with respect to α.

This proves:
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Lemma 5.5. Let Σ be a root system of rank 2 and Σ+ ⊂ Σ a set of positive
roots. Let

C = {α ∈ D(Σ+) | α is a minimal element of {α, σα}}.

If w ∈ W is such that

Σ+
w ∩ σ(Σ+

w) = ∅ and Σ+
w ∪ σ(Σ+

w) = D(Σ+),

we have Σ+
w ⊂ C. Moreover, Σ+

w = C except if D(Σ+) = Π, i.e., except in the
following cases:

(i) Σ is of type A1×A1, Π = {α, σα};
(ii) Σ is of type A2 and Π = {α, σα}.

Now we can discuss the general case. For each α in D(Σ+) we denote by
Σα the smallest closed root subsystem containing α and σα. Clearly Σα is σ-
invariant, hence the restriction of σ to the vector subspace Vα of V spanned
by Σα defines an involution σα on the root system Σα. Thus (Σα, σα) is a
root system with involution of rank 2. We can define an ordering on Σα by
Σ+

α = Σα ∩ Σ+. Denote by Πα the corresponding set of simple roots in Σα. If
Σ+,L is a set of positive roots of Langlands type in Σ, Σ+,L

α is a set of positive
roots of Langlands type in Σα. Define

C(Σ+) = {α ∈ D(Σ+) | α is minimal in {α, σα} with respect to Σ+
α }.

Now 5.5 combined with the preceding discussion implies:

Proposition 5.6. Let w ∈ W be such that

Σ+
w ∩ σ(Σ+

w) = ∅ and Σ+
w ∪ σ(Σ+

w) = D(Σ+).

Then we have
Σ+

w ⊂ C(Σ+).
Moreover, {α, σα} ⊂ C(Σ+) if and only if

(i) Σα is of type A1×A1, Πα = {α, σα};
(ii) Σα is of type A2 and Πα = {α, σα}.

The next result is a converse of 5.2.

Lemma 5.7. Let Σ+,L be a set of positive roots of Langlands type in V and
λ ∈ V such that (L1) and (L2) hold. Then there exists a set of positive roots
Σ+ such that
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(AD) (α, λ) ≤ 0 for all roots in Σ+;
(I) Σ+ ∩ (−Σ+,L) consists of complex roots satisfying σα ∈ Σ+.

Proof. Again, by continuity we can assume that λ is regular and λ−σλ is not
orthogonal to any nonimaginary root. Then the set of all roots α satisfying
(α, λ) ≤ 0 is a set of positive roots in Σ. Also, it contains all imaginary and
real roots from Σ+,L. Now (I) follows as in the proof of 5.2.

We shall also need:

Lemma 5.8. Let Σ+ be a set of positive roots and λ ∈ V such that

(V1) (α, λ+ σλ) ≤ 0 for all roots in α ∈ Σ+ such that σα ∈ Σ+;
(V2) (α, λ− σλ) ≥ 0 for all roots α ∈ Σ+ such that −σα ∈ Σ+.

Then there exists a set of positive roots Σ+,L of Langlands type such that

(DL1) (α, λ) ≤ 0 for all imaginary roots in Σ+,L;
(DL2) (α, λ− σλ) ≥ 0 for all nonimaginary roots in Σ+,L;

(I) all α ∈ Σ+ ∩ (−Σ+,L) are complex and satisfy:
(I1) σα ∈ Σ+; and
(I2) (α, λ) ≤ 0.

Proof. By continuity, we may assume that λ is regular, λ+ σλ is not orthog-
onal to imaginary roots, and λ−σλ is not orthogonal to nonimaginary roots.
Then we can define an order relation ≫+ on V+ by µ ≫+ 0 if (µ, λ+σλ) ≤ 0
and an order relation ≫− on V− by µ ≫− 0 if (µ, λ − σλ) ≥ 0. Together
they define the order relation ≫−,+ on V . As before ≫−,+ determines a set
of positive roots Σ+,L of Langlands type. It satisfies the condition (DL2).
Moreover, since

2(α, λ) = (α, λ+ σλ)

for any imaginary root α, we see that (DL1) holds. Since λ is regular,

ΣI ∩ Σ+ = ΣI ∩ Σ+,L.

Analogously, for any real root α ∈ Σ+,L,

2(α, λ) = (α, λ− σλ) ≥ 0

and α ∈ Σ+. Conversely, if α is a real root in Σ+, it follows that (α, λ−σλ) ≥ 0
and α ∈ Σ+,L. Therefore,

ΣR ∩ Σ+ = ΣR ∩ Σ+,L.
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Hence, the roots in Σ+ ∩(−Σ+,L) are complex. Moreover, if α ∈ Σ+ ∩(−Σ+,L)
and −σα ∈ Σ+, it would follow from (V2) that (α, λ − σλ) ≥ 0, and from
the definition of Σ+,L that (α, λ− σλ) ≤ 0 which is impossible since α is not
orthogonal to λ−σλ. Therefore, σα ∈ Σ+ for any α ∈ Σ+ ∩ (−Σ+,L). Finally

2(α, λ) = (α, λ+ σλ) + (α, λ− σλ) ≤ 0,

because of (V1) and (DL2).

Lemma 5.9. Let Σ+,L be a set of positive roots of Langlands type and λ ∈ V
such that (DL1) and (DL2) hold. Then there exists a set of positive roots Σ+,Z

of Zuckerman type such that

(Z1) (α, λ) ≥ 0 for all real roots in Σ+,Z ;
(Z2) (α, λ+ σλ) ≤ 0 for all nonreal roots in Σ+,Z .

(I) Σ+,Z ∩ (−Σ+,L) consists of complex roots and (α, λ) ≤ 0 for α ∈ Σ+,Z ∩
(−Σ+,L).

Proof. To prove this statement argue as in the preceding argument, but re-
place the order ≫−,+ with ≫+,−.

Finally, we shall need the following simple result.

Lemma 5.10. Let Σ+ be a set of positive roots of Langlands type. Then:

(i) The set P = ΣI ∪ Σ+ is a parabolic set of roots in Σ.
(ii) There exists v ∈ V− such that P = {α ∈ Σ | (α, v) ≥ 0}.

Proof. (i) Let α ∈ ΣI and β ∈ Σ+−ΣI be such that α+β is a root. We have to
show that α+β is positive. This is evident if α is positive. On the other hand,
if α is negative, the root β is either complex or real, hence σβ ∈ −Σ+. Assume
that α + β ∈ −Σ+. Since α + β is not imaginary, α + σβ = σ(α + β) ∈ Σ+,
and σβ = (α + σβ) − α ∈ Σ+, contradicting the preceding statement.

(ii) Let u ∈ V be such that Σ+ = {α ∈ Σ | (α, u) > 0}. Since Σ+ is of
Langlands type, for any positive nonimaginary root α we have (α, σu) < 0.
If we put v = u − σu, we have v ∈ V− and (α, v) > 0 for any positive
nonimaginary root α. Therefore, (α, v) ≥ 0 for any α ∈ P . On the contrary,
if α /∈ P , −α is in Σ+ − ΣI , hence (α, v) < 0.

6. K-orbits in the flag variety

A K-orbit in X can be viewed as a K-conjugacy class of Borel subalgebras
in g. The following result is due to Matsuki [14].
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Lemma 6.1. Let b be a Borel subalgebra of g and N the unipotent radical
of the Borel subgroup B of G = Int(g) corresponding to b. Then the algebra
b contains a σ-stable Cartan subalgebra h0. All such Cartan subalgebras are
conjugate by K ∩N .

Let Q be a K-orbit in X and x ∈ Q. Then, by 6.1, Q determines a K-
conjugacy class of σ-stable Cartan subalgebras in g. Therefore, we have a map
from the set of K-orbits in X onto the set of K-conjugacy classes of σ-stable
Cartan subalgebras in g; in particular the latter set is finite. Let c be a σ-
stable Cartan subalgebra in g, and let R be the root system of (g, c) in c∗. Any
choice of positive roots R+ in R determines a Borel subalgebra, spanned by c
and the root subspaces corresponding to the roots in R+, and thus determines
a K-orbit in X. Assume that two such choices of positive roots define Borel
subalgebras b and b′ lying in the same K-orbit in X. Choose k ∈ K such
that Ad k(b′) = b. Then Ad k(c) is a σ-stable Cartan subalgebra which is
contained in b. By 6.1, there is u ∈ K ∩N such that Ad k(c) = Adu(c), i.e.,
k′ = u−1k ∈ K lies in the normalizer NK(c) of c in K, and

b′ = Ad(k−1)(b) = Ad(k′−1
u−1)(b) = Ad(k′−1)(b).

Therefore, the K-orbits in X which map into the K-conjugacy class of c are
parametrized by the conjugacy classes of positive root systems in R with
respect to NK(c). To summarize:

Observation 6.2. (i) Each K-orbit in X is attached to a unique K-conjugacy
class of σ-stable Cartan subalgebras.

(ii) Let c be a σ-stable Cartan subalgebra. Then the K-orbits corresponding
to the K-conjugacy class of c are parametrized bijectively by the NK(c)-orbits
of sets of positive roots R+ for (g, c).

Let Q be a K-orbit in X, x a point of Q, and c a σ-stable Cartan subal-
gebra contained in bx. Then σ induces an involution on the root system R in
c∗. Let R+ be the set of positive roots determined by bx. The specialization
map from the Cartan triple (h∗,Σ,Σ+) into the triple (c∗, R,R+) pulls back
σ to an involution of Σ. From the construction, one sees that this involution
on Σ depends only on the orbit Q, so we denote it by σQ. Let h = tQ ⊕ aQ

be the decomposition of h into σQ-eigenspaces for the eigenvalue 1 and −1.
Under the specialization map this corresponds to the decomposition c = t⊕a
of c into σ-eigenspaces for the eigenvalue 1 and −1. As we discussed in §5, we
can divide the roots in (Σ, σQ) into imaginary, real and complex roots. This
division depends on the orbit Q, hence we have

ΣQ,I = Q-imaginary roots,
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ΣQ,R = Q-real roots,
ΣQ,C = Q-complex roots.

Via specialization, these roots correspond to imaginary, real and complex
roots in the root system R in c∗.

Put
D+(Q) = {α ∈ Σ+ | σQα ∈ Σ+, σQα ̸= α};

then D+(Q) is σQ-invariant and consists of Q-complex roots. Each σQ-orbit
in D+(Q) consists of two roots, hence d(Q) = CardD+(Q) is even. The
complement of the set D+(Q) in the set of all positive Q-complex roots is

D−(Q) = {α ∈ Σ+ | −σQα ∈ Σ+, σQα ̸= −α}.

In addition, for imaginary α ∈ R, σα = α and the root subspace gα is σ-
invariant. Therefore, σ acts on it either as 1 or as −1. In the first case gα ⊂ k
and α is a compact imaginary root, in the second case gα ̸⊂ k and α is a
noncompact imaginary root. We denote by RCI and RNI the sets of compact,
resp. noncompact, imaginary roots in R. Also, we denote the corresponding
sets of roots in Σ by ΣQ,CI and ΣQ,NI .

Lemma 6.3. (i) The Lie algebra k is the direct sum of t, the root subspaces
gα for compact imaginary roots α, and the σ-eigenspaces of gα ⊕ gσα for the
eigenvalue 1 for real and complex roots α.

(ii) The Lie algebra k ∩ bx is spanned by t, gα for positive compact imag-
inary roots α, and the σ-eigenspaces of gα ⊕ gσα for the eigenvalue 1 for
complex roots α ∈ R+ with σα ∈ R+.

Proof. Evident.

Lemma 6.4. Let Q be a K-orbit in X. Then

dimQ = 1
2(Card ΣQ,CI + Card ΣQ,R + Card ΣQ,C − d(Q)).

Proof. The tangent space to Q at x can be identified with k/(k∩ bx). By 6.3,

dimQ = dim k − dim(k ∩ bx)

= Card ΣQ,CI + 1
2(Card ΣQ,R + Card ΣQ,C) − 1

2 Card ΣQ,CI − 1
2d(Q).
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By 6.4, since D+(Q) consists of at most half of all Q-complex roots, the
dimension of K-orbits attached to c lies between

1
2(Card ΣQ,CI + Card ΣQ,R + 1

2 Card ΣQ,C)

and
1
2(Card ΣQ,CI + Card ΣQ,R + Card ΣQ,C).

The first, minimal, value is attained if Q corresponds to a set of positive
roots R+ of Zuckerman type. We call such orbits Zuckerman orbits attached
to c. The second, maximal, value is attained on the K-orbits corresponding
to sets of positive roots of Langlands type. We call those orbits Langlands
orbits attached to c. As we have shown in 5.1, there exist both Langlands and
Zuckerman orbits attached to c.

The following simple observation will play a critical role later. Let α ∈ Π
and Xα be the generalized flag variety of g of parabolic subalgebras of type
α. Denote by pα the natural projection of X onto Xα, which maps a Borel
subalgebra b ⊂ g into the parabolic subalgebra of type α containing b. Let Q
be a K-orbit in X and V = p−1

α (pα(Q)). Then V is an union of finitely many
K-orbits. Let x ∈ Q and y = pα(x). Let Py be the parabolic subgroup of G of
type α which stabilizes y and py its Lie algebra. Let U be the unipotent radical
of Py. Then the quotient of Py/U by its center is isomorphic to PSL(2,C).
Denote by τ the corresponding homomorphism of Py into PSL(2,C). The
differential of τ defines an isomorphism of the fiber p−1

α (y), i.e., the set of
Borel subalgebras of g contained in py, with the flag variety Xo = P1 of
sl(2,C). Also, φ−1(φ(K)∩ker τ) is a normal subgroup of the closed subgroup
φ−1(φ(K) ∩Py) of K. Therefore, we have a natural homomorphism φo of the
group

Ko = φ−1(φ(K) ∩ Py)/φ−1(φ(K) ∩ ker τ)
into PSL(2,C).

Lemma 6.5. (i) (sl(2,C), Ko) is a Harish-Chandra pair.
(ii) The identification of Xo and the fiber p−1

α (y) identifies Ko-orbits in
Xo with the intersections of K-orbits in V with p−1

α (y).
(iii) If α is a compact Q-imaginary root, the identity component of Ko is

a covering of PSL(2,C). The orbit Q is equal to V .
(iv) If α is a noncompact Q-imaginary root or a Q-real root, the iden-

tity component of Ko is a one dimensional torus. In the first case, dimQ =
dim V − 1, in the second dimQ = dimV . The variety V is a union of two or
three K-orbits.
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(v) If α is a Q-complex root, the unipotent radical of Ko is one di-
mensional. The variety V is a union of two K-orbits, dimQ = dim V if
σQα /∈ Σ+, and dimQ = dimV − 1 if σQα ∈ Σ+. In the second case,
pα : Q −→ pα(Q) is an isomorphism.

Proof. (ii) Let Qo be a Ko-orbit in Xo
∼= p−1

α (y). Then Qo is contained in a
K-orbit O. Let x′ ∈ O ∩ Xo. Then there exists k ∈ K such that k · x′ ∈ Qo.
Moreover, k · y = k · pα(x′) = pα(k · x′) = y implies that k ∈ φ−1(φ(K) ∩Py),
which yields x′ ∈ Qo. Therefore, Qo = O ∩Xo.

(i) follows from (ii).
To prove the remaining statements, we calculate the Lie algebra of Ko.

Using the notation of 6.3, we see that k ∩ py is spanned by t, gβ for positive
compact roots β, σ-eigenspaces of gβ ⊕ gσβ for the eigenvalue 1 for complex
roots β ∈ R+ with σβ ∈ R+, and either g−α if α is compact imaginary, or
σ-eigenspaces of g−α ⊕ g−σα for the eigenvalue 1 if α is a complex root such
that σα /∈ R+.

If α is compact imaginary in R, k ∩ py has a Levi factor that contains gα

and g−α. Therefore, the Lie algebra of Ko in this case must be sl(2,C). This
completes the proof of (iii).

If α is noncompact imaginary or real, the Lie algebra of Ko is the image
of t under the differential of τ . By (i), Ko must be at least one-dimensional
and from 4.1 we conclude that its identity component is an one-dimensional
torus. An application of 4.1 and (ii) completes the proof of (iv).

If α is complex, the Lie algebra of Ko is solvable and contains the image
under the differential of τ of either gα if σα ∈ R+, or g−α if σα /∈ R+.
Therefore, the unipotent radical of Ko is one dimensional by (i) and 4.1, and
Ko acts on Xo with two orbits. By (ii), this implies that V contains two
K-orbits. Applying 4.1 again we see that in the first case Ko stabilizes x,
Q ∩ Xo = {x}, and φ−1(φ(K) ∩ Py) = φ−1(φ(K) ∩ Bx); in the second case
Ko does not stabilize x, and Q is the open orbit in V .

Let w be transversal to a K-orbit Q. Then Ew(Q) is K-invariant. Since it
is irreducible by 3.1.(iv), and the number of K-orbits is finite, there exists a
unique K-orbit Qw of maximal dimension in Ew(Q). The next result reduces
the analysis of elements of W transversal to a K-orbits to simple reflections.

Lemma 6.6. Let w, v ∈ W be such that ℓ(wv) = ℓ(w)+ℓ(v), and Q a K-orbit
in X. Then the following conditions are equivalent:

(i) wv is transversal to Q;
(ii) v is transversal to Q and w is transversal to Qv.

If these conditions are satisfied, Qwv = (Qv)w.
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Proof. Assume that wv is transversal to Q. Then, by 3.2, v is transversal to
Q and w is transversal to Ev(Q). Since Qv is dense in Ev(Q), Ev(Q) ⊂ Qv.
Hence, by 3.1.(ii) and 3.1.(v),

Ewv(Q) = Ew(Ev(Q)) ⊂ Ew(Qv) = Ew(Qv).

This implies

dimQ+ ℓ(wv) = dimEwv(Q) ≤ dimEw(Qv)
≤ dimQv + ℓ(w) ≤ dimQ+ ℓ(v) + ℓ(w),

hence the inequalities must be equalities. Therefore, w is transversal to Qv.
In addition this implies that the K-orbit Qwv is open in Ew(Qv), i.e., Qwv =
(Qv)w.

If v is transversal to Q and w is transversal to Qv, by 3.2.(ii) and 3.1.(ii), v
is transversal to Q̄ and w is transversal to Qv = Ev(Q) = Ev(Q̄). By 3.2.(ii),
it follows that wv is transversal to Q.

The case of simple reflections is treated in the following result.

Lemma 6.7. Let Q be a K-orbit and α a simple root. Then sα is transver-
sal to Q if and only if α is either noncompact Q-imaginary or Q-complex
satisfying σQα ∈ Σ+.

Proof. By our definition, Esα(Q) = p−1
α (pα(Q)), hence sα is transversal to Q

if and only if Q is of codimension one in p−1
α (pα(Q)). By 6.5.(iii) and (iv),

if α is compact Q-imaginary of Q-real, dim p−1
α (pα(Q)) = dimQ, hence sα

is not transversal to Q. On the other hand, by 6.5.(iv), if α is noncompact
Q-imaginary, sα is transversal to Q. If α is Q-complex, sα is transversal to Q
if and only if σQα is a positive root by 6.5.(v).

Assume first that α ∈ Π is noncompact Q-imaginary. Then Esα(Q) is the
union of two or three K-orbits by 6.5.(iv). Fix x ∈ Q. Let c be a σ-stable
Cartan subalgebra in bx. Then roots α and −α via specialization determine
root subspaces gα and g−α of g. Let sα be the subalgebra of g spanned by gα,
g−α and [gα, g−α] ⊂ c. Then sα is σ-stable, since σ acts as −1 on gα. Let σα

be the restriction of σ to sα. Therefore, lα = sα + c is a σ-stable Levi factor
of the parabolic subalgebra p of type α which contains bx. This parabolic
subalgebra corresponds to the point pα(x) in the generalized flag variety Xα.
Let ξα ∈ gα and ξ−α ∈ g−α. Then ξα − ξ−α is a semisimple element in sα and

σ(ξα − ξ−α) = −(ξα − ξ−α).
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Therefore, the kernel of the root α in c and the line spanned by ξα − ξ−α

span another σ-stable Cartan subalgebra in g, which we denote by d. The
σ-invariant vectors in d are the subspace of codimension 1 in the σ-invariants
of c. Therefore, c and d are not K-conjugate. Since d ⊂ p, there exists a
Borel subalgebra bx′ containing d which lies inside p. The point x′ lies in a
K-orbit which projects onto pα(Q) in Xα. In the notation of 6.5, the fiber
over y = pα(x) can be viewed as the flag variety Xo of sl(2,C). Since Ko is an
one dimensional torus by the discussion in 6.5, by the results of §4 it follows
that c∩ sα is the only σα-stable Cartan subalgebra in sα on which σα acts as
identity. The representative of the other class of σα-stable Cartan subalgebras
is d ∩ sα. The involution σα acts on it as −1, and it corresponds to the open
orbit in Xo. Hence the K-orbit of x′ is open in p−1

α (pα(Q)), i.e., this orbit is
Qsα .

From the construction it is clear that the involutions σQ and σQsα
agree

on kerα. On the other hand, on the complementary line spanned by α ,̌ σQ

acts as 1 and σQsα
as −1. Therefore,

σQsα
= sα ◦ σQ = σQ ◦ sα.

It follows that α is a Qα-real root.
Hence, we established the following fact.

Lemma 6.8. Let α ∈ Π be a noncompact Q-imaginary root. Then

(i) σQsα
= sα ◦ σQ = σQ ◦ sα;

(ii) α is Qsα-real.

Now we want to discuss elements of W transversal to K-orbits and which
are products of complex simple reflections only. Let w ∈ W and Zw be the
subvariety ofX×X consisting of pairs of Borel subalgebras in relative position
w. Denote by p1, p2, the projections of Zw onto the first, resp. second, factor
in X ×X. As we mentioned in §2, p2 : Zw −→ X is a locally trivial fibration
with fibers isomorphic to Cℓ(w). Therefore, for any K-orbit Q in X, p−1

2 (Q)
is a smooth K-invariant subvariety of Zw. Recall the notation established in
§2.

Lemma 6.9. Let Q be a K-orbit in X attached to a σ-stable Cartan sub-
algebra c and a set of positive roots R+ in c∗. Let w ∈ W . Assume that
Σ+

w ⊂ D+(Q) and Σ+
w ∩ σQ(Σ+

w) = ∅. Then:

(i) p−1
2 (Q) is a K-orbit in Zw;
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(ii) the projection p1 induces an isomorphism of p−1
2 (Q) onto the K-orbit

p1(p−1
2 (Q)) in X, which is attached to c and the set of positive roots in

R corresponding to w−1(Σ+) under the specialization determined by Q.

By 3.1.(iii), the K-orbit p1(p−1
2 (Q)) is dense in Ew(Q). Hence,

dimEw(Q) = dim p1(p−1
2 (Q)) = dimQ+ ℓ(w),

and w is transversal to Q. It follows that Qw = p1(p−1
2 (Q)).

We prove this statement by induction on ℓ(w). Assume first that ℓ(w) = 1,
i.e., w = sα for some simple root α. Then sα(Σ+) = (Σ+ −{α})∪{−α}, hence
Σ+

sα
= {α} and the only condition is that α ∈ D+(Q). Let x ∈ Q and y =

pα(x) as before. The fiber of p2 : Zsα −→ X at x consists of all pairs (x′, x) ∈
X × X such that b′

x and bx are in relative position sα. This is equivalent to
x′ ̸= x and pα(x′) = pα(x). To prove (i), it is enough to show that the stabilizer
φ−1(φ(K)∩Bx) of x in K acts transitively on this fiber. Since α is Q-complex
and σQα ∈ Σ+, by 6.5.(v), Ko = φ−1(φ(K) ∩ Bx) = φ−1(φ(K) ∩ Py), and
this group acts transitively on {x′ ∈ X | pα(x′) = y, x′ ̸= x}.

Let (x, x′), (x, x′′) ∈ p−1
2 (Q). Then pα(x′) = pα(x) = pα(x′′), so x′ = x′′

since pα : Q −→ pα(Q) is a bijection by 6.5.(v). This proves (ii) in this
situation.

Now we can prove the result for an arbitrary w by induction on ℓ(w).
Assume that the statement holds for all w′ ∈ W such that ℓ(w′) < k, and
that w satisfies ℓ(w) = k. Let w = sα1sα2 . . . sαk

be a reduced expression of w.
Denote w′ = sα1sα2 . . . sαk−1 . Then ℓ(w′) = k − 1 and w = w′sαk

. Moreover,
as we remarked in §2, we see that Σ+

w = sαk
(Σ+

w′) ∪ {αk}, and this union is
disjoint. So αk ∈ D+(Q), and by the first part of the proof, 6.9 holds for sαk

.
Hence, the K-orbit Qsαk

is attached to c and the set of positive roots sαk
(R+).

The specializations of (h∗,Σ,Σ+) to (c∗, R,R+) and (c∗, R, sαk
(R+)) differ by

sαk
. Therefore,

σQsαk
= sαk

◦ σQ ◦ sαk
.

Since σQ(Σ+
w) ∩ Σ+

w = ∅, we have

∅ = σQ(sαk
(Σ+

w′)) ∩ sαk
(Σ+

w′) = sαk
(σQsαk

(Σ+
w′) ∩ Σ+

w′),

and σQsαk
(Σ+

w′) ∩ Σ+
w′ = ∅. Before we complete the proof of 6.9 we need to

describe D+(Qsαk
).

Lemma 6.10. Let α ∈ D+(Q) be a simple root. Then

sα(D+(Qsα)) = D+(Q) − {α, σQα}.
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Proof. Let β ∈ D+(Q), different from α and σQα. Then σQβ ̸= α, hence
sα(β) ∈ Σ+ and sα(σQβ) ∈ Σ+. It follows that sα(β) and σQsα

(sα(β)) =
(sασQ)(β) are contained in Σ+. Therefore,D+(Q)−{α, σQα} ⊂ sα(D+(Qsα)).

Clearly,
σQsα

(α) = (sασQsα)(α) = −sα(σQα).
Since σQα ∈ Σ+ is different from α, it follows that sα(σQα) ∈ Σ+ and
σQsα

(α) ∈ −Σ+. Therefore, α /∈ D+(Qsα). Let β ∈ sα(D+(Qsα)). Since
α /∈ D+(Qsα), β ∈ Σ+. Also sα(β) ∈ D+(Qsα), i.e., sα(β) ∈ Σ+ and
σQsα

(sα(β)) = (sασQ)(β) ∈ Σ+. Assume that (sαsQ)(β) = α. This would
imply that β = −σQα ∈ −Σ+ what contradicts the preceding statement.
Therefore, (sασQ)(β) ̸= α and σQ(β) ∈ Σ+. This implies that β ∈ D+(Q).
Since D+(Qsα) is a set of positive roots, sα(D+(Qsα)) cannot contain α. If
σQsα

α would be in sα(D+(Qsα)), this would imply that

−σQsα
(α) = −(sασQsα)(α) = sα(σQα) ∈ D+(Qsα)

and −α = −σQsα
(σQsα

(α)) ∈ D+(Qsα), which is again impossible.

We now resume the proof of 6.9. Since σQ(Σ+
w)∩Σ+

w = ∅, σQαk /∈ sαk
(Σ+

w′).
By 6.10,

sαk
(Σ+

w′) ⊂ Σ+
w − {αk, σQαk} ⊂ D+(Q) − {αk, σQαk} ⊂ sαk

(D+(Qsαk
)),

and Σ+
w′ ⊂ D+(Qsαk

). Therefore w′ satisfies the conditions of 6.9 with respect
to the K-orbit Qsαk

.
Now the induction step. Let p′

1, p′
2 be the projections of Zw′ onto the

first, resp. second, factor in X ×X. Denote the corresponding projections for
Zsαk

by p′′
1 and p′′

2. Since ℓ(w) = ℓ(w′) + 1 = ℓ(w′) + ℓ(sαk
), as we remarked

in §2, the natural map from the fibered product r : Zw′ ×X Zsαk
−→ Zw,

given by r((x, x′), (x′, x′′)) = (x, x′′), is an isomorphism of varieties. It maps
p′−1

2 (Qsαk
)×Qsαk

p′′−1
2 (Q) onto p−1

2 (Q). By the first step of the proof, the pro-
jection of p′−1

2 (Qsαk
) ×Qsαk

p′′−1
2 (Q) onto p′−1

2 (Qsαk
) is a K-equivariant bijec-

tion, hence p′−1
2 (Qsαk

)×Qsαk
p′′−1

2 (Q) is a K-orbit. This implies that p−1
2 (Q) is

a K-orbit. Its projection p1(p−1
2 (Q)) is equal to the projection p′

1(p′−1
2 (Qsαk

)),
i.e., to the K-orbit (Qsαk

)w′ = Qw, and the projection map is an isomorphism
of p−1

2 (Q) onto Qw. This ends the proof of 6.9.
Another consequence of this inductive analysis gives the following propo-

sition, which is a generalization of 6.10. First we remark that

σQw = w ◦ σQ ◦ w−1.
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This is evident if w is a simple reflection. On the other hand, by induction in
ℓ(w), we have

σQw = σ(Qsαk
)w′ = w′ ◦ σQsαk

◦ w′−1 = w′sαk
◦ σQ ◦ sαk

w′−1 = w ◦ σQ ◦ w−1.

Proposition 6.11. Let Q be a K-orbit and w ∈ W . Assume that Σ+
w ⊂

D+(Q) and Σ+
w ∩ σQ(Σ+

w) = ∅. Then

σQw = w ◦ σQ ◦ w−1,

w−1D+(Qw) = D+(Q) − (Σ+
w ∪ σQ(Σ+

w)).

and
D−(Qw) = wD−(Q) ∪ Σ+

w−1 ∪
(
−σQw(Σ+

w−1)
)
.

Proof. We prove this statement by induction in ℓ(w). If ℓ(w) = 1 this is
the statement of 6.10. Assume that ℓ(w) = k, with k > 1. Let w′ ∈ W
be such that ℓ(w′) = k − 1 and w = w′sα. Then, as we remarked in §2,
Σ+

w = sα(Σ+
w′)∪{α}, and this union is disjoint. As we checked in the preceding

argument, w′ satisfies the conditions of the proposition with respect to the
orbit Qsα , hence by the induction assumption we have

w′−1
D+(Qw) = w′−1

D+((Qsα)w′) = D+(Qsα) − (Σ+
w′ ∪ σQΣ+

w′).

This implies that

w−1D+(Qw) = sαw
′−1
D+(Qw)

= sαD+(Qsα) − (sαΣ+
w′ ∪ σQsαΣ+

w′) = D+(Q) − (Σ+
w ∪ σQΣ+

w).

On the other hand, since w−1D+(Qw) ⊂ Σ+ ∩ w−1(Σ+), it follows that
D+(Qw) ⊂ Σ+ ∩ w(Σ+). Hence, we have

D−(Qw) = w(ΣQ,C) ∩ Σ+ −D+(Qw)
=
(
w(ΣQ,C) ∩ Σ+ ∩ w(Σ+) −D+(Qw)

)
∪
(
w(ΣQ,C) ∩ Σ+

w−1

)
= w

(
ΣQ,C ∩ w−1(Σ+) ∩ Σ+ − w−1D+(Qw)

)
∪ w

(
ΣQ,C ∩ (−Σ+

w)
)

= w
(
ΣQ,C ∩ Σ+ − (w−1D+(Qw) ∪ Σ+

w)
)

∪ w(−Σ+
w)

= wD−(Q) ∪ σQ(Σ+
w) ∪ Σ+

w−1

= wD−(Q) ∪ Σ+
w−1 ∪

(
−σQw(Σ+

w−1)
)
.
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In particular, if Q is a Zuckerman orbit, we get the following result.

Corollary 6.12. Let Q be a Zuckerman orbit and w ∈ W such that Σ+
w

consists of Q-complex roots and Σ+
w ∩ σQ(Σ+

w) = ∅. Then

D−(Qw) = Σ+
w−1 ∪ (−σQw

(
Σ+

w−1)
)
.

This finally leads to the following statement.

Proposition 6.13. Let Q1 be an arbitrary K-orbit in X and w ∈ W . Then
the following conditions are equivalent:

(i) there exist a Zuckerman orbit Q attached to the same conjugacy class
of Cartan subalgebras such that Σ+

w consists of Q-complex roots, Σ+
w ∩

σQ(Σ+
w) = ∅ and Q1 = Qw.

(ii) Σ+
w−1 ∩

(
−σQ1(Σ+

w−1)
)

= ∅ and D−(Q1) = Σ+
w−1 ∪

(
−σQ1(Σ+

w−1)
)
.

Let Θ be a subset of the set of simple roots Π. Let XΘ be the variety of
parabolic subalgebras of g of type Θ. For a point y in XΘ we denote by py

the corresponding parabolic subalgebra of g. Let XΘ,σ be the subset of all
y ∈ XΘ such that py and σ(py) have a common Levi subalgebra. Then XΘ,σ

is a union of K-orbits.

Proposition 6.14. Let Q be one of the K-orbits in XΘ,σ. Then Q is affinely
imbedded in XΘ.

If Θ = ∅, XΘ coincides with X. In this case, every K-orbit is affinely
imbedded. The proof of this result for Harish-Chandra pairs in ([12], 4.1)
(due to Beilinson and Bernstein), applies to the present situation. We leave
it to the reader to make the necessary modifications.

Now consider the case when Θ consists of only one simple root α. To
simplify the notation assume that our orbit in Xα is the projection pα(Q)
of an orbit Q in X. Then pα(Q) is in Xα,σ if and only if the set {α,−α} is
σQ-invariant, i.e., if α is either Q-imaginary or Q-real. Thus we obtain:

Corollary 6.15. Let Q be a K-orbit in X and α ∈ Π. Assume that α is
either Q-imaginary or Q-real. Then pα(Q) is affinely imbedded in Xα.

We shall also need the following simple (and well-known) remark.

Lemma 6.16. (i) A K-orbit in the flag variety X is closed if and only if it
consists of σ-stable Borel subalgebras.

(ii) The K-orbit of any σ-stable parabolic subalgebra in a generalized flag
variety XΘ is closed.
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Proof. Let Θ ⊂ Π and equip XΘ ×XΘ with the G-action given by

g(x, y) = (gx, σ(g)y),

for g ∈ G and x, y ∈ XΘ. Let (x, x) ∈ ∆. If Px is the parabolic subgroup
which stabilizes x ∈ XΘ, the stabilizer of (x, x) equals Px ∩ σ(Px). Therefore,
if the Lie algebra px of Px is σ-stable, the stabilizer of (x, x) is Px, and the
G-orbit of (x, x) is closed. Let C be the connected component containing
(x, x) of the intersection of this orbit with the diagonal ∆. We have just seen
that C is closed. Via the correspondence set up in the proof of 4.1 in [12],
C corresponds to the K-orbit of x under the diagonal imbedding of XΘ in
XΘ ×XΘ. This proves (ii) and one implication in (i).

Let Q be a closed K-orbit, and x ∈ Q. Then the stabilizer of x in K is a
solvable parabolic subgroup, i.e., it is a Borel subgroup of K. Therefore, by
6.3 and 6.4,

dimQ = 1
2(dim k − dim t) = 1

2(Card ΣQ,CI + 1
2(Card ΣQ,C + Card ΣQ,R))

and

dimQ = 1
2(Card ΣQ,CI + Card ΣQ,R + Card ΣQ,C − d(Q)).

This implies
Card ΣQ,R + Card ΣQ,C = 2d(Q).

Since D+(Q) consists of at most half of all Q-complex roots, we see that
there are no Q-real roots, and all positive Q-complex root lie in D+(Q). This
implies that all Borel subalgebras bx, x ∈ Q, are σ-stable.

We shall also need some information on Weyl group elements transversal
to Langlands orbits. Let Q be a Langlands orbit in X. Then, by 5.10, the set
P = ΣQ,I ∪ Σ+ is a parabolic set of roots in Σ. It determines a set of simple
roots Θ. Since P ∩ (−P ) = ΣQ,I , Θ consists of Q-imaginary roots. Let WΘ
be the subgroup of W generated by reflections with respect to roots in Θ.

Lemma 6.17. σQ(P ) = −P .

Proof. We have

σQ(P ) = σQ(ΣQ,I) ∪ σQ(Σ+ − ΣQ,I)
= ΣQ,I ∪ σQ(Σ+ − ΣQ,I) = (−ΣQ,I) ∪ σQ(Σ+ − ΣQ,I).
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Let α ∈ Σ+ − ΣQ,I . If α is Q-real, σQ(α) = −α and σQ(α) is a negative root.
If α is Q-complex, σQ(α) is also a negative root, since Q is a Langlands orbit.
Therefore, σQ(Σ+ − ΣQ,I) ⊂ −Σ+, and

σQ(P ) = (−ΣQ,I) ∪ σQ(Σ+ − ΣQ,I) ⊂ (−ΣQ,I) ∪ (−Σ+) = −P.

As before, let XΘ be the generalized flag variety of parabolic subalgebras
of type Θ. Denote by pΘ the canonical projection of X onto XΘ.

Lemma 6.18. pΘ(Q) is the open K-orbit in XΘ.

Proof. Let y ∈ XΘ and denote by py the corresponding parabolic subalgebra
of g. Then the tangent space to XΘ at y can be identified with g/py, and the
tangent space to the K-orbit through y with k/(k ∩ py). Hence, the K-orbit
through y is open in XΘ if and only if k + py = g.

Assume that y = pΘ(x), x ∈ Q. Then, by 6.17, g = py + σ(py). Hence,
any ξ ∈ g can be represented as ξ = ξ1 + σ(ξ2) with ξ1, ξ2 ∈ py. This implies

ξ = ξ1 − ξ2 + (ξ2 + σ(ξ2)) ∈ k + py;

i.e., g = k + py.

Let Q′ be another K-orbit in X which contains Q in its closure. Then,
since pΘ(Q) is open in XΘ, the projection of Q′ to XΘ must be equal to
pΘ(Q). Let x′ ∈ Q′ be such that pΘ(x′) = y = pΘ(x). Let c′ be a σ-stable
Cartan subalgebra in bx′ . By 6.17, ly = σ(py) ∩ py is the σ-stable Levi factor
of py. Hence, it contains c′. Since c = t⊕ a, and ly is the centralizer of a in g,
we conclude that a ⊂ c′, i.e., a ⊂ a′. This implies aQ ⊂ aQ′ and

σQ′ |aQ = −1.

Hence, for any α ∈ Σ the restrictions of σQ′α and −α to aQ agree. By 5.10.(ii),
if α ∈ P we see that −σQ′α ∈ −P . Hence, σQ′(P ) = −P .

Therefore, we proved the following strengthening of 6.17.

Lemma 6.19. Let Q be a Langlands orbit in X and Q′ another K-orbit in
X such that Q is contained in the closure of Q′. Then:

(i) σQ′(P ) = −P ;
(ii) aQ ⊂ aQ′ .

Corollary 6.20. σQ′(Σ+ − ΣQ,I) = −(Σ+ − ΣQ,I).
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Proof. By 6.19, we have

ΣQ,I = P ∩ (−P ) = P ∩ σQ′(P ).

Let α ∈ Σ+ − ΣQ,I . Since α is not Q-imaginary, by the preceding relation
σQ′α /∈ P . Hence σQ′α ∈ −P . This implies σQ′α ∈ −(Σ+ − ΣQ,I).

Proposition 6.21. Let w ∈ W be transversal to a Langlands orbit Q. Then
w ∈ WΘ for the set Θ of all simple Q-imaginary roots.

Proof. Let w = sαw
′, ℓ(w′) = ℓ(w) − 1 with α ∈ Π. Then, by 6.6, w′ is

transversal to Q and sα is transversal to Qw′ . Assume that α /∈ Θ. By the
definition of Qw′ , Q ⊂ Qw′ . This implies

σQw′ (Σ+ − ΣQ,I) = −(Σ+ − ΣQ,I),

and σQw′ ∈ −Σ+. But this contradicts the transversality of sα to Qw′ , by 6.7.
Hence, α ∈ Θ. By the induction in length the statement follows.

Finally, we analyze the structure of the stabilizers in K of points in X.
Let Q be a K-orbit in the flag variety X. Let x ∈ Q and bx the corresponding
Borel subalgebra. Denote by Bx the corresponding subgroup of G = Int(g).
Fix a σ-stable Cartan subalgebra c in bx and let C be the corresponding torus
in Int(g). Let Sx be the stabilizer of x in K, i.e.,

Sx = φ−1(φ(K) ∩Bx).

Then the Lie algebra sx = k∩bx is a semidirect product of t = {ξ ∈ c | σ(ξ) =
ξ} with the nilpotent radical ux = {η ∈ nx | σ(η) = η} of sx. Let Ux be the
unipotent subgroup of K corresponding to ux; it is the unipotent radical of
Sx. Put T = φ−1(φ(K) ∩ C). Then we have:

Lemma 6.22. The stabilizer Sx is the semidirect product of T with Ux.

Proof. Let s ∈ φ(Sx). Then s ∈ σ(Bx) ∩ Bx, and this group is a semidirect
product of C with σ(Nx)∩Nx. This implies that we have a unique representa-
tion s = cn with c ∈ C and n ∈ σ(Nx) ∩Nx. Therefore, s = σ(s) = σ(c)σ(n)
implies that c = σ(c) and n = σ(n), i.e., c ∈ φ(K) ∩ C and n ∈ ϕ(Ux).
This implies Sx = T · Ux. Since T is a reductive subgroup of Sx, it is con-
tained in a Levi factor T ′ of Sx. This in turn implies that the natural map
T −→ Sx/Ux

∼= T ′ is surjective, i.e., T = T ′.
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Let
F = {exp(ξ) | σ(exp(ξ)) = exp(ξ), ξ ∈ a}.

Then for any s ∈ F , we have s = σ(s) = exp(σ(ξ)) = exp(−ξ) = s−1, i.e.,
s2 = 1. Hence F is a direct product of several copies of Z2. Let s ∈ F and α
a Q-complex root. Then the character eα of C satisfies

eα(s) = exp(α(ξ)) = exp(σα(σ(ξ))) = exp(−σα(ξ)) = e−σα(s).

Therefore, eα(s) = e−σα(s) = ±1. Denote by A a set of representatives of the
(−σQ)-orbits in D−(Q). Then

δQ(t) =
∏
α∈A

eα(t), t ∈ F,

is a character of F independent of the choice of A.
Let α be a Q-real root. Denote by sα the three-dimensional simple algebra

spanned by gα, g−α and [gα, g−α]. Let Sα be the connected subgroup of G =
Int(g) with Lie algebra sα; it is isomorphic either to SL(2,C) or to PSL(2,C).
Denote by Hα the element of [gα, g−α] ⊂ a such that α(Hα) = 2. Then Hα

is the dual root in c, and β(Hα) ∈ Z for any β ∈ Σ. This implies mα =
exp(πiHα) satisfies m2

α = 1 in G. Moreover, σ(mα) = exp(−πiHα) = m−1
α =

mα, and mα ∈ F . Clearly mα = 1 if Sα
∼= PSL(2,C), and mα ̸= 1 if Sα

∼=
SL(2,C), and in this latter case mα corresponds to the negative of the identity
matrix in SL(2,C).

Lemma 6.23. Let α ∈ Π be Q-real. Then δQ(mα) = 1.

Proof. Let β ∈ D−(Q). Then sαβ ∈ Σ+ and sασQβ = σQsαβ. Hence, sαβ ∈
ΣQ,C and −σQsαβ ∈ Σ+, i.e., sαβ ∈ D−(Q). Clearly,

esαβ(mα) = eβ−αˇ(β)α(mα) = eβ(mα)eα(mα)αˇ(β) = eβ(mα).

On the other hand, if sαβ = β we see that α (̌β) = 0. Therefore β(Hα) = 0
and eβ(mα) = 1. Hence the expression for δQ(mα) contains either both eβ(mα)
and esαβ(mα) if sαβ ̸= β, or eβ(mα) = 1 if sαβ = β.

Let kα = sα ∩ k; it is the Lie algebra of a one dimensional torus Kα in
K. Its image φ(Kα) in G is a torus in Sα. Therefore, mα ∈ φ(Kα). The
composition of φ : Kα −→ Sα and the covering projection Sα −→ Int(sα) is
an n-fold covering map between two one dimensional tori. We shall need to
know an explicit lifting of mα to Kα. If we identify Kα with C∗, the kernel of
this map is isomorphic to {e

2πp
n | 0 ≤ p ≤ n − 1}. Let nα correspond to e 2π

n
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under this isomorphism (there are two possible choices for nα and they are
inverses of each other). Then φ maps nα to mα, hence nα lies in T . We have
shown:

Observation 6.24. nα ∈ T , φ(nα) = mα.

7. Intertwining functors and standard Harish-Chandra
sheaves

First we want to describe a simple necessary condition on λ ∈ h∗ for the exis-
tence of a K-homogeneous connection τ on a K-orbit Q in X. We introduce
a real structure in h by putting hR to be the real span of all dual roots α ,̌
α ∈ Σ. For any λ ∈ h∗ we denote by Reλ the complex linear form on h which
satisfies (Reλ)(ξ) = Reλ(ξ) for ξ ∈ hR, and by Im λ the complex linear form
on h which satisfies (Im λ)(ξ) = Imλ(ξ) for ξ ∈ hR.

If K is a subgroup of a covering G̃ of Int(g) with Lie algebra k, we say
that the Harish-Chandra pair is linear.

Lemma 7.1. For λ ∈ h∗, let Q an arbitrary K-orbit in X and τ a K-
homogeneous connection on Q compatible with λ+ ρ. Then

(i) α (̌λ+ σQλ) ∈ Q for any α ∈ Σ. In particular, Im λ vanishes on tQ.
(ii) If, in addition, (g, K) is a linear Harish-Chandra pair, α (̌λ+σQλ) ∈ Z

for any α ∈ Σ. Hence, α ∈ Σλ if and only if σQα ∈ Σλ.

Proof. Let x ∈ Q and c = t ⊕ a a σ-stable Cartan subalgebra of bx. Then
t ⊂ k and it defines a closed subgroup in K. The image φ(T ) of T in Int(g)
is contained in the Cartan subgroup C of Int(g). Let r be the order of the
kernel of the homomorphism of T into C. Since τ is compatible with λ + ρ,
there exists a character ω of T with differential equal to the restriction to
t of the specialization of λ + ρ. Then ωr is a character of T which factors
through φ(T ). It defines a character µ of φ(T ) with differential equal to
the restriction to t of the specialization of r(λ + ρ). This in turn implies
that c 7−→ µ(cσ(c)) is a character of C with the differential equal to the
specialization of r(λ+ σQλ+ ρ+ σQρ). Therefore, r(λ+ σQλ) is a weight.

To prove (ii), without loss of generality, we can assume that G̃ is simply
connected. Let B̃x denote the Borel subgroup of G̃ with Lie algebra bx and
C̃ the complex torus in G̃ with Lie algebra c. Let c ∈ C. Then cσ(c) ∈ Sx.
Since the exponential map from c onto C is surjective, any c ∈ C is of the
form c = exp(ξ) for some ξ ∈ c. This implies cσ(c) = exp(ξ + σ(ξ)) ∈ Sx. In
particular cσ(c) lies in the connected component of Sx.
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Let ω denote the representation of the stabilizer Sx induced by the con-
nection τ on Q, which is compatible with λ+ ρ. Then

ω(cσ(c)) = exp((λ+ ρ)(ξ + σ(ξ))) = exp(λ+ σQλ+ ρ+ σQρ)(ξ)).

On the other hand, if µ(ξ) ∈ 2πiZ for any µ ∈ P (Σ), c = exp(ξ) is equal to
the identity in G̃, and exp(λ + σQλ)(ξ) = 1. This implies λ + σQλ ∈ P (Σ).
Therefore, for any root α ∈ Σ, we have α (̌λ) + (σQα)̌ (λ) ∈ Z, and α ∈ Σλ

is equivalent to σQα ∈ Σλ.
Let Q be a K-orbit in X and iQ : Q −→ X the natural inclusion. Assume

that Q is not a Langlands orbit, i.e., the set D+(Q) is not empty. Let w ∈ W
satisfy the conditions of 6.9, i.e., Σ+

w ⊂ D+(Q) and Σ+
w ∩ σQ(Σ+

w) = ∅. There
we defined the K-orbit Qw = p1(p−1

2 (Q)). Since p1 : p−1
2 (Q) −→ Qw is an

isomorphism, p2 composed with the inverse of this map induces a natural
projection of Qw onto Q. This fibration is locally trivial and its fibers are
isomorphic to Cℓ(w).

Let x be a point of Q, c a σ-stable Cartan subalgebra contained in bx, and
R+ the set of positive roots in the root system R of (g, c) corresponding to the
orbit Q. Fix λ ∈ h∗. The homogeneous twisted sheaf of differential operators
Dλ on X induces a homogeneous twisted sheaf of differential operators (Dλ)iQ

on the orbit Q. Let τ be a K-homogeneous connection on Q compatible with
(Dλ)iQ . This means that the differential of the corresponding representation
of the stabilizer K ∩Bx of x is a direct sum of copies of the one dimensional
representation of k ∩ bx given by the specialization of λ + ρ. Let q2 be the
restriction of p2 to p−1

2 (Q). Then we have the following commutative diagram:

p−1
2 (Q) j−−−−→ Zw

q2

y p2

y
Q

iQ−−−−→ X

Since the orbit map iQ is an affine immersion and p2 is a locally trivial fi-
bration, we conclude that j is also an affine immersion. Therefore, by base
change ([5], VI.8.4) we see that:

p∗
2(I(Q, τ)) = p∗

2(R0iQ+(τ)) = R0j+(q∗
2(τ)).

Let Tw be the inverse of the invertible OZw -module of top degree relative
differential forms for the projection p1 : Zw −→ X. Then

Tw ⊗OZw
p∗

2(I(Q, τ)) = Tw ⊗OZw
R0j+(q∗

2(τ)) = R0j+(j∗(Tw) ⊗O
p−1

2 (Q)
q∗

2(τ)).
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Therefore,

Rqp1+(Tw ⊗OZw
R0j+(q∗

2(τ))) = Rqp1+(R0j+(j∗(Tw) ⊗O
p−1

2 (Q)
q∗

2(τ)))

= Rq(p1 ◦ j)+(j∗(Tw) ⊗O
p−1

2 (Q)
q∗

2(τ)).

The map p1 ◦ j induces an isomorphism q1 of p−1
2 (Q) onto Qw, so

Rqp1+(Tw ⊗OZw
R0j+(q∗

2(τ))) = RqiQw+(R0q1+(j∗(Tw) ⊗O
p−1

2 (Q)
q∗

2(τ))).

Since the orbit map iQw is an affine immersion, these expressions vanish for
q ̸= 0. Hence, if we put

τw = q1+(j∗(Tw) ⊗O
p−1

2 (Q)
q∗

2(τ)),

this is a K-homogeneous connection on Qw and we see that

R0p1+(Tw ⊗OZw
p∗

2(I(Q, τ))) = I(Qw, τw).

By the definition of the intertwining functors, this gives

L0Iw(I(Q, τ)) = I(Qw, τw)

and
LqIw(I(Q, τ)) = 0

for q ̸= 0. To describe τw more explicitly, we let qw denote the natural pro-
jection of Qw onto Q which we described previously. Then

τw = q1+(j∗(Tw) ⊗O
p−1

2 (Q)
q∗

2(τ)) = q1+(j∗(Tw)) ⊗OQw
q∗

w(τ).

Since Tw = p∗
1(O(ρ− wρ)), we also conclude that

q1+(j∗(Tw)) = i∗Qw
(O(ρ− wρ)).

Therefore, we finally get

τw = q∗
w(τ) ⊗OQw

i∗Qw
(O(ρ− wρ)).

Let x ∈ Qw. Then the stabilizer of x in K is a quotient of the stabilizer of
qw(x) ∈ Q by a unipotent normal subgroup. Therefore, the quotient map
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induces a bijection between irreducible algebraic representations of these sta-
bilizers. This implies that τ −→ q∗

w(τ) is a bijection between irreducible
K-homogeneous connections on Q compatible with λ+ ρ and irreducible K-
homogeneous connections on Qw compatible with wλ+wρ. We have proved:

Lemma 7.2. Let Q be an arbitrary K-orbit in X. Suppose w ∈ W satisfies
Σ+

w ⊂ D+(Q) and Σ+
w ∩ σQ(Σ+

w) = ∅. Then:

(i) the map τ 7−→ τw is a bijection between irreducible K-homogeneous
connections on Q compatible with λ+ρ and irreducible K-homogeneous
connections on Qw compatible with wλ+ ρ;

(ii) for any standard Harish-Chandra module I(Q, τ), we have

LIw(D(I(Q, τ))) = D(I(Qw, τw)).

Let (g, K) be an arbitrary Harish-Chandra pair. Let Θ be a subset of
the set of simple roots Π. Then it defines the generalized flag variety XΘ
of all parabolic subalgebras of type Θ. Let pΘ : X −→ XΘ be the natural
projection.

Let O be a K-orbit of K in XΘ. Then V = p−1
Θ (O) is a smooth subvariety

of X and a union of K-orbits. Denote by j the natural immersion of V into X.
Then Dλ defines a K-equivariant twisted sheaf of differential operators Dj

λ on
V . Let Mcoh(Dj

λ, K) be the category of K-equivariant coherent Dj
λ-modules.

Let o ∈ O and Xo = p−1
Θ (o) the fiber over o. Denote by s : Xo −→ V the

natural immersion of the fiber Xo into V . Then j ◦ s is the natural immersion
of Xo into X. Let Po be the stabilizer of o in G = Int(g), and Uo its unipotent
radical. Let Lo = Go/Uo and Go the quotient of Lo by its center. Let τ be the
natural homomorphism of Po into Go. Then its differential defines a surjective
morphism of the Lie algebra po onto go. This map induces an identification
of the fiber Xo with the flag variety of go, which maps any Borel subalgebra
b of g contained in po into b/(b ∩ ker τ). These maps induce a canonical
isomorphism of the Cartan algebra h of g with the product of the center
of the Lie algebra lo of Lo with the Cartan algebra ho of go. Therefore, we
get a natural splitting of h∗ into the subspace spanned by roots in Θ and
the complement h∗(Θ) = {µ ∈ h∗ | α (̌µ) = 0 for α ∈ Θ}, and h∗

o can be
identified with the first subspace. The root system Σo of go can be identified
with the root subsystem ΣΘ of Σ generated by Θ, and Σ+

o with ΣΘ ∩ Σ+. Let
r be the projection of h∗ onto h∗

o along h∗(Θ). Let ρo be the half-sum of roots
in Σ+

o . Then
α (̌ρ) = 2 = α (̌ρo)
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for any α ∈ Θ, hence r(ρ) = ρo. This implies

(Dj
λ)s = (Dλ)j◦s = (DX,λ+ρ)j◦s = DXo,r(λ+ρ) = Do

λo
,

where we put λo = r(λ) and we let Do
µ denote the homogeneous twisted sheaf

on Xo attached to µ ∈ h∗
o.

The subgroup φ−1(φ(K)∩Po) acts on Xo, and this action factors through
Ko = φ−1(φ(K) ∩ Po)/φ−1(φ(K) ∩ ker τ). The pair (go, Ko) is a Harish-
Chandra pair, since Ko-orbits in Xo are exactly the intersections of K-orbits
with Xo. Since the K-orbits are affinely imbedded in X by the result in
Appendix A, it follows that Ko-orbits are affinely imbedded in Xo.

Consequently, the inverse image functor s+ is an additive functor from
the category Mcoh(Dj

λ, K) into the category Mcoh(Do
λo
, Ko).

Lemma 7.3. The functor s+ : Mcoh(Dj
λ, K) −→ Mcoh(Do

λo
, Ko) is exact. It

is an equivalence of categories.

This is certainly a known fact (compare [6], 3.10).
Consider now the special case when Θ consists of one simple root α. Then

go
∼= sl(2,C), Σo = {α,−α} and Σ+

o = {α}. In this case, we have go
∼= sl(2,C)

and the connected component of Ko is one of the groups listed in 4.1. By 6.5,
we have the following possibilities:

(a) If α is compactQ-imaginary, the identity component ofKo is isomorphic
to either SL(2,C) or PSL(2,C).

(b) If α is Q-complex the unipotent radical of Ko is nontrivial.
(c) If α is either noncompact Q-imaginary or Q-real, the identity compo-

nent of Ko is a one dimensional torus.

In the case (c), we generalize the definition of the SL2-parity condition
from §4. By 6.5, if α is Q-real, the Ko-orbit Qo = Q ∩ Xo is open in Xo.
Hence, for any irreducibleK-homogeneous connection τ , theKo-homogeneous
connection τo can be viewed as a homogeneous connection on C∗ ⊂ P1. If this
connection satisfies the parity condition from §4, we say that τ satisfies the
SL2-parity condition with respect to the simple Q-real root α.

As in §2, let I denote the intertwining functor Isα for go
∼= sl(2,C).

Lemma 7.4. Let λ ∈ h∗. For any V ∈ Mqc(Dλ) we have

R(j ◦ s)!(LIsα(D(V))) = LI(R(j ◦ s)!(D(V))).

Proof. Put s′ = j ◦ s. The morphism s′ × s′ : Xo × Xo −→ X × X is an
identification of Xo ×Xo with its image in X×X. The intersection of Xo ×Xo
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with Zα consists of pairs (bx, bx′), bx, bx′ ⊂ po, which are in relative position
sα. Since pα is a parabolic subalgebra of type α, any two Borel subalgebras
of g contained in it are either in relative position sα, or they are equal. This
implies that the inverse image (s′ × s′)−1(Zsα) is the complement Zo of the
diagonal in Xo ×Xo. Denote by s̄ the isomorphism of Zo onto (Xo ×Xo)∩Zsα .
Then we have the commutative diagram

Zo
s̄−−−−→ Zsα

p01

y p1

y
Xo

s′
−−−−→ X

,

and by base change ([5], VI.8.4),

Rs′! ◦Rp1+ = Rp01+ ◦Rs̄!.

On the other hand,

Rs̄!(Tsα ⊗OZsα
p+

2 (V)) = T0sα ⊗OZ0
Rs̄!(p+

2 (V)),

and since
Z0

s̄−−−−→ Zsα

p02

y p2

y
X0

s′
−−−−→ X

is also commutative,

Rs̄!(p+
2 (V)) = R(p2 ◦ s̄)!(V)[− dimX + 1]

= R(s′ ◦ p02)!(V)[− dimX + 1] = p+
02(Rs!(V)),

which finally implies the assertion.

In some cases, the lemma reduces the calculation of the action of the
intertwining functor LIsα on a standard module to an SL2-calculation.

Let Q be a K-orbit and V = p−1
α (pα(Q)). Assume that V is a Harish-

Chandra sheaf supported in V̄ . Then, by Kashiwara’s theorem, Rpj!(V) = 0
for p ̸= 0, and j!(V) is in Mcoh(Dj

λ, K). By 3.1 and 3.4, the support of LpIsα

is also contained in V̄ . Therefore, the same applies to these Harish-Chandra
sheaves. Hence, by the preceding lemma, we see that

s+(j!(LqIsα(V))) = LqI(s+(j!(V)))
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for any q ∈ Z. Assume that V is irreducible Harish-Chandra sheaf with sup-
port Q̄, i.e., V = L(Q, τ). Then, since the restriction of an irreducible D-
module is either irreducible or 0, we see that the restriction of L(Q, τ) to
the complement of ∂V is irreducible. By Kashiwara’s equivalence of cate-
gories, j!(L(Q, τ)) is an irreducible object in Mcoh(Dj

λ, K). Moreover, by 7.3,
s+(j!(L(Q, τ))) is an irreducible object in Mcoh(Dλo , Ko). Hence, it is equal
to L(Qo, τo), where Qo = Q∩S and τo is the restriction of τ to Qo. It follows
that

s+(j!(LqIsα(L(Q, τ)))) = LqI(L(Qo, τo))
for any q ∈ Z. Assume that α (̌λ) ∈ Z. Then, by 2.16, either Isα(L(Q, τ)) =
0 (and I(L(Qo, τo)) = 0) or L−1Isα(L(Q, τ)) = 0 (and L−1I(L(Qo, τo)) =
0). This leads immediately to the following generalization of 4.14. It is an
unpublished result of Beilinson and Bernstein, which is a special case of 2.18.

Lemma 7.5. Let α ∈ Π and α (̌λ) ∈ Z. Then Isα(L(Q, τ)) = 0 if and only
if either

(i) α is compact Q-imaginary root; or
(ii) α is a Q-complex root such that −σQα is positive; or

(iii) α is a Q-real root which doesn’t satisfy the SL2-parity condition.

Proof. Consider the cases (a), (b) and (c) we discussed before. If (a) holds,
α is compact Q-imaginary and Isα(L(Q, τ)) = 0 by 4.14. If (b) holds, α is
Q-complex. If σQ(α) is a positive root, Qo is a point and Isα(L(Q, τ)) ̸= 0 by
4.14. If σQ(α) is a negative root, Qo is open in Xo and Isα(L(Q, τ)) = 0. If
(c) holds, α is either noncompact Q-imaginary or Q-real. In the first case, Qo

is either one or two points, and Isα(L(Q, τ)) ̸= 0 by 4.14. In the second case,
Qo is the open orbit in Xo. By 4.14, Isα(L(Q, τ)) = 0 holds if and only if the
SL2-parity condition fails for τ .

Assume now that V is affinely imbedded in X. Since the fibration pα :
X −→ Xα is locally trivial, this is the case if pα(Q) is affinely imbedded in
Xα. As we have seen in 6.15, pα(Q) is affinely imbedded in Xα if the root α
is either Q-imaginary or Q-real. Then p−1

2 (V ) is a smooth subvariety of Zsα .
Moreover, since V is affinely imbedded and p2 : Zsα −→ X is locally trivial,
it is also affinely imbedded in Zsα . Let q2 be the restriction of p2 to p−1

2 (V ).
Then we have the following commutative diagram:

p−1
2 (V ) k−−−−→ Zsα

q2

y p2

y
V

j−−−−→ X

.
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Since k is an affine immersion, and p2 and q2 are submersions, from base
change ([5], VI.8.4) we see:

p∗
2(j+(V)) = k+(q∗

2(V)),

for any Dj
λ-module V . Also,

Tsα ⊗OZsα
p∗

2(j+(V)) = Tsα ⊗OZsα
k+(q∗

2(V)) = k+(k∗(Tsα) ⊗O
p−1

2 (V )
q∗

2(V)).

Therefore,

Rqp1+(Tsα ⊗OZsα
p∗

2(j+(V))) = Rqp1+(k+(k∗(Tsα) ⊗O
p−1

2 (V )
q∗

2(V)))

= Rq(p1 ◦ k)+(k∗(Tsα) ⊗O
p−1

2 (V )
q∗

2(V)).

Since V = p−1
α (pα(Q)), we see that p−1

2 (V ) = p−1
1 (V ). Hence, if we denote

by q1 the restriction of p1 to p−1
2 (V ), we get the commutative diagram

p−1
2 (V ) k−−−−→ Zsα

q1

y p1

y
V

j−−−−→ X

.

From it we conclude that

Rq(p1 ◦ k)+ = Rq(j ◦ q1)+ = j+ ◦Rqq1+.

This implies

LqIsα(j+(V)) = j+(Rqq1+(k∗(Tsα) ⊗O
p−1

2 (V )
q∗

2(V))),

Hence, by Kashiwara’s theorem, we have

LqIsα(j+(V)) = j+(R0j!(LqIsα(j+(V))))

for all q ∈ Z.
If V is a coherent (Dj

λ, K)-module, by 7.3, R0j!(LqIsα(j+(V))) is com-
pletely determined by its restriction to Xo, i.e., by

s+(R0j!(LqIsα(j+(V))) = Rdim pα(Q)(j ◦ s)!(LqIsα(j+(V))).
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By 7.4 and base change, we have

R(j ◦ s)!(LIsα(D(j+(V)))) = LI(R(j ◦ s)!(D(j+(V))))
= LI(D(s+(V)))[− dim pα(Q)].

Hence
s+(R0j!(LqIsα(j+(V))) = LqI(s+(V)).

Clearly, since Q is a K-orbit in V , we have I(Q, τ) = iQ+(τ)) = j+(l+(τ)),
where l : Q −→ V is the natural inclusion. Hence the preceding identity,
combined with 4.5 and 4.12, leads to the following two propositions.

Proposition 7.6. Let λ ∈ h∗, Q be a K-orbit and τ a connection on Q

compatible with λ. Let α ∈ Π a compact Q-imaginary root. Then p = −α (̌λ)
is an integer, and

LIsα(D(I(Q, τ))) = D(I(Q, τ)(pα))[1].

Proof. In this case, by 6.5.(iii), we have Q = p−1
α (pα(Q)). Then, by Kashi-

wara’s equivalence of categories, R0j!(I(Q, τ)) = τ and Rqj!(I(Q, τ)) = 0 for
q ̸= 0. This implies

Rp(j ◦ s)!(I(Q, τ)) = Rps!(R0j!(I(Q, τ))) = Rps!(τ).

Hence Rp(j ◦ s)!(I(Q, τ)) = 0 for p ̸= dimQ− 1 = dim pα(Q), and

Rdim Q−1(j ◦ s)!(I(Q, τ)) = Rdim Q−1s!(τ) = s∗(τ) = τo,

where τo is the restriction of τ to Xo. By 4.5 and the preceding calculations,
we see that

Rq(j ◦ s)!(LqIsα(I(Q, τ))) = 0

for q ̸= −1, and

Rdim Q−1(j ◦ s)!(L−1Isα(I(Q, τ))) = L−1I(τo) = τo(pα)
= Rdim Q−1(j ◦ s)!(I(Q, τ))(pα) = Rdim Q−1(j ◦ s)!(I(Q, τ)(pα)).

This implies our statement.
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Consider now the case of a Q-real root α. In this situation, by 6.5.(iv),
Q is the open orbit in p−1

α (pα(Q)). The restriction to Qo = Xo ∩ Q of the
K-equivariant connection τ on Q defines a Ko-equivariant connection τo on
C∗. We say that τ on Q satisfies the SL2-parity condition with respect to α if
Rdim Q−1s!(I(Q, τ)) = I(Qo, τo) satisfies the SL2-parity condition.

Moreover, since α is a Q-real root, the twisted sheaves DiQ

λ and DiQ

sαλ

correspond to the same invariant linear form on k∩bx, i.e., they are naturally
isomorphic. Since the stabilizer Sx of x ∈ Q in K maps into the stabilizer S
of 1 in Xo

∼= P1, we see that there is a point x̃ in Q which corresponds to −1
in Xo

∼= P1, such that Sx̃ = Sx. Let τ be a K-homogeneous connection on
Q corresponding to the representation ω of Sx in the geometric fiber Tx(τ).
Then there exists a unique K-homogeneous connection τsα on Q such that
ω is the representation of Sx̃ = Sx in Tx̃(τsα). It can be interpreted as a
K-homogeneous DiQ

sαλ-connection on Q.

Proposition 7.7. Let Q be a K-orbit in X, α ∈ Π a Q-real root and λ ∈ h∗.
Assume that τ satisfies the SL2-parity condition with respect to α. Then

LIsα(D(I(Q, τ))) = D(I(Q, τsα)).

Proof. As in the preceding proof we first see, by base change, that Rp(j ◦
s)!(I(Q, τ)) = 0 for p ̸= dimQ− 1 and

Rdim Q−1(j ◦ s)!(I(Q, τ)) = I(Qo, τo, λo)

where Qo = Q ∩ Xo is the open orbit in Xo and τo is the restriction of τ to
Qo. On the other hand, by the calculation preceding 7.4 and 4.12,

Rdim Q−1(j ◦ s)!(LqIsα(I(Q, τ)) = LqI(I(Qo, τo, λ)) = 0

if q ̸= 0, and

Rdim Q−1(j ◦ s)!(Isα(I(Q, τ)) = I(I(Qo, τo, λ))
= I(Qo, τ̃o,−λ) = Rdim Q−1(j ◦ s)!(I(Q, τsα)).

As in the preceding argument, this implies our assertion.

In addition, if p = −α (̌λ) ∈ Z, we see from 4.13 that τsα
∼= τ ⊗OQ

i∗Q(O(pα)). Hence we have the following result.
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Corollary 7.8. Let Q be a K-orbit in X, α ∈ Π a Q-real root and λ ∈ h∗.
Assume that p = −α (̌λ) ∈ Z, and that τ satisfies the SL2-parity condition
with respect to α. Then

LIsα(D(I(Q, τ))) = D(I(Q, τ)(pα)).

Finally, we have to introduce the notion of the SL2-parity condition with
respect to an arbitrary Q-real root α. Let x ∈ Q and ω the representation of
the stabilizer Sx of x in K in the geometric fiber Tx(τ). Then, as we explained
at the end of §6, to α we attach an element nα ∈ Sx of x in K. We say that
τ satisfies the SL2-parity condition with respect to α if the spectrum of the
linear transformation ω(nα) does not contain −e±iπαˇ(λ)δQ(φ(nα)). Since nα

is determined up to inversion, this condition does not depend on the choice
of nα. By 6.23, if α ∈ Π it agrees with the previous defined parity condition.
Moreover, for g = sl(2,C) this condition agrees with the one in §4.

The next result describes how the parity condition behaves under the
action of intertwining functors.

Lemma 7.9. (i) Let τ and τw be the connections on Q and Qw respectively,
as in 7.2, and α a Q-real root. Then wα is a Qw-real root and the following
conditions are equivalent:

(a) τ satisfies the SL2-parity condition with respect to α;
(b) τw satisfies the SL2-parity condition with respect to wα.

(ii) Let α be a Q-real root and τ and τsα the K-homogeneous connections
on Q as in 7.7. Let β be a Q-real root. Then sαβ is a Q-real root and the
following conditions are equivalent:

(a) τ satisfies the SL2-parity condition with respect to β;
(b) τsα satisfies the SL2-parity condition with respect to sαβ.

Proof. (i) Let x ∈ Q and c a σ-stable Cartan subalgebra contained in bx.
Denote by C the torus with Lie algebra c in G = Int(g). Then there exists
x′ ∈ Qw such that c ⊂ bx′ . Therefore, by 6.22, the stabilizers Sx and Sx′ of x
and x′ in K have a common Levi factor T = φ−1(φ(K) ∩C). Let ω and ω′ be
the representations of Sx and Sx′ respectively in geometric fibers of τ and τw.
Let s and s′ be the specializations determined by the Cartan subalgebra c in
bx and bx′ respectively. Then s′ = s ◦ w. Since σQw = w ◦ σQ ◦ w−1 by 6.11,
we see that wα is a Qw-real root if and only if α is a Q-real root. Moreover,
the elements nβ, β ∈ ΣQw,R, and n′

γ , γ ∈ ΣQ,R, of T attached to these two
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specializations satisfy nα = n′
wα for α ∈ ΣQ,R. From 6.11 we see that

δQw =
∏

β∈Σ+
w−1

eβ
∏
β∈A

ewβ,

where A is a set of representatives of the (−σQ)-orbits in D−(Q), and where
the characters eα are defined via the specialization s′. Since ρ−wρ is the sum
of roots in Σ+

w−1 , we have

δQw(φ(n′
wα)) = eρ−wρ(φ(n′

wα))δQ(φ(nα)),

and finally

ω′(n′
wα)δQw(φ(n′

wα)) = ω(n′
wα)eρ−wρ(φ(n′

wα))δQw(φ(n′
wα))
= ω(nα)δQ(φ(nα)).

This implies (i), since τ is a DiQ

λ -connection and τw is a DiQw

wλ -connection.
(ii) Clearly we have σQ(sαβ) = −β+α (̌β)α = −sαβ, and sαβ is a Q-real

root. Let x ∈ Q and ω the representation of the stabilizer Sx in the geometric
fiber Tx(τ). Let c be a σ-stable Cartan subalgebra in bx. Then there exists a
unique point x̃ ∈ Q different from x such that pα(x̃) = pα(x) and bx ⊃ c. The
stabilizer Sx̃ is equal to Sx. The specializations s and s̃ attached to the Cartan
subalgebra c at these two points differ by the reflection sα, hence the elements
nγ and ñγ , γ ∈ ΣQ,R, of the stabilizer attached to these two specializations
satisfy nγ = ñsαγ . Since the representations ω and ω̃ of the stabilizer Sx = Sx̃,
attached to τ at the points x and x̃ respectively, are conjugate, we see that
the spectrum of ω(nβ) is equal to the spectrum of ω̃(nsαβ) = ω̃(ñβ). The
representation of the stabilizer attached to τsα at x is ω̃, and the assertion
follows since τ is a DiQ

λ -connection and τsα is a DiQ

sαλ-connection.

Finally, we want to analyze the structure of the standard module I(Q, τ)
in the situation when α is a Q-real simple root, α (̌λ) ∈ Z and the SL2-parity
condition fails for τ with respect to α. Then I(Q, τ) = j+(l+(τ)) with l+(τ).
Clearly, l+(τ) is reducible by 7.3, since s+(l+(τ)) = I(Qo, τo) is reducible
by 4.10. Let K be its unique irreducible submodule corresponding under the
restriction s+ to L(Qo, τo). Then, by 7.3, we have the following exact sequence

0 −→ K −→ l+(τ) −→ Q −→ 0

where Q is the direct sum of irreducible standard (Dj
λ, K)-modules on V

attached to the K-orbits in V −Q. Since j+ is exact, this short exact sequence
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leads to the short exact sequence

0 −→ j+(K) −→ I(Q, τ) −→ j+(Q) −→ 0,

where j+(Q) is a direct sum of standard modules I(Q′, τ ′) for some K-orbits
Q′ in V − Q and irreducible K-homogeneous connections τ ′ on Q′. By 4.14
and a previous discussion, we also have Isα(j+(K)) = 0. This establishes the
following result.

Lemma 7.10. Let λ ∈ h∗, α ∈ Π, Q a K-orbit in X and τ an irreducible
K-homogeneous connection on Q compatible with λ + ρ. Assume that α is
Q-real, α (̌λ) ∈ Z and the SL2-parity condition fails for τ with respect to α.
Then the standard Harish-Chandra sheaf I(Q, τ) contains a Harish-Chandra
subsheaf C such that

(i) Isα(C) = 0;
(ii) the quotient I(Q, τ)/C is a direct sum of standard Harish-Chandra

sheaves on the K-orbits in p−1
α (pα(Q)) −Q.

Finally, the same discussion, combined with 4.11, leads to the following
result.

Lemma 7.11. Let λ ∈ h∗, α ∈ Π, Q a K-orbit in X and τ an irreducible
K-homogeneous connection on Q compatible with λ + ρ. Assume that α is
Q-imaginary root. Then the orbit Q is closed in p−1

α (pα(Q)). Let Q′ be the
open orbit in p−1

α (pα(Q)). Then there exists an irreducible K-homogeneous
connection τ ′ on Q′ such that I(Q, τ) is a quotient of I(Q′, τ ′).

In addition, if α (̌λ) ∈ Z, the kernel of the quotient map I(Q′, τ ′) −→
I(Q, τ) contains the Harish-Chandra sheaf C described in 7.10.

8. Irreducibility of standard Harish-Chandra sheaves

In this section we prove a necessary and sufficient condition for irreducibility
of standard Harish-Chandra sheaves.

We start with a necessary condition for irreducibility. We use the notation
from the preceding section. Let α ∈ Π and Q be a K-orbit. Denote V =
p−1

α (pα(Q)) and Xo = p−1
α (pα(x)) for some x ∈ Q. Let τ be an irreducible K-

homogeneous connection on Q compatible with λ+ ρ such that the standard
Harish-Chandra sheaf I(Q, τ) is irreducible. Clearly, V is a smooth subvariety
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of X and Q is affinely imbedded in V . Then we have the following diagram:

Q
i−−−−→ V∥∥∥ j

y
Q

iQ−−−−→ X

.

Therefore, by the base change

j!(I(Q, τ)) = i+(τ)

and this is an irreducible (Dj
λ, K)-module. Moreover, by 7.3, the restriction

s+(i+(τ)) is irreducible (Do
λo
, Ko)-module. If we denote by τo = s+(τ) the

restriction of τ to Qo = Q ∩ Xo, by the base change calculation, we get
s+(i+(τ)) = I(Qo, τo), i.e., it is a standard module on Xo. The following
result follows immediately from 6.5, 4.4 and 4.10.

Lemma 8.1. Let α ∈ Π and λ ∈ h∗. Let Q be a K-orbit in X and τ an
irreducible K-homogeneous connection on Q such that I(Q, τ) is irreducible.
Then:

(i) if α is Q-complex and σQα /∈ Σ+, we have α (̌λ) /∈ Z;
(ii) if α is Q-real, τ satisfies the SL2-parity condition with respect to α.

We shall use this result and intertwining functors to study the irreducibil-
ity of standard Harish-Chandra sheaves. We start with a discussion of a special
case.

Assume that Qo is the open orbit of K in X. Then it is the Langlands
orbit attached to the conjugacy class of maximally split σ-stable Cartan sub-
algebras of g. We say that the pair (g, K) is split if it satisfies the additional
assumption:

(sp) there exists a σ-stable Cartan subalgebra in g on which σ acts as −1.

This implies that all roots in Σ are Q-real.

Proposition 8.2. Let (g, K) be a split Harish-Chandra pair. Let I(Qo, τ) be
a standard Harish-Chandra sheaf on Qo. Then the following conditions are
equivalent:

(i) τ satisfies the SL2-parity condition for all α ∈ Σ;
(ii) I(Qo, τ) is an irreducible Harish-Chandra sheaf.
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Proof. Assume first that α ∈ Π and that it satisfies the SL2-parity condition.
Then, by 7.7, we have

Isα(I(Q, τ)) = I(Q, τ ′).

There are two possibilities:

(a) α (̌λ) /∈ Z. In this case Isα is an equivalence of categories. Hence I(Q, τ)
is irreducible if and only if I(Q, τ ′) is irreducible.

(b) p = −α (̌λ) ∈ Z. Then, by 7.8, we have

Isα(I(Q, τ)) = I(Q, τ ′) = I(Q, τ)(pα).

Hence, again I(Q, τ) is irreducible if and only if I(Q, τ ′) is irreducible.

By 7.9, this enables us to reduce the question of the SL2-parity condition for
an arbitrary root α to the case of simple root α. But in this case, the the
irreducibility implies that the SL2-parity condition holds by 8.1.(ii).

It remains to show the converse. Assume that τ satisfies the SL2-parity
condition for any root α. Then by the above discussion, for any w ∈ W we
have

Iw(I(Q, τ)) = I(Q, τw),
and I(Q, τ) is irreducible if and only if I(Q, τw) is irreducible. Assume that
I(Q, τ) is reducible. Let B be an irreducible quotient of I(Q, τ). Then its
support is irreducible and, by 3.1 and 3.5, there exists w ∈ W , with the
following property: supp Iw(B) is irreducible and dim supp Iw(B) = dimX −
1. Since Iw is right exact, we conclude that Iw(B) is a quotient of I(Q, τw).

Therefore, again by 7.9, it is enough to show that the SL2-parity condition
implies that there are no quotients of I(Q, τ) with irreducible support of
dimension dimX − 1. Assume that A is such quotient and that its support
is the closure of an orbit Q′ with dimQ′ = dimX − 1. Then there exists a
simple root α ∈ Π which is “transversal” to Q′, i.e., if pα : X −→ Xα is
the natural projection of X onto the variety Xα of all parabolic subalgebras
of type α, dim p−1

α (pα(Q′)) = dimQ′ + 1 = dimX. This implies that the
projection of Q′ into Xα is the open and dense orbit of K in Xα. The fiber
over an arbitrary point in this orbit is isomorphic to the flag variety Xo

∼= P1

of sl(2,C). Let s : P1 −→ X be the corresponding map. Since α is a Q-real
root, the identity component of Ko is a one dimensional torus by 6.5.(iv).
By base change, s+(I(Q, τ)) = I(Qo, τo) is a standard Harish-Chandra sheaf
on Xo corresponding to the restriction τo of τ to the open orbit Qo of Ko,
and it has a nontrivial quotient supported in {0}∪{∞}. Since the SL2-parity
condition holds for α this is impossible by 4.10.
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We shall use 8.2 to prove a necessary and sufficient criterion for the ir-
reducibility of standard Harish-Chandra sheaves on Zuckerman orbits. We
start with the following observation. Let O be a closed orbit of K in XΘ.
Then V = p−1

Θ (O) is a closed smooth subvariety of X and a union of K-
orbits. Let M≤O

coh(Dλ, K) be the full subcategory of Mcoh(Dλ, K) consisting
of modules supported in V . The direct image functor j+ is an equivalence
of the category Mcoh(Dj

λ, K) with M≤O
coh(Dλ, K). Its inverse is j!. This, in

combination with 7.3, leads to the following result.

Lemma 8.3. The functor Rdim O(j ◦ s)! is an equivalence of the category
M≤O

coh(Dλ, K) with Mcoh(Do
λo
, Ko).

Let Q be a Zuckerman orbit. Then Σ+ is a set of positive roots of Zuck-
erman type for (Σ, σQ). The set PQ = ΣQ,R ∪ Σ+ is a σQ-stable parabolic set
of roots by 5.10. Let Θ ⊂ Π be the corresponding set of simple roots, and XΘ
the generalized flag variety of all parabolic subalgebras of type Θ in g. Let
O = pα(Q). By 6.16.(ii), the orbit O is closed in XΘ.

The fiber Xo over y is identified with the flag variety of go. Since py is
σ-stable, the Lie algebra of φ−1(φ(K) ∩ Py) is equal to k ∩ py. Let c be a
σ-stable Cartan subalgebra in bx, R the root system of (g, c) in c∗, and R+

the set of positive roots determined by bx. Then py is spanned by the Borel
subalgebra bx and the root subspaces gα for all real roots α ∈ R. Clearly c
and gα, for all real roots α ∈ R, span a σ-stable Levi factor lo of py, and go is
canonically isomorphic to [lo, lo]. The center of lo is the intersection of kernels
of all real roots in c∗. The involution σ induces an involution σo on go

∼= [lo, lo].
Therefore, the Lie algebra ko of Ko can be identified with k ∩ [lo, lo] which is
the set of fixed points of σo. The intersection of c and [lo, lo] determines a
Cartan subalgebra of go on which σo acts as −1. Thus (go, Ko) is a split
Harish-Chandra pair.

Proposition 8.4. Let Q be a Zuckerman orbit in X, λ an element of h∗, and
τ a K-homogeneous connection on Q compatible with λ. Then the following
conditions are equivalent:

(i) τ satisfies the SL2-parity condition for all Q-real roots α ∈ Σ;
(ii) the standard module I(Q, τ) is irreducible.

Proof. Let Qo = Q∩Xo. Then Qo is a Ko-orbit in Xo of a Borel subalgebra of
go which contains a Cartan subalgebra on which σo acts as −1. This implies
that all roots in Σo are Qo-real, and that Qo is open in Xo. By base change,

Rdim O(j ◦ s)!(I(Q, τ)) = I(Qo, τo),
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where τo is the restriction of τ to Qo. Since all irreducible composition factors
of I(Q, τ) lie in M≤O

coh(Dλ, K), by 8.3, I(Q, τ) is irreducible if and only if
I(Qo, τo) is irreducible. Now τ satisfies the SL2-parity condition for all Q-real
roots if and only if τo satisfies the the SL2-parity condition for all Qo-real
roots, i.e., for all roots in Σo, so the assertion follows from 8.2.

Next, we prove a result which reduces the problem of irreducibility of
standard Harish-Chandra sheaves to the special case of Zuckerman orbits.

Lemma 8.5. Let Q be a Zuckerman orbit, λ ∈ h∗, and w ∈ W . Suppose
Σ+

w consists of Q-complex roots, and Σ+
w ∩ σQ(Σ+

w) = ∅. Then the following
conditions are equivalent:

(i) Σ+
w ∩ Σλ = ∅ and I(Q, τ) is irreducible Dλ-module;

(ii) I(Qw, τw) is irreducible Dwλ-module.

Proof. First we remark that in this case D+(Q) consists of all positive Q-
complex roots. If Σ+

w ∩ Σλ = ∅, by 2.9, the intertwining functor Iw is an
equivalence of the category Mqc(Dλ) with Mqc(Dwλ) and Iw−1 is its inverse.
By 7.2, we have

Iw(I(Q, τ)) = I(Qw, τw).

Therefore I(Q, τ) is irreducible if and only if I(Qw, τw) is an irreducible Dwλ-
module.

Now we shall prove, by induction on ℓ(w), that Σ+
w ∩ Σλ ̸= ∅ only if

I(Qw, τw) is a reducible Dwλ-module. If ℓ(w) = 0, w = 1 and Σ+
w = ∅, so the

assertion is obvious. Thus we assume the statement holds for all w′ ∈ W with
ℓ(w′) < k. Let ℓ(w) = k. Then w = sαw

′ for some α ∈ Π and w′ ∈ W with
ℓ(w′) = k − 1. As we remarked in §2, Σ+

w = {w′−1(α)} ∪ Σ+
w′ . Therefore, Σ+

w′

consists of Q-complex roots and Σ+
w′ ∩ σQ(Σ+

w′) = ∅. By 2.5 and 7.2, we have

I(Qw, τw) = Iw(I(Q, τ)) = Isα(Iw′(I(Q, τ))) = Isα(I(Qw′ , τw′)),

and L−1Isα(I(Qw′ , τw′)) = 0.
If w′−1(α) /∈ Σλ, i.e., α /∈ Σw′λ, we have Σ+

w ∩ Σλ = Σ+
w′ ∩ Σλ, and by the

induction assumption I(Qw′ , τw′) is a reducible Dw′λ-module if Σ+
w′ ∩ Σλ ̸= ∅.

Since, by 2.9, in this case Isα : Mqc(Dw′λ) −→ Mqc(Dwλ) is an equivalence
of categories, I(Qw, τw) is a reducible Dwλ-module if Σ+

w ∩ Σλ ̸= ∅.
If α ∈ Σw′λ, p = −α (̌w′λ) = α (̌wλ) is an integer, and −w−1α ∈ Σ+

w .
This implies that −w−1α is a positive Q-complex root, and −σQ(w−1α) /∈ Σ+

w .
Since σQw = w ◦ σQ ◦ w−1 by 6.11, we see that α is a Qw-complex root and
σQwα /∈ Σ+. By 8.1.(i) this implies that I(Q, τ) is reducible.



86 Henryk Hecht et al.

We shall need the following auxiliary result. Let g = sl(3,C) and σ an
involution on g given by σ(A) = J AJ−1, A ∈ g, with

J =

−1 0 0
0 −1 0
0 0 1

 .

Then σ is a Cartan involution for the real form su(2, 1) of sl(3,C). Let (g, K)
be a Harish-Chandra pair such that k is the Lie algebra of fixed points of σ.
For simplicity assume that K covers the subgroup of SL(3,C) consisting of
all matrices of the form  A

0
0

0 0 detA−1

 ,

where A is an arbitrary 2 × 2 matrix. Write ψ for the projection of K into
SL(3,C). Let c be the σ-stable Cartan subalgebra spanned by

H =

0 0 1
0 0 0
1 0 0

 and T =

1 0 0
0 −2 0
0 0 1

 ,

and C the corresponding Cartan subgroup of SL(3,C). Let R be the root
system of (g, c) in c∗. Then R contains a unique real root α such that the dual
root Hα is equal to H. The only other real root is −α, and the remaining
roots are complex. Recall the meaning of mα and nα, which were defined at
the end of §6. Note that

mα = exp(iπHα) =

−1 0 0
0 1 0
0 0 −1

 = exp(iπT ).

Lemma 8.6. (i) The subgroup S = ψ−1(ψ(K) ∩ C) of K is isomorphic to
C∗.

(ii) We can choose nα = exp(iπT ).
(iii) Let ω be a character of S and µ ∈ c∗ such that the differential of ω

agrees with the restriction of µ to the subspace of c spanned by T . If β is a
complex root such that β (̌µ) ∈ Z, we have

ω(nα) = e±iπαˇ(µ).
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Proof. (i) First we claim that ψ(K) ∩ C is the one-parameter subgroup in
SL(3,C) determined by T . Since the exponential map exp : c −→ C is surjec-
tive, any k ∈ ψ(K) ∩ C has the form k = exp(aT + bH). From k = σ(k) we
get k = exp(aT − bH) and k−1 = exp(−aT + bH). This implies 1 = exp(2bH)
and b ∈ iπZ. Since mα = exp(iπH) = exp(iπT ), the assertion follows.

We can identify ψ(K) with GL(2,C). Then π(A, z) = zA defines a ho-
momorphism of SL(2,C) × C∗ into ψ(K), which is a two-fold covering. The
nontrivial element of the kernel of π is (−I,−1). Since SL(2,C) is simply
connected, the fundamental group of ψ(K) is Z. For even n = 2k, the n-fold
covering of ψ(K) factors through SL(2,C)×C∗. Without any loss of generality
we can assume that K is the n-fold cover of ψ(K). Hence K ∼= SL(2,C) ×C∗

and ψ(A, z) = zkA. This implies that kerψ consists of all elements of the
form (I, ζ) and (−I, ei π

k ζ), where ζ is an arbitrary k-th root of unity. Since

T =

3
2 0 0
0 −3

2 0
0 0 0

+

−1
2 0 0

0 −1
2 0

0 0 1

 ,

and since the first matrix lies in the image of the Lie algebra of SL(2,C) and
the second in the center of k, we see that the first component of exp(zT ) ∈
K = SL(2,C) × C∗ is equal to

exp
(

3z
2 0
0 −3z

2

)
=
(
e

3z
2 0

0 e− 3z
2

)

for any z ∈ C∗, hence the second is equal to e− z
n . If z = 2πiq, q ∈ Z,

exp(2qπiT ) is one of the elements of kerψ, and all of them are obtained in
this way. This completes the proof of (i).

(ii) The matrix

T +Xα +X−α =

2 0 0
0 −2 0
0 0 0


lies in the image of sl(2,C). Therefore,

exp(iπ(T +Xα +X−α)) = exp

2πi 0 0
0 −2πi 0
0 0 0

 = 1
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in the image of SL(2,C), and this identity persists in K. Hence, in K,

exp(−iπ(Xα +X−α)) = exp(iπT ).

Since kα is spanned by Xα +X−α, and since

exp(t(Xα +X−α)) = exp

t 0 0
0 0 0
0 0 −t

 =

et 0 0
0 1 0
0 0 e−t

 ,
we see that

exp(t(Xα +X−α)) ̸= mα

for t /∈ iπ(2Z + 1). This implies that nα = exp(iπT ) is a possible choice for
nα.

(iii) We may assume that β is a complex root in c such that α = β − σβ.
Then α (̌β) = 1 and

eβ(mα) = eiπαˇ(β) = −1.

On the other hand,
eβ(mα) = eiπβ(T ),

so β(T ) is an odd integer and T is a weight in the dual root system. Since
exp(2πiT ) = 1, T lies in the dual root lattice. Analogously, we see that sT ,
0 < s < 1, does not lie in the dual root lattice. This implies β(T ) = ±1 and

T = ±(βˇ + (σβ)̌ ).

Hence

ω(nα) = eiπµ(T ) = eiπ(βˇ(µ)+(σβ)ˇ(µ)) = e−iπαˇ(µ)e2πiβˇ(µ) = e−iπαˇ(µ)

if T = βˇ + (σβ)̌ , and

ω(nα) = eiπµ(T ) = e−iπ(βˇ(µ)+(σβ)ˇ(µ)) = eiπαˇ(µ)e−2πiβˇ(µ) = eiπαˇ(µ)

otherwise.

Now we prove the irreducibility criterion in the general situation. Let
Q be K-orbit in X, σQ the induced involution on the root system Σ. As
explained in §5, the root system with involution (Σ,−σQ) determines a subset
C(Σ+) ⊂ D(Σ+) of Σ+, which we now denote by C−(Q).
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Theorem 8.7. Let Q be a K-orbit in X, λ an element of h∗, and τ an
irreducible K-homogeneous connection on Q compatible with λ+ ρ. Then the
following conditions are equivalent:

(i) C−(Q) ∩ Σλ = ∅, and τ satisfies the SL2-parity condition with respect
to every Q-real root in Σ;

(ii) the standard Dλ-module I(Q, τ) is irreducible.

Proof. By 6.13 there exist a Zuckerman orbit Q1 and w ∈ W , such that
Σ+

w−1 consists of Q1-complex roots, Σw−1 ∩ (−σQ1(Σw−1)) = ∅, Q = (Q1)w−1 ,
Σw ∩ (−σQ(Σw)) = ∅, and

D−(Q) = Σw ∪ (−σQ(Σw)).

Also there exists an irreducible K-homogeneous connection τ ′ on Q1 such
that τ = τ ′

w−1 . Then, by 8.5, the standard Dλ-module I(Q, τ) is irreducible
if and only if I(Q1, τ

′) is an irreducible Dwλ-module and Σw−1 ∩ Σwλ = ∅.
By 8.4, I(Q1, τ

′) is irreducible if and only if τ ′ satisfies the SL2-parity
condition for every Q1-real root in Σ. By 7.9.(i), this is equivalent to the
SL2-parity condition for τ and every Q-real root in Σ.

It remains to analyze the condition Σw−1 ∩ Σwλ = ∅, which is equivalent
also to Σw ∩ Σλ = ∅. We have to show that C−(Q) ∩ Σλ = ∅ is equivalent to
Σ+

w ∩ Σλ = ∅ when the SL2-parity condition is satisfied for all Q-real roots in
Σ.

By 5.6 we have Σ+
w ⊂ C−(Q), hence C−(Q)∩Σλ = ∅ implies Σ+

w ∩Σλ = ∅.
We still must prove the opposite implication when the SL2-parity condition
is satisfied for τ and all Q-real roots in Σ.

By 5.6, it is enough to establish the following statement:

(*) Assume the SL2-parity condition is satisfied for τ and all Q-real roots
in Σ. Let α ∈ ΣQ,C be such that either
(a) closed root subsystem Σα of Σ generated by α and σQα is of type

A1 × A1, or
(b) the closed root subsystem Σα of Σ generated by α and σQα is of

type A2, and α− σQα is a Q-real root.
Then either {α, σQα} ⊂ Σλ or {α, σQα} ∩ Σλ = ∅.

By 7.9, this statement is equivalent to the analogous statement for the
connection τ ′ on Q1. Therefore, in proving (*) we can assume without any
loss of generality that Q is a Zuckerman orbit.

Let x ∈ Q and c a σ-stable Cartan subalgebra in bx. Then, by the spe-
cialization corresponding to Q, the root subsystem Σα of Σ determines the
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semisimple Lie subalgebra generated by the root subspaces gβ, β ∈ Σα, which
we denote by g◦. By its construction g◦ is σ-invariant. Let σ◦ be the involution
on g◦ induced by σ. Its fixed point set is the subalgebra k◦ = k∩g◦. Let N(g◦)
be the connected component of the normalizer of g◦ in K, C(g◦) the connected
component of the centralizer of g◦ in K, and put K◦ = N(g◦)/C(g◦). Then
K◦ acts on g◦, and the differential of this action defines an isomorphism of the
Lie algebra of K◦ with k◦. Therefore (g◦, K◦) is a Harish-Chandra pair. The
subalgebra c◦ = g◦ ∩ c is a Cartan subalgebra of g◦, which lies in the Borel
subalgebra b◦ = g◦ ∩bx. If we let h◦ denote the Cartan algebra of g◦, we get a
natural injection h◦ −→ c◦ −→ c −→ h. This map induces a restriction map
h∗ −→ h∗

◦. The kernel of this map equals {µ ∈ h∗ | α (̌µ) = (σα)̌ (µ) = 0}.
The restriction map identifies the root subsystem Σα with the root system of
g◦ in h∗

◦ and maps Σ+
α = Σα ∩ Σ+ into a set of positive roots Σ+

◦ . The set of
simple roots Π◦ determined by Σ+

◦ corresponds to Πα under this identifica-
tion. In addition, if we let λ◦ denote the restriction of λ ∈ h∗ to h◦, we see
that β ∈ Σλ is equivalent to β ∈ (Σ◦)λ◦ for any β ∈ Σα.

In the case (a), g◦ ∼= sl(2,C)×sl(2,C), and σ◦ acts as σ◦(ξ, η) = (η, ξ) for
ξ, η ∈ sl(2,C). Thus k◦ is the diagonal in sl(2,C) × sl(2,C). This implies that
the group K◦ is a covering of the group PSL(2,C), i.e., it is either SL(2,C)
or PSL(2,C). In the first case, K◦ is the diagonal subgroup of SL(2,C) ×
SL(2,C), and in the second the diagonal subgroup of PSL(2,C) × PSL(2,C).
The Harish-Chandra pair (g◦, K◦) is therefore linear in this case. By 7.1.(ii),
(Σ◦)λ◦ is either empty or equal to Σ◦. This implies that either Σα ∩ Σλ = ∅
or Σα ⊂ Σλ. This proves (*) in this case.

In the case (b), g◦ = sl(3,C) and the Harish-Chandra pair (g◦, K◦) is the
one described before 8.6 (by passing to a finite cover of K◦ if necessary). Let
β = α−σα be the unique positive Q-real root in Σ+

α . Suppose {α, σQα}∩Σλ ̸=
∅. Then, without any loss of generality, we can assume that α (̌λ) ∈ Z.

Assume first β ∈ Π. Then β (̌ρ) = 1 and eiπβˇ(ρ) = −1. If ω is the rep-
resentation of the stabilizer Sx, by 8.6.(iii) we see that either ω(nβ)eiπβˇ(λ+ρ)

or ω(nβ)e−iπβˇ(λ+ρ) has an eigenvalue equal to 1. This implies that ω(nβ)
has an eigenvalue equal to −e±iπβˇ(λ). Hence the SL2-parity condition fails
for β, contrary to our assumption. It follows that α (̌λ) /∈ Z and we have a
contradiction.

Assume now that β is not simple. Since Q is a Zuckerman orbit, by 5.10
we see that the root system of Q-real roots has the set of all simple Q-
real roots as a basis. Therefore, β = w−1γ, where w is a product of simple
reflections with respect to Q-real roots, and γ a simple Q-real root satisfying
γ = wα−σQwα. By 7.9, the SL2-parity conditions hold for a connection τ ′ on
Q which is compatible with wλ + ρ. Therefore, by the preceding part of the
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proof, we conclude (wα)̌ (wλ) /∈ Z. This in turn implies that α (̌λ) /∈ Z, and
we have a contradiction again. Therefore {α, σQα} ∩ Σλ = ∅, and (*) holds
also in this case.

The preceding argument implies that we can replace C−(Q) by a smaller
subset which does not contain any element of the pair {α,−σQα} if Σα is
of type A2, since integrality with respect to one of these roots automatically
implies that the SL2-parity condition fails for the Q-real root β = α − σQα.
Since the integrality of λ with respect to a Q-complex root is easier to check
than the parity condition, it seems natural to leave this redundant condition.

The next corollary is the D-module version of a result of B. Speh and
D. Vogan ([20]). It can be deduced directly from 8.2, 8.4 and 8.5, skipping a
considerable amount of combinatorics related to C−(Q).

Corollary 8.8. Let (g, K) be a linear Harish-Chandra pair. Let Q be a K-
orbit, λ ∈ h∗. Then the following conditions are equivalent:

(i) D−(Q) ∩ Σλ = ∅, and τ satisfies the SL2-parity condition for every
Q-real root in Σ;

(ii) I(Q, τ) is an irreducible Dλ-module.

Proof. Using the notation from the preceding proof, by 7.1.(ii), it follows that
the condition Σ+

w ∩ Σλ = ∅ is equivalent to

D−(Q) ∩ Σλ = (Σ+
w ∪ (−σQΣ+

w)) ∩ Σλ = ∅

for linear Harish-Chandra pairs. This, in conjunction with the preceding
proof, completes the argument.

9. Geometric classification of irreducible Harish-Chandra
modules

In this section we describe the geometric classification of irreducible Harish-
Chandra modules due to Beilinson and Bernstein [3].

Let V be an irreducible Harish-Chandra module. We can view V as an
irreducible object in the category Mfg(Uθ, K). Clearly, the real parts of the
elements of θ form a Weyl group orbit Re θ and contain a unique strongly
antidominant element. If we fix a strongly antidominant λ ∈ θ, Reλ is in-
dependent of the choice of λ. By 2.15.(ii), there exists a unique irreducible
Dλ-module V such that Γ(X,V) = V . Since this Dλ-module must be a Harish-
Chandra sheaf, it is of the form L(Q, τ) for some K-orbit Q in X and irre-
ducible K-homogeneous connection τ on Q. Hence, there is a unique pair
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(Q, τ) such that Γ(X,L(Q, τ)) = V . Therefore, if σQ is the involution deter-
mined by Q, we can define

λQ = 1
2(λ− σQλ)

and
λQ = 1

2(λ+ σQλ).

Clearly, λ = λQ + λQ. Moreover, by 7.1.(i), we have α (̌λQ) ∈ R, i.e., λQ is a
real linear form on h∗. In addition,

λQ + ReλQ = Reλ

is an invariant which depends only on θ.
If λ is in addition regular, the above correspondence gives a parametriza-

tion of equivalence classes of irreducible Harish-Chandra modules by all pairs
(Q, τ). On the other hand, if λ is not regular, some of pairs (Q, τ) corre-
spond to irreducible Harish-Chandra sheaves L(Q, τ) with Γ(X,L(Q, τ)) = 0.
Therefore, to give a precise formulation of this classification of irreducible
Harish-Chandra modules, we have to determine a necessary and sufficient
condition for nonvanishing of global sections of irreducible Harish-Chandra
sheaves L(Q, τ).

Let λ ∈ h∗ be strongly antidominant and Q a K-orbit in X.
If α is Q-imaginary root, its dual root αˇ vanishes on λQ, and α (̌λ) is

real.
Let

Σ0 = {α ∈ Σ | Reα (̌λ) = 0}.

Put Σ+
0 = Σ0 ∩ Σ+ and Π0 = Π ∩ Σ0. Since λ is strongly antidominant, Π0 is

the basis of the root system Σ0 determined by the set of positive roots Σ+
0 .

Let W0 be the Weyl group of Σ0.
Let Σ1 = Σ0 ∩ σQ(Σ0); equivalently, Σ1 is the largest root subsystem of

Σ0 invariant under σQ. Let Σ+
1 = Σ1 ∩ Σ+, and Π1 the corresponding basis

of the root system Σ1. Clearly, Π0 ∩ Σ1 ⊂ Π1, but this inclusion is strict in
general.

If α ∈ Π0, there are the following possibilities:

(i) α is Q-imaginary root and α (̌λ) = 0;
(ii) α is Q-complex and σQα is positive;
(iii) α is Q-complex, −σQα is positive;
(iv) α is Q-real.
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Simple roots in Π0 of type (i) and (iv) are automatically in Π1. The roots in
Π0 − Π1 must be of type (ii) or (iii).

Let
Σ2 = {α ∈ Σ1 | α (̌λ) = 0}.

If α ∈ Σ1, by a previous remark, we have

α (̌λQ) = 1
2(Reα (̌λ) + Re(σQα)̌ (λ)) = 0.

Therefore, it follows that for α ∈ Σ2, we have (σQα)̌ (λ) = 0 and σQα ∈ Σ2.
Hence, Σ2 is also σQ-invariant. Let Σ+

2 = Σ2 ∩ Σ+, and Π2 the corresponding
basis of the root system Σ2. Again, Π0 ∩ Σ2 ⊂ Π1 ∩ Σ2 ⊂ Π2, but these
inclusions are strict in general.

The next theorem gives the simple necessary and sufficient condition for
Γ(X,L(Q, τ)) ̸= 0, that was alluded to before. In effect, this completes the
classification of irreducible Harish-Chandra modules.

Theorem 9.1. Let λ ∈ h∗ be strongly antidominant. Let Q be a K-orbit in
X and τ a K-homogeneous irreducible connection on Q compatible with λ+ρ.
Then the following conditions are equivalent:

(i) Γ(X,L(Q, τ)) ̸= 0;
(ii) the following conditions hold for the pair (Q, τ):

(a) the set Π2 contains no compact Q-imaginary roots;

(b) for any Q-complex root α ∈ Σ+ with α (̌λ) = 0, the root σQα is
also positive;

(c) for any Q-real α ∈ Σ with α (̌λ) = 0, τ must satisfy the SL2-parity
condition with respect to α.

The proof is based on the following lemma.

Lemma 9.2. Let D−(Q) ∩ Π0 = ∅. Then

(i) Π1 ⊂ Π0;
(ii) D−(Q) ∩ Σ+

0 = ∅.

Proof. (i) Let Π′ = Π0 ∩ Σ1. Let β ∈ Σ+
1 . Then β =

∑
α∈Π0 nαα, nα ∈ Z+,

and
σQβ =

∑
α∈Π′

nασQα +
∑

α∈Π0−Π′

nασQα.
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Since Σ1 is σQ-invariant, σQβ and σQα, α ∈ Π′, are in Σ1. This implies that∑
α∈Π0−Π′

nασQα ∈ Q(Σ1) ⊂ Q(Σ0).

Hence, with respect to the canonical inner product on h∗
0, we have

0 =

 ∑
α∈Π0−Π′

nασQα

∣∣∣∣Reλ

 =
∑

α∈Π0−Π′

nα(σQα | Reλ).

Since Π0 does not contain roots of type (iii), roots α ∈ Π0 −Π′ are of type (ii).
Hence, the σQα are positive roots and (σQα | Reλ) ≤ 0. On the other hand,
α /∈ Σ1 leads to (σQα| Reλ) ̸= 0. Therefore, (σQα | Reλ) < 0 for α ∈ Π0 −Π′,
and nα = 0 for these roots. It follows that β =

∑
α∈Π′ nαα, i.e., Π′ is a basis

of Σ1. Hence, Π1 = Π′ ⊂ Π0.
(ii) Let β ∈ D−(Q) ∩ Σ+

0 . Since β is a positive root in Σ0, we have
β =

∑
α∈Π0 mαα with mα ∈ Z+. By our assumption Π0 consists of simple

roots of type (i), (ii) and (iv) only. Therefore, Π0 = Π′
0∪Π′′

0 where Π′
0 contains

the simple roots of type (i) and (iv) and Π′′
0 contains the simple roots of type

(ii). Since Π′
0 ⊂ Π1, we have Re(σQα)̌ (λ) = 0 for α ∈ Π′

0. On the other hand,
σQα are positive roots for α ∈ Π′′

0, hence Re(σQα)̌ (λ) ≤ 0. Since σQβ is a
negative root, it follows that

0 ≤ (σQβ| Reλ) =
∑

α∈Π0

mα(σQα| Reλ)

=
∑

α∈Π′
0

mα(σQα| Reλ) +
∑

α∈Π′′
0

mα(σQα| Reλ) =
∑

α∈Π′′
0

mα(σQα| Reλ) ≤ 0.

Hence, Re(σQβ)̌ (λ) = 0, i.e., we have σQβ ∈ Σ0. Therefore, we proved
that β ∈ Σ+

1 , i.e., we have

D−(Q) ∩ Σ+
0 = D−(Q) ∩ Σ+

1 .

Since Σ1 is σQ-invariant, by 5.4, we see that Π1 ∩ D−(Q) = ∅ implies Σ1 ∩
D−(Q) = ∅. Therefore, we have D−(Q) ∩ Σ+

0 = ∅.

Now we can prove 9.1. Let α ∈ Π0 be such that α (̌λ) ̸= 0. Then
α (̌λ) is purely imaginary and sαλ is also strongly antidominant. Hence,
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Isα : Mqc(Dλ) −→ Mqc(Dsαλ) is an equivalence of categories by 2.9. There-
fore,

Isα(L(Q, τ)) = L(Q′, τ ′),

for some K-orbit Q′ and an irreducible K-homogeneous connection on Q′

compatible with sαλ+ ρ. Also, by 2.10, we have

Γ(X,L(Q, τ)) = Γ(X,L(Q′, τ ′)).

Therefore, the conditions (i) for L(Q, τ) and L(Q′, τ ′) are equivalent.
We claim that the conditions (ii) for L(Q, τ) and L(Q′, τ ′) are also equiv-

alent. Clearly, α is either Q-complex or Q-real.
Assume first that α is Q-complex. By 6.5.(v), the set p−1

α (pα(Q)) is
union of two K-orbits Q and Q′′. Since Isα : Mqc(Dλ) −→ Mqc(Dsαλ) and
Isα : Mqc(Dsαλ) −→ Mqc(Dλ) are equivalences of categories, by 7.2, there ex-
ists a connection τ ′′ on Q′′ compatible with sαλ+ρ such that Isα(I(Q′′, τ ′′)) =
I(Q, τ). It follows that Isα(L(Q, τ)) = L(Q′′, τ ′′). Therefore, Q′ = Q′′ and
τ ′ = τ ′′. Since the situation is completely symmetric, without any lack of gen-
erality, by possible switching of the roles of the pairs (Q, τ) and (Q′, τ ′), we can
assume that dimQ′ = dimQ−1. Since σQ′ = sα ◦σQ ◦sα by 6.11, we see that
sα maps compact Q-imaginary, noncompact Q-imaginary, Q-complex and Q-
real roots into compact Q′-imaginary, noncompact Q′-imaginary, Q′-complex
and Q′-real roots respectively. In addition, Σ0 is sα-invariant. Hence, sα maps
Σ1 into Σ1

′ and Σ2 into Σ2
′. Since α is not in Σ2, sα maps Σ+

2 into (Σ2
′)+.

Therefore, sα maps Π2 into Π′
2. Therefore, the conditions (ii)(a) for L(Q, τ)

and L(Q′, τ ′) are equivalent. By 7.9.(i), the conditions (ii)(c) for L(Q, τ) and
L(Q′, τ ′) are also equivalent. By 6.11, D−(Q) = sα(D−(Q′)) ∪ {α,−σQα}.
Therefore, D−(Q) ∩ Σ+

0 consists of sα(D−(Q′) ∩ Σ+
0 ), α and possibly −σQα

(if it is in Σ+
0 ). Since Imα (̌λ) ̸= 0 and α (̌λQ) is real, we see that

Im(σQα)̌ (λ) = − Imα (̌λ) ̸= 0.

Hence, the conditions (ii)(b) for L(Q, τ) and L(Q′, τ ′) are also equivalent.
If α is Q-real, Isα(I(Q, τ)) = I(Q, τsα) by 7.7. Hence, Isα(L(Q, τ)) =

L(Q, τsα) and Q′ = Q and τ ′ = τsα in this case. Since sα commutes with σQ,
it follows that it maps Σ1 into Σ′

1 and Σ2 into Σ′
2. Since α is not in Σ2, sα

maps Σ+
2 into (Σ2

′)+. Therefore, sα maps Π2 into Π′
2. Clearly sα acts trivially

on Q-imaginary roots, and the conditions (ii)(a) for L(Q, τ) and L(Q, τ ′) are
identical. Moreover, sα permutes Q-real roots in this case and, by 7.9.(ii), the
conditions (ii)(c) for L(Q, τ) and L(Q, τ ′) are equivalent. Also, sα permutes
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positiveQ-complex roots, hence the conditions (ii)(b) for L(Q, τ) and L(Q, τ ′)
are equivalent.

This completes the proof of our claim.
First we establish the implication (ii)⇒(i). Assume that Γ(X,L(Q, τ)) =

0. By 2.17, there exists w ∈ W0 such that Iw(L(Q, τ)) = 0. We prove that
(ii) does not hold by induction in ℓ(w). First, assume that ℓ(w) = 1. Then,
w = sα, α ∈ Π0, and the assertion follows from 7.5.

Assume that ℓ(w) = p > 1. Then there exists α ∈ Π0 and w′ ∈ W0 such
that w = w′sα and ℓ(w′) = p − 1. If Isα(L(Q, τ)) = 0, we are done by the
previous step. Therefore, we can assume that Isα(L(Q, τ)) ̸= 0. There are two
possibilities:

(a) α (̌λ) = 0;
(b) α (̌λ) ̸= 0.

Assume first that (a) holds. Then, by 2.16.(ii) we see that L(Q, τ) is the
unique irreducible quotient of Isα(L(Q, τ)). Therefore, since Iw′ is right exact,
Iw′(L(Q, τ)) is a quotient of

Iw′(Isα(L(Q, τ))) = Iw(L(Q, τ)) = 0,

i.e., Iw′(L(Q, τ)) = 0. By the induction assumption, (ii) cannot hold for
L(Q, τ).

Assume now that (b) holds. In this case, by the previous discussion,
Isα(L(Q, τ)) = L(Q′, τ ′) and Γ(X,L(Q′, τ ′)) = Γ(X,L(Q, τ)) = 0. There-
fore, Iw′(L(Q′, τ ′)) = 0 and by the induction assumption the condition (ii)
fails for L(Q′, τ ′). The preceding discussion now implies that (ii) also fails for
L(Q, τ). This completes the proof of the implication (ii)⇒(i).

Now we prove (i)⇒(ii). Assume that Γ(X,L(Q, τ)) ̸= 0. The first step
in the reduction to the case D−(Q) ∩ Σ+

0 = ∅. The proof is by downward
induction on Card(D−(Q)). Assume that D−(Q) ∩ Σ+

0 is not empty. By 9.2,
there exists α ∈ Π0 such that α is Q-complex and −σQα is positive. By 2.17
and 7.5.(ii), α (̌λ) = 0 is impossible. Therefore, α (̌λ) ̸= 0 holds. By the pre-
ceding discussion, in this case Isα(L(Q, τ)) = L(Q′, τ ′) and Γ(X,L(Q′, τ ′)) =
Γ(X,L(Q, τ)) ̸= 0. Moreover, the conditions (ii) for L(Q, τ) and L(Q′, τ ′)
are equivalent. On the other hand, we have CardD−(Q′) = CardD−(Q) − 2
by 6.10, and in finitely many steps we are reduced to the situation where
D−(Q) ∩ Σ+

0 is empty.
In this situation the condition (ii)(b) is vacuous. Now we prove that (ii)(c)

holds. For a simple Q-real root α ∈ Π1 there are two possibilities:

(a) α (̌λ) ̸= 0;
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(b) α (̌λ) = 0;

If (a) holds, as before, we conclude that we have Isα(L(Q, τ)) = L(Q, τ ′) and
Γ(X,L(Q, τ)) = Γ(X,L(Q, τ ′)). Also, conditions (ii) for L(Q, τ) and L(Q, τ ′)
are equivalent. Therefore, we can replace (Q, τ) with (Q, τ ′).

If (b) holds, by 7.5, τ must satisfy the SL2-parity condition with respect to
α. In this case, by 7.8, we have Isα(I(Q, τ)) = I(Q, τ), i.e., τ ′ = τ . Moreover,
by 7.9.(ii), the SL2-parity condition for τ is satisfied for Q-real root β if and
only if it is satisfied for the Q-real root sαβ.

By definition, Σ1 is σQ-invariant. Also, by 9.2, Σ1 ∩ D−(Q) = ∅. Hence,
Σ+

1 is of Zuckerman type in Σ1 with respect to the induced involution. By
5.10.(i), Q-real roots in Π1 form a basis of the root system of all Q-real roots
in Σ1. By applying consecutive reflections with respect to simple Q-real roots
in Π1, we see that the SL2-parity condition holds for all Q-real roots in Σ1.
Hence the condition (ii)(c) holds for L(Q, τ).

It remains to show that (ii)(a) holds. This is an immediate consequence
of the following lemma.

Lemma 9.3. Assume that the pair (Q, τ) satisfies Π1 ⊂ Π0 and the conditions
(ii)(b) and (ii)(c) from 9.1. Then the following conditions are equivalent:

(i) the set Π2 contains no compact Q-imaginary roots;
(ii) Γ(X,L(Q, τ)) ̸= 0;

(iii) Γ(X, I(Q, τ)) ̸= 0.

Proof. We already established that (i) implies (ii). That (ii) implies (iii) is
obvious. Therefore, we have to show that (iii) implies (i).

The root system Σ2 can be characterized as

Σ2 = {α ∈ Σ1 | Imα (̌λ) = 0}.

If λ satisfies the condition Imα (̌λ) ≤ 0 for all α ∈ Π1, we have Π2 ⊂ Π1 ⊂
Π0 ⊂ Π. Hence, if α ∈ Π2 is a compact Q-imaginary root, α is a simple root.
And in this case, by 7.6, we have Isα(I(Q, τ)) = 0. Since λ is antidominant,
by 2.10, this implies by that

Γ(X, I(Q, τ)) = Γ(X, Isα(I(Q, τ))) = 0.

Hence, we have a contradiction and (i) holds.
Assume that the above condition on λ doesn’t hold. Then, there exist

an element w of minimal length in the Weyl group W1 generated by the
reflections corresponding to roots in Σ1 such that wλ satisfies this property.
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Put k = ℓ(w). We prove that (i) holds by induction in k. Let w = w′sα, with
w′ ∈ W1, α ∈ Π1, satisfying ℓ(w′) = k − 1. Then, by the minimality of ℓ(w),
we have sα Im λ ̸= Im λ. Therefore, Imα (̌λ) ̸= 0 and α is either Q-complex
or a Q-real. By a previous argument, Isα is an equivalence of categories,
there exists a K-orbit Q′ and an irreducible K-homogeneous connection τ ′

compatible with sαλ + ρ such that Isα(I(Q, τ)) = I(Q′, τ ′). Then, by 2.10,
we have Γ(X, I(Q′, τ ′)) = Γ(X, I(Q, τ)) ̸= 0.

Since Σ0 is determined by Reλ, it doesn’t change if we replace λ by sαλ.
Therefore, Π0 is the same for (Q, τ) and (Q′, τ ′). If α is Q-complex, by 6.11,
we have

σQ′ = sα ◦ σQ ◦ sα = σQ ◦ sσQα ◦ sα.

Since α ∈ Σ1, we have α ∈ Σ0 and σQα ∈ Σ0. It follows that

Σ′
1 = Σ0 ∩ σQ′(Σ0) = Σ0 ∩ σQ(Σ0) = Σ1,

and Π′
1 = Π1.

If α is Q-real, we know from a previous discussion that Q′ = Q, hence
Π′

1 = Π1 in this case too. Therefore, the conditions of the lemma are satisfied
for (Q′, τ ′).

Now, w′(sαλ) satisfies the above condition and ℓ(w′) = k − 1. Hence, (i)
holds for I(Q′, τ ′) by the induction assumption. We already established that
the condition (i) holds for (Q, τ) if and only if it holds for (Q′, τ ′). Therefore,
(i) holds for I(Q, τ).

Let V be an irreducible Harish-Chandra module in Mfg(Uθ, K). In gen-
eral, the Weyl group orbit θ contains several strongly antidominant elements.
For different strongly antidominant λ in θ, V ∼= Γ(X,L(Q, τ)) for different
pairs (Q, τ), as one can easily check in simple examples (like the discussions
of SL(2,R) in the introduction of [12] and SL(2,C) at the end of [19]). Still,
the K-conjugacy class of σ-stable Cartan subalgebras attached to K-orbits
Q is uniquely determined by V :

Proposition 9.4. Let θ be a Weyl group orbit in h∗. Let V be an irreducible
Harish-Chandra module in Mfg(Uθ, K). Let λ, λ′ ∈ θ be strongly antidomi-
nant, Q, Q′ be K-orbits in X and τ , τ ′ irreducible K-homogeneous connec-
tions on Q, resp. Q′, compatible with λ+ ρ, resp. λ′ + ρ, such that

V ∼= Γ(X,L(Q, τ)) ∼= Γ(X,L(Q′, τ ′)).

Then:
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(i) the orbits Q and Q′ are attached to the same K-conjugacy class of σ-
stable Cartan subalgebras in g;

(ii) ReλQ = Reλ′
Q′ ;

(iii) λQ = (λ′)Q′ .

Proof. Fix an antidominant λ in θ. Then, by 2.15.(ii), there exists a unique
pair (Q, τ) consisting of a K-orbit Q and an irreducible homogeneous con-
nection τ on Q compatible with λ+ ρ such that V = Γ(X,L(Q, τ)).

Let W0 = W (Reλ) be the stabilizer of Reλ in W . Then W0 is generated
by reflections with respect to the roots α ∈ Π orthogonal to Reλ. Clearly, wλ
is strongly antidominant if and only if w ∈ W0. Consider the set S of pairs
(Q′, λ′) of K-orbits Q′ and strongly antidominant λ′ such that there exists
an irreducible K-homogeneous connection τ ′ on Q′ compatible with λ′ + ρ
satisfying Γ(X,L(Q′, τ ′)) ∼= Γ(X,L(Q, τ)). Fix such pair (Q′, λ′). Let w be
the shortest element in W0 such that λ′ = wλ. We prove the statements (i)
and (ii) by induction in ℓ(w). If ℓ(w) = 0, by 2.15.(ii), we see that Q = Q′.
Let ℓ(w) > 0. Then w = sαw

′, where w′ ∈ W0, ℓ(w) = ℓ(w′) + 1, and α ∈ Π
such that α (̌Reλ) = 0. Then, α (̌λ′) ̸= 0 by the minimality of w; and α (̌λ′)
is purely imaginary. Therefore, by 7.1.(i), α cannot be a Q′-imaginary root.

Moreover, by 2.9, the intertwining functor Isα is an equivalence of cate-
gories. Hence Isα(L(Q′, τ ′)) = L(Q′′, τ ′′) for some pair (Q′′, τ ′′), where τ ′′ is
an irreducible K-homogeneous connection on Q′′ compatible with λ′′ + ρ =
sαλ

′ + ρ = w′λ+ ρ. By 2.10, we have

Γ(X,L(Q′′, τ ′′)) = Γ(X, Isα(L(Q′, τ ′))) = Γ(X,L(Q′, τ ′)) ∼= Γ(X,L(Q, τ))

Hence, by the induction assumption, Q′′ corresponds to the same conjugacy
class of σ-stable Cartan subalgebras as Q and Reλ′′

Q′′ = ReλQ.
We already remarked that α is either Q′-real or Q′-complex. In the first

case, by 7.7, we have Isα(I(Q′, τ ′)) = I(Q′, τsα) for some irreducible K-
homogeneous connection τsα on Q′ compatible with λ′′+ρ. Therefore, we have
Isα(L(Q′, τ ′)) = L(Q′, τsα). It follows that Q′′ = Q′. Since Reλ′′ = Reλ′, we
have

ReλQ = Reλ′′
Q′′ = Re 1

2(λ′′ − σQ′′λ′′) = Re 1
2(λ′ − σQ′λ′) = Reλ′

Q′ .

In the second case, by an analogous argument using 7.2, we see that Q′′ and
Q′ correspond to the same K-conjugacy class of σ-stable Cartan subalgebras,
and σQ′′ = sα ◦ σQ′ ◦ sα by 6.11. Therefore,
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ReλQ = Reλ′′
Q′′ = Re 1

2(λ′′ − σQ′′λ′′) = Re 1
2(λ′′ − sασQ′sαλ

′′)

= Re 1
2(λ′ − σQ′λ′) = Reλ′

Q′ .

On the other hand, as we remarked before,

Reλ = λQ + ReλQ

depends only of θ. Hence, we have

λQ + ReλQ = (λ′)Q′ + Reλ′
Q′

and, finally, λQ = (λ′)Q′ .

Therefore, the invariants ReλQ and λQ do not depend on L(Q, τ) but
only on the Harish-Chandra module V = Γ(X,L(Q, τ)). Hence, can define

κV = ReλQ and κV = λQ

and call it them the Langlands invariant κV and the Vogan-Zuckerman in-
variant κV of V .

In 11.7 we are going to show that an irreducible Harish-Chandra module
V is tempered if and only if κV = 0.

10. Decomposition of global sections of standard
Harish-Chandra sheaves

Let θ be a Weyl group orbit in h∗ and λ ∈ θ strongly antidominant. Let
Q be a K-orbit in the flag variety X and τ an irreducible K-homogeneous
connection on Q compatible with λ+ ρ. Let I(Q, τ) be the standard Harish-
Chandra sheaf attached to (Q, τ) and L(Q, τ) its unique irreducible Harish-
Chandra subsheaf. In 9.1 we established a necessary and sufficient criterion
for Γ(X,L(Q, τ)) = 0. In this section we want to prove some preliminary
results on the structure of Harish-Chandra modules Γ(X, I(Q, τ)). We start
with the easy case.

Lemma 10.1. Let θ be a Weyl group orbit in h∗, and λ ∈ θ antidominant.
Let Q be a K-orbit in the flag variety X and τ an irreducible K-homogeneous
connection on Q compatible with λ + ρ. Assume that Γ(X,L(Q, τ)) ̸= 0.
Then Γ(X,L(Q, τ)) is the unique irreducible Harish-Chandra submodule in
Γ(X, I(Q, τ)).
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Proof. Let V = Γ(X,L(Q, τ)). Then, by 2.15.(i), V is an irreducible Harish-
Chandra module. Hence, it is an irreducible Harish-Chandra submodule of
Γ(X, I(Q, τ)). Assume that U is another irreducible Harish-Chandra sub-
module of Γ(X, I(Q, τ)). Then the adjointness of ∆λ and Γ(X,−) implies
that we have a nontrivial Dλ-module morphism ϕ of ∆λ(U) into I(Q, τ). It
follows that the image imϕ of ∆λ(U) is a Harish-Chandra subsheaf of I(Q, τ)
which contains L(Q, τ). Therefore, Γ(X,J ) is a Harish-Chandra submodule
of Γ(X, I(Q, τ)) which contains V as a composition factor. On the other hand,
it must also be a quotient of Γ(X,∆λ(U)) = U , and we have U = V .

In particular, if Γ(X,L(Q, τ)) ̸= 0, Γ(X, I(Q, τ)) is an indecomposable
Harish-Chandra module.

Now we want to consider the general case. The main result is the following
theorem.

Theorem 10.2. Let θ be a Weyl group orbit in h∗, and λ ∈ θ strongly an-
tidominant. Let Q be a K-orbit in the flag variety X and τ an irreducible
K-homogeneous connection on Q compatible with λ+ ρ. Assume that the Uθ-
module Γ(X, I(Q, τ)) ̸= 0. Then, there exist

(a) a unique family (Q1, Q2, . . . , Qp) of K-orbits in X;
(b) a unique family of K-homogeneous irreducible connections τi on Qi,

1 ≤ i ≤ p, compatible with λ+ ρ;

such that

(i) Vi = Γ(X,L(Qi, τi)) ̸= 0 for 1 ≤ i ≤ p;
(ii)

Γ(X, I(Q, τ)) =
p⊕

i=1
Γ(X, I(Qi, τi))

is the (unique) decomposition of Γ(X, I(Q, τ)) into a direct sum of in-
decomposable Harish-Chandra modules.

Then Qi, 1 ≤ i ≤ p, are in the closure of Q.
The Langlands invariants and the Vogan-Zuckerman invariants of irre-

ducible Harish-Chandra modules Vi, 1 ≤ i ≤ p, are given by

κVi = ReλQ and κVi = λQ for 1 ≤ i ≤ p.

If the pair (Q, τ) satisfies the condition (ii)(c) from 9.1 we have p = 1.
If the pair (Q, τ) satisfies the conditions (ii)(b) and (ii)(c) from 9.1, the

condition (ii)(a) from 9.1 is also satisfied.
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Proof. Since the Harish-Chandra modules Γ(X, I(Qi, τi)) are indecompos-
able if (i) holds, the decomposition of Γ(X, I(Q, τ)) is just the decomposition
into indecomposable direct summands. Hence, the modules Γ(X, I(Qi, τi))
are uniquely determined. Moreover, each indecomposable direct summand
Γ(X, I(Qi, τi)) has a unique irreducible submodule Γ(X,L(Qi, τi)) by 10.1.
Therefore, by 2.15, the irreducible Dλ-modules L(Qi, τi) are uniquely deter-
mined. This proves the uniqueness in (a) and (b).

Clearly, the composition factors of the Harish-Chandra sheaf I(Q, τ)
are of the form L(Q′, τ ′) for some K-orbits Q′ ⊂ Q̄ and irreducible K-
homogeneous connections τ ′ on Q′. Since λ is antidominant, Γ(X,−) is ex-
act and, by 2.15, the composition factors of Γ(X, I(Q, τ)) are exactly such
Γ(X,L(Q′, τ ′)) ̸= 0. Therefore, all Vi are also of the form Γ(X,L(Q′, τ ′)).
Applying 2.15 again, we see that Qi must be among Q′, and Qi ⊂ Q̄.

It remains to prove the existence of the decomposition and its last two
properties. We use a reduction argument similar to the proof of 9.1. We use
freely the notation and results from this proof.

First we recall some results from the proof of 9.1. Let α be a root from
Π0, i.e., a simple root such that Reα (̌λ) = 0. Assume that α (̌λ) ̸= 0.
Then Isα : Mqc(Dλ) −→ Mqc(Dsαλ) is an equivalence of categories. Let Q
be a K-orbit in X and τ an irreducible K-homogeneous connection on Q
compatible with λ + ρ. By 7.1.(i), α is either Q-complex or Q-real. If α is
Q-complex, there exists a K-orbit Q′ such that Q ∪ Q′ = p−1

α (pα(Q)) and
an irreducible K-homogeneous connection τ ′ on Q′ compatible with sαλ+ ρ,
such that Isα(I(Q, τ)) = I(Q′, τ ′). If α is Q-real, Isα(I(Q, τ)) = I(Q′, τ ′) for
Q′ = Q and an irreducible K-homogeneous connection τ ′ on Q′ compatible
with sαλ + ρ. In addition, Isα(L(Q, τ)) = L(Q′, τ ′) in both cases, and the
conditions (ii)(a), (ii)(b) and (ii)(c) from 9.1 for the pairs (Q, τ) and (Q′, τ ′)
are equivalent.

Now we prove a reduction argument. Let Q be a K-orbit in X and τ and
irreducible K-homogeneous connection on Q-compatible with λ + ρ. Then,
since both λ and sαλ are antidominant, we have

Γ(X, I(Q, τ)) = Γ(X, Isα(I(Q′, τ ′))) = Γ(X, I(Q′, τ ′)).

Assume that the assertion of the theorem holds for I(Q′, τ ′), i.e., we have the
decomposition

Γ(X, I(Q′, τ ′)) =
p⊕

i=1
Γ(X, I(Q′

i, τ
′
i))

for some K-orbits Q′
i and irreducible K-homogeneous connections τ ′

i on Q′
i

compatible with sαλ + ρ. Clearly, Isα : Mqc(Dsαλ) −→ Mqc(Dλ) is also an
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equivalence of categories. Therefore, as before, we get

Γ(X, I(Q, τ)) =
p⊕

i=1
Γ(X, Isα(I(Q′

i, τ
′
i))).

But, as we remarked before, Isα(I(Q′
i, τ

′
i)) = I(Qi, τi) for some K-orbits Qi

in X and irreducible K-homogeneous connections τi on Qi compatible with
λ+ ρ. In addition,

Vi = Γ(X,L(Qi, τi)) = Γ(X, Isα(L(Q′
i, τ

′
i))) = Γ(X,L(Q′

i, τ
′
i)) = V ′

i ,

and we obtained a decomposition of Γ(X, I(Q, τ)) with the required proper-
ties. Clearly, κVi = κV ′

i
and κVi = κV ′

i for 1 ≤ i ≤ p. On the other hand, we
have ReλQ = Re(sαλ)Q′ and λQ = (sαλ)Q′ as in the proof of 9.4. Therefore,
the assertion of the theorem holds for I(Q, τ).

Now we prove the existence by induction in dimQ. If dimQ is minimal
possible, Q is closed and I(Q, τ) is irreducible. Hence, by 9.1, the statement
follows immediately.

Assume that dimQ is not minimal and that the assertions of the theorem
hold for all standard Harish-Chandra sheaves attached to the orbits of lower
dimension. If Γ(X,L(Q, τ)) ̸= 0, then the statement follows from 10.1. Hence,
we can assume that Γ(X,L(Q, τ)) = 0. Then, there exists a root in Σ which
fails to satisfy one of the conditions in 9.1.(ii).

Assume first that D−(Q) ∩ Π0 ̸= ∅. Let α ∈ D−(Q) ∩ Π0. Then α is a
Q-complex simple root and Reα(λ) = 0.

Assume first that α(λ) ̸= 0. As in the proof of 9.1, we conclude that
Isα(I(Q, τ)) = I(Q′, τ ′) for the other K-orbit Q′ in p−1

α (pα(Q)) and an irre-
ducible connection τ ′ on Q′ compatible with sαλ + ρ. Moreover, by 6.5.(v),
dimQ′ = dimQ − 1. By the reduction statement, we see that the assertions
of the theorem for I(Q, τ) follow from the induction assumption for I(Q′, τ ′).

Assume now that α (̌λ) = 0. In this case, by 7.2, there exists an irreducible
K-homogeneous connection τ ′ on Q′ compatible with λ + ρ and such that
Isα(I(Q′, τ ′)) = I(Q, τ). Hence,

Γ(X, I(Q, τ)) = Γ(X, Isα(I(Q′, τ ′))) = Γ(X, I(Q′, τ ′)) =
p⊕

i=1
Γ(X, I(Q′

i, τ
′
i))

and by the induction assumption applied to I(Q′, τ ′). Therefore, if we put
Qi = Q′

i and τi = τ ′
i we get the existence of the decomposition having the

properties (i) and (ii). Moreover, as in the proof of 9.4, we see that λQ =
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λQ′ and ReλQ = ReλQ′ . Finally, as we remarked in the proof of 9.1, sα

maps Q′-real roots into Q′-real roots and by 7.9, τ satisfies the SL2-parity
condition with respect to a Q-real root β if and only if τ ′ satisfies the SL2-
parity condition with respect to a Q′-real root sαβ. Therefore, the theorem
holds for I(Q, τ) by the induction assumption.

As in the proof of 9.1, by downward induction on CardD−(Q), we reduce
this to the case D−(Q) ∩ Σ+

0 = ∅. In this situation, the condition (ii)(b) from
9.1 becomes vacuous.

Assume that the connection τ satisfies the SL2-parity condition with re-
spect to all Q-real roots β such that β (̌λ) = 0. By 9.3, since we assumed
that Γ(X,L(Q, τ)) = 0, we have a contradiction with the assumption that
Γ(X, I(Q, τ)) ̸= 0.

Therefore, for I(Q, τ) there exists a Q-real root β ∈ Σ0 such that τ fails
the SL2-parity condition with respect to β. In this situation, as we remarked
in the proof of 9.1, the Q-real roots in Π0 form a basis of all the root system
of all Q-real roots in Σ0. Let α be such Q-real simple root. Then we have
either Imα (̌λ) ̸= 0 or α (̌λ) = 0.

Assume first that Imα (̌λ) ̸= 0. Then, Iα(I(Q, τ)) = I(Q, τsα) by 7.7. By
the reduction result, the theorem holds for I(Q, τ) if and only if it holds for
I(Q, τsα).

Assume now that α (̌λ) = 0 and the SL2-parity condition holds for τ with
respect α. Then by 7.8 and 7.9, we see that for any Q-real root β, τ satisfies
the SL2-parity condition with respect to β if and only if it also satisfies the
SL2-parity condition with respect to sαβ.

Therefore, there exists w ∈ W which is a product of reflections with
respect to Q-real roots in Π0, an irreducible K-homogeneous connection τ ′

on Q compatible with wλ+ ρ and such that τ ′ fails the SL2-parity condition
with respect to wβ ∈ Π0, and the theorem holds for Γ(X, I(Q, τ)) if and only
if it holds for Γ(X, I(Q, τ ′)).

Hence, we can assume that β is a Q-real simple root and the connection
τ fails the SL2-parity condition with respect to β. By 7.10, there exists a
Harish-Chandra subsheaf C such that

O −→ C −→ I(Q, τ) −→ Q −→ 0,

Isβ
(C) = 0 and Q is a direct sum of standard Harish-Chandra sheaves attached

to K-orbits in p−1
β (pβ(Q)) − Q. Hence, by 2.10, Γ(X, C) = Γ(X, Isβ

(C)) = 0.
Therefore,

Γ(X, I(Q, τ)) = Γ(X,Q).
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Since dim(p−1
β (pβ(Q)) −Q) < dim(Q), by the induction assumption

Γ(X, I(Q, τ)) =
p⊕

i=1
Γ(X, I(Qi, τi))

for some K-orbits Qi and irreducible K-homogeneous connections τi on Qi.
Let Q′ be an orbit in p−1

β (pβ(Q)) −Q. Then, by 6.5 and 6.8, σQ′ = sβ ◦ σQ =
σQ ◦ sβ. Therefore, ReλQ = ReλQ′ and λQ′ = λQ. Hence, by the induction
assumption, κVi = ReλQ and κVi = λQ.

11. n-homology of Harish-Chandra modules

In this section we specialize the results of §3 to Harish-Chandra modules.
The open K-orbit Qo ⊂ X is clearly a Langlands orbit. By 6.4, all Qo-

imaginary roots are compact, and by 5.10, the set P = ΣI ∪Σ+ is a parabolic
set of roots. Therefore, for an arbitrary x ∈ Qo, P determines a parabolic
subalgebra px ⊃ bx. Let ux be the nilpotent radical of px. For any σ-stable
Cartan subalgebra c in bx, let c = t ⊕ a be the decomposition into the σ-
eigenspaces with eigenvalues 1 and −1 respectively. Then the centralizer of a
in g is a σ-stable Levi factor of px. Since all Qo-imaginary roots are compact,
it is the direct product of the centralizer m of a in k with a. Let M be the
centralizer of a in K. Then M is a reductive subgroup of K with Lie algebra
m.

Let V be a Harish-Chandra module in Mfg(Uθ, K) for some W -orbit θ
in h∗. Then H0(ux, V ) is an algebraic M -module and an a-module. By the
specialization we can view it as an aQo-module. The h-module H0(nx, V )
is a quotient of H0(ux, V ), and the natural projection is a morphism of aQo-
modules. It can be viewed as the module of lowest weight vectors of H0(ux, V ).
Since H0(nx, V ) is finite-dimensional, H0(ux, V ) must be finite-dimensional
too.

A nonzero restriction of a root from Σ to aQo is called a restricted root.
It is well-known [1], that the set Σo of all restricted roots is a root system in
aQo , the restricted root system of the Harish-Chandra pair (g, K). We define
an ordering on this root system by choosing Σ+

o to be the set consisting of
all nonzero restrictions of roots from Σ+. Denote by Πo the corresponding set
of simple restricted roots. This is the set of distinct non-zero restrictions of
elements of Π. Let C be the real cone in a∗

Qo
consisting of restrictions of all

λ ∈ h∗ such that 0 ≼ λ. In other words, this is the cone consisting of all linear
combinations of elements of Πo with coefficients with nonnegative real part.
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We call C the tempered cone. We denote the corresponding ordering on the
vector space aQo by ≪.

Let δ = ρ|aQo . We say that a linear form µ ∈ a∗
Qo

is a restricted exponent
of V if H0(ux, V )(µ+δ) ̸= 0. The set of restricted exponents is independent of
the choice of x ∈ Qo.

In §3 we introduced the notion of an exponent of a finitely generated Uθ-
module. If λ ∈ h∗ is an exponent of V , H0(nx, V )(λ+ρ) ̸= 0 for all x in some
open dense subset of K. If V is a Harish-Chandra module, by K-equivariance,
this set must include the open K-orbit Qo. This implies the following result:

Lemma 11.1. The set of restricted exponents of V ∈ Mfg(Uθ, K) is equal
to the set of all restrictions of the exponents of V to aQo .

A Harish-Chandra module V is tempered if all of its restricted exponents
lie in the tempered cone C. A tempered Harish-Chandra module is square-
integrable if all of its restricted exponents lie in the interior of the tempered
cone C.

Remark 11.2. Let G0 be a connected semisimple Lie group with finite center
and K0 its maximal compact subgroup. Denote by g the complexified Lie al-
gebra of G0 and by K the complexification of K0. Let σ be the corresponding
Cartan involution of g. Then our category Mcoh(Uθ, K) is the “classical” cat-
egory of Harish-Chandra modules with infinitesimal character corresponding
to θ. In this situation, the notions of tempered and square-integrable repre-
sentations were introduced by Harish-Chandra in terms of growth of K0-finite
matrix coefficients on G0. By the results of ([8], [16]) these two definitions are
equivalent.

Now we use the results of §3 to obtain information on restricted exponents
of global sections of Harish-Chandra sheaves with irreducible support. Recall
the notation Qw, for K-orbits Q, introduced in §6.

Lemma 11.3. Let λ ∈ h∗ be strongly antidominant, Q a K-orbit in X and
V ∈ Mcoh(Dλ, K) with supp(V) = Q̄. Let w ∈ W be transversal to Q. Then:

(i) w(aQ) ⊂ aQw .

There exists a set Φw of mutually orthogonal Qw-real roots in Σ+ with the
following properties:

(ii) the roots in Φw vanish on w(aQ) and their dual roots span a complement
of w(aQ) in aQw ;

(iii) α (̌wλ) ≥ 0 for all α ∈ Φw.
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Proof. We proceed by induction in ℓ(w). If ℓ(w) = 0, w = 1 and Φw = ∅.
Thus we may assume that ℓ(w) > 1. In this case, w = sαw

′, where α ∈ Π and
w′ ∈ W with ℓ(w′) = ℓ(w) − 1. If w is transversal to Q, w′ is transversal to
Q and sα is transversal to Qw′ by 6.6. Assume that α is Qw′-complex. Then
σQw = sα ◦ σQw′ ◦ sα by 6.11. Hence,

sα(aQw′ ) = aQw

and, by the induction assumption,

w(aQ) = sα(w′(aQ)) ⊂ sα(aQw′ ) = aQw .

Also if β is a Qw′-real root, sαβ is a Qw-real root. Since sα permutes positive
roots different from α, Φw = sα(Φw′) consists of positive Qw-real roots. The
roots of Φw′ vanish on w′(aQ), hence the roots of Φw vanish on w(aQ) =
sαw

′(aQ). Also, by induction assumption, the dual roots of the roots in Φw′

span a complement to w′(aQ) in aQw′ . Hence, the dual roots of the roots in
Φw span a complement to w(aQ) = sα(w′(aQ)) in aQw = sα(aQw′ ). Moreover,
for β ∈ Φw,

β (̌wλ) = β (̌sαw
′λ) = (sαβ)̌ (w′λ) ≥ 0,

by the induction assumption.
Assume now that α is noncompact Qw′-imaginary. Then, by 6.8, σQw =

sα ◦ σQw′ and α vanishes on aQw′ . Hence, the roots in Φw′ are Qw-real and
Qw-real root α is orthogonal to them. Put Φw = Φw′ ∪ {α}. Since aQw is
the direct sum of aQw′ and the line spanned by α ,̌ we see by the induction
assumption that

w(aQ) = sα(w′(aQ)) ⊂ sα(aQw′ ) = aQw′ ⊂ aQw ,

the root α vanishes on w(aQ) and the dual roots of the roots in Φw span a
complement of w(aQ) in aQw . Finally, for β ∈ Φw′ , since β is orthogonal to α,

β(wλ) = β(sαw
′λ) = (sαβ)̌ (w′λ) = β (̌w′λ) ≥ 0,

by the induction assumption. On the other hand, since supp(V) = Q̄ and
w′ is transversal to Q, by 3.2.(i) and 3.5, supp Iw′(V) = Qw′ . Hence, Iw′(V)
must contain an irreducible composition factor isomorphic to L(Qw′ , τ) for
some irreducible K-homogeneous connection τ on Qw′ . Therefore, α (̌w′λ) ∈
R by 7.1. Since λ is strongly antidominant and w′ ≤ w, we have w′λ ≼
wλ = sαw

′λ = w′λ − α (̌w′λ)α by 3.9. Hence, 0 ≥ α (̌w′λ) = −α (̌wλ), i.e.,
α (̌wλ) ≥ 0.
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Let λ be strongly antidominant, Q a K-orbit and V ∈ Mcoh(Dλ, K) with
supp(V) = Q̄. Let w ∈ W be transversal to Q of maximal possible length.
Denote by dw the subspace of aQo spanned by roots dual to Φw. Then we
have the direct sum decomposition

aQo = w(aQ) ⊕ dw

and
h = tQo ⊕ w(aQ) ⊕ dw.

On the other hand,
h = tQ ⊕ aQ,

Hence, w(tQ) = tQo ⊕dw. Let λQ = 1
2(λ−σQλ) be the linear form on h which

was introduced in the last section. Then, wλQ vanishes on tQo ⊕ dw, and we
can view it as a linear form on aQo . On w(aQ) it agrees with wλ. On the other
hand, the restriction of wλ to dw is equal to 1

2
∑

α∈Φw
α (̌wλ)α. This implies

that the restriction of wλ to aQo is equal to the sum of the restriction of wλQ

to aQo and 1
2
∑

α∈Φw
α (̌wλ)α. Therefore, by 11.3.(iii),

wλ|aQo ≫ wλQ.

Let ν be the unique element of the Weyl group orbit of ReλQ which lies in
the closure of the negative Weyl chamber in h∗.

Lemma 11.4. (i) The linear form ν ∈ h∗ vanishes on tQo , i.e. it can be
viewed as an element of a∗

Qo
.

(ii) Let Ψ be the subset of Πo consisting of all roots orthogonal to ν.
There exists w ∈ W transversal to Q of maximal possible length such that
wReλQ = ν. For any such w

wReλ|aQo = ν +
∑
β∈Ψ

cββ,

where cβ ≥ 0.

Proof. By the preceding discussion, (ii) implies (i). By applying 5.2 to Reλ
we see that there exists v ∈ W such that α (̌vReλQ) ≤ 0 for α ∈ Σ+ and
Σ+

v ⊂ D+(Q). By definition, this implies ν = vReλQ. Also, v is transversal to
Q by 6.9, and Qv is a Langlands orbit attached to the same conjugacy class of
σ-stable Cartan subalgebras as Q by 5.2 and 6.11. Let u be an element of W
transversal to Qv of maximal length. Then, by 6.6, w = uv is transversal to Q
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of maximal length. By 6.21, u ∈ WΘ, where Θ is the set of all Qv-imaginary
simple roots. Since λQ vanishes on tQ, ν = vReλQ vanishes on tQv = vtQ.
This implies uν = ν, i.e., ν = wReλQ.

Assume that w ∈ W is any element transversal to Q of maximal possible
length such that ν = wReλQ. By the preceding discussion, wλQ vanishes on
tQo ⊕ dw and the roots in Φw vanish on w(aQ). Hence the roots in Φw are
orthogonal to ν. Moreover,

wReλ|aQo = ν + 1
2
∑

α∈Φw

α (̌wλ)α.

Let Σo,Ψ be the root subsystem of Σo generated by Ψ. Since ν lies in the closure
of the negative (restricted) Weyl chamber, Σo,Ψ is the set of all restricted roots
orthogonal to ν. On the other hand, Φw consists of Qo-real roots, what yields
Φw ⊂ Σo,Ψ ∩ Σ+

o . Hence

wReλ|aQo = ν +
∑
β∈Ψ

cββ,

where cβ ≥ 0.

Since ν ≼ w′λQ for all w′ ∈ W , by 11.4.(i) and a preceding inequality, we
have

ν ≪ wλ|aQo

for any w transversal to Q of maximal possible length. By 3.10.(i), it follows
that if ω is a restricted exponent of V = Γ(X,V), ν ≪ ω. This implies the
following result.

Proposition 11.5. Let λ ∈ θ be strongly antidominant, Q a K-orbit in X
and V a Harish-Chandra sheaf in Mcoh(Dλ, K) with supp V = Q̄. Then:

(i) if Reλ|aQ = 0, the Harish-Chandra module Γ(X,V) is either tempered
or zero;

(ii) if aQ = 0 and λ is regular, the Harish-Chandra module Γ(X,V) is
square-integrable.

Proof. (i) follows immediately from the preceding discussion, since Reλ|aQ =
0 implies ReλQ = 0 and ν = 0.

(ii) In this case, by 3.10.(i), for any restricted exponent ω there exists
w ∈ W transversal to Q of maximal possible length such that wλ|aQo ≪ ω.
By the preceding discussion, this implies that ω ≫ 1

2
∑

α∈Φw
α (̌wλ)α. Since in

our situation Φw consists of positive roots which span a∗
Qo

and the coefficients
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are strictly positive by regularity and 11.3.(iii), we conclude that ω is in the
interior of the tempered cone C.

Conversely,

Proposition 11.6. Let λ ∈ θ be strongly antidominant, Q a K-orbit in X
and V an irreducible Harish-Chandra sheaf in Mcoh(Dλ, K) with supp V = Q̄
such that V = Γ(X,V) ̸= 0. Then:

(i) if V is tempered, Reλ|aQ = 0;
(ii) if V is square-integrable, aQ = 0 and λ is regular.

Proof. (i) By 3.10.(ii), wλ|aQo is a restricted exponent for any w ∈ W
transversal to Q of maximal possible length. Choose w which satisfies the
conditions of 11.4.(ii). Since ν is a linear combination of (restricted) fun-
damental weights corresponding to simple roots from Πo − Ψ with negative
coefficients, we see that wλ|aQo is in the tempered cone only if ν = 0. This
in turn implies that Reλ|aQ = 0.

(ii) Since V is tempered, by (i) it follows that ν = 0. Let w ∈ W be the
element transversal to Q of maximal possible length constructed in the proof
of 11.4.(ii). The argument there can be sharpened as follows. Since u ∈ WΘ,

w(aQ) = uv(aQ) = u(aQv ) = aQv ,

Φw consists of Qv-imaginary roots by 11.3.(ii). Since Qv is a Langlands orbit,
Qv-imaginary roots are generated by the set of simple Qv-imaginary roots by
5.10. Their non-zero restrictions to aQo form a subset Θo of the set Πo of all
simple restricted roots such that their span contains Φw. Hence, Θo ⊂ Ψ and
as in the proof of 11.4.(ii)

wλ|aQo =
∑

β∈Θo

cββ,

where cβ ≥ 0. If wλ|aQo is in the interior of tempered cone, Θo must be equal
to Πo. Since the roots in Θo vanish on aQv , this is possible only if aQv = 0.
This in turn implies that aQ = 0.

It remains to show that λ is regular. Since aQ = 0, the orbit Q is closed by
6.16 and all roots areQ-imaginary. Therefore, V = L(Q, τ) = I(Q, τ) for some
irreducible K-homogeneous connection τ on Q. Assume that α (̌λ) = 0 for
α ∈ Π. If α is compact, LIsα(D(V)) = D(V)[1] by 7.5. This in turn implies, by
2.17, that Γ(X,V) = 0 contradicting our assumption. If α is noncompact, sα is
transversal to Q by 6.7. Also, Q′ = Qsα is a K-orbit such that aQ′ is spanned
by αˇ by 6.8. Hence, λ|aQ′ = 0. The argument from the preceding paragraph
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implies that there exists w ∈ W transversal to Q′ of maximal possible length
such that wλ|aQo is not in the interior of the tempered cone. By 6.6, wsα is
transversal to Q and ℓ(wsα) = ℓ(w)+1 = codimQ′ +1 = codimQ, i.e., it has
the maximal possible length. In addition, wsαλ|aQo = wλ|aQo is not in the
interior of the tempered cone, contradicting square-integrability of Γ(X,V).
Hence, λ must be regular.

Finally, by combining 11.5 and 11.6, we get the following result which
explains the meaning of the vanishing of the Langlands invariant κV .

Corollary 11.7. Let V be an irreducible Harish-Chandra module. Then the
following conditions are equivalent:

(i) V is tempered;
(ii) κV = 0.

12. Tempered Harish-Chandra modules

In this section we reprove some “classical” results about tempered Harish-
Chandra modules. These results are certainly well-known, but our arguments
are completely new and we think much simpler and conceptual than the
traditional ones.

Let V be an irreducible Harish-Chandra module in M(Uθ, K). Let λ ∈ θ
be strongly antidominant. As we discussed in the last section, there ex-
ists a unique pair (Q, τ) consisting of a K-orbit Q and an irreducible K-
homogeneous connection τ on K compatible with λ + ρ, such that V ∼=
Γ(X,L(Q, τ)). The orbit Q determines an involution σQ on h∗. As before, we
put

Σ1 = {α ∈ Σ | Reα (̌λ) = Re(σQα)̌ (λ) = 0}.

The following sufficient condition is useful in determining if a root is in Σ1.

Observation 12.1. Let λ be strongly antidominant. Let α be a root such that
Reα (̌λQ) = 0. Assume that α is either in D−(Q) or Q-real. Then α is in
Σ1.

Proof. First, α (̌λ) − (σQα)̌ (λ) is imaginary, i.e.,

Reα (̌λ) = Re(σQα)̌ (λ).

This immediately implies the statement if α is Q-real. In the other case, since
−σQα ∈ Σ+ and λ is strongly antidominant, it follows that Re(σQα)̌ (λ) ≥ 0,
and Reα (̌λ) = 0.
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In particular, if ReλQ = 0, all roots α ∈ D−(Q) and all Q-real roots are
in Σ1. Hence, 12.1 has the following consequence which was first proved by
Ivan Mirković [17].

Theorem 12.2. Let λ ∈ h∗ be strongly antidominant. Let Q be a K-orbit
in X and τ an irreducible K-homogeneous connection on Q compatible with
λ + ρ. Assume that ReλQ = 0. Then Γ(X,L(Q, τ)) ̸= 0 implies that I(Q, τ)
is irreducible, i.e., L(Q, τ) = I(Q, τ).

Proof. As we already remarked, all roots α ∈ D−(Q) and all Q-real roots are
in Σ1. Therefore, by 12.1, for all Q-complex positive roots α ∈ D−(Q) we
have α (̌λ) ̸= 0. In addition, for all Q-real roots the SL2-parity condition is
satisfied. Hence, I(Q, τ) is irreducible by 8.7.

Theorem 12.2, in conjunction with 11.7, provides also a classification of
the tempered irreducible Harish-Chandra modules. Specifically, by 11.7, the
condition ReλQ = 0 is equivalent to the temperedness of the Harish-Chandra
module Γ(X,L(Q, τ)). Thus 12.2 explains the simplicity of the classification
of tempered irreducible Harish-Chandra modules: every tempered irreducible
Harish-Chandra module is the space of global sections of an irreducible stan-
dard Harish-Chandra sheaf.

In combination with 10.2, we get the following result.

Corollary 12.3. Let λ ∈ h∗ be strongly antidominant. Let Q be a K-orbit
in X and τ an irreducible K-homogeneous connection on Q compatible with
λ+ρ. Assume that ReλQ = 0. Then Γ(X, I(Q, τ)) is a direct sum of tempered
irreducible Harish-Chandra modules.

If Γ(X, I(Q, τ)) is reducible, the SL2-parity condition for τ fails for some
Q-real root α.

The situation becomes especially simple in the case of square-integrable ir-
reducible Harish-Chandra modules. We reprove Harish-Chandra’s celebrated
results [10]. First, we have his criterion for existence of square-integrable
Harish-Chandra modules.

Theorem 12.4. Assume that Mfg(Uθ, K) contains square-integrable Harish-
Chandra modules. Then

(i) rank g = rankK;
(ii) the orbit θ is regular and real.

Proof. Assume that V is an irreducible square-integrable Harish-Chandra
module. Then, by the above discussion there exist a strongly antidominant
λ ∈ θ, a K-orbit Q in X and an irreducible K-homogeneous connection τ on
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Q compatible with λ+ ρ, such that V = Γ(X,L(Q, τ)). By 11.6.(ii), this im-
plies that λ is regular and that aQ = 0. The latter condition this is equivalent
with the equality of ranks and, by 7.1, it also implies that λ is real.

Harish-Chandra’s enumeration of the discrete series is thus equivalent
to the following result. By 12.4, we assume that rank g = rankK. As we
remarked in the proof of 12.4, if Γ(X,L(Q, τ)) is square-integrable, we have
aQ = 0 and σQ = 1. Hence, all Borel subalgebras in Q are σ-stable. By
6.16, the K-orbit Q is necessarily closed. The stabilizer of a point in Q in
K is a Borel subgroup of K. Therefore, on Q there exists an irreducible
K-homogeneous connection τQ,λ compatible with λ + ρ if and only if λ +
ρ specializes to the differential of a character of this Borel subgroup. The
connection τQ,λ is completely determined by λ+ ρ. In this case, the standard
module I(Q, τQ,λ) is irreducible.

Since θ is real, it contains a unique strongly antidominant λ. It deter-
mines a subset Oθ of closed K-orbits Q in X which allow an irreducible
K-homogeneous connection compatible with λ + ρ. For Q ∈ Oθ, the global
sections of I(Q, τQ,λ) form an irreducible Harish-Chandra module by the
equivalence of categories. By 11.5.(ii), Γ(X, I(Q, τQ,λ)) is square-integrable.

Theorem 12.5. The map Oθ 7−→ Γ(X, I(Q, τQ,λ)) is a bijection between
closed K-orbits in X and equivalence classes of irreducible square-integrable
Harish-Chandra modules in Mfg(Uθ, K).

By definition, the discrete series is the set of equivalence classes of irre-
ducible square-integrable Harish-Chandra modules.

Now we relax the regularity condition. Then we have to consider vanishing
of global sections of irreducible Harish-Chandra sheaves. The next result is
an obvious consequence of 9.1.

Theorem 12.6. Suppose that rank g = rankK. Let λ be strongly antidomi-
nant, Q a closed K-orbit in X and τ an irreducible K-homogeneous connec-
tion compatible with λ+ ρ. Then:

(i) Γ(X, I(Q, τ)) ̸= 0 if and only if there exists no compact Q-imaginary
root α ∈ Π such that α (̌λ) = 0;

(ii) if Γ(X, I(Q, τ)) ̸= 0, this is a tempered irreducible Harish-Chandra
module.

These Harish-Chandra modules constitute the limits of discrete series
[18].
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[4] Alexander Bĕılinson and Joseph Bernstein. A generalization of Cassel-
man’s submodule theorem. In Representation theory of reductive groups
(Park City, Utah, 1982), pages 35–52. Birkhäuser Boston, Boston, Mass.,
1983.

[5] Armand Borel. Algebraic D-modules. Academic Press Inc., Boston, MA,
1987.

[6] Walter Borho and Jean-Luc Brylinski. Differential operators on homo-
geneous spaces. III. Characteristic varieties of Harish-Chandra modules
and of primitive ideals. Invent. Math., 80:1–68, 1985.

[7] Nicolas Bourbaki. Groupes et algèbres de Lie. Hermann, 1968.

[8] William Casselman and Dragan Miličić. Asymptotic behavior of matrix
coefficients of admissible representations. Duke Math. J., 49(4):869–930,
1982.

[9] Jacques Dixmier. Enveloping algebras. American Mathematical Society,
Providence, RI, 1996.

[10] Harish-Chandra. Discrete series for semisimple Lie groups. II. Explicit
determination of the characters. Acta Math., 116:1–111, 1966.

[11] Henryk Hecht and Dragan Miličić. On the cohomological dimension of
the localization functor. Proc. Amer. Math. Soc., 108(1):249–254, 1990.

[12] Henryk Hecht, Dragan Miličić, Wilfried Schmid, and Joseph A. Wolf.
Localization and standard modules for real semisimple Lie groups. I.
The duality theorem. Invent. Math., 90(2):297–332, 1987.

[13] R. P. Langlands. On the classification of irreducible representations of
real algebraic groups. In Representation theory and harmonic analysis



Irreducibility and classification 115

on semisimple Lie groups, pages 101–170. Amer. Math. Soc., Providence,
RI, 1989.

[14] Toshihiko Matsuki. The orbits of affine symmetric spaces under the
action of minimal parabolic subgroups. J. Math. Soc. Japan, 31:331–
357, 1979.

[15] Dragan Miličić. Localization and representation theory of reductive Lie
groups. Unpublished manuscript available at http://www.math.utah.
edu/~milicic.

[16] Dragan Miličić. Asymptotic behaviour of matrix coefficients of the dis-
crete series. Duke Math. J., 44(1):59–88, 1977.

[17] Ivan Mirković. Classification of irreducible tempered representations of
semisimple Lie groups. PhD thesis, University of Utah, 1986.

[18] Wilfried Schmid. Lecture at the Institute for Advanced Study, January
1976.

[19] Wilfried Schmid. Construction and classification of irreducible Harish-
Chandra modules. In Harmonic analysis on reductive groups (Brunswick,
ME, 1989), pages 235–275. Birkhäuser Boston, Boston, MA, 1991.

[20] Birgit Speh and David A. Vogan. Reducibility of generalized principal
series representations. Acta Math., 145:227–299, 1980.

Henryk Hecht
Department of Mathematics, University of Utah, Salt Lake City, UT 84112,
USA
E-mail: hecht@math.utah.edu

Dragan Miličić
Department of Mathematics, University of Utah, Salt Lake City, UT 84112,
USA
E-mail: milicic@math.utah.edu

Wilfried Schmid
Department of Mathematics, Harvard University, Cambridge, MA 02138,
USA
E-mail: schmid@math.harvard.edu

http://www.math.utah.edu/~m ilicic
http://www.math.utah.edu/~m ilicic
mailto:hecht@math.utah.edu
mailto:milicic@math.utah.edu
mailto:schmid@math.harvard.edu

	Introduction
	Generalities on intertwining functors
	Supports and n-homology
	Calculations for s l(2,C)
	Some results on root systems with involution
	K-orbits in the flag variety
	Intertwining functors and standard Harish-Chandra sheaves
	Irreducibility of standard Harish-Chandra sheaves
	Geometric classification of irreducible Harish-Chandra modules
	Decomposition of global sections of standard Harish-Chandra sheaves
	n-homology of Harish-Chandra modules
	Tempered Harish-Chandra modules
	References

