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Preface

The first book I wrote, The Theory of Composites (Milton (2002)), took me almost 14 years to complete.
By contrast this book mainly took just 4 months (and another 4 months polishing) which is indicative of the
concentrated effort it took, and motivation I had. I should emphasize that it is not just my work, and that this
is a volume edited by me, rather than a monograph. Pivotally important contributions have been made by my
coauthors on various chapters: Maxence Cassier, Ornella Mattei, Moti Milgrom, and Aaron Welters. They are
all wonderful collaborators. I am also very grateful to Hervé Moulinec and Pierre Suquet: they helped clean
up the formulation in Chapter 8 of a method for accelerating Fast Fourier Transform schemes for computing
the moduli and fields in composites, and did the numerical computations which showed that the scheme works
in practice.

I said the book took 4 months to write, but that is not completely true as some chapters have been in the
works for a while. In particular, the work with Moti Milgrom dates back over 23 years to our collaborations
at the Courant Institute when I was an associate professor there. We had essentially finished that work, but
for some reason never published it. As the subject matter fits closely with parts of this book, it seemed very
appropriate to include it as Chapter 9. I had been thinking for many years off and on since 1987 about the
subject matter of Chapter 7, on the algebraic properties of subspace collections. I published a draft of it in
April of 2015 on arXiv (arXiv:1504.08061 [math.AG]). At that time I was missing the important ingredient
of how to “multiply” subspace collections, which only became apparent to me at the end of July 2015 in
conversations with Mihai Putinar and Aaron Welters during a visit to KAIST in Korea. The new approach
to accelerating Fast Fourier Transform schemes by substituting a subspace collection with non-orthogonal
subspaces in one with orthogonal subspaces was started at the end of 2013, with Hervé Moulinec and Pierre
Suquet being involved in early 2014, and is presented in Chapter 8. Ornella Mattei came and visited me for
six months in Spring of 2015, and we worked on a method for bounding the transient response of bodies,
presented in Chapter 6. This work forms part of her Ph.D. thesis (Mattei 2016). Subsequently, I realized that
the Dirichlet-to-Neumann map, governing the response of bodies, should share the same analytic properties as
effective tensors of composites. This led to some new methods discussed in Chapter 5 for the inverse problem
of finding inclusions in a body from measurements of the response of the body to transient fields. An in depth
and rigorous study of the analytic properties of the Dirichlet-to-Neumann map for electromagnetism was also
initiated with Maxence Cassier and Aaron Welters earlier this past summer, and led to Chapter 4. In an
intense collaboration they also placed the field equation recursion method on a rigorous basis for composites
of two isotropic components, and this resulted in Chapter 10. The field equation recursion method uses the
structure of subspace collections to obtain a continued fraction expansion for the effective tensor from which
bounds on the effective tensor can be derived.

The material of the book varies among a very wide range of scientific topics that are connected to the
theory of composites, or to which some aspects of the theory of composites can be applied.

In Chapter 1 we review many of the linear equations of physics, and write them in a canonical form
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appropriate to the theory of composites. Additionally we show how conservation laws, which have played
a key role throughout the history of science, can be generalized to equalities which we call “boundary field
equalities” and inequalities which we call “boundary field inequalities”. These require some assumptions about
the materials inside the body. The fields in the canonical form of the equations satisfy differential constraints,
linked by a constitutive law involving a matrix Z(x) of material parameters that is Hermitian or the Hermitian
part of iZ(x) is positive semi-definite. When written in the appropriate form, the scalar product of fields on
the left and right of the constitutive law can be expressed as the divergence of some “supercurrent” Q(x). As
a result of this we have the “key identity” that the integral of this scalar product can be expressed in terms
of boundary fields. We remark that the canonical form of the equations we introduce here is similar in many
respects to that of Strang (1986) [see also Strang (1988), and Chapter 2 of Strang (2007)] where he proposes
(see his figures 1.8, 2.2, 3.8, 3.9, 3.12, 3.16 and pages 126, 156) the form

e = b−Ax, y = Ce, AT y = f, (0.1)

where y = Ce is the constitutive law, x are the potentials, b and f are sources, and in a discretization of the
equations A with transpose AT are matrices which represent the differential operators. In this discretization
e, b, x and f are all represented by vectors. Then if b = 0 and f is non-zero except on the boundary nodes,
we have

y · e = −y ·Ax = −(AT )y · x = −f · x. (0.2)

This is equivalent to the key identity since the last term only involves terms at the boundary. Here we show
that this format, appropriately generalized, applies to many of the linear equations of physics. The “boundary
field equalities and inequalities” we derive in Sections 1.4 and 1.5 provide equalities and inequalities that the
fields on the boundary of a body (possibly a body in “space-time”) must satisfy given information about the
partial differential equations governing the fields inside the body, and so provide generalizations of the concept
of conservation laws. This information need not be complete: for example, in a body containing multiple
materials, we can still get equalities and inequalities without knowing the orientation or the distribution of
materials inside the body.

Chapter 2 reviews the abstract theory of composites, both for the effective tensor and for the associated
“Y -tensor”.

Chapter 3 shows that the problem of finding the Dirichlet-to-Neumann map, for acoustics, elastody-
namics, or electromagnetism in an inhomogeneous body can be reformulated as the problem of finding the
effective tensor (operator) associated with an abstract problem in the theory of composites. As a result of this,
the Dirichlet-to-Neumann map is an operator-valued analytic function, and in fact Herglotz function, of the
moduli of the tensors of the component materials, and many tools for bounding effective tensors extend to
bounding the Dirichlet-to-Neumann map.

Chapter 4, with Maxence Cassier and Aaron Welters, studies in depth the analyticity properties of the
Dirichlet-to-Neumann map for electromagnetism, first for a layered medium then for quite general bodies of
N -isotropic phases, as functions of the 2N variables ωεj and ωµj , j = 1, 2 where ω is the frequency and
εj and µj are the electrical permittivity and magnetic permeability of the phases. It is established that the
map is an operator-valued Herglotz function of these 2N complex variables. The results are extended to the
case when the phases are anisotropic, in which case the analyticity is as a function of the elements of each
permittivity tensor and each permeability tensor, multiplied by the frequency. Also the Herglotz properties
of the Dirichlet-to-Neumann map, as a function of frequency are established for bodies where the moduli
ωε(x, ω) and ωµ(x, ω) are not piecewise constant but instead vary with position, and at each point x are
Herglotz functions of the frequency ω.
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Chapter 5 explores bounds on the Dirichlet-to-Neumann map and the associated inverse problem of what
can be said about the distribution of materials inside a body from surface measurements, using the connection
between Dirichlet-to-Neumann maps and effective tensors in composites. Various approaches are developed:
the first, which may not be very useful, is to apply the simplest bounds on effective tensors to bound the associ-
ated Dirichlet-to-Neumann map. Improvements can be obtained by using the “translation method”, which then
couples the response at different frequencies or with different applied fields. For two-phase composites more
can be said by looking for complex frequencies where the body is homogeneous (or has a homogeneous shear
modulus in the case of elasticity). Then measurements of the transient response of the body, can be extrapo-
lated back (using analyticity and representation formulas for the response) to obtain the Dirichlet-to-Neumann
map (or bounds on this map) near or at these special frequencies. Since the body is nearly homogeneous, or
has constant shear modulus, it is much easier to say something about the internal geometry from these results.
Lastly for quasistatic electromagnetism in two-phase bodies we propose using matrix-valued Pick interpo-
lation to interpolate the Dirichlet-to-Neumann map at a set of frequencies to obtain information about the
geometry. It is not clear how successful and robust any of these methods will be, especially in the presence of
measurement errors: this awaits numerical tests.

Chapter 6, with Ornella Mattei, uses representation formulas for the effective tensor of a composite as
a function of the component moduli to derive bounds on the transient response of bodies. This is done in
the context of antiplane elasticity, although the results apply immediately to the mathematically equivalent
problem of two-dimensional conductivity, and can be easily extended to three-dimensional conductivity. Sig-
nificantly, we found the volume fractions of the phases could almost be exactly determined from measurements
of the transient response at certain times. This gives some hope that the method could be applied, as suggested
in Chapter 5, to provide useful information about the geometry inside a two-phase body from its transient
response. The work in this chapter formed part of the Ph.D. thesis of Ornella (Mattei 2016).

Chapter 7 develops the algebra of finite-dimensional subspace collections, like those appearing in the
abstract theory of composites and in the theory of Y -tensors when all subspaces are finite-dimensional vector
spaces. By relaxing the requirement that the subspaces are orthogonal we find that the associated effective
modulus can be any homogeneous degree 1 function of the component moduli satisfying the normalization
property that it takes the value 1 when the component moduli are all 1. There is a rich algebraic structure
associated with subspace collections: operations of addition, subtraction, multiplication, division and substi-
tution can all be defined. In many cases these are similar to the operations one can do on electrical networks.
It is not clear where these ideas will lead, but certainly they represent a new mathematical direction.

In Chapter 8 we show this algebra has important uses: in particular by substituting a collection with non-
orthogonal subspaces in one with orthogonal subspaces we can accelerate Fast Fourier transform methods for
computing the effective tensor and fields in periodic conducting composites, as demonstrated by the numerical
results of Moulinec and Suquet.

Chapter 9, with Moti Milgrom, looks at the response of multiphase bodies and composites to a set of dif-
ferent fields, which may be electric fields, magnetic fields, temperature gradients, or concentration gradients,
which interact in the components due to coupling terms in the constitutive laws. Particular attention is focused
on the form the perturbation expansion takes in nearly homogeneous media. In composites the perturbation
expansion coefficients allow one to recover the weight and normalization matrices which enter representation
formulae for the relevant projection operators, and which enter bounds on the effective response tensor.

Chapter 10, with Maxence Cassier and Aaron Welters, develops a rigorous basis, using Fredholm theory,
for the field equation recursion method for composites of two isotropic phases. The method is associated with
orthogonal subspace collections, and uses a stratification of the Hilbert space, and an inductive procedure,
to link together a sequence of associated effective tensors. Eliminating the intermediate effective tensors
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from these relations results in a continued fraction expansion for the effective tensor of the original subspace
collection. Appropriate truncations of this expansion lead to a sequence of nested bounds on the effective
tensor that get tighter and tighter as the level of truncation is increased and correspondingly more and more
series expansion coefficients are incorporated in the bounds. This is similar to the way truncations of continued
fraction expansions of Herglotz or Stieltjes functions lead to bounds, but the advantage of the field equation
recursion method is that it generalizes to multicomponent and polycrystalline composites.

Chapters 11, 12, and 13 follow a different tack, and could be useful in quantum chemistry in computations
of the wavefunction in multielectron systems. How useful is open to question, and needs to be explored
numerically, but they do present novel approaches which could be refined and adapted in ways not anticipated
here.

Chapter 11 presents a simple idea. When the integral of the square of Schrödinger’s equation (with
sources) is minimized over all (real) trial wavefunctions, with norm 1, the minimum is zero and only achieved
when Schrödinger’s equation is satisfied. By expanding out the square of Schrödinger’s equation, and doing
partial minimizations one arrives at a “density functional theory” for excited states, which I call Projection
functional theory. Instead of just minimizing over the density it requires minimizing over three functions, each
of which projects out information contained in the full wavefunction. It will still be very challenging to say
something about what combinations of the three functions are realizable (meaning being associated with an
electron wavefunction satisfying the required symmetries) and to determine what is an appropriate functional.

In Chapter 12, we begin with the form of Schrödinger’s equation given in the first chapter, of fluxes and
their derivatives connected by a matrix, through a constitutive law, to the wavefunction and its gradient. Then
using the symmetry properties of the wavefunction we desymmetrize this equation: the potential entering the
constitutive law needs not have the usual symmetries, but can be just a function of the coordinates x1 and x2 of
two-electrons, and the fields on the left of the constitutive law need only be fluxes when they are symmetrized.
This desymmetrized form should accelerate Fast Fourier transform methods for solving the equation: when
going to real space from Fourier space and then back to Fourier space one need only do Fourier transforms
on the variables x1 and x2. One does however need to keep track of the full wavefunction in Fourier space,
which may make it prohibitive for systems with a large number of electrons.

Chapter 13 contains some miscellania: a minimizing variational principle for Schrödinger’s equation
when the energy is complex, and Q∗-convex quadratic forms for Schrödinger’s equation. The latter might be
useful for accelerating Fast Fourier transform methods, as discussed in Chapter 8.

Finally, Chapter 14 is mainly concerned with Green’s functions for non-self-adjoint operators. Following
the ideas of Cherkaev and Gibiansky (1994) and Milton (1990) we start with the equation Lu = f , and look
at it together with the equation L†u′ = f ′, where L† is the adjoint of L. By adding and subtracting equations
we see (when L has the same domain as L†), that one obtains an equation MU = F, where F involves f and
f ′, U involves u and u′, and M is self adjoint and involves L and L†. Thus one obtains an equation to solve
with a self-adjoint operator M and one can use resolvents to obtain the Green function. We also give a brief
review of results for Green’s functions in infinite homogeneous media.

The chapters in the book need not be read sequentially. Some chapters may be skipped, or not, according
to the reader’s interests. The chapters with coauthors (Chapter 4, with Maxence Cassier and Aaron Welters,
on analyticity of the Dirichlet-to-Neumann map for electromagnetism; Chapter 6, with Ornella Mattei, on
bounds for the transient response of viscoelastic composites; Chapter 8, with Moti Milgrom, on the response
of systems with coupled fields; and Chapter 10, with Maxence Cassier and Aaron Welters, on a rigorous
approach to the field equation method) are essentially self-contained and can be read independently of the
rest of the text. Most readers will want to read Chapter 1, as it sets the framework in the context of a wide
variety of problems, and Chapter 2 as it reviews the abstract theory of composites. Those readers primarily
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interested in the Schrödinger equation may then just wish to jump to Chapters 11, 12, and 13. Alternatively,
those readers primarily interested in inverse problems may wish to focus on Chapters 3, 4, 5, and 6. Readers
who are interested in numerical methods may be most interested in Chapters 8, 11, and 12. Chapters 6, 8, 9,
and 10 are recommended for those readers whose interests lie mainly in the standard theory of composites. In
general, we have tried to keep the book accessible to physicists, chemists, and engineers, but they should not
be afraid to skip material they find too technical. Pure mathematicians may be most interested in Chapters 7
and 8.

We remark on some non-standard notations used in the book. Given a body Ω with boundary ∂Ω we will
frequently need the volume and surface integrals∫

Ω

f(x) dx,

∫
∂Ω

f(x) dS. (0.3)

To shorten notation and avoid repetition we will often leave off the dx and dS these being assumed when one
knows the integral is over the body Ω or the surface dS. Also, in keeping with the notation in Milton (2002)
which is the opposite of what is standard, when we write B = ∇u and q = ∇·A where A and B are matrices
and u and q are vectors, we mean in terms of components that

Bij =
∂uj
∂xi

, qj =
∂Aij
∂xi

=
∑
i

∂Aij
∂xi

, (0.4)

i.e., ∇ and ∇· are associated with the first index: a matrix field which is the gradient of a potential has
columns which are gradients of the potential components, and a matrix field which is divergence-free has
columns which are divergence free. In (0.4) and throughout the book (unless otherwise stated) we use the
Einstein summation convention that one sums over repeated indices.

As is inevitable in a book that is edited by me, rather than entirely authored by me, there are some in-
consistencies. For example, in Chapter 4 the notations E, D, H and B are used to denote the electric field,
electric displacement field, magnetic field, and magnetic induction entering Maxwell’s equations, while in
the rest of the book they are denoted by e, d, h and b. Also in that chapter the inner product between fields
in the Hilbert space is defined to be linear in the first field entering the inner product, and antilinear in the
second field (common in mathematics) while in the rest of the book it is the opposite: the inner product is
defined to be antilinear in the first field entering the inner product, and linear in the second field (common
in physics and engineering). Also sometimes the same symbol is used to denote different quantities, thus σ
could be either the conductivity or the stress [in Milton (2002) this ambiguity was avoided by using τ for the
stress, but σ is the more standard notation]. This should not cause confusion, taking into account the context
in which these symbols are used. Mostly we use (a1, a2, a3) for the components of a three-dimensional vector
a, but sometimes we use (ax, ay, az) which is more common in physics and engineering. Similarly, mostly
we use (a1, a2) for the components of a two-dimensional vector a, but sometimes we use (ax, ay), and the
components of a second order two-dimensional symmetric tensor M may be denoted by M11, M22, and M12

or byMxx,Myy , andMxy , or even byMx,My , andMxy where the last notation is used for brevity. We use a
double dot “:” to denote a double contraction of indices: thus A : B means AijBij . By contrast a single dot
“·” could mean the scalar product between two vectors, or some scalar-valued product between the fields on
the left and right of the constitutive law, and its explicit definition depends on the problem under consideration
as we will see in Chapter 1.

This book owes a lot to many people. Foremost to my husband, John Patton, who supported me in count-
less ways while I was writing this, in particular making great dinners, orchestrating the book publishing, and
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for his understanding when I had to concentrate on writing the book in my office. Patrick Bardsley is thanked
for his help with typing the initial draft of the manuscript from my notes — that saved me an enormous amount
of time. I am also grateful for him for spotting a number of errors, and his help with some numerical compu-
tations. The book would not have been possible without the tireless and absolutely amazing efforts of Nelson
Beebe who devoted a considerable amount of time and energy to assembling the various chapters together into
the desired format, and for carefully checking the bibliography, putting it into a uniform format, and adding
“doi” and “ISSN” information to almost every reference, and making other countless corrections. Thanks go
to him too for providing reference to two interesting historical reviews of Density Functional Theory (Zang-
will 2014; Jones 2015) as well as other papers too. He has always been a fountain of knowledge keeping me
abreast of scientific news articles related to my research, and other interesting topics. I also appreciated the
help of Fernando Guevara Vasquez and Hyeonbae Kang for providing useful references in Inverse Problems
in response to my queries. I’m very grateful to Mihai Putinar, for bringing my attention to the vast literature
connected with Nevanlinna–Pick interpolation, and for providing important references in the spectral theory
of non-self-adjoint operators. Similarly I am grateful to Kirill Cherednichenko for clarifying the work that
had been done on self-adjoint extensions of non-self-adjoint operators. I sent a very rough draft of manuscript
to friends, and am grateful to Ping Sheng, Martin Wegener, and John Willis for their feedback. I thank Ross
McPhedran for his suggestions for the book title. Particularly helpful were Elena Cherkaev, Hyeonbae Kang,
Paul Martin, Ornella Mattei, and Aaron Welters in spotting (with eagle eyes) various typos and corrections
to be made, and just as helpful were the valuable comments of Richard Craster, Michael Fisher, Fernando
Guevara Vasquez, Davit Harutyunyan, Alexander Movchan, and Pierre Seppecher: amazingly, Davit Har-
utyunyan and Alexander Movchan gave many useful comments on every chapter. It was most welcome that
Richard Craster and Michael Fisher suggested that I discuss conservation laws, which led me to recognize their
generalization: the boundary field equalities and inequalities introduced in Sections 1.4 and 1.5. Besides well-
known boundary field inequalities, such as the fact that the net flow of electrical energy into a passive body is
non-negative, there are many others such as those given in Section 2 of Harutyunyan and Milton (2015b). I
am additionally grateful to Paul Martin for feedback which lead to a restructuring of the first two chapters of
the book, and to Richard James and Vikram Gavani for helpful remarks on the Projectional Functional Theory
for the multielectron Schrödinger equation (Chapter 11).

I also want to thank some people in the administration of the University of Utah who were supportive of
this endeavour: notably President David Pershing, Associate Vice President for faculty Amy Wildermuth, and
the Associate Chairman of our mathematics department, Nicolas Korevaar. Also I am grateful for the support
of my friends and colleagues, Andrej Cherkaev, Elena Cherkaev, Yekaterina Epshteyn, Fernando Guevara–
Vasquez, and especially Alessandra Angelucci, Paul Bressloff, Annette MacIntyre, and Robert MacLeod.
Lastly, I am deeply indebted to the National Science Foundation for continual support throughout my career,
and to the Packard Foundation and the Sloan Foundation as well as my many mentors Ross McPhedran,
Michael Fisher, George Papanicolaou, John Willis, Bob Kohn, Don Melrose, Graham Derrick, Al Sievers,
David Mermin, and Michael Cross for helping launch my career.

Graeme W. Milton
April 18th, 2016
Salt Lake City, Utah



Contents

1 Canonical forms for linear physics equations and key identities 1
by Graeme W. Milton
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Some linear static and quasistatic equations of physics . . . . . . . . . . . . . . . . . . . . 5
1.3 The canonical forms and their key identities . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Associated key identities, conservation laws, & boundary field inequalities . . . . . . . . . 13
1.5 Other boundary field equalities and inequalities . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Consequences of passivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7 Acoustic, Schrödinger, elastic, and electromagnetic equations . . . . . . . . . . . . . . . . 21
1.8 The time-harmonic thermoacoustic equations . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.9 The time-dependent acoustic equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.10 The equations of elastodynamics and piezoelectricity in the time domain . . . . . . . . . . 27
1.11 Dynamic equations for vibrating thin and moderately thick plates . . . . . . . . . . . . . . 31
1.12 The Biot wave equations of poroelasticity in the time domain . . . . . . . . . . . . . . . . 33
1.13 Thermal conduction and diffusion in the time domain . . . . . . . . . . . . . . . . . . . . 34
1.14 The equations of thermoelasticity in the time domain . . . . . . . . . . . . . . . . . . . . . 35
1.15 Maxwell’s equations in the time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.16 A canonical form for Schrödinger’s equation in the time domain . . . . . . . . . . . . . . . 40
1.17 Schrödinger equation for a single electron in a magnetic field . . . . . . . . . . . . . . . . 42
1.18 Rewriting the Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.19 Turning the equations into periodic composite problems . . . . . . . . . . . . . . . . . . . 44

2 Composites and the associated abstract theory 47
by Graeme W. Milton
2.1 An introduction to composite materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 The history of the abstract theory of composites . . . . . . . . . . . . . . . . . . . . . . . 54
2.3 The abstract setting for defining effective tensors . . . . . . . . . . . . . . . . . . . . . . . 56
2.4 Solving for the effective tensor and fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5 A subspace collection associated with a positive semidefinite matrix valued function . . . . 60
2.6 Some properties of the effective tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7 Variational principles and elementary bounds . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.8 The abstract setting for defining Y -tensors . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.9 Example of a Y -tensor problem in two-phase composites . . . . . . . . . . . . . . . . . . 66
2.10 Analytic property preserving feature of the Y -transformation . . . . . . . . . . . . . . . . 68

xi



xii Contents

2.11 Bounds on the Y -tensor using the translation method . . . . . . . . . . . . . . . . . . . . 71
2.12 Introducing the Y -tensor in multiphase composites . . . . . . . . . . . . . . . . . . . . . . 72
2.13 Effective tensors and Y -tensors for discrete electrical circuits . . . . . . . . . . . . . . . . 73

3 A new perspective on boundary value problems 77
by Graeme W. Milton
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 General theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3 Relating the effective operator to the Dirichlet-to-Neumann map . . . . . . . . . . . . . . . 82
3.4 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5 Analyticity properties of effective tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.6 Partial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.7 Mixed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.8 Applicability to the Schrödinger and heat conduction equations in the time domain . . . . . 88
3.9 Adding source terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.10 Static and quasistatic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.11 Applicability to acoustics and elastodynamics in the time domain . . . . . . . . . . . . . . 91
3.12 The electromagnetic equations in the frequency domain . . . . . . . . . . . . . . . . . . . 91
3.13 The electromagnetic equations in the time domain . . . . . . . . . . . . . . . . . . . . . . 93

4 Analyticity of the Dirichlet-to-Neumann map for the time-harmonic Maxwell’s equations 95
by Maxence Cassier, Aaron Welters and Graeme W. Milton
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Analyticity of the DtN map for layered media . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 Electromagnetic Dirichlet-to-Neumann Map . . . . . . . . . . . . . . . . . . . . . 105
4.2.3 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 Analyticity of the DtN map for bounded media . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.2 The Dirichlet-to-Neumann map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.3 Proof of the Theorem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.4 Extensions of Theorem 17 to anisotropic and continuous media . . . . . . . . . . . 116

4.4 Herglotz functions associated with anisotropic media . . . . . . . . . . . . . . . . . . . . 118

5 The inverse problem 123
by Graeme W. Milton
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.2 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3 Bounds on effective tensors applied to Dirichlet-to-Neumann maps . . . . . . . . . . . . . 127
5.4 Choosing the reference tensor Z0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5 Translation method bounds on Dirichlet-to-Neumann maps . . . . . . . . . . . . . . . . . 130
5.6 Analogous bounds for 2-phase composites . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7 Transient response to electromagnetic fields in a two-phase body . . . . . . . . . . . . . . 137
5.8 Quasistatic dielectric response in a two-phase body . . . . . . . . . . . . . . . . . . . . . 140
5.9 Quasistatic viscoelastic response in a two-phase body . . . . . . . . . . . . . . . . . . . . 142



Contents xiii

5.10 Probing the body using measurements at a discrete set of frequencies . . . . . . . . . . . . 145

6 Bounds for the transient response of viscoelastic composites 149
by Ornella Mattei and Graeme W. Milton
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.2 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2.1 Bounds on the stress response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.2.2 Bounds on the strain response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.3 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4 Sum rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.5 Derivation of bounds in the time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5.1 Bounds on the stress response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.5.2 Bounds on the strain response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.6 Composites without reflective symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.7 Bounding the homogenized relaxation and creep kernels . . . . . . . . . . . . . . . . . . . 176
6.8 Correlating the response to different applied fields at different times . . . . . . . . . . . . . 177
6.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7 Superfunctions and the algebra of subspace collections 179
by Graeme W. Milton
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.2 Subspace collections and their associated functions . . . . . . . . . . . . . . . . . . . . . 187
7.3 Some simple examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.4 Formulas for the associated functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.5 Multiplying superfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.6 Multiplicative identity superfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.7 Addition of Y -subspace collections and embeddings . . . . . . . . . . . . . . . . . . . . . 200
7.8 Substitution of subspace collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.9 Some other elementary operations on subspace collections . . . . . . . . . . . . . . . . . . 207
7.10 Realizing any rational Y -matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.11 Extension operations on subspace collections . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.12 Reference transformations and additive inverses . . . . . . . . . . . . . . . . . . . . . . . 210
7.13 Operations on subspace collections leaving the associated function invariant . . . . . . . . 211
7.14 Multiplicative Inverses of superfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.15 Pruning the subspace collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.16 Expressions for the numerator and denominator in the rational function . . . . . . . . . . . 216
7.17 Rational functions of one variable and Z(2) subspace collections . . . . . . . . . . . . . . 217
7.18 Rational functions of two variables and Z(3) subspace collections . . . . . . . . . . . . . . 221
7.19 Visualizing the poles and zeros of functions Z(z1, z2, z3) . . . . . . . . . . . . . . . . . . 224
7.20 Normalization operations on subspace collections . . . . . . . . . . . . . . . . . . . . . . 227
7.21 Reduction operations on subspace collections . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.22 “Continued fraction expansions” of subspace collections . . . . . . . . . . . . . . . . . . . 233



xiv Contents

8 Accelerating FFT methods for conducting composites 235
by Graeme W. Milton
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.2 Substitution at the level of the Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.3 The original subspace collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.4 The vector subspace collection we substitute . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.5 The subspace collection after the substitution . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.6 Proof of acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
8.7 The numerical example of Moulinec and Suquet . . . . . . . . . . . . . . . . . . . . . . . 246
8.8 Estimating the parameters α and β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
8.9 Bounds on the support of the measure using Q∗C-convex functions . . . . . . . . . . . . . . 248

9 The response of systems with coupled fields 255
by Mordehai Milgrom and Graeme W. Milton
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
9.2 Setting of the problem and equations for the fields . . . . . . . . . . . . . . . . . . . . . . 258
9.3 The expansion of the response tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
9.4 The expansion of the effective tensor of a composite . . . . . . . . . . . . . . . . . . . . . 264
9.5 The weights and normalization matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
9.6 Construction of the basis fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
9.7 Representation of the projection operators . . . . . . . . . . . . . . . . . . . . . . . . . . 274
9.8 Simplification for two-dimensional, isotropic composites . . . . . . . . . . . . . . . . . . 276
9.9 Bounds and methods for bounding the effective tensor . . . . . . . . . . . . . . . . . . . . 278
9.10 Bounds using the field-equation recursion method . . . . . . . . . . . . . . . . . . . . . . 283
9.11 Bounds using the translation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

10 A rigorous approach to the field recursion method 287
by Maxence Cassier, Aaron Welters and Graeme W. Milton
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
10.2 Formulation of the problem for two-component composites . . . . . . . . . . . . . . . . . 292
10.3 Field equation recursion method for two-component composites . . . . . . . . . . . . . . . 296

10.3.1 The base case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.3.2 The induction step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

11 Projection Functional Theory for finding excited states 309
by Graeme W. Milton
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
11.2 A review of density functional theory for the ground state . . . . . . . . . . . . . . . . . . 312
11.3 Expanding the terms in a variational principle for excited states . . . . . . . . . . . . . . . 313
11.4 Using the variational principle to derive Projection Functional Theory . . . . . . . . . . . 316

12 The desymmetrization method for solving the Schrödinger equation 319
by Graeme W. Milton
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
12.2 The desymmetrized form of the Schrödinger equation . . . . . . . . . . . . . . . . . . . . 321
12.3 Simplifying the equation using a suitable reference medium . . . . . . . . . . . . . . . . . 325



Contents xv

12.4 Solving for the fields using Fast Fourier Transforms . . . . . . . . . . . . . . . . . . . . . 327
12.5 Convergence of the series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
12.6 An alternate series expansion with typically faster convergence . . . . . . . . . . . . . . . 331
12.7 Further improvements to enhance the rate of convergence . . . . . . . . . . . . . . . . . . 332
12.8 Proof of the antisymmetrizing action of the projection Λa . . . . . . . . . . . . . . . . . . 334

13 Variational principles and Q∗C-convex functions for Schrödinger’s equation 337
by Graeme W. Milton
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
13.2 The basic variational theorem: a direct proof . . . . . . . . . . . . . . . . . . . . . . . . . 339
13.3 Variational principles with other boundary conditions . . . . . . . . . . . . . . . . . . . . 341
13.4 Original derivation of the variational principle . . . . . . . . . . . . . . . . . . . . . . . . 342
13.5 The basic subspaces associated with the Schrödinger equation . . . . . . . . . . . . . . . . 348
13.6 Q∗C-convex functions associated with the subspace E . . . . . . . . . . . . . . . . . . . . . 350
13.7 Q∗C-convex functions associated with the subspace J . . . . . . . . . . . . . . . . . . . . 351

14 Green’s functions for self-adjoint and non-self-adjoint operators 355
by Graeme W. Milton
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
14.2 Green’s functions in homogeneous media . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
14.3 Symmetrizing the equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
14.4 Eigenfunctions, eigenvalues, and symmetry of the measure . . . . . . . . . . . . . . . . . 360
14.5 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
14.6 A class of examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
14.7 A specific example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
14.8 Recovering the eigenvalues and eigenvectors of the original equation . . . . . . . . . . . . 366

Bibliography 369

Author/editor index 402

Index 415



xvi Contents



List of Figures

1.1 Three closely related problems, where convexification or quasiconvexification is important. 4
1.2 A mechanism for producing a material with Willis type couplings. . . . . . . . . . . . . . 30

2.1 A structure for which a dilation is the only easy mode of deformation. . . . . . . . . . . . . 50
2.2 Mechanisms and structures which give negative thermal expansion from components with

positive thermal expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3 A three-phase composite with negative effective mass density above the resonant frequency. 52
2.4 A material with an anisotropic and possibly complex-valued effective mass density. . . . . 53
2.5 Bounds on a diagonal element σ∗ of the complex effective tensor σ∗. . . . . . . . . . . . . 69
2.6 A conducting body may be approximated by a discrete network. . . . . . . . . . . . . . . . 73
2.7 Interpretation of the Y∗-tensor in terms of the voltages across the batteries and current flows

through them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 The two-component layered medium in a sandwich configuration. . . . . . . . . . . . . . . 100
4.2 Example of the body Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Lower and upper bounds on σ12(t) in the case when no information about the composite is
given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2 The lower and upper bounds on σ12(t) with no information, volume fraction information,
and with isotropy plus known volume fractions. . . . . . . . . . . . . . . . . . . . . . . . 158

6.3 The lower and upper bounds on σ12(t) with no information, known σ12(0), and known
σ12(0) plus known volume fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4 The lower and upper bounds on σ12(t) with no information, known σ12(∞), and known
σ12(∞) plus known volume fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5 The lower and upper bounds on σ12(t) in the “well-ordered case” G2 > GM with no infor-
mation, volume fraction information, and with isotropy plus known volume fractions. . . . 162

6.6 Lower and upper bounds on ε12(t) when no information about the composite is given. . . . 164
6.7 The lower and upper bounds on ε12(t) with no information, volume fraction information,

and with isotropy plus known volume fractions. . . . . . . . . . . . . . . . . . . . . . . . 165
6.8 The lower and upper bounds on ε12(t) with no information, known ε12(0), and known ε12(0)

plus known volume fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.9 The lower and upper bounds on ε12(t) with no information, known ε12(∞), and known

ε12(∞) plus known volume fractions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.1 Examples of Z(3) and Y (2) subspace collections, and a superfunction F s(1). . . . . . . . 181

xvii



xviii List of Figures

7.2 Two routes to solving a physical problem formulated in terms of subspace collections. It is
suggested that the route on the right may result in a better approximation as more information
is kept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.3 Electrical circuits as representative of Z(n) subspace collections, and of Y (n) subspace
collections when the batteries are added. . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.4 Multiport electrical circuits as representative of superfunctions. . . . . . . . . . . . . . . . 186
7.5 Multiplying superfunctions is like hooking networks, with an equal number of input and

output terminals, together in series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.6 Adding Y -subspace collections is like hooking networks together in parallel. . . . . . . . . 200
7.7 Substitution of Y - and Z-subspace collections is like replacing all resistors of one type by a

compound network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.8 The pole trajectory of the function Z(z1, z2, z3) . . . . . . . . . . . . . . . . . . . . . . . 226

8.1 The function σ∗(σ1) has all its singularities on the negative real σ1-axis, between σ1 = −α
and σ1 = −β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.2 The scheme of Moulinec and Suquet corresponds to series generated by mapping the right
half of the σ1-plane to the unit disk in the z-plane. . . . . . . . . . . . . . . . . . . . . . . 237

8.3 The scheme of Eyre and Milton corresponds to series generated by mapping the cut σ1-plane,
with a cut along the negative real axis, to the unit disk in the z-plane. . . . . . . . . . . . . 238

8.4 The desired scheme should correspond to series generated by mapping the cut σ1-plane, with
a cut along the negative real σ1-axis between −β and −α, to the unit disk in the z-plane. . 239

8.5 A two-phase composite can be approximated by a discrete network of two types of resistors,
and we can replace all the resistors of one type by compound resistors. . . . . . . . . . . . 240

8.6 A periodic array of squares at a volume fraction of 25% provides a benchmark example for
testing the theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8.7 The results of Moulinec and Suquet showing the acceleration using the new method in the
rate of convergence gained over their basic scheme. . . . . . . . . . . . . . . . . . . . . . 248

8.8 The results of Moulinec and Suquet showing the acceleration using the new method in the
rate of convergence gained over the scheme of Eyre and Milton. . . . . . . . . . . . . . . . 249

8.9 The new accelerated scheme should still work even when we make a small error in the esti-
mation of α (and/or β). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

14.1 Contours, obtained by Patrick Bardsley, showing the eigenvalues just below 1 and just above
1 of the Hermitian matrix B(α) as α is varied in the right hand side of the complex α plane. 368



List of Tables

1.1 Equivalences with the conductivity problem. . . . . . . . . . . . . . . . . . . . . . . . . . 6

xix



xx List of Tables



1 Canonical forms for many of the
linear equations of physics and

key identities

Graeme W. Milton
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Abstract

We manipulate many of the linear equations of physics into a canonical form, where the fields
on the left and right side of the constitutive law satisfy differential constraints which ensure
the key identity that their scalar product can be expressed as a divergence, and therefore
integrated over a body and expressed in terms of boundary fields. Additionally the matrix
Z(x) in the constitutive law is either Hermitian or the Hermitian part of iZ(x) is positive
semidefinite. Using the fact that the differential constraints are preserved under complex
conjugation of the fields, we obtain associated key identities which lead to conservation laws,
and boundary field inequalities that generalize conservation laws. We show that there can be
boundary field equalities that are not implied by conservation laws. Following the argument
given in Section 2 of Harutyunyan and Milton (2015b), other boundary field inequalities can
be generated using Q∗C-convex functions, which are a generalization of quasiconvex functions.
For equations in the time domain the constitutive law may be replaced by a convolution with
respect to time, in which case the Fourier transform of the integral kernel should be such
that at fixed real frequency the Hermitian part of i times this Fourier transform is positive,
or negative, semidefinite, according to whether the frequency is positive or negative. With a
regularizing imaginary part added to the matrix in the constitutive law, and with source terms
added, we show how solutions in periodic media can be formulated as an abstract problem
in the theory of composites.

1.1 Introduction
Here we show that many of the linear equations of physics can be written in unifying framework, namely the
basic framework appropriate to the theory of composite materials, and in Section 1.4 we show how conser-
vation laws can be generalized to “boundary field inequalities” that provide rigorous inequalities on the fields
at the boundary of a body. In the unifying framework, an appropriately defined scalar product of the fields
on the left and right hand sides of the constitutive law can be written as the divergence of some appropriately
defined supercurrent leading to the key identity that the integral of this scalar product can be expressed in
terms of boundary values of the fields. As mentioned in the preface, the canonical form of the equations we
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2 1. Canonical forms for linear physics equations and key identities

introduce here is similar in many respects to that of Strang (1986) [see also Strang (1988), and Chapter 2 of
Strang (2007)] where he proposes (see his figures 1.8, 2.2, 3.8, 3.9, 3.12, 3.16 and pages 126, 156) the form

e = b−Ax, y = Ce, AT y = f, (1.1)

where y = Ce is the constitutive law, x are the potentials, b and f are sources, and in a discretization of the
equations A with transpose AT are matrices which represent the differential operators. [The transpose of a
matrix A has elements {AT }ij = {A}ji.] In this discretization e, b, x and f are all represented by vectors.
Then if b = 0 and f is non-zero except on the boundary nodes, we have

y · e = −y ·Ax = −(AT )y · x = −f · x. (1.2)

This is equivalent to the key identity since the last term only involves terms at the boundary.
It is the purpose of this chapter to obtain the associated canonical forms of various equations, the key

identities, and to initiate the subject of “boundary field equalities and inequalities”. The advantage of this is
that then we can apply some of the machinery that has been developed in the theory of composites to bear on
a much wider class of problems. Presumably too, as kindly pointed out to me by Paul Martin, results in these
other areas could have an impact on the theory of composites. My expertise is in the theory of composites so
it is easier for me to see how tools in the theory of composites can have wider applications, rather than the
reverse.

We mention that there has already been a successful cross-pollination of ideas between the theory of
composites and some other areas of science and engineering. One is in topology optimization, where one
adjusts the geometry of a body to optimize some combination of factors, such as weight, stiffness against some
set of applied loads at the boundary, compliance against some other set of applied loads, or flux of heat through
specified portions of the boundary in response to prescribed temperatures at the boundary, for example. Often
a geometry which performs well has microstructure in some places, indicating that one should reformulate
the problem where one allows not just pure materials in the design, but also composites with microstructure
much smaller than the body, and possibly with microstructure on many length scales (Tartar 1975, 1987;
Armand, Lurie, and Cherkaev 1984; Kohn and Strang 1986; Kohn 1992; Allaire, Bonnetier, Francfort, and
Jouve 1997; Cherkaev 2000; Allaire 2002; Bendsøe and Sigmund 2004; Tartar (2009)). This then leads to the
very difficult question of trying to estimate the combination of properties (effective tensors) that a composite
built from given materials can exhibit. See the books of Nemat-Nasser and Hori (1999), Cherkaev (2000),
Milton (2002), Allaire (2002), Torquato (2002), Tartar (2009) for a survey of the many results in this area.

Another area where there has been successful cross-pollination has been in non-linear elasticity and re-
lated areas, and in particular in the theory of shape memory materials (see, for example, Coleman and Noll
1959; Khachaturyan 1966, 1983; Roytburd 1967, 1968, 1978, 1993; Ball 1977, 1996; Ball and Murat 1984;
Ball and James 1987; 1992; James and Kinderlehrer 1989; Müller 1987, 1998; Bhattacharya 1993; Bhat-
tacharya, Firoozye, James, and Kohn 1994; Bhattacharya and Kohn 1997; Kohn 1991; Luskin 1996; and also
Chapter 31 of Milton 2002). It is interesting that convexity of the energy, or free energy, which underpins
much of thermodynamics (see, for example, Wightman 1979) is not appropriate to non-linear elasticity. In
a gas-fluid system it is easy to see how the convexity arises: as illustrated in Figure 1.1(a), if the energy W
is not a convex function of the density ρ, the system phase separates into say regions of gas having a low
density and regions of fluid having high density, thus having a lower energy than a homogeneous substance
of the same overall density. There are no “jump” conditions that the density has to satisfy across an interface.
The geometry of this macroscopic gas-fluid mixture can be fairly arbitrary. Surface tension can play a role,
but in the large volume limit its effect is usually fairly inconsequential except for the nucleation of phases. In
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nonlinear elasticity the energy depends on the deformation. One supposes that a point in the body which is
originally at x in the undeformed state gets moved to the point X(x). In hyperelasticity theory the local strain
energy densityW is just a functionW (F) of the deformation gradient F = ∇X(x). The following argument
shows that W (F) is not a convex function of F (Hill 1957; Coleman and Noll 1959, page 110). Convexity of
W (F) would imply

cW (F1) + (1− c)W (F2) ≥W (cF1 + (1− c)F2), (1.3)

for all square matrices F1 and F2 (of the required dimension) and for all weights c ∈ [0, 1]. [The value of
W along the line joining F1 and F2 must be below the tie-line joining W (F1) and W (F2).] For simplicity,
suppose one is in two dimensions. Then the trivial deformation X(x) = x must have the same energy as the
deformation X(x) = −x that corresponds to a 180◦ rotation of the material. Taking the weighted average
of the corresponding deformation gradients, F1 = ∇X(x) = I and F2 = ∇X(x) = −I, with weights c
and 1 − c, where c ∈ [0, 1], gives ∇X(x) = (2c − 1)I + x0 which corresponds to a deformation where
X(x) = (2c− 1)x−x0 in which x0 is constant. So when c is close to 1/2 the material is greatly compressed
which costs a tremendous amount of energy. (When c = 1/2 everything gets compressed to the point x0, but
surely elasticity theory will not apply then.....neutron stars and black holes will be formed before that point.)
So clearly (1.3) will be violated as the right hand side can be much larger than the left hand side: W (F) cannot
be a convex function of F.

What replaces convexity is quasiconvexity, which is the requirement that for some region Ω, with volume
|Ω|, ∫

Ω

W (F(x)) dx ≥W (〈F〉) where 〈F〉 =
1

|Ω|

∫
Ω

F (x) dx, (1.4)

for all functions F(x) that are gradients F(x) = ∇X(x) of functions X(x) that satisfy affine boundary con-
ditions, i.e., for some matrix F0, X(x) = x ·F0 for all x on the boundary ∂Ω of Ω, where F0 can be identified
with 〈F〉. If we remove the requirement that F(x) is a gradient then (1.4) is Jensen’s inequality which holds if
and only ifW (F) is convex. It turns out that if (1.4) is satisfied for one region Ω, then it is also satisfied for any
other choice of Ω: quasiconvexity is independent of the shape of Ω. Alternatively, and equivalently, one could
take Ω as a cube, and instead of affine boundary conditions require that X(x)−x·F0 satisfy periodic boundary
conditions where again F0 can be identified with 〈F〉. If the local elastic energy is not quasiconvex, “phase
separation” again occurs as shown in Figure 1.1(b), but now the microstructure of the phases is restricted to
elastic energy minimizing configurations. This time the continuity of X(x) across interfaces implies there are
jump conditions: the jump in F(x) across any smooth interface must be a rank-one matrix, more precisely
a matrix of the form n ⊗ a ≡ naT where n is the normal to the interface. In particular, by considering
the possibility that the material “phase separates” into a stratified material with layers perpendicular to a unit
vector n of two phases where F(x) takes the value F1 in phase 1 and F2 in phase 2 we see that a necessary
condition for quasiconvexity is rank-one convexity, meaning that (1.3) holds for all F1 and F2 such that the
jump F1−F2 is a rank-one matrix of the form n⊗a. In three-dimensions Šverák (1992) proved rank-one con-
vexity is not a sufficient condition for quasiconvexity (he showed there are microstructures with lower energy
than stratified ones, i.e., layered ones, or than ones with lamination on different length scales possibly with
different directions of lamination), while in two-dimensions the question is presently still open. As an example
of cross-pollination, Sverak’s example led to an example (see Section 31.9 in Milton 2002) of a composite
with effective properties that could not be mimicked by a hierarchical laminate of seven given materials. A
material with a local elastic energy that is not quasiconvex could phase separate into other elastic energy min-
imizing microstructures (composites). Strictly speaking one should refer to a sequence of energy minimizing
microstructures since (ignoring surface energies) the infimum of the energy might only be approached and
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not be achieved by any specific microstructure. Surface energies do play an important role in the selection of
energy minimizing microstructures (Kohn and Müller 1992). If there are many possible energy minimizing
microstructures available, then this is a way of minimizing hysteresis (Song, Chen, Dabade, Shield, and James
2013) and associated fatigue (Chluba, Ge, Lima de Miranda, Strobel, Kienle, Quandt, and Wuttig 2015) when
one cycles through phase transformations. One could argue that the elastic energy minimizing microstructures
are not thermodynamically stable: that over long time scales it would be energetically preferable for cracks
to develop along interfaces, thus removing the restriction that X(x) is continuous across interfaces. While
this is true, one may have to wait an extremely long time, and elasticity theory typically works well for the
intermediate times during which one wants answers. Another thing one should always remember is that from
a physical perspective it is never energy that is minimized in any closed system (since energy is conserved),
rather it is entropy (a measure of disorder) which is maximized. Thermodynamics allows one to mathemati-
cally reformulate entropy maximization principles as energy or free energy minimization principles (see, for
example, Callen 1960a, in particular figures 5.1 and 5.2).

W

F(b)

Two−phase region

W

E

Phase 1

(c)

Phase 2

Microstructures

W

Liquid

(a) ρ

Gas

Martensite

Austenite

Microstructures

Figure 1.1: Three closely related problems, where convexification or quasiconvexification is important.
For fluids, as in (a), thermodynamics tells us that the energy density W should be a convex function of
the density ρ. Roughly speaking, a nonconvex portion, such as the dashed line in (a), should be replaced
by a tie-line representing a mixture of gas and liquid. For elastic materials, as in (b), the elastic energy
W should be a quasiconvex function of the deformation gradient F = ∇X. If it contains a portion (the
dashed line in figure (b)) which causes it to be nonquasiconvex, then it needs to be quasiconvexified.
Portions where the original (microscopic) energy function differs from its quasiconvexification, correspond
to microstructures. In the example shown, which is meant to be representative of the energy function of
shape memory materials, these microstructures could be a mixture of Austenite and Martensite (whose
crystal structures have different symmetries). Similarly in (c), suppose one is looking for two-phase
microstructures which mininimize a sum W of energies and complementary energies, with some constant
energy added to phase 2 to penalize it, thus acting as a Lagrange multiplier for the volume fraction. This
then corresponds to quasiconvexifying an energy function which is the minimum of two quadratic “wells”.
The portions where the minimum of the two quadratic wells differs from its quasiconvexification again
correspond to microstructures. These figures are schematic in that F and E really live in multidimensional
spaces.

There is also a strong connection between the quasiconvexification of energies W (F), or more generally
functionsW (E) over fields E(x) subject to differential constraints, and the problem of bounding the set of all
possible effective tensors of composites containing a given number of phases (perhaps in prescribed volume
fractions). As follows from the work of Kohn (1991), Francfort and Milton (1994), Milton (1994), and Milton
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and Cherkaev (1995) [see also Cherkaev and Gibiansky (1992,1993) who introduced the idea of bounding the
set of possible effective tensors through sums of energies and complementary energies, and see Chapters 30
and 31 of Milton (2002)] bounding the set of all possible effective tensors can be reformulated as a problem
of quasiconvexification of an appropriate function W (E). The key idea (Kohn 1991) is to use variational
principles, expressing a sum of energies and complementary energies as a minimization over trial fields E(x)
satisfying appropriate differential constraints with a prescribed average value 〈E〉 = E0, and rather than taking
the minimum over trial fields first and then minimizing over all microstructures, one does the optimization
over microstructures first (moving the phases to where they minimize the sum of energies and complementary
energies for a fixed choice of the trial field E(x), which is a trivial problem) and then one minimizes over
E(x) satisfying the differential constraints, with 〈E〉 = E0 (which is the quasiconvexification of a function
which itself is a minimum of quadratic wells—one for each phase). This is illustrated in Figure 1.1(c).

1.2 Some linear static and quasistatic equations of physics
Consider the various static, or stationary, linear equations of physics which are relevant to calculating the
effective moduli of composites. (By stationary we mean that the fields do not change with time, even though
they describe a dynamic process such as the flow of electrons, heat, particles, or water). One set of basic
equations are those for D.C. electrical conductivity. Let V (x) be the electrical potential, e(x) the electric
field, j(x) the electrical current, and σ(x) the matrix-valued local conductivity (which is a second order
tensor). Then the conductivity equations take the form:

j(x) = σ(x)e(x), ∇ · j = 0, e = −∇V. (1.5)

The first equation is the constitutive equation. It links together the fields (in this case the current and electric
fields) and contains all the information about the material properties (in this case through the conductivity
tensor). The remaining two equations are the differential constraints. Strictly speaking they are differential
equations, but they do constrain the functions j(x) and e(x). These differential constraints do not depend on
the material under consideration (though σ(x) could be zero in a region of the material that is dielectric, and
consequently e(x) and V (x) may be undefined there unless one takes limits).

The same equations arise in many different physical problems: dielectrics, magnetism, thermal conduc-
tion, diffusion, flow in porous media, and antiplane elasticity. In each of these contexts the vector fields j(x)
and e(x) and the tensor σ(x) entering the constitutive relation have the interpretations given in Table 1.1
which is reproduced from page 19 of Milton (2002), which in turn is adapted from one of Batchelor (1974).
For example, in dielectric materials the electric displacement field d(x), electric field e(x) and electrical
potential V (x) satisfy

d(x) = ε(x)e(x), ∇ · d = 0, e = −∇V, (1.6)

where the dielectric tensor ε(x) is in general matrix-valued (unless the medium is isotropic or has cubic
symmetry).

Notice that
j · e = −j · ∇V = ∇ ·Q, where Q(x) = −V (x)j(x), (1.7)

which allows one to integrate the electrical power absorbed over a region and express it in terms of the flux of
power into that region, giving the key identity∫

Ω

j · e =

∫
∂Ω

−n · [V (x)j(x)], (1.8)
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Table 1.1: Equivalences with the conductivity problem.

Problem j e σ

Electrical Electrical Electric Electrical
conduction current j field e conductivity σ

Dielectrics Displacement Electric Electric
field d field e permittivity ε

Magnetism Magnetic Magnetic Magnetic
induction b field h permeability µ

Thermal Heat Temperature Thermal
conduction current q gradient −∇T conductivity κ

Diffusion Particle Concentration Diffusivity D
current gradient −∇c

Flow in Weighted fluid Pressure Fluid
porous media velocity ηµv gradient ∇P permeability k

Antiplane Stress Vector Vertical Displacement Shear
elasticity (τ13, τ23) gradient ∇u3 matrix µ

where n is the outwards normal to the surface ∂Ω.
Another important equation is that for linear elasticity. Before discussing it, let us briefly review the

meaning of tensors, for simplicity using Cartesian coordinates. [Those readers familiar with tensors can skip
this paragraph, while those readers wanting a more complete introduction to tensors should see, for example,
Lawden (1982), Chapter 1 of Jog (2002) or Chapter 21 of Riley, Hobson, and Bence (2002)]. The simplest
tensor is a scalar which remains unchanged under rotation (such as the temperature or pressure). The next
simplest is a vector v which has Cartesian elements vj that under a rotation R transform to a new vector v′

with elements
v′i = Rijvj , (1.9)

where the matrix with elements Rij represents the rotation (satisfying RijRik = δjk where the δjk are el-
ements of the identity tensor taking the value 1 if i = j and zero otherwise). Here, and subsequently, we
assume the rotation is a proper rotation, with determinant 1, thus excluding reflections: otherwise the vector
may have an additional sign flip under reflections, depending on whether the vector is a pseudovector (axial
vector ) or not. Note that a 360◦ degree rotation leaves a vector invariant.

From vectors it is natural to move to second-order tensors and the easiest example of one is a linear map
from vectors to vectors, like the conductivity or dielectric tensor. A second-order tensor A has Cartesian
elements which are represented by a matrix Aij . Under the rotation R, A transforms to A′ with elements

A′ij = RikRjmAkm, (1.10)

implying A′ = RART . A second-order tensor needs not be associated with a map from vectors to vectors,
so long as its elements satisfy these transformation rules — an example is the tensor of thermal expansion α.
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The general rule is that ann-th order tensorA has Cartesian elementsAabcdef... each indexed byn numbers
a, b, c, d, e, f, . . . taking values from 1 to d in a d-dimensional space, and under rotation transforms to A′ with
elements

A′αβγδεφ··· = RαaRβbRγcRδdRεeRφf . . . Aabcdef ···. (1.11)

This definition is a little misleading in that it fails to convey the fact that tensors are geometric objects, not
a collection of elements which are merely used to represent the geometric object. But the definition does
correctly convey the fact that tensors of different orders have different properties under rotation. A third-order
tensor could represent a mapping from first to second-order tensors, or from second to first-order tensors, or
needs not be associated with any map at all. By an abuse of notation we will also call a tensor, a matrix of
tensors that may enter the constitutive law and couple fields together, even when the tensors in the matrix
have different orders. This classification leaves out things (which we don’t consider in this book) that behave
under rotation in strange ways like the spin of an electron, which requires a 720◦ rotation to return to itself,
and is thus essentially a “half-order” tensor. I like the example of Robert Palais, who simplified a related
example of Misner, Thorne, and Wheeler (1973): see their Figure 41.6. If you stand on a belt and rotate the
buckle by 720◦, you can easily manipulate it (without twisting the buckle) so that the belt straightens out to
the original belt before the 720◦ rotation- but you cannot do this with 360◦ rotations. Try it yourself! (See
also http://www.math.utah.edu/˜palais/links.html).

In linear elasticity the relevant fields are the stress field which is a second-order tensor σ(x) (not to be
confused with the conductivity tensor which has the same symbol) measuring the local tension or compression
forces in the material (if one makes a small slit in the material perpendicular to a vector n then one has to
apply the opposing forces σn and −σn per unit area to the two surfaces of the slit to restore the materials to
its state before the slit was made: since we are free to choose the direction of n, such experiments allow us to
measure σ(x)), the strain field ε(x) measuring the local stretching, also a second-order tensor, which is the
symmetrized gradient of the displacement vector field u(x) that measures the displacement of the body relative
to its original stress free state (roughly speaking, neglecting thermal vibrations, an atom at x gets displaced to
x′ = x+u(x), where u(x) is in some sense small). A beautiful way to see strains in a transparent material is to
place it between crossed polarizers (oriented at 90◦ with respect to each other so ordinarily no light would pass
through): the strain causes the plane of polarization of the light to rotate which results in a twisting rainbow of
colors when one looks through the crossed polarizers. The relation between stress and strain involves material
parameters which are contained in C(x), the fourth-order elasticity tensor. Then ignoring body forces (such
as gravitation) the equations take the form

σ(x) = C(x)ε(x), ∇ · σ = 0, ε = [∇u + (∇u)T ]/2. (1.12)

Again we have
σ : ε = σ : ∇u = ∇ ·Q, where Q(x) = σ(x)u(x), (1.13)

where the first identity follows from the symmetry of the stress field. Here the scalar product A : B of two
second-order tensors A and B, with elements Aij and Bij is defined to be Tr(ATB) = AijBij . (The two
dots in : refer to a double contraction of indices). This leads to the key identity∫

Ω

σ : ε =

∫
∂Ω

n · σ(x)u(x). (1.14)

One can get materials where there is a coupling between electricity, magnetism, and elasticity. As before
the electric potential, electric field, stress field, strain field and elastic displacement field are V (x), e(x),
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σ(x), ε(x) and u(x). Additionally, we let d(x) be the electric displacement field, we let b(x) and h(x) be
the magnetic induction, and magnetic field, and we let ψ(x) be the magnetic scalar potential (assuming there
are no free currents). Then the constitutive equation takes the formε(x)

d(x)

b(x)

 =

 S(x) D(x) Q(x)

DT (x) ε(x) β(x)

QT (x) βT (x) µ(x)


︸ ︷︷ ︸

L(x)

σ(x)

e(x)

h(x)

 , (1.15)

where the elements of the local tensor L(x) are material parameters, whose meaning arises from the consti-
tutive equation: for example, the compliance tensor S(x) gives the strain ε(x) in terms of the stress σ(x),
when h(x) and e(x) are zero; Q(x) gives the strain ε(x) in terms of h(x) when the stress σ(x) and electric
field e(x) are zero. The fields satisfy the differential constraints

ε = [∇u + (∇u)T ]/2, ∇ · σ = 0;

∇ · d = 0, e = −∇V ;

∇ · b = 0, h = −∇ψ. (1.16)

When Q(x) = β(x) = 0, one has the equations of static piezoelectricity, while when D(x) = β(x) = 0,
one has the equations of static magnetostriction.

Again we haveε(x)

d(x)

b(x)

 ·
σ(x)

e(x)

h(x)

 = ∇u(x) : σ(x)−∇V (x) · d(x)−∇ψ(x) · b(x) = ∇ ·Q(x), (1.17)

where
Q(x) = σ(x)u(x)− V (x)d(x)− ψ(x)b(x), (1.18)

which gives the key identity

∫
Ω

ε(x)

d(x)

b(x)

 ·
σ(x)

e(x)

h(x)

 =

∫
∂Ω

n · [σ(x)u(x)− V (x)d(x)− ψ(x)b(x)]. (1.19)

Some equations that do not at first seem to fit in this scheme, in fact do when the full equations are
considered. Consider the Duhamel–Neumann equations of linear thermoelasticity (classic references include
Boley and Weiner 1997; Nowacki 1986). We let θ = T − T0 be the change in temperature T measured
from some constant base temperature T0, and we let α(x) be the symmetric second-order tensor of thermal
expansion. Let S(x) be the fourth-order compliance tensor, which is the inverse of the elasticity tensor C(x)
when θ = 0. Then with ε(x) and σ(x) representing the strain and stress as before, the equations take the
form:

ε(x) = S(x)σ(x) +α(x)θ. (1.20)

This equation of thermal expansion is insufficient to describe the total thermoelastic state of the composite.
One also needs to introduce ς(x) which is the increase in entropy per unit volume over the entropy of the
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state where σ = θ = 0, and c(x) the specific heat per unit volume at constant stress. This specific heat
measures the amount of additional heat energy or, more precisely, entropy that is stored in the material when the
temperature is increased at constant stress. Then, within a linear theory the complete description is provided
(Chandrasekharaiah 1986) by the equations(

ε(x)

ς(x)

)
=

(
S(x) α(x)

α(x) c(x)/T0

)(
σ(x)

θ

)
, with ∇ · σ = 0, ε = [∇u + (∇u)T ]/2, (1.21)

where the second line of this matrix equation is interpreted to mean ς = α : σ + cθ/T0. Now ς(x) is not
subject to any differential constraints, so we can write ς(x) = ∇ · r(x) for some nonuniquely defined vector
potential r(x). For example, we could let r(x) = ∇φ(x) and solve Poisson’s equation ∇2φ(x) = ς(x)
subject to some boundary conditions to obtain φ(x) and hence r(x). So we have(

ε(x)

ς(x)

)
·
(
σ(x)

θ

)
= ∇u(x) · σ(x) + θ∇ · r(x) = ∇ ·Q(x), (1.22)

where
Q(x) = σ(x)u(x) + θr(x), (1.23)

which gives the key identity∫
Ω

(
ε(x)

ς(x)

)
·
(
σ(x)

θ

)
=

∫
∂Ω

n · [σ(x)u(x) + θr(x)]. (1.24)

One caveat is that r(x) is not directly measurable from experiments, and so the key-identity in this case has
less utility.

We remark that these equations of static thermoelasticity are mathematically the same as the static equa-
tions of poroelasticity (Biot 1962, Norris 1992). Also the equations (1.20) are appropriate if there is swelling
due to humidity (Schulgasser 1989) or if the material is prestressed during manufacture (in which case θ
cannot be varied, and can arbitrarily be set to 1).

In quasistatics, for dielectrics or conducting materials, for viscoelastic materials, or for thermoviscoelastic
materials when the applied fields (including the spatially constant temperature for thermoviscoelasticity) vary
with time the constitutive laws in (1.6) and in (1.20) get replaced by convolutions,

d(x, t) = ε(x, t) ∗ e(x, t) ≡
∫ t

−∞
ε(x, t− t′)e(x, t′) dt′,

ε(x, t) = S(x, t) ∗ σ(x, t) +α(x, t) ∗ θ(t)

≡
∫ t

−∞
S(x, t− t′)σ(x, t′) +α(x, t− t′)θ(t′) dt′, (1.25)

where in defining the convolution say ε(x, t) ∗ e(x, t), the notation means a convolution of the function
ε(x, ·) of time up to time t with the function e(x, ·) of time up to time t, as written in each final expression.
These convolutions arise because the electrons (which cause the current or displacement field) take a while to
respond to changes in the electric field, while the displacement u(x) takes a while to respond to changes in
forces (stresses) and temperature variations.

If the variation with time is sufficiently slow (so that the body, or unit cell of periodicity under consideration
is much smaller than the wavelength) then we can apply the quasistatic approximation, which means keeping
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the differential constraints on the fields the same. The constitutive laws (1.20) become local in frequency
space,

d̂(x, ω) = ε̂(x, ω)ê(x, ω), ε̂(x, ω) = Ŝ(x, ω)σ̂(x, ω) + α̂(x, ω)θ̂(ω), (1.26)

where

f̂(x, ω) =

∫ ∞
−∞

eiωtf(x, t) dt (1.27)

denotes the Fourier transform with respect to time of a function f(x, t), which has the inverse transform

f(x, t) =
1

2π

∫ ∞
−∞

e−iωtf̂(x, ω) dω. (1.28)

The dependence of the moduli ε̂(x, ω) or Ŝ(x, ω) on the frequency ω is often quite complicated in real
materials, though may sometimes be well approximated by simple models in certain frequency regimes. As
we will see later in Section 1.6 the imaginary parts of the tensors ε̂(x, ω) and Ŝ(x, ω) are associated with
energy loss (to heat) in the material: the material is called “lossy” or “viscoelastic” if these are nonzero. In
general the thermal expansion tensor α̂(x, ω) can be frequency dependent and complex [even in composites
when the constituent materials have thermal expansion coefficients which are not frequency dependent: see
Berryman 2009]. At fixed frequency one can think of the real parts of the fields e−iωtd̂(x, ω), e−iωtê(x, ω),
e−iωtε̂(x, ω), e−iωtσ̂(x, ω), and e−iωtθ̂(ω), as representing the physical displacement field, electric field,
strain field, stress field, and temperature field. Because the quasistatic equations are exactly the same as the
static equations, except that the fields and moduli are complex, we will drop the “hats” from the symbols.

Note that the thermoviscoelastic quasistatic equations ignore mechanical source terms of heat which are
quadratic in the strain rate of deformation (Francfort and Suquet 1986). These may be important in some
solids, but then the equations become nonlinear.

1.3 The canonical forms and their key identities
We have seen in the previous section that for statics, or for steady-state problems such as electrical or thermal
conductivity where there is a flow of electrons or heat but the fields do not change with time, the constitutive
equation takes the canonical form

J(x) = L(x)E(x), (1.29)

where the Hermitian part of the tensor L(x) is positive definite on an appropriate space (e.g., for elasticity it
is positive definite on the space of symmetric matrices, not all matrices which include the antisymmetric ones
which lie in the null-space of L(x)). [A matrix B is Hermitian if B = B

T , i.e., it is the complex conjugate
of its transpose. It is positive definite if v ·Bv > 0 for all nonzero vectors v in the space on which B acts,
and positive semidefinite if v · Bv ≥ 0, for all vectors v in the space on which B acts. A matrix C is anti-
Hermitian if C = −C

T . The Hermitian part of a matrix L is (L + L
T

)/2 and it is such that the difference
between L and it, (L−L

T
)/2, is anti-Hermitian.] The differential constraints on the fields are such that with

an appropriate definition of the dot product,

J(x) ·E(x) = ∇ ·Q(x), (1.30)
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for some “supercurrent” Q(x), and straightforward integration by parts, leads to the key identity that∫
Ω

J(x) ·E(x) =

∫
∂Ω

n ·Q(x). (1.31)

This structure arises quite naturally. It is a natural consequence of “energy or power” minimizing variational
principles that these key identities hold for static equations. The identities are also key to the mathematical
basis of homogenization theory (Bensoussan, Lions, and Papanicolaou 1978; Kozlov 1978; Papanicolaou and
Varadhan 1982; Bakhvalov and Panasenko 1989; Golden and Papanicolaou 1983; Zhikov, Kozlov, and Oleinik
1994), and are essential components of the “div-curl” lemma and the method of compensated compactness,
which underlie the homogenization theory of Tartar and Murat (Tartar, 1975, 1979a, 1979b, 2009; Murat
1978, 1981, 1987; Murat and Tartar 1985)

However in the wider context of wave equations, it is not generally clear that there should be such key
identities. It is the aim of this chapter to discover them, leaving aside the physical question as to why they
exist.

For quasistatics, at fixed frequency (sufficiently low that the wavelength associated with the full wave
equations, which give rise to the quasistatic equations, is much larger than the size of the body), the constitutive
law takes again the form (1.29) only now the fields E(x), J(x) and the tensor L(x) are complex (and generally
frequency dependent). The real and imaginary parts of the fields satisfy the same differential constraints as for
the static or steady-state equations. Consequently (1.30) and the key identity (1.31) still hold. Note that the dot
product does not involve any complex conjugation: if E(x) = E′(x) + iE′′(x) and J(x) = J′(x) + iJ′′(x),
where E′(x), E′′(x), J′(x), and J′′(x) are real vectors, then

J ·E = [J′ + iJ′′] · [E′ + iE′′] = J′ ·E′ − J′′ ·E′′ + i(J′ ·E′′ + J′′ ·E′). (1.32)

This is the standard dot product for bivectors, which are complex valued vectors [see, for example, equation
(2.1.6) in Boulanger and Hayes 1993]. With this definition, E · E is not necessarily real and E · E = 0 has
nonzero solutions for E. Typically, which we assume to be the case, L(x) can be represented by a symmetric
complex matrix. Thus these quasistatic problems involve complex symmetric operators, as reviewed in Garcia,
Prodan, and Putinar (2014). Interestingly, as illustrated by their example 2.21, it is not always easy to detect
if a matrix is unitarily equivalent to a complex symmetric one.

If at a given frequency the equations are in the correct canonical form, then by definition there exists a
range of angles θ (possibly just one angle) such that Im[eiθL(x)] is positive semidefinite for all x. Introducing

J̃(x) = eiθJ(x), Ẽ(x) = E(x), L̃(x) = eiθL(x), Q̃(x) = eiθQ(x), (1.33)

where θ is independent of x, we see that the new fields and tensors still satisfy the same constitutive law
and differential constraints. Dropping the tilde’s we see that we can assume, without loss of generality, that
Im[L(x)] is positive semidefinite. When Im[L(x)] is positive definite, rather than just positive semidefinite,
one can then, for instance, apply the minimization variational principles of Cherkaev and Gibiansky (1994).

For full wave equations at fixed frequency we will see in Sections 1.7 and 1.8 that the constitutive relation
takes the form

G = ZF , (1.34)

where F = F(x), G = G(x), and Z = Z(x) are generally complex and the differential constraints are such
that with an appropriate definition of the dot product,

G(x) · F(x) = ∇ ·Q(x), (1.35)
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for some supercurrent Q(x), implying the key identity∫
Ω

G(x) · F(x) =

∫
∂Ω

n ·Q(x). (1.36)

If the equations are in the correct canonical form the tensor Z(x)/i has a positive semidefinite Hermitian part
when the materials are lossy (absorb energy), and when the frequency ω is complex with positive imaginary
part (so the fields increase exponentially with time) and Z(x) is Hermitian (though not positive semidefinite)
when there is no loss and the frequency is real. When the materials are lossy or the frequency is complex,
one can look for real angles θ such that the Hermitian part of eiθZ(x) is positive definite. One can then,
for example, apply the minimization variational principles of Milton, Seppecher, and Bouchitté (2009) and
Milton and Willis (2010) which generalize those of Cherkaev and Gibiansky (1994). A distinction between
these equations and those of quasistatics is that while in quasistatics one can find periodic solutions for E(x)
and J(x) when L(x) is periodic, for wave equations one cannot generally (in the absence of sources) find
periodic solutions for G(x) and F(x) when Z(x) is periodic and the material is lossy (so the imaginary part
of Z(x) is nonzero and positive semidefinite). Hence if one wants to obtain periodic solutions it makes sense
to include source terms: we will see an example of this in Chapters 12 and 13 for the Schrödinger equation.

For dynamic problems that are not time-harmonic, the constitutive law will still be (1.34) but now the
fields G and F , and possibly the tensor Z, depend not just on space, but on the time t as well, i.e., they are
functions of x˜ = (x1, x2, x3,−t), where generally it proves convenient to put a minus sign in front of t. With
an appropriate definition of the dot product, we still require

G(x˜) · F(x˜) = ∇˜ ·Q(x˜), with ∇˜ =

( ∇
− ∂
∂t

)
, (1.37)

for some supercurrent Q(x˜), which leads to the key identity∫
Ω˜
G(x˜) · F(x˜) =

∫
∂Ω˜

n˜ ·Q(x˜), (1.38)

where now Ω˜ is a body in space–time with outward normal n˜. For wave equations the tensor Z is Hermitian
although for parabolic equations such as thermal conduction, diffusion, and thermoelasticity Z/i can have a
nonzero positive semidefinite Hermitian part: see Sections 1.13 and 1.14.

Generally it takes time for the field G to respond to the field F , so in many cases the constitutive law gets
replaced by a convolution in time:

G = Z ∗ F , i.e., G(x,−t) =

∫ t

−∞
Z(x, t′ − t)G(x,−t′)dt′, (1.39)

which in Fourier space becomes a local relation

G(x, ω) = Z(x, ω)F(x, ω). (1.40)

If the equations are in the right canonical form then the Z(x, ω)/i will have a positive semidefinite Hermitian
part in lossy materials if ω is real and positive, and negative semidefinite in lossy materials if ω is real and
negative. The key-identity (1.38) still holds but it is cautioned that G(x˜) inside a space–time body depends on
the field F(x˜) outside that body, unless the body boundary does not depend on the time coordinate.
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We emphasize that this new canonical form of the equations is not just to make them look pretty, although
it does that. More importantly it casts them in a form similar to that used in the theory of composites, enabling
us to apply appropriate machinery from the theory of composites to obtain new results. The key identity is
of course just integration by parts, but the challenge is to write the equations so an appropriate dot product of
the fields on the left and right hand sides of the constitutive law can be integrated by parts.

Of course many materials at a sufficiently small length scale have a response which is both nonlocal in
space and in time. In this case the constitutive relation will get replaced by an integral transform, in both space
and time. Also if the fields are sufficiently strong, the constitutive relations should be replaced by nonlinear
ones. We do not treat these generalizations in this book.

1.4 Associated key identities, conservation laws, & boundary field in-
equalities

In all the examples presented in this chapter, with the exception of the Dirac equation, the fields E(x), F(x)
and F(x˜) appearing on the right-hand side of the constitutive equation have the property that the complex
conjugate fields, E(x), F(x) and F(x˜) satisfy the same differential constraints as E(x), F(x) and F(x˜):
here the overline denotes complex conjugation, and x˜ ≡ (x1, x2, x3,−t). [Similarly the complex conjugate
fields J(x), G(x) andG(x˜) satisfy the same differential constraints as the fields J(x), G(x) andG(x˜) appearing
on the left-hand side of the constitutive equation.] Consequently we have the associated key identities∫

Ω

J(x) ·E(x) =

∫
∂Ω

n · Q̃(x),∫
Ω

G(x) · F(x) =

∫
∂Ω

n · Q̃(x),∫
Ω˜
G(x˜) · F(x˜) =

∫
∂Ω˜

n˜ · Q̃(x˜) (1.41)

which hold for some appropriate supercurrent Q̃(x) or Q̃(x˜), defined according to the problem under con-
sideration. (In the first two identities Ω is a body in space, while in the third Ω˜ is a body in space–time with
outward normal n˜). For example, for conductivity, we have Q̃(x) = −V (x)j(x) and the expressions for Q̃(x)
for other problems are just as easy to obtain from the corresponding expression for Q(x) given in this chapter.

If for some nonzero complex constant λ, λL(x) is Hermitian, or λZ(x) is Hermitian, or λZ(x˜) is Her-
mitian, then by substituting the constitutive equation in the equation in (1.41), multiplying it by λ, and taking
the imaginary part of both sides we obtain the conservation laws

0 = Im

∫
∂Ω

n · Q̃(x)/λ, 0 = Im

∫
∂Ω˜

n˜ · Q̃(x˜)/λ (1.42)

as appropriate. For example, for the quasistatic dielectric problem if the dielectric constant is real and sym-
metric we obtain the result that

0 = Im

∫
∂Ω

−n · [V (x)d(x)] (1.43)

which is equivalent to conservation of energy: no power is absorbed by the lossless dielectric medium. It
might happen that the tensor entering the constitutive law is Hermitian only in one phase. In that case for
(1.42) to hold the integral needs to be restricted to a sub-domain of that phase.
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Conservation laws have of course played an enormously important role throughout history across the sci-
ences. One important theorem is due to Noether (1918) which makes the connection in Hamiltonian systems
between conservation laws and continuous symmetries, such as invariance under time or space translation,
or spatial rotation (implying respectively the laws of conservation of energy, momentum, and angular mo-
mentum). In mechanics, conservation laws (which imply the invariance of certain integrals) have played
an important role in determining information about the field near a crack–tip, or other singularity, from the
far field (see, for example, Eshelby 1951; Cherepanov 1967; Rice 1968; Eshelby 1970; Atkinson and Cras-
ter 1992). Mathematically, conservation laws are also connected to null-Lagrangians, which are functionals
whose Euler–Lagrange equations vanish. If the fields are such that the null-Lagrangian itself vanishes every-
where in Ω, and the null-Lagrangian involves gradients of a potential up to order k, then its integral provides a
conservation law: this is because any such (C1) null-Lagrangian is a divergence (Ball, Currie, and Olver 1981).
A simple example in two-spatial dimensions with a two component vector field u(x) is the null-Lagrangian
det(∇u) and we have

det(∇u) =
∂u1

∂x1

∂u2

∂x2
− ∂u1

∂x2

∂u2

∂x1
=

∂

∂x1

[
u1
∂u2

∂x2

]
+

∂

∂x2

[
−u1

∂u2

∂x1

]
, (1.44)

and clearly the quantity on the right is a divergence, so its integral just depends on boundary values and there
is an associated conservation law if det(∇u(x)) = 0 in Ω. Another simple example of a null-Lagrangian in
one dimension t is an exact integrand, a function f(t,u(t), du(t)/dt) of the form ∂S/∂t+ (du(t)/dt) ·∇uS
derived from a function S(t,u) whose integral just depends on the values of S at the endpoints, irrespective
of the choice of the function u(t):∫ t2

t1

[∂S/∂t+ (du(t)/dt) · ∇uS] dt = S(t2,u(t2))− S(t1,u(t1)). (1.45)

Exact integrands have played an important role in the calculus of variations from its infancy (see, for exam-
ple, Chapter 1 of Young 2000) and null-Lagrangians continue to play an important role, such as through
the polyconvex functions introduced by Ball (1977), which are convex functions whose arguments are null-
Lagrangians. Null-Lagrangians of fields which are not necessarily gradients, but are subject to other differen-
tial constraints, have been characterized by Murat (1978, 1981, 1987) [see also Pedregal (1989)].

Now take a general complex matrix A = A′ + iA′′ and a vector E = E′ + iE′′, where the primed
quantities denote real parts and the double primed quantities denote imaginary parts. Also let A′s and A′′s
denote the symmetric parts of A′ and A′′, and let A′a and A′′a denote the antisymmetric parts of A′ and A′′:

A′s = [A′ + (A′)T ]/2, A′′s = [A′′ + (A′′)T ]/2, A′a = [A′ − (A′)T ]/2, A′′a = [A′′ − (A′′)T ]/2.
(1.46)

Then the quantity

Im[(AE) ·E] = Im{[(A′ + iA′′)(E′ + iE′′)] · (E′ − iE′′)}
= (A′′E′) ·E′ + (A′′E′′) ·E′′ + (A′E′′) ·E′ − (A′E′) ·E′′
= (A′′sE

′) ·E′ + (A′′sE
′′) ·E′′ + (A′aE

′′) ·E′ − (A′aE
′) ·E′′

=

(
E′

E′′

)
·
(

A′′s A′a
−A′a A′′s

)(
E′

E′′

)
(1.47)

will be nonnegative for all vectors E if and only if the matrix(
A′′s A′a
−A′a A′′s

)
(1.48)
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is positive semidefinite. This condition is equivalent to requiring that the Hermitian part of A/i is positive
semi-definite. (I am grateful to Aaron Welters for making this observation.)

So suppose there is some nonzero complex constant λ such that for all x ∈ Ω, the matrix in (1.48) is
positive semidefinite with A = λL(x), or with A = λZ(x), or with A = λZ(x˜) as appropriate to the
physical problem under consideration. Then by substituting the constitutive equation in (1.41), multiplying it
by λ, and taking the imaginary part of both sides we obtain the inequalities

0 ≤ Im

∫
∂Ω

n · Q̃(x)/λ, 0 ≤ Im

∫
∂Ω˜

n˜ · Q̃(x˜)/λ, (1.49)

as appropriate. We call these boundary field inequalities. They generalize the idea of a conservation law,
since the main thing that distinguishes them from the integral form of a conservation law is the presence
of the inequality rather than an equality. For example, for the quasistatic dielectric problem if the dielectric
constant is symmetric with a positive semi-definite imaginary part we obtain the result that

0 ≤ Im

∫
∂Ω

−n · [V (x)d(x)], (1.50)

which reflects the fact that the dissipation of electrical energy into heat is nonnegative within the body, and
thus there must be a net flow of electrical energy into the body.

1.5 Other boundary field equalities and inequalities
Interestingly, there are boundary field equalities that do not arise from conservation laws. Just as the boundary
field inequality (1.49) requires one to make some assumption about the medium inside the body (namely that
the matrix in (1.48) is positive semidefinite), so too do we need to make some assumptions about the medium
inside the body to obtain these other boundary field equalities. An example is a coupled field problem in a
locally isotropic medium where the constitutive law takes the form(

j1(x)

j2(x)

)
=

(
a(x)I c(x)I

c(x)I b(x)I

)(
e1(x)

e2(x)

)
, (1.51)

in which a(x), b(x), and c(x) are scalars, and the fields are subject to the differential constraints that

∇ · j1 = 0, ∇ · j2 = 0 e1 = −∇V1, e2 = −∇V2. (1.52)

Here the fields e1(x) and e2(x) could represent electric fields, magnetic fields, temperature gradients, or
concentration gradients, and the associated fluxes j1(x) and j2(x) could represent electrical currents, electrical
displacement currents, magnetic induction fields, energy fluxes and particle currents. A classical example is
thermoelectricity, although one has to be careful how one defines the fields [for the proper formulation see
Callen (1960b) or Section 2.4 of Milton (2002)]. The assumption we make is that the matrix of coefficients

M(x) =

(
a(x) c(x)

c(x) b(x)

)
, (1.53)

entering the constitutive law satisfies the bounds

βI ≥M(x) ≥ αI, for some β > α > 0, (1.54)
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and can be diagonalized by a congruence transformation, i.e., there exists a 2 × 2 matrix W independent of
x such that

WMWT =

(
a′(x) 0

0 b′(x)

)
. (1.55)

In particular, the diagonalization assumption is satisfied if the body only contains two phases (in a possibly
unknown configuration), so that M(x) takes just two known values M1 > 0 and M2 > 0: these can be
simultaneously diagonalized by taking W = QM

−1/2
1 where Q is the rotation (satisfying QQT = I) that

diagonalizes M
−1/2
1 M2M

−1/2
1 . One boundary field equality says that if we apply boundary potentials of the

form (
V1(x)

V2(x)

)
= WT

(
f(x)

0

)
for x ∈ ∂Ω, (1.56)

for some choice of f(x), then

W21[n · j1(x)] +W22[n · j2(x)] = 0, for all x ∈ ∂Ω, (1.57)

where W21 and W22 are the matrix elements of the second row of W and n is the outwards normal to the
boundary ∂Ω. This boundary field equality is easily proved and is an immediate corollary of the ideas of
Straley (1981) and Milgrom and Shtrikman (1989b, 1989a) [see also the developments in Milgrom (1990,
1997) and Chen (1995, 1997) and Chapter 6 of Milton (2002)]. Introducing new potentials and new fluxes,
which are linear combinations of the old ones:(

V ′1(x)

V ′2(x)

)
= (WT )−1

(
V1(x)

V2(x)

)
,

(
j′1(x)

j′2(x)

)
= W

(
j1(x)

j2(x)

)
, (1.58)

we see that these satisfy the uncoupled equations:

∇ · j′1(x) = 0, j′1 = −a′(x)∇V ′1 , ∇ · j′2(x) = 0, j′2 = −b′(x)∇V ′2 . (1.59)

So clearly if V ′2(x) = 0 on ∂Ω (which is implied by (1.56)) then j′2(x) · n = 0 on ∂Ω (which implies (1.57)).
In two-dimensions other things can be said. Suppose that c(x) = 0 and that b(x) = α2/a(x) where α > 0

is a real constant. The key observation, following the ideas of Keller (1964), Dykhne (1970), and Mendelson
(1975), is that the two-dimensional fields

ẽ = α−1R⊥j1, j̃ = αR⊥e1, where R⊥ =

(
0 1

−1 0

)
, (1.60)

are respectively divergence free and curl-free. (By curl-free in two-dimensions we mean that ∂ẽ2/∂x1 −
∂ẽ1/∂x2 = 0.) Here R⊥ is the matrix for a 90◦ rotation. Now instead of prescribing the potentials V1(x) and
V2(x) at the boundary ∂Ω one can equivalently prescribe the tangential values t · e1(x) and t · e2(x) of the
electric fields e1(x) and e2(x), where t = R⊥n is the vector tangential to ∂Ω. By integrating t · e1(x) and
t ·e2(x) along ∂Ω, from one point on ∂Ω, one can recover (up to constants) V1(x) and V2(x) at the boundary
∂Ω, and conversely from the tangential derivatives of V1(x) and V2(x) along ∂Ω one can obtain t · e1(x) and
t · e2(x). Now if we prescribe t · e2(x) = α−1n · j1(x) the equations will be solved with e2(x) = ẽ and
j2(x) = j̃. Thus we obtain the boundary field equality that on Ω

n · j2(x) = −αt · e1(x) when t · e2(x) = α−1n · j1(x). (1.61)
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Boundary field equalities are in a sense analogous to exact (microstructure independent) relations satisfied
by the effective tensors of composites. There is a very general theory of such exact relations (Grabovsky 1998;
Grabovsky and Sage 1998; Grabovsky and Milton 1998; Grabovsky, Milton, and Sage 2000; Grabovsky 2004;
see also Chapter 17 in Milton (2002)).

Just as there is a connection between null-Lagrangians and conservation laws, so too is there a connection
between Q∗C-convex functions and boundary field inequalities. A Q∗C-convex function f(E) = E · TE is a
quadratic function of the vector or tensor E, involving the Hermitian matrix T, such that its volume average
is non-negative whenever E = E(x) is C-periodic and satisfies the appropriate differential constraints, which
we write as E ∈ E where E is the space of C-periodic fields satisfying these differential constraints. [A
more precise definition, which differs slightly from the one given in Milton (2013b), is provided later in
equation (8.76)]. Using the ideas of Tartar and Murat (Murat 1978, 1981, 1987; Tartar 1979a); see also
Milton (2013b); by taking Fourier transforms it is easy to obtain algebraic conditions for a quadratic function
to be Q∗C-convex: in essence it suffices to consider all C-periodic test fields E(x) that are pure sinusoidal
waves in space. Convex functions are Q∗C-convex, but the interesting applications generally come from Q∗C-
convex which are not convex. Q∗C-convexity generalizes the notion of quasiconvexity that beginning with the
work of Morrey (1952,1966) has been fundamental in proving the existence of minimizers of functionals, such
as those that occur in elasticity theory (Ball 1977; Ball and James 1987): for an excellent introduction to the
subject see the book of Dacorogna (2007). As shown by Milton (2013b) (see also the addendum to that paper)
Q∗C-convexity enables one to obtain inequalities of the form∫

Ω

f(E(x)) ≥ f0, (1.62)

which holds for all fields E(x) satisfying appropriate differential constraints, which we write as E ∈ EΩ,
where the constant f0 just depends on fields at the boundary ∂Ω and Ω is a region that lies inside the unit cell
of periodicity. To obtain such an inequality we look for one solution E0(x) of the Euler–Lagrange equations:

J0(x) = TE0(x), J0 ∈ JΩ, E0 ∈ EΩ. (1.63)

where JΩ and EΩ are spaces of fields respectively satisfying differential constraints appropriate to the equa-
tions at hand, and such that the associated key identity holds: the integral over Ω of E0 ·J0, which we label f0,
can be obtained from boundary values of the superflux n · Q̃(x) associated with J0(x) and E0(x). If E(x)
is a field satisfying the same boundary conditions on Ω as E0(x) then we define δE(x) to be E(x)− E0(x)
inside Ω and to be zero in that part of C which is outside Ω. Then we extend δE(x) to be C-periodic. Pro-
vided the boundary conditions on Ω, and the definitions of the spaces E and EΩ ensure that δE(x) satisfies
the differential constraints appropriate to fields in E , by the Q∗C-convexity of f it follows that

0 ≤
∫
C

f(δE(x)) =

∫
Ω

f(δE(x)). (1.64)

Since f is quadratic, and T is Hermitian, we have

f(δE(x)) = f(E(x))− f(E0(x))− δE(x) · J0(x)− J0(x) · δE(x), (1.65)

and the associated key identity implies∫
Ω

δE(x) · J0(x) = 0,

∫
Ω

J0(x) · δE(x) = 0, (1.66)
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since the boundary fields on Ω associated with δE(x) vanish. So we conclude that∫
Ω

f(E(x)) ≥
∫

Ω

f(E0(x)) =

∫
Ω

E0 · J0 = f0, (1.67)

which establishes (1.62). We emphasize that even with specified boundary conditions, there may be many
fields E0(x) satisfying (1.63).

The most interesting choices of T are the extremal translations (page 87 of Milton 1990; Allaire and Kohn
1994) which have the property that f(E) loses its Q∗C-convexity whenever a nonzero positive semidefinite
matrix is subtracted from T. For such choices of T one expects there to be many fields E0(x) satisfying
(1.63) that are compatible with the boundary conditions of interest. An extreme example is if we are in two-
spatial dimensions, u(x) is a two-component vector field with components u1(x) and u2(x), E = ∇u, and
f(E) is the null-Lagrangian det(E) as in (1.44). Then the equations (1.63) can be expressed in the form(

j1(x)

j2(x)

)
︸ ︷︷ ︸

J0(x)

=

(
0 R⊥/2

RT
⊥/2 0

)
︸ ︷︷ ︸

T

(
e1(x)

e2(x)

)
︸ ︷︷ ︸

E0(x)

, ∇ · ji = 0, ei = ∇ui, i = 1, 2, (1.68)

where R⊥ with transpose RT
⊥ is the matrix for a 90◦ rotation given by (1.60). These equations are clearly

satisfied for any choice of fields u1(x) and u2(x), due to the fact that R⊥ maps curl-free fields to divergence-
free fields. We remark that with extremal choices of T it is not clear that the left hand side of (1.62) is even
bounded below as E(x) varies over those fields in EΩ satisfying desired boundary conditions. However it
is bounded below (by f0) if we can find solutions of the Euler–Lagrange equations (1.63) compatible with
the desired boundary conditions. One could, for example, look for a superposition of plane-wave solutions to
these Euler–Lagrange equations that satisfy the desired boundary conditions, or we could choose our boundary
conditions to match those of a superposition of these plane waves.

Inequalities of the form (1.62) can be obtained by other means too. In particular, if T is positive semidef-
inite, so that f(E) is a convex function of E, then Jensen’s inequality says that (1.62) holds for any boundary
conditions with f0 = |Ω|f(〈E〉) where |Ω| is the volume of Ω, and 〈·〉 denotes a volume over Ω. It is frequently
the case that the differential constraints on E(x) allow one to calculate 〈E〉, and hence f0 from boundary val-
ues: for instance, this is clearly true if E(x) = ∇u(x) for some vector (or scalar) potential u(x).

Now, following the argument given in Section 2 of Harutyunyan and Milton (2015b), suppose, for simplic-
ity, that L(x) is Hermitian and that we can find a constant c > 0 such that L(x)− cT is positive semi-definite
for all x ∈ Ω. [See also the related papers of Kang, Kim, and Milton (2012), Milton and Nguyen (2012), Kang,
Milton, and Wang (2014), Kang and Milton (2013), Kang, Kim, Lee, Li, and Milton (2014), and Thaler and
Milton (2015) that implicitly derive boundary field inequalities for bodies containing two phases, with a known
volume fraction of one phase: these are used in an inverse fashion to derive bounds on the volume fraction.]
Such a constant c is easiest to find if the body contains N -phases and we know the value of L(x) inside each
phase, although the phase geometry may be unknown. Then, using (1.62) and the associated key identity
(1.41), we obtain the boundary field inequality,

0 ≤
∫

Ω

E(x) · L(x)E(x)− cf(E(x)) ≤ −cf0 +

∫
∂Ω

n · Q̃(x). (1.69)

Such boundary field inequalities, which generalize those in Section 2 of Harutyunyan and Milton (2015b),
place constraints on the Dirichlet-to-Neumann map that maps the potential on the boundary ∂Ω to the asso-
ciated flux through ∂Ω. The inequality (1.69) is a natural extension of the translation method (also known
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as the compensated compactness method ) introduced by Murat and Tartar (Tartar 1979b; Murat and Tartar
1985; Tartar 1985) and independently by Lurie and Cherkaev (1982, 1984) and the associated comparison
bounds (see, for example, Chapter 24 in Milton 2002) in the theory of composites. These boundary field
inequalities can be used in an inverse fashion to tell us something about the moduli inside Ω. For example,
if the boundary field inequalities are violated for some value of c then this tells us that L(x)− cT cannot be
positive semi-definite everywhere inside Ω, or alternatively that the equations have broken down. By taking a
variety of possible T and boundary conditions, one can narrow down the range of possible values that L(x)
takes inside the body Ω.

In some problems it may happen that we know that E(x) within Ω only takes values in a compact set K.
Then defining

f+ = max
E∈K

f(E), (1.70)

we have from (1.62) the boundary field inequality

|Ω|f+ ≥ f0, (1.71)

in which |Ω| is the volume of Ω. Here f0 depends on the boundary fields, so if (1.71) is not satisfied for
some boundary fields, then the occurrence of those boundary fields signals that E(x) has in fact taken values
outside K somewhere within Ω. An example is polycrystalline plasticity, where the stress σ(x) must take
values within the yield set appropriate to the crystal at x. Suppose for simplicity there are only a finite number
n of crystal grains in Ω, perhaps in an unknown geometry, with respective yield setsKi, i = 1, 2, . . . , n. Then
clearly within Ω,

σ(x) ∈ K, K =

n⋃
i=1

Ki, ∇ · σ = 0. (1.72)

The associated boundary field inequalities can then be useful for determining which loads on the boundary
∂Ω will cause the material to yield. Similar ideas have been used, for example, by Kohn and Little (1998)
in determining bounds on the homogenized yield set and stem from the theory of compensated compactness
(Tartar 1979b) and the related translation method (see, for example, Chapter 24 of Milton 2002 and references
therein). Another example is if the body contains crystals of shape memory material. One may be interested
in deformations that do not leave any residual stress. Then it is the strain field ε(x) which lies in some set K
and satisfies the differential constraint that ε = [∇u + (∇u)T ] for some displacement field u. In this context
similar ideas have been used, for example, by Bhattacharya and Kohn (1997) to bound the set of recoverable
strains of polycrystalline shape-memory materials.

Boundary field inequalities, like conservation laws, should have many important applications in analy-
sis. The main problem is to pick useful ones among the plethora of possibilities. In this connection, recent
advances (Nesi and Rogora 2007; Milton 2013b; Harutyunyan and Milton 2015a; Harutyunyan and Milton
2015b; Harutyunyan and Milton 2016) on characterizing extremalQ∗C-convex and quasiconvex functions may
help. (For fields E = ∇u, Q∗C-convexity and quasiconvexity are equivalent, and the extremal ones are those
that lose their quasiconvexity whenever a convex function is subtracted from it.)



20 1. Canonical forms for linear physics equations and key identities

1.6 Consequences of passivity
Let us suppose the frequencyω is complex, ω = ω′+iω′′, whereω′′ > 0 so that the fields which are modulated
by e−iωt = eω

′′te−iω
′t grow with time. The physical electric and magnetic fields are

eR(x, t) = Re[e−iωte(x)] = eω
′′t[e−iω

′te(x) + e+iω′te(x)]/2,

hR(x, t) = Re[e−iωth(x)] = eω
′′t[e−iω

′th(x) + e+iω′th(x)]/2, (1.73)

where a is the complex conjugate of a, and the complex electric field e(x) and complex magnetic field h(x)
do not depend on time. Now the total flow of energy into the body up to time T should be positive and by
Poynting’s theorem, this implies

0 ≤
∫ T

−∞

∫
∂Ω

n · hR(x, t)× eR(x, t) =

∫ T

−∞

∫
∂Ω

n · {Re[e−iωth(x)]× Re[e−iωte(x)]}

=

∫ T

−∞

∫
∂Ω

e2ω′′tn · [h(x)× e(x) + h× e(x) + e−2iω′th(x)× e(x) + e2iω′th(x)× e(x)]/4

=
e2ω′′T

4ω′′

∫
∂Ω

n · {Re[h(x)× e(x)]}+ e2ω′′T Re

{
e−2iω′T

4(ω′′ − iω′)

∫
∂Ω

n · [h(x)× e(x)]

}
. (1.74)

If ω′ is nonzero then the second term oscillates sinusoidally with time T , multiplied by e2ω′′T , and so changes
sign with time. So a necessary condition for this to remain positive for all time is that

0 ≤ Re

∫
∂Ω

n · [h(x)× e(x)] = Re

∫
Ω

∇ · [h(x)× e(x)]

= Re

∫
Ω

e · (∇× h)− h · (∇× e) = Re

∫
Ω

[−e · (iωεe)− h · iωµh]

=

∫
Ω

e · Im(ωε)e + h · Im(ωµ)h, (1.75)

where ε(x) and µ(x) are the electric permittivity and magnetic permeability tensors and we have used the
Maxwell equations,

∇× h = −iωεe, ∇× e = iωµh. (1.76)

Clearly (1.75) will be nonnegative provided

Im(ωε(x, ω)) ≥ 0, Im(ωµ(x, ω)) ≥ 0, (1.77)

for all x ∈ Ω and for all ω in the upper half plane Imω = ω′′ > 0. Conversely, by considering a small region
Ω with boundary conditions chosen so that the interior fields e and h have almost constant desired values, with
either |e|� |h| or |e|� |h|, (assuming ε(x, ω) and µ(x, ω) are smooth) we see that the conditions (1.77) are
not only sufficient, but also necessary.

Similar arguments can be applied to elasticity. The physical velocity, and traction at the surface of a body
when the fields grow at a complex frequency ω = ω′ + iω′′ with ω′′ > 0 are

vR(x, t) =
∂

∂t
Re[e−iωtu(x)] = eω

′′t[−iωe−iω′tu(x) + iωe+iω′tu(x)]/2,

tR(x, t) = Re[e−iωtn · σ] = eω
′′t[e−iωtn · σ(x) + e+iωtn · σ(x)]/2, (1.78)



1.7. Acoustic, Schrödinger, elastic, and electromagnetic equations 21

where u(x) and σ(x) are the complex displacement field and complex stress field, which are independent of
time. Hence the total work done on the body up to time t = T , which must be positive is

0 ≤
∫ T

−∞

∫
∂Ω

vR(x, t) · tR(x, t)

=

∫ T

−∞

∫
∂Ω

e2ω′′t[e−iωtn · σ(x) + e+iωtn · σ(x)][−iωe−iω′tu(x) + iωe+iω′tu(x)]/4

=
e2ω′′T

4ω′′

∫
∂Ω

{Re[in · σ(x)ωu(x)]}

−e2ω′′T Re

{
e−2iω′T

4(ω′′ − iω′)

∫
∂Ω

[iωn · σ(x)u(x)]

}
. (1.79)

Again because the second term oscillates (unless ω′ = 0) a necessary condition for this to be nonnegative for
all T is that

0 ≤
∫
∂Ω

Re[in · σ(x)ωu(x)]

=

∫
Ω

Re[iσ(x) : ∇ωu(x) + i(∇ · σ(x)) · ωu(x)]

= ωω

∫
Ω

ε(x) : Im[−C/ω]ε+ u · Im[ωρ]u, (1.80)

where C(x, ω) is the elasticity tensor, ρ is the density, and we have used the elastodynamic equations that

σ = Cε, ε = [∇u + (∇u)T ]/2, i(∇ · σ(x)) = ωp(x) = −iω2ρu, (1.81)

in which p(x) is the complex momentum density.
The nonnegativity of (1.80) will be ensured provided the moduli are such that

Im(−C(x, ω)/ω) ≥ 0, Im(ωρ(x, ω)) ≥ 0, (1.82)

hold for all x ∈ Ω and for all ω in the upper half plane Imω = ω′′ > 0, and conversely by considering
small bodies with almost constant fields σ(x) or u(x), one sees that the conditions (1.82) are also necessary.
Complex, frequency dependent, elasticity tensors arise naturally in the theory of viscoelasticity (Christensen
2003). Complex, frequency dependent, effective mass-density tensors also arise naturally in the theory of
elastic metamaterials (Sheng, Zhang, Liu, and Chan 2003; Movchan and Guenneau 2004; Liu, Chan, and
Sheng 2005; Milton, Briane, and Willis 2006; Milton and Willis 2007). The associated mathematical theory
was first developed by Zhikov (2000), Section 8.1: see also Bouchitté and Felbacq (2004) and Smyshlyaev
(2009).

1.7 The time-harmonic acoustic, Schrödinger, elastic, and electromag-
netic equations

It was recognized by Milton, Seppecher, and Bouchitté (2009) that a similar structure holds true for the equa-
tions of acoustics, elastodynamics and electromagnetism in the case when the fields vary harmonically with
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time, i.e., have a time-dependence of e−iωt where ω is the frequency. The constitutive equation takes the form

G(x) = Z(x)F(x), (1.83)

where, in the absence of sources, G(x) and F(x) satisfy the differential constraints that

F =

(∇u

u

)
, G =

(
G

∇ ·G

)
, (1.84)

in which the potential u(x) is scalar- or vector-valued field, while G(x) is, correspondingly, a vector or
second-order tensor field. When u(x) is a vector field, these differential constraints imply

G(x) · F(x) ≡ G(x) : ∇u(x) + u(x) · [∇ ·G(x)] = ∇ ·Q(x), (1.85)

where the supercurrent Q(x) is the vector field

Q(x) = G(x)u(x), (1.86)

thus giving the key identity ∫
Ω

G(x) · F(x) =

∫
∂Ω

n ·G(x)u(x). (1.87)

When u(x) is a scalar field u(x) and G(x) is a vector field, the same identity holds once we define

G(x) · F(x) ≡ G(x) · ∇u(x) + u(x)[∇ ·G(x)]. (1.88)

For acoustics we can make the identifications

u = P, G = −iv, Z =

(−(ωρ)−1 0

0 ω/κ

)
, (1.89)

where P is the complex pressure, v the complex velocity, ρ the complex density tensor, and κ the complex
bulk modulus [see Dukhin and Goetz (2009) and references therein]. With these substitutions, the constitutive
law (1.83) implies

−iv = −(ωρ)−1∇P, −i∇ · v = (ω/κ)P, (1.90)

which on eliminating v leads to the familiar acoustics equation

∇ · ρ−1∇P + ω2κ−1P = 0. (1.91)

The multielectron Schrödinger equation, for time-harmonic fields with a time-dependence e−iEt/h̄ where
E is the energy and h̄ is Planck’s constant divided by 2π, is equivalent to the acoustic equation and can be
written in the same form, with the (generally complex-valued) wavefunction ψ(x) playing the role of the
pressure, (

q(x)

∇ · q(x)

)
=

(−A 0

0 E − V (x)

)
︸ ︷︷ ︸

Z(x)

(∇ψ(x)

ψ(x)

)
, (1.92)

where V (x) is the potential and A in the simplest approximation is h̄2I/(2m) in which m is the mass of the
electron, but it may take other forms to take into account the reduced mass of the electron, or mass polarization



1.7. Acoustic, Schrödinger, elastic, and electromagnetic equations 23

terms due to the motion of the atomic nuclei. Here x lies in a multidimensional space x = (x1,x2, . . . ,xN )
where following, for example, Parr and Weitao (1994), each xi represents a pair (ri, si) where ri is a three
dimensional vector associated with the position of electron i and si denotes its spin (taking discrete values
+1/2 for spin up or −1/2 for spin down). Accordingly, ∇ represents the operator

∇ = (∇1,∇2, . . . ,∇N ), where ∇j =

(
∂

∂r
(j)
1

,
∂

∂r
(j)
2

,
∂

∂r
(j)
3

)
. (1.93)

Typically one thinks of the matrix Z(x) in (1.92) as being Hermitian, but it can have a positive semidefinite
imaginary part ifE = E′+ iE′′ is complex with a positive imaginary partE′′, corresponding to having fields
with a time-dependence eE

′′t/h̄e−iE
′t/h̄ which is increasing with time. The key restriction on ψ(x) for the

multielectron Schrödinger equation, is that it must be antisymmetric when we interchange any pair xi and
xj , with i 6= j, (i.e., when we interchange both position and spin). The wavefunction ψ(x) has the physical
interpretation that ψ(x)ψ(x) gives the joint probability density of finding electrons at the points r1, r2, . . .,
rN with corresponding spins s1, s2, . . ., sN when a measurement of electron positions and electron spins is
taken (and this measurement will destroy the wavefunction).

For elastodynamics in the absence of sources we identify u with the displacement, and

G(x) =

(−σ/ω
ip

)
, Z =

(−C/ω 0

0 ωρ

)
, F =

(∇u

u

)
, (1.94)

where σ(x) is the complex stress tensor, p(x) is the complex momentum density, C(x) the fourth-order
elasticity tensor, and ρ(x) the complex density tensor. With these substitutions, the constitutive law (1.83)
implies

σ(x) = C∇u, ip(x) = ∇ · (−σ(x)/ω) = ωρu, (1.95)

thus reducing to the familiar elastodynamic equation,

∇ · C∇u + ω2ρu = 0. (1.96)

In elastodynamics (or whenever the potential u is vector-valued) one could take any constant second-order
tensor M and redefine

G(x) · F(x) ≡ G(x) : [(∇u(x))M] + [u(x)M] · [∇ ·G(x)] = ∇ · [G(x)(u(x)M)]. (1.97)

In this way one sees that there is not just one key identity but a whole multitude of them, parameterized by M.
As the identities are linear in M it suffices to give them for a basis of M, yielding d2 identities where d = 2
or 3 is the dimensionality of the space.

For electromagnetism at fixed frequency ω (in the absence of “free current” sources, but allowing for
conduction currents σe, which are instead incorporated in the term εe) the basic equations for the electric
field e(x), electric displacement field d(x), magnetizing field h(x) and magnetic field b(x) are

∇× e = iωb, ∇× h = −iωd, d = εe, b = µh, (1.98)

where ε(x) is the complex-valued electric permittivity tensor and µ(x) is the complex-valued magnetic per-
meability tensor. We have chosen units of dimensions so the speed of light c is 1. Maxwell’s equations can
also be cast as an “elasticity type equation”:

∇ · (C∇e)− ω2εe = 0, (1.99)
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where now C has elements
Cijk` = eijmek`n{µ−1}mn, (1.100)

and eijm is the Levi-Civita (alternating) tensor [eijm = 1 (−1) if (i, j,m) is an even (odd) permutation
of (1, 2, 3) and is zero otherwise]. Thus electromagnetism can also be cast in the form (1.83), with fields
satisfying (1.84) with u being replaced by the electric field. Note however there is an error in equation (4.2)
of Milton, Seppecher, and Bouchitté (2009): the left hand side should not have a minus sign. The correct form
is (1.99) as originally correctly stated by Milton, Briane, and Willis (2006). Fortunately this does not effect
much of the analysis in that paper which is mostly based on the equations (4.16) to (4.20) there, which are
correct.

For electromagnetism, at fixed frequency, the fields and tensor entering the constitutive law are most
naturally taken as

G(x) =

(−ih
ωd

)
, Z(x) =

(
−[ωµ(x)]

−1
0

0 ωε(x)

)
, F(x) =

(
iωb

e

)
, (1.101)

where the fields F(x) and G(x) are subject to the differential constraints that

F(x) =

(∇× e

e

)
, G(x) =

( −ih
i∇× h

)
, (1.102)

for some fields e(x) and h(x). Now we have

G(x) · F(x) = −ih · ∇ × e + ie · ∇ × h = ∇ ·Q(x), (1.103)

where
Q(x) = −ie× h. (1.104)

This implies the key identity ∫
Ω

G(x) · F(x) =

∫
∂Ω

−in · (e× h), (1.105)

which is essentially Poynting’s theorem, apart from the appearance of h rather than h on the right-hand side
of the equation. (The associated key identity is Poynting’s theorem.)

1.8 The time-harmonic thermoacoustic equations
A more challenging set of time-harmonic equations to express in the desired form are those of linearized
thermoacoustics, which incorporate thermal and viscous losses into the equations of acoustics. The source of
these equations that I am using is a COMSOL Acoustics Module User’s Guide (COMSOL 2013), equations
(7-5), page 286. Some related theory can be found in Pierce (1981).

The time-harmonic linearized thermoacoustic equations involve the density fluctuations, temperature fluc-
tuations, pressure fluctuations, stress, and velocity fields which are the real parts of e−iωtρ(x), e−iωtθ(x),
e−iωtP (x), e−iωtσ(x), and e−iωtv(x), where the complex fields, in the absence of source terms, satisfy

iωρ = −ρ0(∇ · v), iωρ0v = ∇ · σ, iω(ρ0Cpθ − T0α0P ) = ∇ · [k(x)∇θ], (1.106)
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representing the equations of conservation of mass, momentum, and energy: where ρ0 and T0 are the back-
ground density and temperature; Cp is the heat capacity at constant pressure; α0 is the coefficient of thermal
expansion at constant pressure; and k(x) is the thermal conductivity. Additionally one has the relations

ρ = ρ0(βTP − α0θ), σ = −P I + D∇v,

D∇v = µ[∇v + (∇v)T ] +

(
µB −

2

3
µ

)
(∇ · v)I, (1.107)

where the first equation is the linearization of the equation of state linking pressure, density, and temperature,
while the second and third equations give the constitutive law for the stress in a fluid, in terms the velocity
gradient and pressure fields. Here D is the isotropic fourth-order tensor of viscosity moduli, µ and µB are the
dynamic shear and bulk viscosities (for a discussion of bulk viscosity see Dukhin and Goetz 2009) and βT is
the isothermal compressibility. We first eliminate the density from these equations to get

s ≡ −(∇ · v)− iωβTP + iωα0θ = 0, (1.108)

and we can use this to express P in terms of the other variables (including s which is zero),

P =
is

ωβT
+

i

ωβT
∇ · v +

α0θ

βT
, (1.109)

which we can use to eliminate P from the other equations (in favor of s):

σ = D∇v − isI

ωβT
− iI

ωβT
∇ · v − α0θI

βT
,

∇ · [k(x)∇θ] = iωρ0Cpθ +
sα0T0

βT
+
α0T0

βT
∇ · v − iωα

2
0T0θ

βT
. (1.110)

Hence we can rewrite the thermoacoustic equations (without sources) as
iσ

i∇ · σ
q

∇ · q
−iP

 =


iD(x) + I⊗I

ωβT
0 0 −iα0T0I

βT

I
ωβT

0 −ωρ0 0 0 0

0 0 ik(x)T0 0 0
iα0T0I·
βT

0 0 ω
α2

0T
2
0

βT
− ωρ0CpT0

iα0T0

βT
I·
ωβT

0 0 −iα0T0

βT

1
ωβT


︸ ︷︷ ︸

Z(x)


∇v

v

∇θ/T0

θ/T0

s

 . (1.111)

The matrix Z(x) entering this constitutive law is such that the Hermitian part of Z/i is positive semidefinite
as desired. Furthermore, recalling that s is zero, we have the key identity,

iσ

i∇ · σ
q

∇ · q
−iP

 ·

∇v

v

∇θ/T0

θ/T0

s

 = ∇ · [iσv + qθ/T0]. (1.112)
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1.9 The time-dependent acoustic equation
Now let us consider the acoustic equations, removing the assumption of time-harmonicity. We begin by
assuming that the bulk modulus κ(x) and density ρ(x) only depend on the spatial variable x and not on time
t. Then the time-dependent equations of acoustics for the pressure field P (x, t) and velocity field v(x, t) can
be written as (

∂v
∂t

∇ · v

)
=

(−ρ(x)−1I 0

0 κ(x)−1

)
︸ ︷︷ ︸

Z(x)

(∇P
−∂P∂t

)
. (1.113)

Here we assume ρ and κ do not depend on frequency, but it’s okay if they do: then the constitutive law gets
replaced by a convolution in time. Writing out these equations enables us to check that indeed they are the
equations of acoustics:

κ−1 ∂
2P

∂t2
= −∂∇ · v

∂t
= ∇ρ−1∇P. (1.114)

Also, taking the dot product(
∂v
∂t

∇ · v

)
·
(∇P
−∂P∂t

)
= (∇P ) ·

(
∂v

∂t

)
−
(
∂P

∂t

)
(∇ · v) + P

∂∇ · v
∂t

− P ∂∇ · v
∂t

=

( ∇
− ∂
∂t

)
·
(
P ∂v
∂t

P∇ · v

)
= ∇˜ ·Q, (1.115)

where∇˜ is the 4 dimensional gradient with x4 = −t, and Q = [(P∂tv)T , P∇ · v]T . This is a divergence so
the key identity ∫

Ω˜
(

∂v
∂t

∇ · v

)
·
(∇P
−∂P∂t

)
=

∫
∂Ω˜

nx · P
∂v

∂t
− ntP∇ · v (1.116)

holds. Now Ω˜ is a body in space–time with outward normal n˜ = (nx, nt).
A further simplification can be made. Suppose we are in three (spatial) dimensions. Let x4 = −t, and set

∇˜ =

(
∇
∂
∂x4

)
=

( ∇
− ∂
∂t

)
, ji =

∂vi
∂t
, for i = 1, . . . 3, j4 = ∇ · v. (1.117)

Then, with x˜ = (x1, x2, x3,−t), the equations (1.113) can be rewritten as

∇˜ · j(x˜) = 0, j(x˜) = Z(x˜)∇˜P (x˜), (1.118)

so they look like a “space–time” version of the conductivity equations, with j(x˜) satisfying the conservation
law∇˜ · j(x˜) = 0. Of course, there are important differences: most notably the matrix entering the constitutive
law is real but not positive definite, as it should be for a wave equation.

Now, by direct analogy with the transformation of the conductivity equations under affine transformations
(see, for example, Section 8.3 of Milton (2002)), under the Galilean transformation

x˜′ = Ax˜, with A =

(
I w

0 1

)
, (1.119)
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where x˜′ = (x′1, x
′
2, x
′
3,−t′), x˜ = (x1, x2, x3,−t), and w is the velocity of the moving frame of reference,

the equations transform to
∇˜ ′ · j′(x˜′) = 0, j′(x˜′) = Z′(x˜′)∇˜ ′P ′(x˜′), (1.120)

in which

Z′ = AZAT =

(−ρ(x)−1I + κ(x)−1wwT κ(x)−1w

κ(x)−1wT κ(x)−1

)
,

j′(x˜′) = Aj(x˜), P ′(x˜′) = P (x˜), ∇˜ ′P ′(x˜′) = (AT )−1∇˜P (x˜). (1.121)

Thus in a moving fluid the tensor Z will not be diagonal, and the density term will not be isotropic. One
expects in a fluid where there is a small fluid velocity v(x˜) superimposed on a large macroscopic velocity
w(x˜), that the tensor Z will take the form

Z(x, t) =

(−[ρ(x, t)]−1 k(x, t)

[k(x, t)]T [κ(x, t)]−1

)
, (1.122)

with a generally anisotropic density ρ. Note that this form is preserved under the transformations of special
relativity and not just Galilean transformations (in fact we are free to choose any transformation matrix A).
Anisotropic effective mass densities may seem unfamiliar but Willis (1985) found the effective density in a
composite should be a nonlocal anisotropic density operator, Schoenberg and Sen (1983) found anisotropic
layered fluids had an anisotropic effective density, and Milton, Briane, and Willis (2006) found simple models
exhibiting anisotropic density: see their Figure 3. The coupling one sees in (1.122), is similar to that one
sees in the Willis equations of elastodynamics (developed in Willis 1981a, 1981b and explicitly stated in
Willis 1997), or in the bianisotropic equations of electromagnetism (Serdikukov, Semchenko, Tretkyakov,
and Sihvola 2001).

1.10 The equations of elastodynamics and piezoelectricity in the time
domain

We rewrite the equations of elastodynamics in the form(
∂σ
∂t

∇ · σ

)
=

(−C(x) 0

0 ρ(x)

)
︸ ︷︷ ︸

Z(x)

(− 1
2

[
∇v +∇vT

]
∂v
∂t

)
, (1.123)

where σ is the stress and v(t) = ∂u
∂t is the velocity. Once again taking dot products we find a divergence

form: (
∂σ
∂t

∇ · σ

)
·
(− 1

2

[
∇v +∇vT

]
∂v
∂t

)
= −

(
∂σ

∂t

)
: ∇v + (∇ · σ) ·

(
∂v

∂t

)
+ σ :

∂(∇v)

∂t

− σ :
∂(∇v)

∂t

=

( ∇
− ∂
∂t

)
·
(
σ ∂v∂t
σ : ∇v

)
= ∇˜ ·Q, (1.124)
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where we have used the fact that σ is symmetric, ∇˜ is the 4 dimensional gradient with x4 = −t, and Q =
[(σ∂tv)T , (σ∇ · v)T ]T . Again the key identity applies: Ω is now a space–time body.

Guided by the form (1.118) of the acoustic equations, set

∇˜ =

(
∇
∂
∂x4

)
=

( ∇
− ∂
∂t

)
, Jik = −∂σik

∂t
, for i, k = 1, 2, 3, J4k = −{∇ · σ}k, (1.125)

which defines the 4×3 matrix-valued field J(x). Then, noting that, due to the symmetry of C, we can replace
[∇v + (∇v)T ]/2 by∇v in (1.123), the equations take the form

∇˜ · J = 0, J = Z∇˜v. (1.126)

So we see that under the Galilean transformation (1.119) the new fields, based on the transformation laws

J′(x˜′) = AJ(x˜), ∇˜ ′v(x˜′) = (AT )−1∇˜v(x˜), where A =

(
I w

0 1

)
, (1.127)

for J and ∇˜v, become(
∂σ′
∂t′

∇′ · σ′

)
=

(
I wI

0 I

)(
∂σ
∂t

∇ · σ

)
=

(
∂σ
∂t + w(∇ · σ)T

∇ · σ

)
,(

−∇′v′
∂v′

∂t′

)
=

(
I 0

IwT I

)−1(−∇v
∂v
∂t

)
=

( −∇v
∂v
∂t + wT∇v

)
, (1.128)

in which I is the fourth-order identity tensor, I is the second-order identity tensor, and wI is a third-order
tensor with elements wiδjk (in which δjk is one if j = k and zero otherwise). These fields are now linked by
the new constitutive tensor

Z′(x˜′) =

(
I wI

0 I

)
Z(x)

(
I 0

IwT I

)
=

(−C(x) + wρ(x)wT wρ(x)

ρ(x)wT ρ(x)

)
. (1.129)

Under more general transformations, such as a Galilean transformation followed by a rotation, the fields in
(1.128) will be also multiplied on the right by rotation matrices (and the transformation matrix A would also
need to be adjusted). However if it is a pure Galilean transformation then there is no multiplication on the
right by a rotation matrix: note that since u(x) represents an assumed small difference between the position
of a particle in the undeformed state (now moving) and the position of the particle in the deformed state, v
being the difference between two velocities is itself invariant under a Galilean transformation.

Note that the new stress field is not symmetric, and does not just depend on the symmetric part of∇v, but
also on its antisymmetric part.

Significantly, this analysis shows that the stress tensor σ(x, t) does not have the symmetries, nor the
transformation law assumed in the theory of relativity: consequently this casts doubt on the general theory
of relativity in its standard form, unless stress is taken to have some different meaning there. The need for
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nonsymmetric stress-energy-momentum tensors with accompanying modifications to Einstein’s gravitational
theory has been noted before: see Hehl, von der Heyde, Kerlick, and Nester (1976) and references therein.

It has been argued (see appendix A in Martin, Parodi, and Pershan 1972 and also Lautrup 2005) that it is
only the divergence of the stress (which equals the body force) that has a physical meaning and one can replace
a nonsymmetric stress by a symmetric one, while keeping the divergence of the stress the same. However this
seems unnatural as the constitutive law then becomes very nonlocal and stress fields then exist in regions that
are void of material.

One expects in an elastic medium where there is a small material velocity v(x, t) superimposed on a large
macroscopic velocity w(x, t) that the tensor Z will take the form

Z(x, t) =

(−C(x, t) κ(x, t)

[κ(x, t)]T ρ(x, t)

)
, (1.130)

where the density ρ could be anisotropic, and D need not satisfy the usual elastic symmetries. In general if
Z(x, t) was nonlocal, i.e., the constitutive relation involved an integral kernel, then the effective one would
too, and again there would be a coupling. These nonlocal equations, with couplings, are known as the Willis
equations (developed in Willis 1981a, 1981b and explicitly stated in Willis 1997), although his equations retain
a symmetric stress field and a stress that only depends on the symmetrized displacement gradient. An explicit
model exhibiting (over a very narrow frequency band) local Willis type couplings, but with a nonsymmetric
stress, was constructed by Milton (2007). An example of a mechanism for producing a material with Willis
type couplings is shown in Figure 1.2. The Willis equations keep their form under arbitrary spatial curvilinear
coordinate transformations, even when the constitutive relation is nonlocal (see Appendix B and Appendix C
of Milton, Briane, and Willis 2006). Due to this, materials with a Willis type constitutive law could be useful
for elasticity cloaking (Milton, Briane, and Willis 2006) using the elastic analog of transformation optics
cloaking techniques (Dolin 1961; Greenleaf, Lassas, and Uhlmann 2003a; Greenleaf, Lassas, and Uhlmann
2003b; Pendry, Schurig, and Smith 2006). By contrast the normal equations of elastodynamics do not keep
their form unless one allows for stress fields that are nonsymmetric and elasticity tensors that lose their minor
symmetries, i.e., Cijk` 6= Cjik` and Cijk` 6= Cij`k, but which keep the major one Cijk` = Ck`ij (Brun,
Guenneau, and Movchan 2009; Norris and Shuvalov 2011; see also Guevara Vasquez, Milton, Onofrei, and
Seppecher 2013).

For piezoelectricity in the absence of body forces and free charges the dynamic equations (Auld 1973; see
also Norris 1994) are

ρui,tt = σij,j , dj,j = 0, σij = Cijk`εk` − akijek, di = aik`εk` + εikek, (1.131)

where the Einstein summation convection is assumed, d(x) and e(x) are the electric displacement and electric
fields, and the third-order tensor a(x) couples the electromagnetic and elastic fields. These equations can be
rewritten in the desired form ∂σ

∂t

∇ · σ
∂d
∂t

 =

 −C(x) 0 −a(x)

0 ρ(x) 0

−aT (x) 0 ε(x)


︸ ︷︷ ︸

Z(x)

− 1
2

[
∇v +∇vT

]
∂v
∂t
∂e
∂t

 , (1.132)
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(a)

(b)

= Rubber = Stiff = Elastic= Lead

Figure 1.2: A mechanism for producing a material with Willis type couplings. The lead balls, surrounded
by rubber, and coated by a shell of stiff material have a different amount of lead on the left and right sides
of each pair, as shown in (a). This leads to the material in the shell on the left having a negative effective
mass −m and the material in the shell on the right having an almost equal and opposite positive effective
mass +m, for a suitably tuned frequency. At this frequency these oscillating effective masses generate an
array of oscillating force dipoles acting in the matrix as in (b) for one moment in time. Just like an array
of electrical dipoles gives rise to an average polarization field, so too does an array of force dipoles give
rise to an average stress field when the strain field is zero. Thus the time-harmonic acceleration of the
material gives rise to a time-harmonic oscillating average stress when the average strain is zero, which is
a characteristic feature of a Willis material.

with Z(x) being Hermitian. The key identity, ∂σ
∂t

∇ · σ
∂d
∂t

 ·
− 1

2

[
∇v +∇vT

]
∂v
∂t
∂e
∂t

 = ∇˜ ·Q, (1.133)

holds with

Q =

(
σ ∂v∂t − ∂V

∂t
∂d
∂t

σ∇ · v

)
, (1.134)

where V (x, t) is the potential associated with e(x, t): e(x, t) = −∇V (x, t). Of course, for these equations
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to be valid the body must be small compared with the wavelength of the electromagnetic radiation associated
with the fields e(x, t) and d(x, t).

1.11 The dynamic equations for vibrating thin plates and moderately
thick plates

The dynamic plate equations can be written in the form(
∂M
∂t

−∇ · (∇ ·M)

)
=

(−D(x) 0

0 h(x)ρ(x)

)
︸ ︷︷ ︸

Z(x)

(−∇∇v
∂v
∂t

)
, (1.135)

where M(x, t) is the bending moment tensor, D(x) is the fourth-order tensor of plate rigidity coefficients,
h(x) is the plate thickness, ρ(x) is the density, and v = ∂w/∂t is the velocity of the vertical deflectionw(x, t)
of the plate. Note that the matrix Z(x) is Hermitian, and we have the key identity,(

∂M
∂t

−∇ · (∇ ·M)

)
·
(−∇∇v

∂v
∂t

)
=

( ∇
− ∂
∂t

)
︸ ︷︷ ︸
∇˜

·
(−∂v∂t∇ ·M− ∂M

∂t ∇v
−(∇ ·M) · (∇v)

)
︸ ︷︷ ︸

Q

. (1.136)

For moderately thick plates we need to replace these equations by those of Mindlin (1951) (see also Larsen,
Laksafoss, Jensen, and Sigmund (2009)). We now assume the plate material is locally isotropic. The equilib-
rium equations for a small plate element read as

ρh3

12

∂2ψx
∂t2

= Tx −Mx,x −Mxy,y,

ρh3

12

∂2ψy
∂t2

= Ty −My,y −Mxy,x,

ρh
∂2w

∂t2
= Tx,x + Ty,y. (1.137)

Here w is the out of plane deflection; ψx and ψy are the angles of rotation; Mx, My and Mxy are the bending
moments (we use the abbreviated notationMx andMy to denote the componentsMxx andMyy of the tensor
field M(x)); Tx and Ty are the shear forces; ρ = ρ(x, y) is the plate density; and h = h(x, y) is the plate
thickness. The relation which links the bending moments and shear forces to the deflection and rotation angles
takes the form 

Mx

My

Mxy

Tx
Ty

 = −D


ψx,x
ψy,y

ψx,y + ψy,x
ψx − w,x
ψy − w,y

 , (1.138)
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where the subscript comma denotes differentiation and the stiffness matrix D is

D = D(x, y) =


D νD 0 0 0

νD D 0 0 0

0 0 1−ν
2 D 0 0

0 0 0 kGh 0

0 0 0 0 kGh

 . (1.139)

Here D = Eh3/[12(1 − ν2)] is the flexural rigidity; E is the Young modulus; G is the shear modulus; ν is
the Poisson ratio; and k is a shear correction factor taking the value 5/6 for a plate. We now can rewrite the
equations in the canonical form:



Ṁx

Ṁy

Ṁxy

Ṫx
Ṫy

Tx −Mx,x −Mxy,y

Ty −My,y −Mxy,x

Tx,x + Ty,y


︸ ︷︷ ︸

G

= Z(x, y)



ψ̇x,x
ψ̇y,y

ψ̇x,y + ψ̇y,x
ψ̇x − w,x
ψ̇y − w,y
ψ̇x,t
ψ̇y,t
ẇt


︸ ︷︷ ︸

F

, (1.140)

where the dot denotes differentiation with respect to time: ψ̇x = ∂ψx/∂t, ψ̇x = ∂ψx/∂t, and ẇ = ∂w/∂t;
and the matrix Z(x, y) entering the constitutive law takes the block-diagonal Hermitian form

Z(x, y) =


−D(x, y) 0 0 0

0 ρ(x, y)[h(x, y)]3/12 0 0

0 0 ρ(x, y)[h(x, y)]3/12 0

0 0 0 ρ(x, y)h(x, y)

 . (1.141)
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Now note that with T = (Tx, Ty), ψ̇ = (ψ̇x, ψ̇y) and∇ = (∂/∂x, ∂/∂y) we have the identities

−∂T

∂t
· ∇ẇ + (∇ ·T)

∂ẇ

∂t
=

( ∇
− ∂
∂t

)
·
( −ẇ ∂T

∂t

−ẇ∇ ·T

)
,

T · ∂ψ̇
∂t

+
∂T

∂t
· ψ̇ =

∂

∂t
[T · ψ̇],

∂Mx

∂t

∂ψ̇x
∂x
− ∂Mx

∂x

∂ψ̇x
∂t

=

(
∂
∂x

− ∂
∂t

)
·

−Mx
∂

˙
ψx

∂t

−Mx
∂

˙
ψx

∂x

 ,

∂My

∂t

∂ψ̇y
∂y
− ∂My

∂y

∂ψ̇y
∂t

=

(
∂
∂y

− ∂
∂t

)
·

−My
∂

˙
ψy

∂t

−My
∂

˙
ψy

∂y

 ,

∂Mxy

∂t

∂ψ̇x
∂y
− ∂Mxy

∂y

∂ψ̇x
∂t

=

(
∂
∂y

− ∂
∂t

)
·

−Mxy
∂

˙
ψx

∂t

−Mxy
∂

˙
ψx

∂y

 ,

∂Mxy

∂t

∂ψ̇y
∂x
− ∂Mxy

∂x

∂ψ̇y
∂t

=

(
∂
∂x

− ∂
∂t

)
·

−Mxy
∂

˙
ψy

∂t

−Mxy
∂

˙
ψy

∂x

 . (1.142)

These imply the key identity

G · F =

 ∂
∂x
∂
∂y

− ∂
∂t

 ·Q, (1.143)

with a supercurrent

Q =


−ẇ ∂Tx

∂t −Mx
∂

˙
ψx

∂t −Mxy
∂

˙
ψy

∂t

−ẇ ∂Ty

∂t −My
∂

˙
ψy

∂t −Mxy
∂

˙
ψx

∂t

−ẇ∇ ·T + T · ψ̇ −Mx
∂

˙
ψx

∂x −My
∂

˙
ψy

∂y −Mxy
∂

˙
ψx

∂y −Mxy
∂

˙
ψy

∂x

 . (1.144)

1.12 The Biot wave equations of poroelasticity in the time domain
The Biot equations of poroelasticity (Biot 1962; see also Norris 1994) describe the dynamic motion of porous
media containing fluids. One of the great successes of the theory was its prediction of an additional compres-
sional sound mode, the Biot slow wave, which was experimentally observed by Plona (1980). In the absence
of sources, the equations are comprised of equations of motion

ρui,tt + ρfwi,tt = σij,i, ρfui,tt + m̂ij ∗ wi,tt = −P,i , (1.145)

where u(x, t) is the displacement in the solid phase, w(x, t) is the relative fluid displacement, σ is the stress
in the solid, P is the fluid pressure, ρ and ρf are the solid and fluid densities, the m̂ij are viscodynamic
convolution operators, in the time domain (the asterisk ∗ denoting a convolution)-and thus are represented by
local operators mij(ω) in the frequency domain. The constitutive equations read

σij = Cijk`εk` +Mijζ, P = Mijεij +Mζ, (1.146)
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where ε = [∇u + (∇u)T ] is the strain, ζ(x) is the increment of fluid content which measures the net fluid
flow per unit volume in or out of a region, the Mij = Mji are elastic moduli coupling the solid and fluid
deformation, and the Cijk` are the elastic moduli of the drained porous solid. The scalar M should not
be confused with the tensor M of elastic moduli. Finally, because the fluid is treated as incompressible,
conservation of fluid mass implies

s ≡ ζ,t + wi,it = 0, (1.147)

where we have introduced the constant field s, which is zero if there is no net source of fluid.
We can use the relation between s and ζ,t to eliminate ζ in favor of s:

ζ,t = −∇ ·w,t + s,
∂P

∂t
= M : ∇v −M∇ ·w,t +Ms,

∂σ

∂t
= C∇v −M(∇ ·w,t), (1.148)

where v = ∂u/∂t is the velocity, wt = ∂w/∂t, and in the last equation we have used the fact that s = 0 to
eliminate s from it. Hence the Biot equations can be rewritten as

∂σ
∂t

∇ · σ
−∇P
−∂P∂t
Mζ,t

 =


−C 0 0 M 0

0 ρ ρf 0 0

0 ρf m̂ij∗ 0 0

M 0 0 M M

0 0 0 M M




−∇v
∂v
∂t
∂wt

∂t

−∇ ·wt

s

 . (1.149)

Using the fact that s is zero, we have the key identity
∂σ
∂t

∇ · σ
−∇P
−∂P∂t
Mζ,t

 ·

−∇v
∂v
∂t

−∂wt

∂t

−∇ ·wt

s

 =

( ∇
− ∂
∂t

)
·
(

σ ∂v∂t − P ∂wt

∂t

σ∇ · v − P∇ ·wt

)
. (1.150)

1.13 The equations of thermal conduction and diffusion in the time
domain

Now let us consider thermal conduction with a time-dependent temperature T (x, t) and heat flux q(x, t). Let
k(x) be the second-order tensor of heat conduction, and let α(x) be the product of the heat capacity per unit
mass Cp(x) and the mass density ρ(x). For diffusion we let T (x, t) denote the particle concentration, q(x, t)
the particle current, k(x) be the second-order diffusivity tensor, and we take α(x) = 1. Then the reformulated
equations for thermal conductivity and diffusion read as qx

qt
∇ · qx + ∂qt

∂t

 =

ik(x) 0 0

0 0 − iα(x)
2

0 iα(x)
2 0


︸ ︷︷ ︸

Z(x)

∇T∂T
∂t

T

 . (1.151)
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To see the connection with the standard equations of thermal conductivity, let us write the equations out
explicitly:

qx = ik(x)∇T,

qt = − iα(x)

2
T,

∇ · qx +
∂qt
∂t

= i∇ · k(x)∇T − iα(x)

2

∂T

∂t
=
iα(x)

2

∂T

∂t
. (1.152)

The latter equation implies

α(x)
∂T

∂t
= ∇ · k(x)∇T, (1.153)

which is the heat or diffusion equation. Clearly the matrix Z(x) entering the constitutive law has the de-
sired feature that the real matrix Z(x)/i has a Hermitian part (symmetric part as it is real) which is positive
semidefinite. However the Hermitian part of eiθZ(x) is never positive definite for any choice of θ, and is
positive semidefinite only when eiθ = 1/i.

The key identity, qx
qt

∇ · qx + ∂qt
∂t

 ·
∇T∂T

∂t

T

 = qx · ∇T + qt
∂T

∂t
+ T∇ · qx + T

∂qt
∂t

=

( ∇
− ∂
∂t

)
·
(

qxT

−Tqt

)
(1.154)

holds.

1.14 The equations of thermoelasticity in the time domain
The equations of thermoelasticity (Chandrasekharaiah 1986; see also Norris 1994) take the form

ρ
∂2u

∂t2
= ∇ · σ, σij = Cijk`εk` − βijθ,

ρS = (ρc/θ0)θ + βijεij , ∇ · q + θ0ρ
∂S

∂t
= 0, q + τ

∂q

∂t
= −k∇θ, (1.155)

where σ is the stress; ε = [∇u + (∇u)T ] is the strain; q is the heat flux; S is the entropy change; θ is
the change in temperature above the ambient temperature θ0; c is the specific heat per unit mass at constant
temperature; the βij = βji are essentially coefficients of thermal expansion, k is the (matrix-valued) thermal
conductivity tensor, and τ is a thermal relaxation time. We rewrite the last relation in (1.155) as

q = −κ ∗ ∇θ, (1.156)

where κ is a convolution operator in time (and the asterisk ∗ represents a convolution). This allows for a more
general spectrum of relaxation times. The thermoelasticity equations can now be written as
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
i∂σ
∂t

i∇ · σ
iq

iρSθ0

i
(
∇ · q + ∂ρSθ0

∂t

)

 =


−iC ∂

∂t 0 0 iβθ0 0

0 iρ ∂∂t 0 0 0

0 0 iθ0κ∗ 0 0

−iβθ0 0 0 0 −iθ0ρc

0 0 0 iθ0ρc −iθ0ρc
∂
∂t


︸ ︷︷ ︸

Z(x)


−∇u
∂u
∂t

−∇θ/θ0

−∂θ∂t /θ0

−θ/θ0

 . (1.157)

Note that the operator i∂/∂t which enters three of the diagonal elements of Z(x) is formally self-adjoint.
We have the key identity

i∂σ
∂t

i∇ · σ
iq

iρSθ0

i
(
∇ · q + ∂ρSθ0

∂t

)

 ·

−∇u
∂u
∂t

−∇θ/θ0

− 1
θ0
∂θ
∂t

−θ/θ0

 =

( ∇
− ∂
∂t

)
·
(
iσ ∂u∂t − iqθ/θ0

iσ∇ · u + iρSθ

)
. (1.158)

1.15 Maxwell’s equations in the time domain
Guided by (1.101) and (1.102), it might seem that an appropriate form for Maxwell’s equations in the time
domain would be (

∂h
∂t

∇× h

)
=

(−µ−1 0

0 ε

)
︸ ︷︷ ︸

Z

(∇× e
∂e
∂t

)
. (1.159)

In this form the key identity does not hold. Alternatively, we can write the system as( −∂h∂t
∇× h

)
=

(
µ−1 0

0 ε

)
︸ ︷︷ ︸

Z̃

(∇× e
∂e
∂t

)
, (1.160)

and then the key identity will hold. To show this, introduce the antisymmetric matrices

h =

 0 −h3 h2

h3 0 −h1

−h2 h1 0

 , e =

 0 −e3 e2

e3 0 −e1

−e2 e1 0

 , (1.161)

so that∇× h = ∇ · h and∇× e = ∇ · e (where the divergence acts on the first index). Then one can check
that

−∂h

∂t
· (∇× e) +

∂e

∂t
· (∇× h) = −∂h

∂t
· (∇ · e) +

∂e

∂t
· (∇ · h) + h · ∂∇ · e

∂t
− h · ∂∇ · e

∂t

=

( ∇
− ∂
∂t

)
·Q(x), (1.162)
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where

Q =

(
h · ∂e∂t

h · (∇ · e)

)
, (1.163)

in which we have used the identity

∂e

∂t
· (∇ · h) = Tr[(∇h)T

∂e

∂t
], (1.164)

that in index notation takes the form

∂e`
∂t

∂

∂xk
[−ek`ihi] = hi,k[−eik`

∂e`
∂t

], (1.165)

and is satisfied because ek`i = eik`, where eik` is the completely antisymmetric Levi-Civita tensor taking the
value +1 (or −1) if ik` is an even (or odd) permutation of 123, and is zero otherwise.

However, this does not seem like the right form for the constitutive equation as when the response is non-
local in time, and one Fourier transforms the constitutive equation in time one sees that the Fourier transform
of Z̃ entering (1.160) will generally not have positive semi-definite imaginary part.

Instead let us look for a solution using the formulation of special relativity theory including the vector
potential Φ of the electromagnetic field. We set x4 = t and the fields we take are essentially those in C of
table 2 on page 55 of Post (1962) (with the rows and columns changed to account for the different choice of
coordinates, and with my G being essentially Post’s −G), namely

F =


0 b3 −b2 e1

−b3 0 b1 e2

b2 −b1 0 e3

−e1 −e2 −e3 0

 , (1.166)

and

G =


0 −h3 h2 d1

h3 0 −h1 d2

−h2 h1 0 d3

−d1 −d2 −d3 0

 . (1.167)

Introducing the electromagnetic potentials Φ = (Φ1,Φ2,Φ2) and V such that

b = ∇×Φ, e = −∇V − ∂Φ

∂t
, (1.168)

and letting Φ4 = −V and Φ0 = (Φ1,Φ2,Φ2,Φ4) = (Φ1,Φ2,Φ2,−V ), Maxwell’s equations now read

Fij = Φ0
j,i − Φ0

i,j ,

Gij,j = 0, (1.169)

where we have assumed there are no free current sources. We also assume there are no conduction currents
in the body such as resulting from j = σe, but at the end of this section we will return to this point and
incorporate them.
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We check for a divergence form:∫
Ω˜
FijGij =

∫
Ω˜

(Φ0
j,i − Φ0

i,j)Gij

= 2

∫
Ω˜

(Φ0
jGij),i

= 2

∫
∂Ω˜
n˜i(GijΦ0

j )dS, (1.170)

where we have denoted n˜ as the 4 dimensional vector normal to the boundary of the space–time region Ω˜ . So
the key identity holds.

Now look at the constitutive law. In engineering notation it can be written as(−h

d

)
=

(−[µ(x)]−1 0

0 ε(x)

)
︸ ︷︷ ︸

Z

(
b

e

)
, (1.171)

without destroying the key identity. Now the differential constraints (1.168) (1.169) take the form(
b

e

)
= Θ

(
Φ

V

)
, Θ†

(−h

d

)
= 0, (1.172)

where the operator Θ and its formal adjoint Θ† are given by

Θ =

(∇× 0

− ∂
∂t −∇

)
, Θ† =

(∇× ∂
∂t

0 ∇·

)
. (1.173)

We can check directly that the key identity holds:∫
Ω˜
(−h

d

)
·
(

b

e

)
=

∫
Ω˜
−h · (∇×Φ)− d · ∇V − d · ∂Φ

∂t
− ∂d

∂t
·Φ + (∇× h) ·Φ

=

∫
∂Ω˜

nx · (h×Φ)− nx · (V d)− ntd ·Φ, (1.174)

where n˜ = (nx, nt) is the normal to the boundary of the space–time body Ω˜ , and we have used the fact that
∂d/∂t = ∇× h. The form (1.171) with differential constraints (1.172) are similar but not quite the same as
those given in pages 207–210 of Strang (1986), who has a positive definite tensor in the constitutive law at
the sacrifice of having operators in the differential constraints which are not formal adjoints.

In general there will be a convolution in time and possibly space, so Z gets replaced by a convolution
operator K: (−h

d

)
= K ∗

(
b

e

)
. (1.175)

Suppose we only have a convolution in time. Then the constitutive relation in the frequency domain reads as(−h(x, ω)

d(x, ω)

)
=

(−[µ(x, ω)]−1 0

0 ε(x, ω)

)
︸ ︷︷ ︸

Z(x,ω)

(
b(x, ω)

e(x, ω)

)
. (1.176)
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Here we can allow for conduction currents by incorporating an additional term iσ(x)/ω into the complex
permittivity ε(x, ω). Now Z(x, ω) has the properties that

Z(x, ω) = Z(x,−ω), (1.177)

where the overline denotes complex conjugation, and

Im(Z(x, ω)) ≥ 0 when Re(ω) ≥ 0 and Im(ω) ≥ 0. (1.178)

The first property follows from the fact that it is a Fourier transform of a real integral kernel. It implies that
Im[ε(x, ω)] = 0 and Im[µ(x, ω)] = 0 when ω = ip with p real and positive. Also from the fact that

Im[ωε(x, ω)] ≥ 0 when Imω ≥ 0,
Im[ωµ(x, ω)] ≥ 0 when Imω ≥ 0, (1.179)

we see that Im[ε(x, ω)] ≥ 0 and− Im{[µ(x, ω)]−1} ≥ 0 in the limit whenω approaches the positive real axis.
(Strictly speaking these could be positive measures in this limit). Furthermore as |ω|→ ∞ both ε(x, ω) and
µ(x, ω) approach the permittivity and permeability of free space, ε0I and µ0I, since the electrons (because of
their inertia) can’t respond quickly enough to the rapidly oscillating fields. Finally since ε(x, ω) and µ(x, ω)
are analytic functions of ω when Imω > 0 it follows that for any fixed real vector v both Im[v · ε(x, ω)v]
and − Im{v · [µ(x, ω)]−1v} are harmonic functions of ω which must take their infimum in the quadrant
Re(ω) ≥ 0 and Im(ω) ≥ 0 as |ω|→ ∞ or at the boundaries of the quadrant Re(ω) ≥ 0 and Im(ω) ≥ 0. This
establishes (1.178).

Let τ = ω2, and ω =
√
τ where the square root is defined with a branch cut (in the τ plane) just below

the negative real axis, so the cut complex τ plane (with the cut along the negative real axis) gets mapped to
the upper half plane Im(ω) ≥ 0, and the lower half τ plane gets mapped to the quadrant Re(ω) ≥ 0 and
Im(ω) ≥ 0. Then we have

Im Z(x,
√
τ)︸ ︷︷ ︸

S(τ)

≥ 0 when Im τ ≤ 0. (1.180)

Additionally (1.177) implies S(τ) is real symmetric, i.e., S(τ) = S(τ), and as τ →∞, S(τ) approaches

S∞ =

(−I/µ0 0

0 ε0I

)
. (1.181)

So S(τ) has the integral representation

S(τ) = S∞ +

∫ ∞
0

dM(τ ′)

τ ′ + τ
, (1.182)

where M(τ ′) is a 6× 6 matrix-valued positive measure (which separates into two 3× 3 blocks) when Z has
the form (1.171). The measure must be such that the integral converges which is the case if∫ ∞

0

dM(τ ′)

τ ′ + 1
(1.183)

is bounded. The function S(τ)− S∞ is a matrix-valued Stieltjes function of τ . There are various definitions
of Stieltjes functions in the literature. Berg (2008) defines a Stieltjes function f(z), mapping the nonnegative
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real axis z ≥ 0 to the nonnegative real axis, to be a function of the form

f(z) = a+

∫ ∞
0

dµ(z′)

z + z′
, (1.184)

where a ≥ 0 and µ is a positive measure on the nonnegative real axis (satisfying
∫

1/(1 + z′)dµ(z′) < ∞
to ensure convergence of the above integral), and then points out (1.184) allows one to define f(z) for all z
in the cut complex plane, where the cut extends along the negative real z′ axis. In a matrix-valued Stieltjes
function, a (which is the value of f(z) as z →∞) is replaced by a positive semidefinite matrix A and dµ(z′)
is replaced by a positive semidefinite matrix-valued measure dµ(z′).

If the medium is moving then it follows (Kaplan and Murnaghan 1930; Post 1962; see also Section 3 of
Milton, Briane, and Willis (2006)) that there are couplings, i.e., the constitutive relation has the form(−h(x, t)

d(x, t)

)
=

(−[µ(x, t)]−1 κ(x, t)

[κ(x, t)]T ε(x, t)

)(
b(x, t)

e(x, t)

)
. (1.185)

Naturally one still expects this relation if the medium is moving in different directions with different velocities
in different areas. In fact such equations are known as the “bianisotropic equations” of electromagnetism
(Serdikukov, Semchenko, Tretkyakov, and Sihvola 2001). Note the fields and tensors could depend on time.
Bianisotropic constitutive laws provide one way of understanding chiral effects in electromagnetism, as an
alternative to including field gradients in the constitutive law with d(x, t) depending linearly on e(x, t) and
∇e(x, t).

1.16 A canonical form for Schrödinger’s equation in the time domain
To reformulate Schrödinger equation in the time domain for a system with N electrons, let

ψ(x, t) = ψ(x1,x2, . . . ,xN , t) (1.186)

be the time-dependent wavefunction at time t which is antisymmetric when we interchange xj and xk. Here
x = (x1,x2, . . . ,xN ) where each xi = (ri, si) represents a combination of a spatial coordinate ri and a spin
coordinate si, and the joint probability density ρ(x, t)dr = ψ(x, t)ψ(x, t)dr, where dr = dr1dr2 . . . drN ,
has the quantum mechanical interpretation of being the joint probability density of finding the one electron in
the neighborhood dr1 of r1 with spin s1, and a second electron in the neighborhood dr2 of r2 with spin s2, . . .,
and the remaining electron in the neighborhood drN of rN with spin sN at time t. Let the (time-independent)
potential be V (x1,x2, . . . ,xN ) and denote Planck’s constant divided by 2π as h̄. Then the canonical form of
Schrödinger equation for a system with N electrons is qx

qt
∇ · qx + ∂qt

∂t

 =

−A 0 0

0 0 − ih̄2
0 ih̄

2 −V


︸ ︷︷ ︸

Z(x)

∇ψ∂ψ
∂t

ψ

 . (1.187)

where qx(x1,x2, . . . ,xN , t) is a 3N component vector field, qt(x1,x2, . . . ,xN , t) is a scalar field, and A in
the simplest approximation is h̄2I/(2m) where m is the mass of the electron, but it may take other forms to
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take into account the reduced mass of the electron, or mass polarization terms due to the motion of the atomic
nuclei. Computing the dot product we find the usual divergence form and the key identity holds:∫

Ω

 qx
qt

∇ · qx + ∂qt
∂t

 ·
∇ψ∂ψ

∂t

ψ

 =

∫
Ω

qx · ∇ψ + qt
∂ψ

∂t
+ ψ∇ · qx + ψ

∂qt
∂t

=

∫
Ω

∇ · (qxψ) +
∂

∂t
(ψqt)

=

∫
Ω

∇˜ ·Q, (1.188)

where Q = (qTxψ,−qtψ)T . Since this is a divergence it can be expressed in boundary terms as∫
∂Ω

(nx · qx + nt · qt)ψ. (1.189)

Note when we take “dot” products we do not conjugate the left hand side.
Also from the constitutive law we have

qx = −A∇ψ,

qt = − ih̄
2
ψ,

∇ · qx +
∂qt
∂t

= −∇ ·A∇ψ − ih̄

2

∂ψ

∂t
=
ih̄

2

∂ψ

∂t
− V ψ, (1.190)

where the last equation is the Schrödinger equation. We remark in passing that another quite different formu-
lation of the Schrödinger equation has recently given by Ajaib (2015): it uses matrices with special properties
in a first order equation, and in this sense is reminiscent of the Dirac equation.

We also have the associated key identity: qx
qt

∇ · qx + ∂qt
∂t

 ·
∇ψ∂ψ

∂t

ψ

 = ∇(qxψ) +
∂

∂t
(ψqt)

= ∇ ·
(
−(∇ψ)ψ

h̄2

2

)
+
∂

∂t

(
−ψ

(
ih̄

2

)
ψ

)
, (1.191)

where we have assumed A = I h̄
2

2 ,m = 1. Now take the imaginary part of both sides. We have

Im


∇ψ∂ψ

∂t

ψ

 ·
−A 0 0

0 0 − ih̄2
0 ih̄

2 −V


︸ ︷︷ ︸

Z

∇ψ∂ψ
∂t

ψ


 = 0, (1.192)

since Z is Hermitian. This gives

h̄2

4i
∇ · [ψ(∇ψ)− (∇ψ)ψ]− h̄

2

∂

∂t
(ψψ)︸ ︷︷ ︸
ρ

= 0, (1.193)
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which implies

∇ · J +
∂ρ

∂t
= 0, (1.194)

with J = ih̄
2 [ψ∇ψ−ψ∇ψ] and ρ = ψψ, which is the well-known conservation law for the probability density

ρ.

1.17 Schrödinger equation for a single electron in a magnetic field
Now we take h̄ = 1 and we reformulate the Schrödinger equation for the single electron wavefunction ψ(x, t)
in a magnetic field. Let Φ(x) = (Φ1(x),Φ2(x),Φ3(x)) be the time-independent magnetic potential, with
b = ∇ × Φ the magnetic induction, V (x) the time-independent electric potential, e is the charge on the
electron, and m its mass. Then the canonical form for the Schrödinger equation in a magnetic field is then qx

qt
∇ · qx + ∂qt

∂t

 =

 −I
2m 0 ieΦ

2m

0 0 − i
2

−ieΦ
2m + i

2 −eV


∇ψ∂ψ

∂t

ψ

 . (1.195)

The key identity still holds and

qx = − 1

2m
∇ψ +

ieΦ

2m
ψ,

qt = − i
2
ψ,

∇ · qx +
∂qt
∂t

= −∇
2ψ

2m
+
i∇ · (eΦψ)

2m
− i

2

∂ψ

∂t
= − ieΦ

2m
∇ψ +

i

2

∂ψ

∂t
− eV ψ. (1.196)

Thus we have
i
∂ψ

∂t
=

1

2m
[i∇+ eΦ]2ψ + eV ψ, (1.197)

which is the Schrödinger equation in a magnetic field.

1.18 Rewriting the Dirac equation
The Dirac equation for the electron can be represented using the 4× 4 matrices

iγ0 =

(
iI2 0

0 −iI2

)
, γ1 =

(
0 σx
−σx 0

)
,

γ2 =

(
0 σy
−σy 0

)
, γ3 =

(
0 σz
−σz 0

)
, (1.198)

where I2 is the 2× 2 identity matrix σx, σy and σz are the Pauli matrices so that

iI2 =

(
i 0

0 i

)
, σx =

(
0 1

1 0

)
,

σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (1.199)
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Setting the speed of light c = 1, Dirac’s equation for the electron wavefunction ψ, which is a 4 component
vector, takes the form

ih̄γµ
∂ψ

∂xµ
= mψ, (1.200)

in which (x1, x2, x3, x4) = (x, y, z, t) and m is the mass of the electron. It can be reformulated as
q1

q2

q3

qt
∇˜̃ · q


︸ ︷︷ ︸

F

=


0 0 0 0 γ1

0 0 0 0 γ2

0 0 0 0 γ3

0 0 0 0 iγ0

−γ1 −γ2 −γ3 −iγ0 2m
h̄ I


︸ ︷︷ ︸

Z



i
∂ψ
∂x

i
∂ψ
∂y

i
∂ψ
∂z
∂ψ
∂t

ψ


.

︸ ︷︷ ︸
G

(1.201)

Here ∇˜̃ = (i ∂∂x , i
∂
∂y , i

∂
∂z ,

∂
∂t ) and q = (q1,q2,q3,qt) is a 4× 4 matrix. Thus

∇˜̃ · q = i
∂q1

∂x
+ i

∂q2

∂y
+ i

∂q3

∂z
+
∂qt
∂t

(1.202)

is a 4-component vector. Note that the matrix Z entering the constitutive relation is Hermitian because
γ1,γ2,γ3, iγ0 are all anti-Hermitian.

Now let us verify this corresponds to the Dirac equation:

q1 = γ1ψ, q2 = γ2ψ, q3 = γ3ψ, qt = iγ0ψ,

∇˜̃ · q = i∇ · qx +
∂qt
∂t

= i

[
γ1 ∂ψ

∂x
+ γ2 ∂ψ

∂y
+ γ3 ∂ψ

∂z

]
+ iγ0 ∂ψ

∂t

= −iγ1 ∂ψ

∂x
− iγ2 ∂ψ

∂y
− iγ3 ∂ψ

∂z
− iγ0 ∂ψ

∂t
+

2m

h̄
ψ, (1.203)

and from the last two lines we see this is indeed equivalent to (1.200).
The equations (1.201) can be abbreviated as qx

qt
i∇ · qx + ∂qt

∂t

 = Z

i∇ψ∂ψ
∂t

ψ

 . (1.204)

Checking the key identity we find qx
qt

i∇ · qx + ∂qt

∂t

 ·
i∇ψ∂ψ

∂t

ψ

 = iqx · ∇ψ + qt ·
∂ψ

∂t
+ i(∇ · qx)ψ +

∂qt
∂t
ψ

=

( ∇
− ∂
∂t

)
·
(
iqxψ

−qtψ

)
= ∇˜ ·Q(x, t). (1.205)
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1.19 Adding sources, regularizing the equations, and making them
into periodic composite problems

Source terms are easily handled for any of the problems we have discussed, in a similar way that the source
term α(x)θ is handled in the thermoelasticity equation (1.20).

Suppose h(x, t) is the source term and θ is a constant scalar, and we have the relation

G(x, t) = Z(x, t)F(x, t) + θh(x, t). (1.206)

Then we can reformulate this as( G(x, t)

∇ · r(x, t)

)
=

(
Z(x, t) h(x, t)

h(x, t)T c(x, t)

)(F(x, t)

θ

)
. (1.207)

Here r(x, t) is a field not subject to differential constraints, and c(x, t) can be chosen as we please. The main
observation is this: since G · F can be written as a divergence, i.e., G(x, t) · F(x, t) = ∇˜ ·Q(x, t), we have
the key identity ∫

Ω

( G(x, t)

∇ · r(x, t)

)
·
(F(x, t)

θ

)
=

∫
∂Ω

n · [Q(x, t) + θr(x, t)]. (1.208)

Again, however, we have the caveat that this may not be so useful as r(x, t) cannot be directly obtained from
boundary measurements.

In many of the equations we have discussed the matrix Z(x, t) is Hermitian, or such that the Hermitian
part of Z(x, t)/i is positive semidefinite, rather than positive definite. To regularize the problem we can add
a small imaginary part iδI to Z(x, t). Also in the presence of source terms we can assume c(x, t) has an
imaginary part. That is, instead of (1.207) we can consider the equations( G(x, t)

∇ · r(x, t)

)
︸ ︷︷ ︸

G

=

(
Z(x, t) + iδI h(x, t)

h(x, t)T c(x, t)

)
︸ ︷︷ ︸

Z

(F(x, t)

θ

)
︸ ︷︷ ︸

F

. (1.209)

We may now look for solutions to these equations where G(x, t), F(x, t), Z(x, t) and Q(x, t) are periodic
functions with a common unit cell of periodicity Ω in space–time. Here we are focusing on wave equations:
for static or quasistatic equations one expects Q(x, t) to be a sum of a linear part plus a periodic part. Due to
the periodicity of Q, ∫

Ω

G(x, t) · F(x, t) =

∫
∂Ω

n ·Q(x, t) = 0, (1.210)

since at opposing points across the cell Q(x, t) takes the same value, while the outward normal n has opposite
directions. Hence G(x, t) and F(x, t) lie in orthogonal subspaces.

Now let us define the space E to consist of all Ω-periodic fields E that are square integrable in the unit
cell, of the form

E =

(F(x, t)

0

)
, (1.211)

where F(x, t) satisfies the differential constraints appropriate to that field. We define J to consist of all
Ω-periodic fields J that are square integrable in the unit cell, of the form

J =

(G(x, t)

S(x)

)
, (1.212)
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where G(x, t) satisfies the complementary differential constraints appropriate to it, and the Ω-periodic field
S(x) has zero average value over the unit cell, but is not subject to any differential constraints. The space U
consists of all constant fields of the form

U =

(
0

c

)
, (1.213)

where c is a constant. These three spaces U , E and J are mutually orthogonal and the problem of solving
(1.209) is equivalent to the following: given E0 ∈ U (with c = θ), find fields E ∈ E , J ∈ J , and J0 ∈ U
such that

J0 + J(x, t) = Z(x, t)[E0 + E(x, t)], (1.214)

which as we will see in the next chapter is a problem in the abstract theory of composites. A similar formulation
can be applied to time-harmonic problems, with ω replacing t, and with the fields G(x, ω), F(x, ω), Z(x, ω)
and Q(x, ω) being periodic functions with a common unit cell of periodicity Ω in space. In this setting
quasiperiodicity (Bloch wave) conditions are natural on the cell of periodicity of Z(x, ω), so to allow for this
one should take Ω to include many unit cells of Z(x, ω).

We may, for example, solve (1.214) using Fast Fourier Transform methods (Moulinec and Suquet, 1994,
1998; Eyre and Milton 1999; Moulinec and Silva 2014; see also Section 14.11 of Milton 2002), although the
main interest will probably be in finding solutions when the regularization parameter δ entering (1.209) is
small, and in this case the convergence of the Fast-Fourier transform algorithms may be slow.
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2 Composites and the associated
abstract theory

Graeme W. Milton
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Abstract

We provide an introduction to composites and review the accompanying abstract theory,
where effective tensors are associated with a linear operator acting in a Hilbert, or finite-
dimensional vector space with an inner product, that is decomposed into three orthogonal
subspaces. The purpose of the chapter is to provide the necessary background for the reader
in a handy place relative to the rest of the text. It is shown that convergent series expansions
can be developed for the fields, and minimization variational principles developed for the
effective tensor. We also review the theory of the Y∗ tensor. This tensor is associated with
a Hilbert, or finite-dimensional vector space with an inner product, that is decomposed into
two orthogonal subspaces in two different ways, with a linear operator and accompanying
Y∗ tensor each acting on subspaces which are orthogonal complements. The transformation
from the effective tensor to the Y∗ tensor had its origins in the theory of composites for
simplifying bounds, and for preserving analytic properties. The Y∗ tensor is also naturally
associated with resistor networks and the set of batteries that power the network.

2.1 An introduction to composite materials
The purpose of this chapter is to provide a brief introduction to composites and the associated abstract theory,
for those readers not familiar with it, in a convenient place relative to the rest of the text.

Theoretical studies of composites have a long history: see the excellent review of Landauer (1978) who
mentions that in 1837 Faraday had proposed a model of dielectrics consisting of metallic inclusions separated
from each other by insulating material, and in 1846 Mossotti had submitted a paper “Analytical discussion
of the influence which the action of a dielectric medium exerts on the distribution of the electricity on the
surfaces of several electric bodies dispersed in it”, but which was not published until 1850, as in the meantime
he had fought in the first war for Italian independence at the head of a battalion of students at the University
of Pisa, and was subsequently made prisoner.

Examples of composites include porous rock containing oil or salt water (of obvious interest to the oil
industry); suspensions or colloids such as clouds, fog, mist, rain, dusty air, aerosols, or milk (which has
butterfat globules in a watery solution), flour in water; silts or clays; carbon fiber composites; reinforced
concrete; fiberglass in resin; wood; paper; sheep and steel wool; cotton; artificial and natural opals (consisting
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of periodic arrays of silica spheres); polycrystalline materials such as metals, basalt and granite; sintered
materials; foams; shape memory materials; sea ice containing pockets of sea water in ice; snow; ceramics;
materials with microcracks; magnets (where magnetic domains cause inhomogeneities); liquid crystals with
a spatially varying order-parameter; air (where thermal fluctuations cause inhomogeneities as manifested in
the twinkling of stars); bone and biological tissue; and even chocolate chip ice-cream. Alloys, gels, glasses,
and rubbers are generally not regarded as composites, as the inhomogeneities are on the atomic or molecular
scale rather than on a larger scale, and one needs quantum equations rather than classical equations to predict
their macroscopic properties.

In general a composite is periodic or statistically homogeneous on some length scale: if it is not we call
it an inhomogeneous body. Roughly speaking, statistical homogeneity means that correlation functions, such
as the probability that a polyhedron will land with all vertices in one phase when dropped randomly in say a
sufficiently large cubic sample of the composite (called a Representative Volume Element (RVE) : see Hashin
1983 and Nemat-Nasser and Hori 1999), will be essentially independent of where that cubic sample was taken
from (within a range determined by the length scale at which the material is statistically homogeneous). This
definition is not so precise, but this is fitting as most materials are only composites in an approximate sense.
Assumptions such as periodicity or translational invariance of ensembles of materials [See the books of Beran
(1968); Bensoussan, Lions, and Papanicolaou (1978); Bakhvalov and Panasenko (1989); and Zhikov, Kozlov,
and Oleinik (1994), and the article of Kozlov (1978)] lend precision to the meaning of a composite material
and the associated definitions of effective tensors, but it is to be keep in mind that these are idealizations. We
will see, in Chapter 3, that the abstract theory of composites also applies to inhomogeneous bodies, without
the assumption of periodicity or statistical homogeneity.

In the theory of composites one is interested in the effective moduli of materials. The effective moduli gov-
ern how the material responds on the macroscopic scale: for a material which is periodic on the microscale, it
behaves almost the same as a homogeneous material with moduli the same as the effective moduli. The math-
ematical framework for giving a precise meaning for this is homogenization theory. To describe a sequence
of say conducting materials with finer and finer microstructure, we take a periodic function σ(x), where x
takes values in 3-dimensions, and consider the sequence σε(x) = σ(x/ε) of conductivity tensor fields pa-
rameterized by a real positive number ε and consider what equation the associated electrical potential Vε(x)
satisfies in the limit as ε→ 0. To fix things so that the solutions are unique we could, for example, assume x
is constrained to lie inside a body Ω which is independent of ε, and require that Vε(x) takes an ε-independent
value V0(x) at the boundary ∂Ω. Additionally we require that the matrix representing the conductivity tensor
σ(y) is symmetric and real, and that σ(y) is bounded, i.e., there exists a constant β > 0 such that

βI ≥ σ(y) for all y, (2.1)

(where the inequality holds in the sense of quadratic forms, implying that βI−σ(y) is a positive semidefinite
matrix for all y) and that σ(y) is coercive, i.e., there exists a constant α > 0 such that

σ(y) ≥ αI for all y. (2.2)

Then it can be shown that if Vε(x) satisfies

∇ · σ(x/ε)∇Vε(x) = −f(x) for all x ∈ Ω, Vε(x) = V0(x) on ∂Ω, (2.3)

where the source of current f(x) is assumed to be independent of ε, then the potential Vε(x) converges
(strongly) to the potential V∗(x) satisfying the homogenized equation :

∇ · σ∗∇V∗(x) = −f(x), for all x ∈ Ω, V∗(x) = V0(x) on ∂Ω, (2.4)



2.1. An introduction to composite materials 49

where σ∗ is the effective conductivity tensor. One remark is that while Vε(x) converges to V∗(x), ∇Vε(x)
only converges to∇V∗(x) in a weak sense, as fluctuations in the electric field still remain. The weak conver-
gence implies the volume integral of g(x)∇Vε(x) converges to g(x)∇V∗(x) for all (ε-independent) smooth
scalar-valued test functions g(x) with compact support contained in Ω. One can generalize the result to func-
tions σε(x) = σ(x,x/ε) which depend on both the “slow variable” x, and the “fast variable” x/ε, where
σ(x,y) is periodic in y: in this case the associated effective tensor σ∗(x) depends on position, and at a
point x0, σ∗(x0) is the same effective tensor as that associated with the periodic material σ(x0,x/ε). One
can also consider materials where there are inhomogeneities on multiple, well-separated, length scales: a
model example is where the local conductivity takes the form σε(x) = σ(x,x/ε,x/ε2,x/ε3, . . . ,x/εn)
where σ(x,y(1),y(2),y(3), . . . ,y(n)) is periodic in each variable y(j), j = 1, 2, . . . , n. Thus homogeniza-
tion is a bit like quantum mechanics: one is interested in functions of one variable x (such as the electron
density in quantum mechanics) but to obtain it one needs to solve equations involving functions of multiple
variables (such as the electron wavefunction in quantum mechanics). In quantum mechanics the number of
dimensions is related to the number of particles, while in homogenization it is related to the number of length
scales. Periodic homogenization is described in the books of Bensoussan, Lions, and Papanicolaou (1978);
Sanchez-Palencia (1980); Bakhvalov and Panasenko (1989); Persson, Persson, Svanstedt, and Wyller (1993);
and Zhikov, Kozlov, and Oleinik (1994). The two-scale and multiscale treatments of Nguetseng (1989), Allaire
(1992), and Allaire and Briane (1996), provide a rigorous basis for the method.

Homogenization theory also applies to random, but statistically homogeneous, materials: these can be
treated by considering an ensemble of such materials and taking ensemble averages rather than volume aver-
ages. [See the books of Beran (1968); Bensoussan, Lions, and Papanicolaou (1978); Bakhvalov and Panasenko
(1989); and Zhikov, Kozlov, and Oleinik (1994), and the article of Kozlov (1978).] It has been shown by Pa-
panicolaou and Varadhan (1982) and Golden and Papanicolaou (1983) that the ensemble averaged definition
of the effective conductivity tensor agrees with the more physical definition where a cubic sample of the
composite is taken and then σ∗ is obtained in an infinite volume limit as the size of the cube tends to infinity.

In fact, amazingly, homogenization theory in the framework ofG−,H−, or Γ−convergence (which we not
fully describe as they will not be needed in this book) applies to any real symmetric matrix-valued sequence
σε(x) which is bounded and coercive (with constants β and α that are independent of ε) provided one takes
an appropriate subsequence. [See for example, the articles of De Giorgi (1984), Allaire (1997), and Murat
and Tartar (1997), the books of Buttazzo (1989), Dal Maso (1993), Zhikov, Kozlov, and Oleinik (1994), and
Attouch (1984), and the lecture notes of Raitums (1997). Allaire (1997), in particular, provides an excellent
short summary of the different approaches.] Roughly speaking, the restriction to a subsequence allows one to
remove parts of the sequence where in some region, for example,σε(x) oscillates as ε varies but is independent
of x. This general perspective is beautiful, but has the difficulty that in physical experiments one is given a
single material and it is difficult to imagine what an associated sequence σε(x) could be.

A suspension of bubbles in water is very good at screening sound (and hence has been used to cloak the
sound of submarines): it behaves as an effective material with a large damping to compression oscillations
(essentially the water near the bubbles is sheared, and the shear viscosity of the water is converted to a com-
pressional viscosity of the bubbly fluid). It’s easy to do an experiment yourself: take an empty wine glass
(filled with air) — it rings when struck with a table knife. Fill it with water — it again rings. But add Alka–
Seltzer and wait until it effervesces — the composite of air bubbles in water only produces a dull thud when
the glass is struck by the knife. The brilliant reds of old stained glass windows, and the colors of the Roman
Lycurgus cup, (https://en.wikipedia.org/wiki/Lycurgus_Cup) come from the effective electromag-
netic properties of suspensions of tiny gold and silver particles, not from any chemical interactions. A sponge
rubber behaves as an effective elastic material, the holes only becoming evident on closer inspection. An array



50 2. Composites and the associated abstract theory

(b)(a)

Figure 2.1: Grima and Evans (2000) realized that an array of rotating rigid squares, as shown in (a),
attached at appropriate corners by flexible junctions would have a Poisson’s ratio of −1 over a finite
range of deformation, i.e., a dilation would be the only easy mode of deformation. [An earlier, but
more complicated, model having this property is the hexagonal spoked model of Milton (1992).] Under
stretching the material deforms from (a) to (b). Their model simplified a related one given in Figure 4 of
Sigmund (1995). Three dimensional materials for which a dilation is the only easy mode of deformation
over a finite deformation range have been constructed by Sigmund (1995), Milton (2013a), Bückmann,
Schittny, Thiel, Kadic, Milton, and Wegener (2014) and Milton (2015b).

of parallel conducting wires in a dielectric medium has an effective conductivity which is highly anisotropic,
being greatest in the direction of the wires. The effective properties of rock containing oil and salt water are
important to the oil industry, a high effective conductivity indicating the presence of salt water rather than
oil. The effective properties of polycrystalline rocks are important to geophysicists in seismic studies. Metals
can be treated to control their polycrystalline structure to obtain desired properties The effective properties of
carbon fiber composites are important in applications. The theory of composites is discussed in the books of
Cherkaev (2000), Milton (2002), Allaire (2002), Torquato (2002), Tartar (2009).

There are surprises in the theory of composites: it is possible to combine materials which narrow when
stretched to obtain (auxetic) composites which widen when stretched (Lakes 1987; Milton 1992; Greaves,
Greer, Lakes, and Rouxel 2011). A beautiful example of a composite which does this is illustrated in Fig-
ure 2.1. It is also possible to combine three materials (or two plus void) all of which by themselves expand
when heated to obtain a composite which contracts when heated, or alternatively which expands more than
the constituent materials (Lakes 1996; Sigmund and Torquato 1996, 1997). An example showing how one
can get negative thermal expansion from positive thermal expansion is shown in Figure 2.2. One can com-
bine materials with positive Hall-coefficient to obtain a composite with negative Hall-coefficient (Briane and
Milton 2009, Kadic, Schittny, Bückmann, Kern, and Wegener 2015), thereby destroying the argument that in
classical physics it is the sign of the Hall coefficient which tells one the sign of the charge carrier; one can
combine nonmagnetic materials to produce artificial magnetism and composites with negative magnetic per-
meability (Schelkunoff and Friis 1952, Pendry, Holden, Robbins, and Stewart 1999); as shown in Figure 2.3
one can combine materials with positive mass density to obtain composites with negative effective mass den-
sity (Sheng, Zhang, Liu, and Chan 2003; Liu, Chan, and Sheng 2005); and as shown in Figure 2.4 one can
obtain materials with anisotropic and even complex effective mass density (Schoenberg and Sen 1983; Mil-
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(c)

(a)

(b)

Figure 2.2: Figures (a) and (b) show a mechanism whereby one can get negative thermal expansion from
positive thermal expansion. The black regions are rigid and do not expand much when heated while the
shaded regions expand a lot, thus shortening the length of the structure from (a) to (b) as it is heated.
Figure (c) shows how one can extend this idea to two dimensions, where the white region between the
elements is void, or material that is easily compressed. The microstructure can also clearly be extended
to three dimensions.

ton, Briane, and Willis 2006; Bückmann, Kadic, Schittny, and Wegener 2015). In fact, it follows directly from
the work of Movchan and Guenneau (2004) that there is a close link between negative effective mass density
and negative magnetic permeability: in cylindrical geometries the same Helmholtz equation underlies both
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= Lead = Rubber = Stiff

Figure 2.3: As shown by Sheng, Zhang, Liu, and Chan (2003) and Liu, Chan, and Sheng (2005), negative
effective mass density can be achieved in composites consisting of inclusions of coated spheres, with a
core of lead surrounded by rubber, in a stiff light matrix. As the material is oscillated above the resonant
frequency the lead balls move out of phase with the velocity v of the stiff light matrix, which from the
outside is the only velocity which matters. Thus when the lead balls are moving in the direction of the
arrows pointing to the right, the average momentum p is also in this direction, while the matrix is moving
in the direction of the arrows pointing to the left. Hence p and v are in opposite directions: the effective
mass is negative.

antiplane elasticity and transverse electric (TE) or transverse magnetic (TM) electromagnetism.
Composites which have unexpected properties outside the range of naturally occurring materials are fre-

quently called metamaterials: see Cai and Shalaev (2010) for an introduction to the topic of optical metama-
terials, and see Banerjee (2011) and Craster and Guenneau (2013) for an introduction to acoustic and elastic
metamaterials.

We mention too, that part of the reason for the surge of interest in these metamaterials arises because three-
dimensional lithography and printing techniques (Pendry and Smith 2004; Kadic, Bückmann, Stenger, Thiel,
and Wegener 2012; Bückmann, Stenger, Kadic, Kaschke, Frölich, Kennerknecht, Eberl, Thiel, and Wegener
2012; Bückmann, Schittny, Thiel, Kadic, Milton, and Wegener 2014; Meza, Das, and Greer 2014) now allow
one to tailor beautiful structures with desired properties. Still there are limitations: usually one wants the
cell size to be small and this restricts the size of the overall sample, since in three dimensions the number of
cells scales as the cube of the sample side. For this reason metasurfaces may hold more promise for practical
applications.

To determine the effective properties of composites it usually suffices to consider periodic materials (i.e.,
take a large cubic sample of the material and periodically extend it). So one looks for solutions of (1.5) where
j(x), σ(x) and e(x) are periodic functions with the same unit cell of periodicity Ω as the composite. The
potential V (x) however is not periodic: it has a linear part −〈e〉 · x plus a periodic part: here the angular
brackets denote a volume average over Ω. It is the relation between the volume averaged current field 〈j〉 and
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Figure 2.4: This figure, which is a variant of Figure 3 in Milton, Briane, and Willis (2006), shows how
it is possible to get metamaterials with an anisotropic and possibly complex effective mass density. The
body is treated as a black box, and one is interested in how its momentum is related to its velocity under
time-harmonic vibrations at a fixed frequency ω. If the spring constants K and M are different, then the
inertial responses to vibrations in the horizontal and vertical directions differ: the effective mass density
is anisotropic. If the springs in the cavities have some viscosity, causing energy loss, then the effective
mass density will be complex-valued.

the volume averaged electric field 〈e〉 which determines the effective conductivity tensor σ∗;

〈j〉 = σ∗〈e〉. (2.5)

So the recipe for obtaining σ∗ is to compute the periodic fields e(x) and j(x) for a basis set of independent
“applied fields” 〈e〉 (d applied fields in d dimensions), find 〈j〉 for each of them, which then through the linear
relation (2.5) determines the effective tensorσ∗. In experiments applying the field 〈e〉 is achieved by inserting
a large sample of the material (with many unit cells) between parallel conducting plates. If the unit cell has
some reflection symmetries, then it may suffice to put a single cell between the plates, with no flux of current
through the sides of the unit cell.

For conduction in a magnetic field the Hall effect causes the conductivity tensor to be nonsymmetric
(Landau, Lifshitz, and Pitaevskiı̆ 1984), and convection enhanced diffusion also can be cast as a problem
with a nonsymmetric conductivity tensor (Fannjiang and Papanicolaou 1994). We remark in passing that the
nonlinear equations of conduction similarly apply to a wide variety of problems (Milgrom 2002).
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2.2 The history of the abstract theory of composites
This section can easily be skipped by those readers not interested in historical details. The mathematical
content will be revisited in subsequent sections.

Kohler and Papanicolaou (1982), Papanicolaou and Varadhan (1982) and Golden and Papanicolaou (1983)
formulated the conductivity problem in composites with random microstructure. They introduced the Hilbert
space of square integrable, stationary, fields with zero average value and observed that the nonlocal opera-
tor Γ = ∇(∇2)−1∇· was a projection onto the subspace of curl-free fields. Fokin (1982) formulated the
conductivity problem in terms of two projections onto orthogonal subspaces. Dell’Antonio, Figari, and Or-
landi (1986) considered the response of bodies under quite general boundary conditions and formulated the
equations for conductivity and elasticity in terms of appropriate projections, which for periodic boundary
conditions reduce to the projections onto the space of vector fields which are gradients of periodic scalar
potentials, or for elasticity are the symmetrized gradient of a periodic vector potential.

The general formulation applicable to many problems in composites, not just conductivity, where the
Hilbert space is split into three-orthogonal subspaces U , E and J each appropriate to the problem at hand was
presented by Milton (1987a, 1990).

By contrast the theory of the Y -tensor Y∗ developed from many different directions. Walpole (1966)
noticed, for example, that the bounds of Hashin and Shtrikman (1963) and Hill (1963) on the effective bulk
modulus κ∗ of an isotropic 3-dimensional composite of 2 isotropic phases, having bulk moduli κ1 and κ2,
and shear moduli µ1 and µ2, with µ1 ≥ µ2 could be expressed as

[

2∑
i=1

fi(κ
∗
2 + κi)]

−1 − κ∗2 ≤ κ∗ ≤ [

2∑
i=1

fi(κ
∗
1 + κi)]

−1 − κ∗1, (2.6)

where κ∗2 = 4µ2/3, κ∗1 = 4µ1/3, and f1 and f2 are the volume fractions of the two phases (with f1 +f2 = 1).
Milton (1981b, 1982) found the conductivity bounds of Beran (1965) could be simplified to

σ∗ ≤ f1σ1 + f2σ2 −
f1f2(σ1 − σ2)2

f2σ1 + f1σ2 + 2(ζ1σ1 + ζ2σ2)
,

1/σ∗ ≤ f1/σ1 + f2/σ2 −
f1f2(1/σ1 − 1/σ2)2

f2/σ1 + f1/σ2 + (ζ1/σ1 + ζ2/σ2)/2
, (2.7)

and similarly the bulk modulus bounds of Beran and Molyneux (1966) could be simplified to

κ∗ ≤ f1κ1 + f2κ2 −
f1f2(κ1 − κ2)2

f2κ1 + f1κ2 + 4(ζ1µ1 + ζ2µ2)/3
,

1/κ∗ ≤ f1/κ1 + f2/κ2 −
f1f2(1/κ1 − 1/κ2)2

f2/κ1 + f1/κ2 + 3(ζ1/µ1 + ζ2/µ2)/4
, (2.8)

where the nonnegative parameters ζ1 and ζ2 (with ζ1 + ζ2 = 1) are given by

ζ1 = 1− ζ2 =
9

2f1f2

∫ ∞
0

dr

∫ ∞
0

ds

∫ +1

−1

du
f111(r, s, u)

rs
P2(u), (2.9)

in which P2(u) = (3u2 − 1)/2 is a Legendre polynomial, and f111(r, s, u) is the probability that all three
vertices of a triangle having side lengths r and s, and included angle cos−1 u land in phase 1 when thrown
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randomly in the composite. (The conductivity bounds of Beran (1965) were also simplified by Torquato
(1980)). Part of the reason I chose this form for the simplified bounds was that I realized when formulating it
that, for example, the second bound in (2.7) could be expressed equivalently as

σ∗ ≥ f1σ1 + f2σ2 −
f1f2(σ1 − σ2)2

f2σ1 + f1σ2 + 2(ζ1/σ1 + ζ2/σ2)−1
(2.10)

thus connecting it to the form of the upper bound in (2.7). Also the form (2.7) of the bounds displays a nice
symmetry in the sense that when σj is replaced by 1/σj , for j = 1, 2, ∗ in the upper bound it almost maps
to the lower bound apart from the factor of 2. Values for the parameter ζ1 = 1 − ζ2, and an associated one
η1 = 1− η2 which enters the simplified bounds on the effective shear modulus (McCoy 1970; Milton 1981b,
1982; Milton and Phan-Thien 1982; Gibiansky and Torquato 1995), are given for various microgeometries in
the references found in the section 15.6 of Milton (2002) and in the book of Torquato (2002): for recent results
with impressive numerical simulations see Gillman, Amadio, Matouš, and Jackson (2015) and Hlushkou,
Liasneuski, Tallarek, and Torquato (2015).

Berryman (1982) (see also Berryman and Milton (1988)) introduced a transformation which for n-phase
elastic composites took the form

K(x) = [

n∑
i=1

fi(4x/3 + κi)]
−1 − 4x/3, (2.11)

and realized the bounds of Hashin and Shtrikman (1963) and Hill (1963), and those of Beran and Molyneux
(1966) as given in (2.8), could be written when n = 2 as

K(µ2) ≤ K((ζ1/µ1 + ζ2/µ2)−1) ≤ κ∗ ≤ K((ζ1µ1 + ζ2µ2)) ≤ K(µ1). (2.12)

For multiphase composites with n ≥ 3 it is not clear if the transformation (2.11) has any relation with the
Y -tensor.

For isotropic two-component conducting composites with isotropic component conductivities σ1 and σ2

with σ1 > σ2, Milton and Golden (1985) found a sequence of transformations which preserved analytic
properties. The first transformation in this sequence is the transformation from σ∗ to σ1

∗ given by

σ1
∗ = σ1σ2(σ∗〈σ−1〉 − 1)/[2(〈σ〉 − σ∗)]

= {−f2σ1 − f1σ2 + f1f2(σ1 − σ2)2[f1σ1 + f2σ2 − σ∗]−1}/2, (2.13)

in terms of which the bounds of Hashin and Shtrikman (1962) and those of Beran (1965) as given by (2.7)
reduce to

σ2 ≤ (ζ1/σ1 + ζ2/σ2)−1 ≤ σ1
∗ ≤ ζ1σ1 + ζ2σ2 ≤ σ1. (2.14)

It was found (Milton 1986a) that the related matrix transformation simplified the translation method conduc-
tivity bounds of Murat and Tartar (1985) and Lurie and Cherkaev (1986) on the effective conductivity tensor
σ∗ of possibly anisotropic three-dimensional composites of two isotropic phases mixed in fixed proportions.

For multiphase conducting composites (and related problems) one could stratify the Hilbert space, and
obtain a sequence of effective tensors which were linked by this sort of transformation (Milton 1987a, 1987b,
1991). Independently Cherkaev and Gibiansky (1992) recognized that the translation bounds for two phase
composites with commuting tensors L1, L2 and L∗ generally simplified when expressed in terms of the tensor

Y∗ = −f2L1 − f1L2 + f1f2(L1 − L2)[f1L1 + f2L2 − L∗]
−1(L1 − L2). (2.15)
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Later their simplification was found to be valid even when L1, L2 and L∗ did not commute (Milton 1991). A
simple physical interpretation of the tensor Y∗ for two-phase composites was given by Gibiansky and Milton
(1993) [see equation (2.99) in Section 2.9]. The complete abstract formulation of the Y∗ tensor problem is
given in Chapters 19, 20, and 29 of Milton (2002).

2.3 The abstract setting for defining effective tensors
Here we review the general abstract theory of composites, see also Section 12.7 of Milton 2002. The setting
is a Hilbert or finite-dimensional vector space H (over the complex numbers) which has some inner product
(P1,P2) defined for all P1,P2 ∈ H, having the usual properties that

(P1,P2) = (P2,P1), (P1,P1) > 0 for all P1 6= 0. (2.16)

where the overline denotes complex conjugation. The Hilbert space has the decomposition

H = U ⊕ E ⊕ J , (2.17)

where the subspaces U , E and J are mutually orthogonal with respect to this inner product. [By the definition
of a subspace ofH these are required to remain closed under multiplication by complex numbers, i.e., if P is
in one of the subspaces then so is λP for all complex numbers λ.] Then we suppose we are given an operator
L which maps fields in H to fields in H. Given a field or a vector E0 ∈ U the problem is to find fields or
vectors

J0 ∈ U , J ∈ J , E ∈ E , (2.18)

such that
J0 + J = L(E0 + E). (2.19)

Assuming that there is a unique solution for the fields J0, E and J for all E0 ∈ U , then since J0 depends
linearly on E0 we can write

J0 = L∗E0, (2.20)

which defines the effective operator L∗ which maps U to U , or to some subspace of it if L∗ is singular. There
is also the dual problem: given J0 ∈ U , find fields or vectors E0 ∈ U , E ∈ E and J ∈ J such that (2.19) is
satisfied. If there is a unique solution for these fields for all J0 ∈ U then since E0 depends linearly on J0 we
can write

E0 = L−1
∗ J0, (2.21)

which defines the inverse effective operator. This formulation defining effective tensors is central to the theory
of periodic composites, whereH consists of periodic fields of some sort (which may have elements which are
tensors, vectors, or scalars), that are square integrable over the unit cell of periodicity, U consists of constant
fields, and the subspaces E and J have meanings according to the problem one is considering, with the
projections onto these subspaces being local in Fourier space. The simplest example is electrical conductivity,
whereH consists of vector fields with the same periodicity as the composite that are square integrable over the
unit cell, U consists of constant vector fields, E consists of electrical fields E(x) which are minus the gradient
of a potential with the same periodicity as the composite, and J consists of current fields J(x) with the same
periodicity as the composite, which have zero divergence and which have zero average value. The operator L
is local in real space and can be identified with the conductivity tensor σ(x). Given an applied electric field
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E0 ∈ U , representing the average of the total electric in the composite, the action of L = σ is to multiply the
total electric field E0 + E(x) by σ(x) to produce the total current field

J0 + J(x) = σ(x)[E0 + E(x)]. (2.22)

Here J0 ∈ U is the average of the total current field, and the linear relation between J0 and E0 defines the
effective conductivity tensor L∗ = σ∗, i.e, J0 = σ∗E0.

2.4 Solving for the effective tensor and fields
To solve for the effective tensor and fields, we introduce the projections Γ0, Γ1, and Γ2 onto the spaces U , E
and J . In the theory of composites the action of these projections are readily calculated in Fourier space, but
here we will just assume they are projection operators. Applying Γ1 to both sides of the relation (2.19), gives

0 = Γ1L(E0 + E) = Γ1LΓ0E0 + Γ1LΓ1E, (2.23)

which implies
J0 = Γ0L(E0 + E) = Γ0L[Γ0 − Γ1(Γ1LΓ1)−1Γ1LΓ0]E0, (2.24)

where the inverse of Γ1LΓ1, if it exists, is to be taken on the subspace E . This gives the formula

L∗ = Γ0LΓ0 − Γ0LΓ1(Γ1LΓ1)−1Γ1LΓ0, (2.25)

for the effective operator L∗. If E is a finite-dimensional vector space then inverting Γ1LΓ1 will be inverting a
matrix, which will generally be no problem. If however E has infinite dimension, then to ensure invertibility of
the operator Γ1LΓ1, we should make additional assumptions, for instance that L is bounded on the subspace
E , i.e., there exists β > 0 such that

β > sup
E∈E
|E|=1

|LE|, (2.26)

and that L has the following coercivity property on the subspace E : there exists α > 0 such that

Re(E,LE) ≥ α|E|2 for all E ∈ E . (2.27)

To obtain an alternative formula for the effective tensor L∗ we introduce the “polarization field” (or polar-
ization vector ifH has finite dimension)

P = (L− σ0I)[E0 + E] = J0 + J− σ0[E0 + E], (2.28)

where we are free to appropriately choose the constant σ0, which may possibly be complex. Applying the
projection operator Γ1 onto to the space E to P gives

Γ1P = −σ0E, (2.29)

and hence we have
[I + Γ1(L/σ0 − I)](E0 + E) = E0 + E + Γ1P/σ0 = E0, (2.30)

which gives
J0 + J = L(E0 + E) = L[I + Γ1(L/σ0 − I)]−1E0. (2.31)
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Applying the projection Γ0 onto the space U to (2.31) we obtain the desired formula for the field

J0 = Γ0L[I + Γ1(L/σ0 − I)]−1E0, (2.32)

and hence for the effective operator,

L∗ = Γ0L[I + Γ1(L/σ0 − I)]−1Γ0. (2.33)

From (2.30) and (2.31) we obtain formulas for the fields E and J:

E = Γ1[I + Γ1(L/σ0 − I)]−1E0,

J = Γ2L[I + Γ1(L/σ0 − I)]−1E0. (2.34)

Expanding each inverse gives the associated series expansions

L∗ =

∞∑
j=0

Γ0L[Γ1(I− L/σ0)]jΓ0,

J0 =

∞∑
j=0

Γ0L[I− Γ1(L/σ0)]jE0,

E =

∞∑
j=0

[Γ1(I− L/σ0)]jE0,

J =

∞∑
j=0

Γ2L[Γ1(I− L/σ0)]jE0. (2.35)

If these series expansions converge for a given E0 ∈ U it is quite clear that the fields lie in the right subspaces
J0 ∈ U , E ∈ E , and J ∈ J , and that the relation (2.19) is satisfied. This is one way to show that a solution to
the original equations exists. Although the converged fields J0, E and J, and the effective tensor L∗ appear
to depend on the choice of σ0, this is not the case: the tensor σ0I just serves as the expansion point for these
series as they converge quickest when L − σ0I is small. To see that the converged fields do not depend on
σ0, note that if we vary σ0 in (2.30) the left hand side changes by an amount proportional to Γ1L(E0 + E),
which from (2.23) vanishes. While the effective tensor L∗ is of primary interest, it can also be important in
composites to know the local field E0 + E(x), or equivalently J0 + J(x), to see for example if at any point
in the material the field is close to (or has exceeded) a critical value which would cause the material to break
down (the “yield surface” for plastic yielding or the critical electric field strength for dielectric breakdown )
or to cause the onset of other nonlinearities which would render the analysis invalid. Knowing the local field
E0 + E(x) is also useful if we are interested in knowing how perturbations of L(x) effect the effective tensor
L∗. [See Chapter 16 of Milton (2002) and references therein.]

For composites these expansions are useful in Fast Fourier Transform methods for computing effective
tensors and fields (1994, 1998). Variants of the expansion are useful for accelerated Fourier transform methods
for computing effective tensors and fields (Eyre and Milton 1999; see also the generalization in Section 14.9
of Milton 2002, and in particular equation (14.38)). They are also useful for deriving algebraic conditions for
exact microstructure independent relations satisfied by effective tensors (Grabovsky, Milton, and Sage 2000;
see also Chapter 17 of Milton 2002).
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In multicomponent media the series expansions (2.35) are useful for proving that the fields and effective
tensor are analytic functions of the component moduli (provided those component moduli are such that the
series converges): see Bruno (1991b), Bruno and Leo (1992), page 372 of Milton (2002) [though there I
should have referenced Section 14.7 page 300 since if L(x) is complex it is not self-adjoint], and also Section
3.5 of the current book.

To show convergence we recall the definition of the norm of an operator A:

‖A‖= sup
P(x)
|P|=1

|AP|, (2.36)

where
|Q|= (Q,Q)1/2. (2.37)

The operator norm has the properties

‖AB‖≤ ‖A‖ ‖B‖, ‖A + B‖≤ ‖A‖+‖B‖, (2.38)

and Γ0 and Γ1 being projections have norm 1. Hence all the series in (2.35) will certainly converge if

‖I− L/σ0‖< 1. (2.39)

To establish that I− L/σ0 has norm less than 1, for an appropriate real value of σ0, when L is bounded,
i.e., there is some β > 0 such that

β > sup
P∈H
|P|=1

|LP|, (2.40)

and L is coercive in the sense that there is some α > 0 such that

Re(P,LP) ≥ α|P|2 for all P ∈ H, (2.41)

we follow (with some corrections) Section 14.7 of Milton (2002). For any field Q ∈ H, introduce Q′ =
(I− L/σ0)Q, so that LQ = σ0(Q−Q′). Then the coercivity property (2.41) with P = Q implies

σ0[|Q|2−Re(Q,Q′)] ≥ α|Q|2, (2.42)

whereas the boundedness of L (2.40) implies

β2|Q|2≥ σ2
0 |Q−Q′|2, (2.43)

which, when expanded out, gives

2 Re(Q,Q′) ≥ [1− (β/σ0)2]|Q|2+|Q′|2. (2.44)

Combining (2.42) and (2.44) gives

[1 + (β/σ0)2 − 2(α/σ0)]|Q|2≥ |Q′|2, (2.45)

which implies
‖I− L/σ0‖≤ [1 + (β/σ0)2 − 2(α/σ0)]1/2. (2.46)
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Thus by choosing σ0 = β2/α we obtain the bound

‖I− L/σ0‖≤
√

1− (α/β)2 < 1, (2.47)

which ensures convergence of the series.
When the coercivity property (2.41) is satisfied, then solution to the equations is unique. To see this,

suppose there is another solution J′0 ∈ U , E′ ∈ E , and J′ ∈ J to (2.19) with the same value of E0 ∈ U .
Subtracting solutions we get

(J′0 − J0 + J′ − J) = L(E′ −E). (2.48)
Using the coercivity condition (2.41) with P = E′−E, and using the orthogonality of the subspaces, implies

0 = Re(E′ −E, (J′0 − J0 + J′ − J)) = Re(E′ −E,L(E′ −E)) ≥ α|E′ −E|2. (2.49)

From this we deduce that E′ = E, and then projecting (2.48) onto the subspaces U and J gives J′0 = J0 and
J′ = J. This uniqueness provides an alternative proof that the solutions (2.35) cannot depend on σ0.

Note that the norm ‖I − L/σ0‖ does not change if we multiply σ0 by a phase factor eiθ and at the same
time multiply L by this same factor. Hence we obtain convergence when L is bounded and L is coercive in
the sense that there is some α > 0 and angle θ such that

Re(P, eiθLP) ≥ α|P|2 for all P ∈ H. (2.50)

2.5 An example: a subspace collection associated with a function that
takes positive semidefinite matrix values

Consider a positive semidefinite Hermitian n × n matrix valued function m(y) defined on the interval y ∈
[0, 1], with bounded integral over this interval. Now given two 2n-dimensional vector fields P1(y) and P2(y)
defined on the interval y ∈ [0, 1] of the form

P1(y) =

(
A1(y)

B1(y)

)
, P2(y) =

(
A2(y)

B2(y)

)
, (2.51)

we define their inner product to be

(P1,P2) =

∫ 1

0

A1(y) ·A2(y) + B1(y) ·B2(y) dy, (2.52)

and the associated norm is then |P|= (P,P)1/2. We take our Hilbert space H to consist of such 2n-
dimensional vector fields P(y), with y ∈ [0, 1] having finite norm. The subspaces P1 and P2 are defined
to consist of fields that can be expressed in the form

P1(y) =

( √
y p1(y)√

(1− y) p1(y)

)
, P2(y) =

(√
(1− y) p2(y)

−√y p2(y)

)
, (2.53)

respectively for some choice of n-dimensional vector fields p1(y) and p2(y) defined on the interval y ∈ [0, 1].
They are clearly orthogonal spaces, with respect to the inner product (2.52), and the associated projection
operators are

χ1 =

(
y In

√
y(1− y) In√

y(1− y) In (1− y) In

)
, χ2 =

(
(1− y) In −

√
y(1− y) In

−
√
y(1− y) In y In

)
, (2.54)
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in which In is the n×n identity matrix. Clearly χ1 +χ2 is the 2n× 2n identity matrix I2n. We define U and
E to consist of all fields that can be expressed in the form

U =

(√
m(y) u

0

)
, E =

(
0

e(y)

)
, (2.55)

for some choice of n-dimensional vector u, and for some choice of n-dimensional vector field e(y) defined
on the interval y ∈ [0, 1]. Here the square root of the matrix m(y) is defined in the usual way:

√
m(y) is

Hermitian and positive semidefinite and has the same eigenvectors as m(y), but eigenvalues which are the
square root of those of m(y). To obtain an orthonormal basis for U , we consider a set of n fields of the form

Uj =

(√
m(y)uj

0

)
, (2.56)

where the n-dimensional vectors uj , j = 1, 2, . . . , n, are real. These have inner products

(Uj ,Uk) = uj ·Wuk, where W =

∫ 1

0

m(y) dy. (2.57)

Clearly the matrix W is Hermitian and positive semidefinite. If we assume it is in fact strictly positive definite,
then we can find an orthogonal set of n vectors uj such that

W =

n∑
i=1

ujuj
T /|uj |4, (2.58)

i.e., the uj should be chosen as the eigenvectors of W with lengths |uj |= (uj
T ·uj)1/2 chosen so 1/|uj |2 is the

corresponding eigenvalue. Then from (2.57) we see that the fields Uj , j = 1, 2, . . . , n, form an orthonormal
basis for U , satisfying (Uj ,Uk) = δjk. The projections onto U and E are then given respectively by

Γ0P =

n∑
j=1

Uj(Uj ,P), Γ1 =

(
0 0

0 In

)
. (2.59)

We define J to be the orthogonal complement of U ⊕ E in the Hilbert spaceH. Let us suppose the operator
L acting on fields inH has the form

L = σ1χ1 + σ2χ2, (2.60)

where σ1 and σ2 are (possibly complex) scalars. Then, since

Γ1(Γ1LΓ1)−1Γ1 =

(
[0 0

0 [yσ2 + (1− y)σ1]−1In

)
, (2.61)

we deduce that

(Uj ,LΓ1(Γ1LΓ1)−1Γ1LUk) =

∫ 1

0

y(1− y)(σ1 − σ2)2uj ·m(y)uk
yσ2 + (1− y)σ1

dy,

(Uj ,LUk) =

∫ 1

0

(yσ1 + (1− y)σ2)uj ·m(y)uk dy, (2.62)
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implying, via (2.25), that the effective operator L∗ using this basis Uj , j = 1, 2, . . . , n, of U is represented
by the matrix with elements

{L∗}jk =

∫ 1

0

uj ·m(y)uk
y/σ1 + (1− y)/σ2

dy. (2.63)

Introducing the matrix valued measure dM(y) with elements {dM(y)}jk = uj ·m(y)uk dy, we can rewrite
this as

{L∗}jk =

∫ 1

0

{dM(y)}jk
y/σ1 + (1− y)/σ2

, where

∫ 1

0

{dM(y)}jk = δjk, (2.64)

in which the last identity follows by integrating {dM(y)}jk over y ∈ [0, 1], giving uj ·Wuk = δjk.
In fact, the integral representation formula (2.64) for the effective operator L∗ as a function of σ1 and σ2

holds true, not just for our example, but more generally whenever the three subspaces U , E and J are mutually
orthogonal, and L has the form (2.60) where χ1 and χ2 project onto subspaces P1 and P2 that are orthogonal
complements in the spaceH. This representation formula follows from the analytic properties of the function
L∗(σ1, σ2) (Bergman 1978; Milton 1981a; Golden and Papanicolaou 1983; see also Chapter 2 of Milton
2002). The measure dM(y) can be recovered from the values that L∗(σ1, 1) takes as σ1 ranges just above the
negative real axis. What the above example shows is that any function L∗(σ1, σ2) of the form (2.64), where the
n×nmatrix valued measure dM(y) takes positive semidefinite values, can be associated approximately with
the effective tensor of a subspace collection, by replacing dM(y) with a continuous measure m(y) dy. (Then
W = I and the vectors uj , j = 1, 2, . . . , n can be chosen to be orthonormal.) For conducting composites,
in two or more dimensions, one can find periodic microstructures that realize (to an arbitrarily high degree
of approximation) as a diagonal element of their effective conductivity tensor σ∗ any scalar valued function
{σ∗}11(σ1, σ2) of the component conductivities σ1 and σ2 having this integral representation (Milton 1981c;
see also Section 18.4 of Milton 2002): y has the physical interpretation of the volume fraction of phase 1 in a
laminate of both phases with layer surfaces perpendicular to the x1-axis (so the effective conductivity of that
laminate in the x1-direction is the harmonic mean 1/(y/σ1 + (1− y)/σ2)) and at a much larger length scale
these laminates are layered together in an orthogonal direction (so one gets an arithmetic average of their
effective conductivities in the x1-direction), with the measure {dM(y)}11 giving the proportions of these
laminates in the final microstructure.

2.6 Some properties of the effective tensor
Not only is the norm ‖I − L/σ0‖ invariant when multiply L and σ0 by a phase factor, but more generally
if E0,J0 ∈ U , E ∈ E and J ∈ J solve (2.19) then for any complex number λ, E0, λJ0 ∈ U , E ∈ E and
λJ ∈ J , will solve the equations when L is replaced by λL. In this way we see that if L is multiplied by a
constant λ so will be L∗.

The effective tensor has the property that when we replace the operator L by its adjoint, then the effective
tensor is replaced by its adjoint. To see this, we follow Section 12.10 of Milton (2002), and suppose that we
are given fields E0,E

′
0 ∈ U . Let J0 ∈ U , E ∈ E , and J ∈ J be the associated fields which solve (2.19) and

let J′0 ∈ U , E′ ∈ E , and J′ ∈ J be fields which solve the adjoint problem,

J′0 + J′ = L†(E′0 + E′), (2.65)

where L† is the adjoint of L, meaning that

(P′,LP) = (L†P′,P), for all P′,P ∈ H. (2.66)
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Now the orthogonality of the subspaces implies the string of identities

(E′0,L∗E0) = (E′0,J0) = (E′0 + E′,J0 + J) = (E′0 + E′,L(E0 + E))

= (L†(E′0 + E′),E0 + E) = (J′0 + J′,E0 + E′) = (J′0,E0)

= ({L†}∗E′0,E0). (2.67)

We conclude that the problem with tensor L† has an effective tensor {L†}∗ which is the adjoint of L∗. A
corollary is if L is self-adjoint (meaning L† = L) so too will be the effective tensor L∗.

We also have the identity that

(E0, (L∗ + {L†}∗)E0) = (E0,J0) + (J0,E0) = (E0 + E,J0 + J) + (J0 + J,E0 + E)

= (E0 + E, (L + L†)(E0 + E)). (2.68)

Defining
L∗s = (L∗ + {L†}∗)/2, Ls = (L + L†)/2, (2.69)

as the self-adjoint parts of L∗ and L, we see that L∗s is positive semidefinite on U whenever Ls is positive
semidefinite on H. More generally using the invariance discussed at the beginning of this section, if for
any value of θ, (eiθL + e−iθL†)/2 is positive semidefinite, so too will (eiθL∗ + e−iθ{L†}∗)/2 be positive
semidefinite for that value of θ. In composites, with a symmetric tensor L(x), and with eiθ = −i this means L∗
will have an imaginary part which is positive semidefinite if the imaginary part of L(x) is positive semidefinite.

2.7 Variational principles and elementary bounds
When the operator L is self-adjoint and positive definite, then one has a variational principle for the effective
tensor L∗:

(E0,L∗E0) = inf
E∈E

(E0 + E,L(E0 + E)). (2.70)

For conductivity this is a corollary of the well-known Dirichlet variational principle. It is easily established
in the abstract case and follows from the orthogonality of the subspaces. Following Section 13.1 in Milton
(2002), given E ∈ E , J ∈ J and J0 ∈ U solving (2.19) for some E0 ∈ U we have the chain of inequalities

0 ≤ (E−E,L(E−E)) = (E0 + E−E0 −E,L(E0 −E−E0E))

= (E0 + E,J0 + J)− (J0 + J,E0 + E)− (E0 + E,J0 + J) + (E0 + E,L(E0 + E))

= (E0 + E,L(E0 + E))− (J0,E0)

= (E0 + E,L(E0 + E)− (E0,L∗E0), (2.71)

where we have used the fact that L and hence L∗ is self-adjoint. Since the left hand side is zero when E = E we
immediately have the variational principle (2.70). The dual variational principle, (also called the Thompson
variational principle)

(J0,L
−1
∗ J0) = inf

J∈J
(J0 + J,L−1(J0 + J)), (2.72)

also immediately follows by switching the roles of the subspaces E and J , and switching L∗ and L with their
inverses L−1

∗ and L−1.
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From these variational principles we easily obtain the elementary bounds:

L∗ ≥ 0, L∗ ≤ Γ0LΓ0, L−1
∗ ≤ Γ0L

−1Γ0, (2.73)

where Γ0 is the projection onto the space U . The first bound follows directly from (2.70) because the right
hand side is nonnegative. The other two bounds follow from (2.70) and (2.72), respectively, by taking the
simplest possible choice of trial fields namely E = 0 and J = 0.

In the simplest example of a periodic conducting composite with a local real conductivity σ(x) > 0 and
effective conductivity σ∗ the bounds (2.73) become

σ∗ ≥ 0, σ∗ ≤ 〈σ〉, σ−1
∗ ≤ 〈σ−1〉, (2.74)

where the angular brackets denote a volume average over the period cell. The latter arithmetic/harmonic
mean bounds are known as the Wiener (1912) bounds. More generally, for many other equations in periodic
composites where the local real self-adjoint tensor is L(x) > 0 and the effective tensor is L∗ one has the
classical bounds

L∗ ≥ 0, L∗ ≤ 〈L〉, L−1
∗ ≤ 〈L−1〉. (2.75)

For example, for elasticity, the latter two bounds were derived by Hill (1952) and are known as the Voigt–
Reuss–Hill bounds. [Voigt (1889, 1910) and Reuss (1929) had suggested the arithmetic/harmonic mean av-
erages as approximations, but in fact did not prove they were bounds].

2.8 The abstract setting for defining Y -tensors
Here we review the general setting of the Y -tensor problem. In the subsequent sections of the chapter we will
see how it is related to the effective tensor, and how it plays an important role in the theory of composites and
in characterizing the response of multiterminal impedance networks. The setting is now a Hilbert space or a
finite-dimensional vector space K (with an inner product satisfying (2.16)) that has the decomposition

K = E ⊕ J = V ⊕H, (2.76)

where the spaces E and J are orthogonal complements, as are the spaces V andH. (For the moment these are
not to be confused with the spaces E , J and H associated with effective tensors). We let Γ1 and Γ2 denote
the projections onto the spaces E and J , while we let Π1 and Π2 denote the projections onto the spaces V
andH. Given a linear operator L which mapsH toH, the Y -tensor problem is to find for each given field (or
vector) E1 ∈ V the associated fields

E2,J2 ∈ H, J1 ∈ V, with E = E1 + E2 ∈ E , J = J1 + J2 ∈ J , J2 = LE2. (2.77)

At first sight the Y -tensor problem looks almost the same as the effective tensor problem, but what is important
is the different partitioning of the Hilbert space ((2.76) compared to (2.17)) and the different association of
fields ((2.77) compared to (2.18) and (2.19)). Thus the action of L needs only to be defined on the subspace
H and its action on fields or vectors in V may not even be defined. Supposing that a unique solution exists for
each E1 ∈ V , the associated field (or vector) J1 must depend linearly of E1 and this linear relation,

J1 = −Y∗E1, (2.78)
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defines the linear operator Y∗ which maps V to V , or to a subspace of V . The dual problem consists of finding
for each given field (or vector) J1 ∈ V the associated fields

E2,J2 ∈ H, E1 ∈ V, with E = E1 + E2 ∈ E , J = J1 + J2 ∈ J , J2 = LE2. (2.79)

Then supposing that a unique solution exists for each J1 ∈ V , the linear relation,

E1 = −Y−1
∗ J1, (2.80)

defines the inverse operator Y−1
∗ . The appearance of the minus sign in front of (2.78) and (2.80) looks a

little strange but is motivated by the fact that defined in this way Y∗ is positive semidefinite, when L is
Hermitian and positive semidefinite. To see this we follow equation (19.12) in Milton (2002) and note that
the orthogonality of the various subspaces implies

0 = (E1 + E2,J1 + J2) = (E1,J1) + (E2,J2) = −(E1,Y∗E1) + (E2,LE2), (2.81)

or equivalently that (E1,Y∗E1) = (E2,LE2) where the latter is nonnegative if L is Hermitian and positive
semidefinite.

It is easy to check, following a string of identities like (2.67), that if an operator L has a Y -tensor Y∗
then the adjoint operator L† will have a Y -tensor Y†∗ which is the adjoint of Y∗. Hence adding (2.81) to its
complex conjugate we obtain

(E1, (Y∗ + Y†∗)E1) = (E2, (L + L†)E2). (2.82)

More generally, noting that if we multiply L by eiθ then Y∗ will be multiplied by eiθ we conclude that if
eiθL + e−iθL† is positive definite so to will be eiθY∗ + e−iθY†∗. Taking eiθ = −i we conclude that if L is
symmetric with positive semi-definite imaginary part, then Y∗ will be symmetric with positive semi-definite
imaginary part.

To solve for the tensor Y∗ one notes that since E1 + E2 ∈ E it follows that

Γ2E1 = −Γ2E2 = −Γ2L
−1J2 = −Γ2L

−1Π2Γ2J, (2.83)

which, provided the operator Γ2L
−1Π2Γ2 is nonsingular on the space J , implies

J1 = Π1J = −Π1Γ2[Γ2L
−1Π2Γ2]−1Γ2E1, (2.84)

and this gives the formula
Y∗ = Π1Γ2[Γ2L

−1Π2Γ2]−1Γ2Π1, (2.85)

where the inverse is to be taken on the subspace J . A necessary constraint for this inverse to be nonsingular
is that there is no field (or vector) in J which is in the null-space of Γ2, i.e

J ∩ V = {0}. (2.86)

Indeed if there is such a field W in both spaces, then the equations are still satisfied if we add W to both J1

and J.
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2.9 Example of a Y -tensor problem in two-phase composites
Y -tensor problems most naturally arise in the context of electrical circuits. However, another context in which
they have a natural significance is in conduction in two-phase periodic composites where the conductivity
tensor σ takes the form

σ(x) = σ1χ1(x) + σ2χ2(x), (2.87)

where the indicator function χi(x) takes the value 1 in phase i, and is zero in the other phase, and the con-
ductivity tensors σ1 and σ2 of the two phases may be anisotropic (and not necessarily commute). The space
K is taken to be all fields which have zero average value, H those fields which average to zero in each phase
separately, E is taken to be the space of electric fields that are minus the gradient of a periodic potential, and
J the space of divergence free fields that have zero average value (though not necessarily zero average value
taken over each phase separately). The operator L is to be identified with the conductivity tensor σ(x), with
its action restricted toH (as K is not closed under the action of σ(x)). Note thatH is closed under the action
of σ(x). The space V consists of fields of the form

V(x) = [f2χ1(x)− f1χ2(x)]v = [χ1(x)− f1]v, (2.88)

that are constant in each phase, with zero overall average, where to obtain the last expression in (2.88) we
have used the fact that χ2(x) = 1 − χ1(x). Due to the simple form of these fields the operator Y∗ can be
represented by a local constant operator (this is not true for composites of more than two phases). Thus we
have the relations

E1 + E2 ∈ E , J1 + J2 ∈ J , J2(x) = σ(x)E2(x), J1(x) = −Y∗E1(x). (2.89)

Given a solution to these equations, we can now consider the larger space

H′ = U ⊕ K = U ⊕ V ⊕H = U ⊕ E ⊕ J , (2.90)

where U is the subspace of uniform fields and H′ is now the space of periodic square integrable fields. We
postulate that the solution to the usual conductivity equations can be expressed in terms of the solution to the
Y -tensor problem, and takes the form

J0 + J = σ(E0 + E), with J = J1 + J2, E = E1 + E2, (2.91)

with E0,J0 ∈ U , J1 + J2 ∈ J , and E1 + E2 ∈ E . Since J2 = LE2 this reduces to a simpler problem,

J0 + J1 = σ(E0 + E1), J1 = −Y∗E1, (2.92)

that only involves piecewise constant fields. Writing E1 = [χ1(x)− f1]v the equation becomes

J0 − [χ1(x)− f1]Y∗v = [(σ1 − σ2)χ1(x) + σ2]{E0 + [χ1(x)− f1]v}
= {(σ1 − σ2)[E0 + f2v] + σ2v}χ1(x) + σ2(E0 − f1v), (2.93)

which separates into

Y∗v = −{(σ1 − σ2)[E0 + f2v] + σ2v}, J0 + f1Y∗v = σ2(E0 − f1v). (2.94)
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From the first equation we get

v = −[Y∗ + f2σ1 + f1σ2]−1(σ1 − σ2)E0, (2.95)

and by substituting the first into the second we get

J0 = (f1σ1 + f2σ2)E0 + f1f2(σ1 − σ2)v, (2.96)

and taken together they imply a formula for the effective conductivity tensor L∗ = σ∗ in terms of the Y -tensor:

σ∗ = f1σ1 + f2σ2 − f1f2(σ1 − σ2)[Y∗ + f2σ1 + f1σ2]−1(σ1 − σ2). (2.97)

Using the last equation in (2.89) we also see that, for either i = 1 or i = 2,

Y∗〈χiE〉 = Y∗〈χiE1〉 = 〈χiY∗E1〉 = 〈χiJ1〉 = 〈χiJ〉, (2.98)

which gives a direct physical meaning to the tensor Y∗ in two-phase composites (Gibiansky and Milton 1993).
One advantage of introducing the tensor Y∗ is that well-known bounds take a simpler form. As follows

from the observations of Torquato (1980), Milton (1981b, 1982) and Berryman (1982), when the components
and effective tensor are isotropic, i.e., σi = σiI for i = 1, 2, ∗, and Y∗ = y∗I, the well-known bounds
of Hashin and Shtrikman (1962) on the effective conductivity σ∗ of a three-dimensional composite, when
σ1 ≥ σ2, reduce to

σ1 ≥ y∗/2 ≥ σ2, (2.99)

while the bounds of Beran (1965) reduce to

ζ1σ1 + ζ2σ2 ≥ y∗/2 ≥ (ζ1/σ1 + ζ2/σ2)−1, (2.100)

where ζ1 and ζ2 = 1 − ζ1 are nonnegative weights, that can be determined from three-point correlation
functions:

ζ1 = 1− ζ2 =
9

2f1f2

∫ ∞
0

dr

∫ ∞
0

ds

∫ +1

−1

du
f111(r, s, u)

rs
P2(u), (2.101)

in which P2(u) = (3u2 − 1)/2 is a Legendre polynomial, and f111(r, s, u) is the probability that all three
vertices of a triangle having side lengths r and s, and included angle cos−1 u land in phase 1 when thrown
randomly in the composite.

Curiously, Berryman (1982) found that the self-consistent equation

y∗/2 = σ∗, (2.102)

corresponded to the well-known effective medium approximation of Bruggeman (1935) that is realized by a
hierarchical model consisting of spheres of the two-components with a very wide range of sizes, distributed
so spheres of similar size are well-separated (Milton 1984, 1985). This result of Berryman extends to multi-
component media too (Milton 1987a).
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2.10 Analytic properties preserving feature of the Y -transformation
in two-phase composites

The transformation from σ∗ to y∗ is also important (Milton and Golden 1985), for simplifying and deriving
bounds when the conductivities σ1 and σ2 are complex. When σ∗, for example, represents a diagonal elements
of the effective conductivity tensor σ∗, then bounds on σ∗ have been obtained using the analytic properties of
the function σ∗(σ1, σ2) established by Bergman (1978), Milton (1981a) and Golden and Papanicolaou (1983).
These properties are that the function satisfies the:

1. The Homogeneity property: σ∗(λσ1, λσ2) = λσ∗(σ1, σ2) for all real or complex λ;

2. The Analyticity property: σ∗(σ1, σ2) is an analytic function of the complex variables σ1 and σ2 except
possibly when σ1/σ2 is real, and zero or negative;

3. The Herglotz property: Im(σ∗(σ1, σ2)) > 0 when Im(σ1) > 0 and Im(σ2) > 0;

4. The Normalization property: σ∗(1, 1) = 1.

From a physical viewpoint it is more natural to require Re(σ∗) > 0 when Re(σ1) > 0 and Re(σ2) > 0 rather
than the Herglotz property (unless σ is representing the dielectric constant) but both are equivalent as follows
from the homogeneity property with λ = i. If we ignore the normalization property 4, and know nothing else
about the function σ∗(λσ1, λσ1) other than properties 1,2 and 3, then the most we can say is that σ∗ satisfies
the wedge bounds: σ∗ lies in the wedgeW in the complex plane bounded by the two straight lines which both
pass through the origin, and one through σ1 and the other through σ2 (these wedge bounds follow easily from
the Herglotz property and the fact that one can rotate the complex plane due to the homogeneity property with
λ = eiθ).

Tighter bounds when more information is known were obtained by exploiting the analytic properties of the
function σ∗(λσ1, λσ1) by Milton(1980, 1981a, 1981b), Bergman(1980, 1982) and Clark and Milton (1995):
see also Milton (1979), Golden and Papanicolaou (1983) and Bergman (1993). In a wider mathematical
context most of these bounds follow from bounds of Stieltjes functions, see Milton (1986a), the discussion
in the Introduction of Milton 1987b and references therein, and Chapter V in Kreı̆n and Nudel’man (1974).
Many of them can alternatively be derived from variational principles (Milton and McPhedran 1982; Cherkaev
and Gibiansky 1994; Milton 1990).

As brought recently to my attention by Mihai Putinar, there is also a close connection to the Nevanlinna–
Pick interpolation problem, solved by Nevanlinna (1919, 1929) and Pick (1915), of obtaining sharp bounds
which correlate the values a Herglotz-function takes at a set of points in the upper half of the complex plane
(a Herglotz function is a function which is analytic in the upper half of the complex plane, and has positive
imaginary part there). Generalizations of the Nevanlinna–Pick interpolation problem, and different ways to
obtain these generalizations, have been the subject of much research [see Ball and Trent (1998), the book of
Agler and McCarthy (2002), the appendix of Charina, Putinar, Scheiderer, and Stöckler (2015), and references
therein]. Of particular relevance to the theory of composites (as for anisotropic materials the effective tensor is
represented by a matrix) is that the Nevanlinna–Pick interpolation problem has been solved for matrix-valued
Herglotz functions (Delsarte, Genin, and Kamp 1979) and that algorithms are available for computing inter-
polations (Chen and Koç 1994, 1995). Nevanlinna–Pick interpolation and its generalizations to multivariate
functions are also important in circuit and system theory, network synthesis, and control theory (Delsarte,
Genin, and Kamp 1979; Kummert 1989; Ball and ter Horst 2010).
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Figure 2.5: Bounds on a diagonal element σ∗ of the complex effective tensor σ∗. If one ignores the
normalization property that σ∗(1, 1) = 1, σ∗ is only confined to the wedge W . If the normalization
property is taken into account, σ∗ is confined to Ω, and if the volume fractions are known, σ∗ is confined
to Ω′. The Y -transformation (2.105) maps Ω′ back to the wedge.

When we include the normalization property, σ∗ is confined to the lens–shaped shaded region Ω in Fig-
ure 2.5, bounded on one side by the straight line joining σ1 and σ2, and on the other side by the circular
arc joining these two points that when extended passes through the origin. When the volume fractions of the
phases are known, this information translates to knowledge of the first derivative,

f1 =
dσ∗(σ1, 1)

dσ1

∣∣∣∣
σ1=1

, (2.103)

and σ∗ is confined to the lens–shaped black region Ω′ in Figure 2.5, bounded by two circular arcs, both passing
through

〈σ〉 = f1σ1 + f2σ2, and 〈σ−1〉−1 = 1/(f1/σ1 + f2/σ2), (2.104)

one of which, when extended, passes through σ1 while the other, when extended, passes through σ2.
Now lets look for a transformation which maps the more complicated bound, represented by the black

region Ω′ back to the most elementary bounds, represented by the wedge W . Since the boundaries of these
regions are straight lines or circular arcs it makes sense to look in the class of fractional linear transformations
since these map circular arcs or straight lines to straight lines or circular arcs. The point 〈σ−1〉−1 since it is at
the intersection of the two circular arcs bounding Ω′, should get mapped to the origin (or the point at infinity)
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being the intersection of the straight lines forming the wedge. Similarly the point 〈σ〉, should get mapped to
infinity (or the point at the origin) being the other point of intersection of the straight lines forming the wedge.
The transformation from σ∗ to y∗ does precisely this:

y∗ ≡ Y (σ∗) = −f2σ1 − f1σ2 + f1f2(σ1 − σ2)2[f1σ1 + f2σ2 − σ∗]−1

= σ1σ2(σ∗〈σ−1〉 − 1)/(〈σ〉 − σ∗), (2.105)

as follows from the fact that

Y (〈σ−1〉−1) = 0, Y (〈σ〉) =∞, Y (σ1) = −σ1, Y (σ1) = −σ1. (2.106)

Thus the circular arcs forming the boundary of Ω′ that pass through the points 〈σ〉 and 〈σ−1〉−1 which when
extended pass through σ1 and σ2 map to rays from the origin to infinity, that when extended in the opposite
direction pass through −σ1 and −σ2. These are the rays that bound W .

The wedge bounds immediately imply y∗(σ1, σ2) satisfies the Herglotz property, and hence shares with
σ∗(σ1, σ2) the analytic properties 1, 2, and 3. (Note that y∗(σ1, σ2) cannot have a zero or pole except when
σ1/σ2 is real and negative, since in the vicinity of that pole or zero, the wedge bounds would be violated. Also
y∗(σ1, σ2) cannot have other singularities, except when σ1/σ2 is real and negative, as these would transfer
to σ∗(σ1, σ2)). A more direct proof that the transformation (2.105), or in fact its matrix analog, preserves
analytic properties is given in Section 28.4 of Milton (2002).

Now in a three-dimensional isotropic composite (2.99) (or the series expansion for σ∗(σ1, σ2)) implies
y∗(1, 1) = 2. Making a normalization transformation of y∗(σ1, σ1) by this factor n = y∗(1, 1) = 2 we obtain
a function

σ
(1)
∗ (σ1, σ2) = y∗(σ1, σ1)/2, (2.107)

satisfying all four analytic properties. In particular σ(1)
∗ is also confined the lens–shaped shaded region Ω in

Figure 2.5, bounded on one side by the straight line joining σ1 and σ2, and on the other side by the circular arc
joining these two points that when extended passes through the origin. When mapped to the σ∗ plane we see
that σ∗ is confined to a lens–shaped region Ω′′ inside Ω′. Furthermore knowledge of the parameter ζ1 = 1−ζ2
given by (2.101), implies through (2.100) (or through the series expansion for σ∗(σ1, σ2)), knowledge of

ζ1 =
dσ

(1)
∗ (σ1, 1)

dσ1

∣∣∣∣
σ1=1

. (2.108)

Hence we can define

y
(1)
∗ = −ζ2σ1 − ζ1σ2 + ζ1ζ2(σ1 − σ2)2[ζ1σ1 + ζ2σ2 − σ(1)

∗ ]−1, (2.109)

and the wedge bounds on y(1)
∗ provide even tighter bounds on σ(1)

∗ and hence on σ∗. As more and more series
expansion coefficients are incorporated in the bounds one can introduce a hierarchy of functions σ(n)

∗ (σ1, σ1)

and y(n)
∗ (σ1, σ1), that are linked by fractional linear transformations and normalization transformations. In

this way, one obtains a nested sequence of lens–shaped regions in the complex plane which bound σ∗. The
effect of the factor of (σ1−σ2)2 entering the Y-transformation (2.105), is to shift to orderm information that
is contained in the series expansion of σ∗(σ1, σ2) at order m+ 2.

For other problems in composites, where one has tensors L1 and L2 in phases 1 and 2 (which may for
example, be elasticity tensors) and an effective tensor L∗, (2.97) generalizes to

L∗ = f1L1 + f2L2 − f1f2(L1 − L2)[Y∗ + f2L1 + f1L2]−1(L1 − L2). (2.110)

which is the inverse of the relation (2.15).
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2.11 Bounds on the Y -tensor in two-phase composites using the trans-
lation method

As an example of the usefulness of the Y -tensor in two phase composites let us derive the associated trans-
lation bounds. Translation bounds on the Y -tensor were first derived using algebraic manipulations of the
translation bounds on L∗ by Cherkaev and Gibiansky (1992) assuming L1 and L2 commute. This restriction
was subsequently removed (Milton 1991). The following simple derivation follows Section 24.10 in Milton
(2002).

One looks for constant self-adjoint tensors T (translations) whose associated quadratic forms are quasi-
convex on the space E , i.e, such that

(E,TE) ≥ 0, for all E ∈ E . (2.111)

By taking Fourier transforms this condition reduces to an algebraic condition on T: for example if E = ∇u,
then the Fourier components of E are rank-one matrices, and so A ·TA must be nonnegative for all rank-one
matrices A. Therefore it is quite easy to see if the quadratic form associated with a tensor T is quasiconvex
or not (but it is less easy to see which are the best translations to take).

Now E = E1 + E2 ∈ E and TE1 is piecewise constant and hence orthogonal to E2. So we deduce that

0 ≤ (E1 + E2,T(E1 + E2)) = (E1TE1) + (E2,TE2). (2.112)

By the orthogonality of the subspaces we also have the identity

0 = (E1 + E2,J1 + J2) = (E1,J1) + (E2,J2) = (E2,LE2)− (E1,Y∗E1). (2.113)

Now suppose T is such that L−T ≥ 0, i.e., L1 −T and L2 −T are positive semidefinite matrices. Then it
follows from the above two equations that

(E1,Y∗E1) = (E2,LE2) ≥ (E2,TE2) ≥ −(E1,TE1). (2.114)

So we have the translation bound that

Y∗ + T ≥ 0 if L1 −T ≥ 0 and L1 −T ≥ 0. (2.115)

By contrast the corresponding bound on L∗ is more complicated:

L∗ ≥ T + [f1(L1 −T)−1 + f1(L2 −T)−1]−1. (2.116)

The form (2.115) of the translation bounds makes it clear that if T = T′ + A where A is positive
semidefinite and T′ also satisfies (2.111) then the bounds using T′ will be as least as good as those using T.
Thus the best translations to use are the extremal ones, which are such that the associated quasiconvex quadratic
form loses its quasiconvexity whenever a nonzero positive-definite quadratic form is subtracted from it (Milton
1990). An algorithm for constructing extremal translations was given in Milton (2013b), and an explicit
example of a (nontrivial) extremal translation was presented by Harutyunyan and Milton (2015a). Curiously
there seems to be a connection between extremal translations and extremal polynomials (Harutyunyan and
Milton 2015b).
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2.12 Introducing the Y -tensor in multiphase composites using varia-
tional principles

In composite materials, when the local tensor L(x) is real, symmetric, and positive definite, the effective
tensor is given by the variational principle

E0 · L∗E0 = min
E∈E
〈(E0 + E) · L(E0 + E)〉, (2.117)

as proved in Section 2.7. When the material has n-phases (each with constant orientation) we can introduce
the space V consisting of those fields V which are constant in each phases, yet average to zero so they are
orthogonal to the space U :

V =

n∑
i=1

viχi(x), where

n∑
i=1

fivi = 0, (2.118)

in which χi(x) is the indicator function taking the value 1 in phase i and zero elsewhere, while fi = 〈χi〉
is the volume fraction of component i. Also let us introduce the space H(1) consisting of those fields P(x)
that have zero average value over each phase: i.e., P(x)χi(x) = 0 for all i. Now the trial field E can be
decomposed into a sum

E = E1 + E2 where E1 ∈ V, E2 ∈ H(1), (2.119)

and L(x), by assumption, takes the form

L(x) =

n∑
i=1

Liχi(x). (2.120)

Since the spaces U ⊕ V and H(1) are each closed under the action of L and are orthogonal to each other it
follows that

〈(E0 + E) · L(E0 + E)〉 = 〈(E0 + E1) · L(E0 + E1)〉+ 〈E2 · LE2〉. (2.121)

Consequently the minimization in the variational principle for L∗ can be done in two steps: first the compu-
tation of the quadratic form,

(E1,Y∗E1) = min
E2∈H(1)

E=E1+E2∈E

〈E2 · LE2〉, (2.122)

which defines the Y -tensor Y∗, mapping V to V , and then the computation of

E0 · L∗E0 = min
E1∈V

〈(E0 + E1) · L(E0 + E1)〉+ (E1,Y∗E1), (2.123)

which gives the relation between the effective tensor L∗ and the tensor Y∗.
If in the variational principle (2.122), E2(x) is varied by a small perturbing field δE2(x) ∈ E ∩H(1) then

the first order variation in the integrand will be 2〈δE2 ·LE2〉 and so will vanish if J2 ≡ LE2 ∈ J ⊕V . Since
H(1) is closed under the action of L, it follows that J2 ∈ H(1) and

J2 = J− J1, with J ∈ J , J1 ∈ V. (2.124)

The value of the minimum in (2.122) is therefore

〈(E−E1) · (J− J1)〉 = 〈E1 · J1 − (E1 + E2) · J1 −E1 · (J1 + J2)〉 = −〈E1 · J1〉. (2.125)
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Figure 2.6: A conducting body may be approximated by a discrete network.

Comparing this with the left of (2.122) we see that J1 = −Y∗E1. This establishes the minimization varia-
tional principle (2.122) for Y∗.

From (2.123) one can deduce (see Section 19.2 in Milton 2002) that the operator L∗ and the operator Y∗
are linked via the relation

L∗ = 〈L〉 − Γ0LΠ1[Π1LΠ1 + Y∗]
−1Π1LΓ0, (2.126)

in which Π1 is the projection onto V and the inverse is to be done on this space. The relation between the
matrix representing Y∗ and the matrix representing L∗ is given by (2.126) but depends on what basis one
uses for the subspaces U and V . Unlike the case when there are two-phases, one cannot for a fixed value of L
recover Y∗ from L∗. However, if one looks at the equation with source terms (constant in each phase), then
one can recover Y∗ from the macroscopic response: see Section 19.3 in Milton (2002).

2.13 Effective tensors and Y -tensors for discrete electrical circuits
The connection between Dirichlet-to-Neumann maps and the theory of composites established in the next
chapter is clearer if we replace the continuous body by a discrete electrical network. For an entertaining
introduction to electrical circuits and their connection with random walks see Doyle and Snell (1984). The
approach we follow, using incidence matrices, is nicely presented by Strang (1986), pages 87–95.

Suppose, for simplicity, we were considering electrical conductivity and the body was composed of two
conducting materials with conductivities σ1 and σ2. Then we could replace the body by a discrete resistor
network as shown in Figure 2.6, where applied electrical potentials and the resulting fluxes of current through
the boundary are replaced by potentials and fluxes of current through electrical terminals placed at the former
boundary of the body. That effective tensors and Y -tensors may be associated with such resistor networks is
discussed in depth in Chapter 20 of Milton (2002). Briefly, the finite-dimensional vector spaceH associated
with the network consists of fields which are constant in each bond, but which have a direction. The bonds
have an arrow associated with them, and the field component in that bond is positive if the field is directed in
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the direction of the arrow, and is negative if the field is directed opposite to the arrow. It is helpful to introduce
the incidence matrix M, with Mij = 1 if the arrow of bond i points towards node j, Mij = −1 if the arrow
of bond i points away from node j, and Mij = 0 if bond i and node j are not connected. Let z0 = 1 be our
reference admittance. We take the space U to consist of fields U satisfying

U0 = −Mϕ, MTU0 = I0, (2.127)

whereϕ represents the potentials at the nodes taking the valueϕ = ϕ0 at the terminal nodes, and I0 represents
the net current flowing out of each node (taking a negative value if there is a net current flowing into that node)
which we restrict to be zero for all nodes but the terminal nodes. We take E to consist of fields expressible as
E = −Mϕ where ϕ is zero at the terminal nodes, and we take J to consist of fields J such that MTJ = 0.
It is easy to check that the spaces U , E , and J are mutually orthogonal using the fact that the null space of
MT is orthogonal to the range of M. Solving the conductivity equations in the network is then equivalent to
finding fields E0 and J0 in U , E ∈ E , and J ∈ J such that

(J0 + J) = L(E0 + E), (2.128)

where

L =

n∑
i=1

ziχi, (2.129)

and the indicator function χi is 1 in those bonds having admittance zi, and zero otherwise. (The admittance
is the inverse of the resistance). The effective tensor L∗ by definition governs the relation between J0 and E0,

J0 = L∗E0, (2.130)

and measures the overall response of the network, relative to its response when z = z0 in every bond in the
network. To see this take an orthonormal basis Uβ of U indexed by the integer β, and resolve E0 into its
components

E0
β = Uβ ·E0 = −(MTUβ) ·ϕ0 = −Iβ ·ϕ0, (2.131)

where ϕ0 are the potentials we apply at the terminals. Similarly we resolve J0 into its components

J0
γ = Uγ · J0 = −(MTJ0) ·ϕ(γ) = −I0 ·ϕ(γ), (2.132)

where I0 represents the current fluxes we measure at the terminals.
In this basis the relation (2.130) takes the form

J0
γ = L∗γβE

0
β , (2.133)

implying
I0 ·ϕ(γ) = L∗γβIβ ·ϕ0. (2.134)

Writing this relation out using indices we have

I0
i · ϕiγ = L∗γβIβ ·ϕ0, (2.135)

giving
I0
m = KmγL∗γβIβ ·ϕ0, (2.136)
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Figure 2.7: The resistor network is on one side (a) of the circuit board. On the other side (b) is a
collection of batteries which power the network, and the relation between the potentials across each
battery and the currents going through them define the Y∗-tensor.

where K is the inverse matrix satisfying
ϕiγKmγ = δim, (2.137)

assuming it exists. We rewrite (2.136) as

−I0
m = Dmnϕ

0
n, where Dmn = −KmγL∗γβIβn, (2.138)

which expresses the discrete Dirichlet-to-Neumann map D in terms of L∗, where Iβn is the value of Iβ at
terminal n. Given prescribed potentials ϕ0

n at the terminals, this map gives the current −I0
m flowing into

terminal m.
One can also complete the network by adding the part of the circuit associated with the batteries that

power it. (Some of these “batteries” could in fact be resistors depending on whether they produce or absorb
power). For instance, consider the resistor network in Figure 2.7(a). We drill holes in the circuit board and
attach batteries to the other side of the circuit board. The relation between the currents through these batteries
and the voltages across them, which is measured by the Y -tensor, provides an alternative description of the
response of the network on the front side of the circuit board.

Now the appropriate finite-dimensional vector spaceK is the direct sum ofH and the space V representing
those directed bonds on the reverse side of the circuit board associated with the network of batteries. We now
have a new incidence matrix M̃, associated with the full circuit. We define Ẽ to consist of those fields Ẽ such
that Ẽ = −M̃ϕ for some potentialϕ defined on the nodes (that needs not be zero on the terminal nodes), and
we define J̃ to consist of those fields J̃ such that M̃T J̃ = 0. Since the null space of M̃T is the orthogonal
complement of the range of M the spaces J̃ and Ẽ are orthogonal and span K, so we have

K = Ẽ ⊕ J̃ = V ⊕H. (2.139)

To find the Y∗ tensor one looks for fields Ẽ ∈ Ẽ and J̃ ∈ J̃ which have a decomposition

Ẽ = E1 + E2, J̃ = J1 + J2, (2.140)
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with
E1,J1 ∈ V, E2,J2 ∈ H, J2 = LE2. (2.141)

Then the relation between J1 and E1 determines Y∗:

J1 = −Y∗E1. (2.142)

If no restrictions are placed on Y∗ then a necessary constraint for Y∗ to be uniquely determined is that

V ∩ J̃ = {0}, (2.143)

since otherwise if there is a field W in this intersection (2.139) and (2.140) are still satisfied if we add W to
both J̃ and J1. The restriction (2.143) says there are no closed loops in the network V on the reverse side of
the circuit board, as in Figure 2.7(b)
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Abstract

We show that the problem of determining the Dirichlet-to-Neumann map can be reformulated
as the problem of determining an effective operator, associated with exactly the same sort
of abstract problem for determining effective tensors in the theory of composites. In partic-
ular this implies that for a body containing n, possibly polycrystalline phases, the effective
operator, and hence the Dirichlet-to-Neumann map is an analytic function of the elements
of the component tensors L1,L2, . . . ,Ln in the domain consisting of the union over θ of the
region where all the tensors eiθLj have positive definite self-adjoint part.

3.1 Introduction
Generally the response of a body is determined by the “Dirichlet-to-Neumann” map which is a generic term:
in electromagnetism it could measure current fluxes which result when one applies potentials to the body
boundary, or it could measure the tangential components of the magnetic field that result when tangential
components of the electric field are applied, or for linear elasticity it could measure the tractions (forces) at
the boundary of the body when displacements are prescribed at the boundary. One can sort of think of the
Dirichlet-to-Neumann map as a matrix: really it’s a linear operator but one can approximate it by a matrix.

Here we show that the Dirichlet-to-Neumann map, when appropriately defined, is mathematically speaking
the exact analog of an effective tensor in a composite material. This link between the Dirichlet-to-Neumann
map and an effective tensor in the abstract theory of composites is the analog at the continuum level of the way
effective tensors have been obtained from the response matrix of discrete electrical networks: see Sections
20.4, 20.5, and 20.6 in Milton (2002) and also Section 2.13 of the previous chapter. Roughly speaking, the
Dirichlet-to-Neumann map gets replaced by a map (the effective operator in the abstract theory of composites)
which acts on the space of fields that (modulo multiplication by an appropriate matrix) solve the equations
when the body is filled with a homogeneous “reference medium”: thus boundary conditions are removed from
the problem.
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78 3. A new perspective on boundary value problems

When suitably formulated, the equations defining the Dirichlet-to-Neumann map are exactly those of ef-
fective tensors in the abstract theory of composites. Consequently, many of the tools that have been developed
in the theory composite materials essentially carry over directly to Dirichlet-to-Neumann maps. In particu-
lar, variational principles for composites map over to variational principles for boundary-value problems, the
theory of bounds on effective tensors carries over to an analogous theory of bounds on Dirichlet-to-Neumann
maps, and the analyticity properties of effective tensors as functions of the component moduli map over to an-
alyticity properties of the Dirichlet-to-Neumann map as functions of the component tensors within the body,
assuming the body contains a multiphase mixture. Some results do not directly carry over, such as the general
theory of exact relations (Grabovsky 1998; Grabovsky and Sage 1998; Grabovsky, Milton, and Sage 2000;
see also Chapter 17 of Milton 2002 and Grabovsky 2004) and Fast Fourier Transform methods for computing
fields that solve the equations (Moulinec and Suquet 1994, 1998; Eyre and Milton 1999; Moulinec and Silva
2014; Willot, Abdallah, and Pellegrini (2014); Willot 2015). These rely heavily on the simple form of the
operator Γ1 (the projection onto the subspace E) in Fourier space that is dictated by the differential constraints
on the fields.

This is not the first time that results from the theory of composites have been carried over to the re-
sponse of bodies. Huet (1990) obtained elementary bounds on the response of bodies to special boundary
conditions (such as affine boundary conditions) that were the analog of classic arithmetic average–harmonic
average bounds of composites. [The same observation was made by Willis in a 1989 private communication
to Nemat-Nasser and Hori (1993).] Milgrom (1990) found that exact relations satisfied by the effective moduli
of composites in coupled field problems carried over to exact relation satisfied by the response of bodies (see
also Chapter 9 in this book). For ellipsoidal bodies Nemat-Nasser and Hori (1993) and Hori and Nemat–
Nasser (1995,1998) obtained bounds that were the analog of the famous Hashin–Shtrikman bounds on the
effective moduli of composites. Subsequently, Milton (2012) removed the restriction that the bodies had to
be ellipsoidal. The Hashin–Shtrikman method was also used by Capdeboscq and Vogelius (2003, 2004) to
asymptotically bound the volume of a dilute suspension of inclusions in a body. Variational minimization prin-
ciples that had been primarily developed for bounding the quasistatic effective moduli of composites (Cherkaev
and Gibiansky 1994), led to variational minimization principles for the full time-harmonic wave equations (of
acoustics, elastodynamics, and electromagnetism) in lossy inhomogeneous bodies (Milton, Seppecher, and
Bouchitté 2009, Milton and Willis 2010). The translation method for bounding the effective tensors of com-
posites was extended to bodies, and used in an inverse way to bound the volume fraction of an inclusion in
a two-phase body (Kang, Kim, and Milton 2012; Kang, Milton, and Wang 2014; Milton and Nguyen 2012;
Kang, Milton, and Wang 2014; Kang and Milton 2013; Kang, Kim, Lee, Li, and Milton 2014). It allowed for
more general boundary conditions, and led to the related splitting method for bounding the volume fraction
of an inclusion in a body (Milton and Nguyen 2012; Thaler and Milton 2015).

What sets this work apart is establishing a direct mathematical isomorphism between the theory of effective
tensors of composites and the theory of the Dirichlet-to-Neumann map for bodies. The chapter assumes the
reader is familiar with the contents of Chapters 1 and 2.

3.2 General theory
The general problem we address in this chapter is the response of an inhomogeneous body Ω to fields,
which may be waves or static fields. The starting point is the section “General Theory” in the paper Mil-
ton, Seppecher, and Bouchitté (2009) which provides a framework for treating the time-harmonic equa-
tions of acoustics and elastodynamics on one footing. Also the framework encompasses the time-harmonic
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Schrödinger equation since for time-harmonic fields it is directly analogous to the acoustics equation.
Let’s begin by assuming there are no sources in the body (i.e., h = 0 in the terminology of the paper of

Milton, Seppecher, and Bouchitté (2009)). First let us define the operators u and t: given a vector (or scalar)
“potential” u we define

uu ≡
(∇u

u

)
(3.1)

and given a field

G ≡
(

G

g

)
(3.2)

where the “current” G is a second order tensor field and g is a vector field (or G is a vector field and g is a
scalar field when u is scalar) we define

tG ≡ −∇ ·G + g. (3.3)

One can think of these operators u and t as being a little analogous to the gradient∇, and divergence∇· that
one is familiar with in electrical conduction.

Now inside a body Ω we consider fields F(x) and G(x) that satisfy the constitutive relation

G(x) = Z(x)F(x), (3.4)

and are subject to the differential constraints that

tG = 0, F ≡
(

F

f

)
= uu, (3.5)

where F is a second order tensor field and f is a vector field (or F is a vector field and f is a scalar field
when u is scalar). The tensor field Z(x) could be complex-valued, but is typically such that the self adjoint
part of Z(x)/i is positive semidefinite, or more generally such that the self adjoint part of eiθZ(x) is positive
semidefinite for at least one real value of θ.

Equivalently, these differential constraints imply that F and G take the form

F =

(∇u

u

)
, G =

(
G

∇ ·G

)
. (3.6)

The two simplest examples are those given in Section 1.7: time-harmonic acoustics,( −iv
−i∇ · v

)
︸ ︷︷ ︸
G(x)

=

(−(ωρ)−1 0

0 ω/κ

)
︸ ︷︷ ︸

Z(x)

(∇P
P

)
︸ ︷︷ ︸
F(x)

, (3.7)

where P (x) is the pressure, and v(x) the velocity; and time-harmonic elastodynamics(−σ/ω
ip

)
︸ ︷︷ ︸
G(x)

=

(−C/ω 0

0 ωρ

)
︸ ︷︷ ︸

Z(x)

(∇u

u

)
︸ ︷︷ ︸
F(x)

, (3.8)

where u(x) is the displacement, σ(x) is the stress, and p(x) = i∇ · σ(x)/ω is the momentum.
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In the case where u is a vector field we have the key identity∫
Ω

G · F =

∫
Ω

G : ∇u + (∇ ·G) · u =

∫
Ω

∇ · (G · u) =

∫
∂Ω

n ·Gu, (3.9)

where n is normal to the boundary ∂Ω. [In fact, as pointed out in Section 1.7, there are a multitude of key
identities parameterized by the second order tensor M entering (1.97), but we will ignore these additional key
identities in this chapter.]

In the case where u is a scalar P and G is a vector, as for acoustics, the key identity becomes∫
Ω

G · F =

∫
Ω

G · ∇P + (∇ ·G) · u =

∫
Ω

∇ · (PG) =

∫
∂Ω

Pn ·G. (3.10)

Choose a constant comparison medium or “reference medium” Z(x) = Z0,where Z0 is a positive definite
Hermitian (or real) tensor which is independent of x. Consider, as the boundary fields range over all possible
data, the set of all solutions to the equation

G0(x) = Z0F0(x), (3.11)

subject to the differential constraints that

tG0(x) = 0, F0(x) = uu0 (3.12)

for some potential u0.
Suppose some real boundary potential u0(x) = v(x) is prescribed for x ∈ ∂Ω. Consider the variational

formula
min
u

u=v on ∂Ω

∫
Ω

(uu) · Z0(uu). (3.13)

Provided v is regular enough (in the space H1/2) the minimum exists, is unique and at the minimum u takes
a value u0 such that for all variations δu vanishing on ∂Ω we have∫

Ω

(∇δu) ·G0 + δu · g0 = 0, where

(
G0

g0

)
= Z0 · (uu0). (3.14)

By integrating by parts the first term in the integral we see that a necessary condition for this to hold is that
g0 = ∇ · G0, i.e., that the Euler–Lagrange equation tZ0 u u0 = 0 is satisfied. So for any real regular
boundary potential u = v there exists a unique field F0(x) = uu0 which corresponds to it.

Given a complex boundary potential v = v′ + iv′′ then we find the fields F0
′(x) and F0

′′(x) associated
with the real and imaginary parts of the potential v′ and v′′, to generate the fieldF0(x) = F0

′(x)+iF0
′′(x) =

uu0 associated with the complex potential u0 = u0
′ + iu0

′′ that has the boundary-value v = v′ + iv′′.
Similarly if for given real values of the flux t(x) = n ·G(x) we consider

min
G(x)

n·G(x)=t(x) on ∂Ω

∫
Ω

(
G

∇ ·G

)
· Z−1

0

(
G

∇ ·G

)
, (3.15)

then if t is regular enough (in the space H−1/2), the minimum exists and is unique. If we let

Z−1
0 =

(
A B

BT C

)
, (3.16)



3.2. General theory 81

then at the minimum G(x) takes a value G0(x) such that∫
Ω

δG[AG0 + B∇ ·G0] +∇ · δG[BTG0 + C∇ ·G0] = 0, (3.17)

for all variations δG meeting the boundary condition that n · δG = 0 on ∂Ω. By integrating by parts this last
term we see that G0(x) must satisfy the Euler–Lagrange equation

[AG0 + B∇ ·G0] = ∇u0, where u0 = BTG0 + C∇ ·G0, (3.18)

implying

Z−1
0

(
G0

∇ ·G0

)
=

(∇u0

u0

)
. (3.19)

So for any real regular boundary condition n·G(x) = t(x) there exists a unique fieldG0(x) which corresponds
to it. Given a complex-valued boundary flux t = t′+it′′ then we find the fields G0

′(x) and G0
′′(x) associated

with the real and imaginary parts of the potential t′ and t′′, to generate the field G0(x) = G0
′(x) + iG0

′′(x)
associated with the complex flux t = t′ + it′′.

Thus, for either prescribed potentials or prescribed fluxes, we have

Z
−1/2
0 G0(x) = Z

1/2
0 F0(x) ≡ U0(x), (3.20)

and we let U be the space of all these fields U0(x) as the boundary data varies (over real and complex values).
Similar in some respects to the trick of introducing Z

1/2
0 are the reference transformations discussed in Section

9.7 of Milton (2002). Reference transformations multiply the fields on the left side of the constitutive law by
a constant tensor L

−1/2
0 and the fields on the right hand side of the constitutive law by L

+1/2
0 , thus preserving

the key identity and the orthogonality of the subspaces when the action of L
+1/2
0 or L

−1/2
0 on U leaves it

invariant: under a reference transformation in the abstract theory of composites the three mutually orthogonal
subspaces U , E and J get replaced by the three mutually orthogonal subspaces U , L

+1/2
0 E and L

−1/2
0 J .

Now let E be the space of all fields E(x) that are square integrable in Ω (don’t confuse them with electric
fields) such that

E(x) = Z
1/2
0 u u, (3.21)

for some potential u with u = 0 on ∂Ω. This last boundary condition ensures that E is perpendicular to every
field U0 in U , where given square integrable fields P1(x) and P2(x) we take the usual inner product

(P1,P2) =

∫
Ω

P1 ·P2. (3.22)

The orthogonality condition can then be written as

0 = (E,U0) =

∫
Ω

E(x) ·U0(x) =

∫
Ω

[uu] · G0(x) =

∫
∂Ω

(G0 · n) · u, (3.23)

which vanishes because u = 0 on ∂Ω.
We let J be the space of all fields J(x) that are square integrable in Ω (don’t confuse them with current

fields) such that for some G(x), with n ·G(x) = 0 on ∂Ω,

J(x) = Z
−1/2
0

(
G

∇ ·G

)
. (3.24)
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The flux condition n ·G(x) = 0 on ∂Ω ensures that J(x) is perpendicular to every field U0 in U :

0 = (J,U0) =

∫
Ω

J(x) ·U0(x) =

∫
Ω

(
G

∇ ·G

)
· F0(x) =

∫
∂Ω

(G · n) ·U0, (3.25)

which vanishes because G · n = 0 on ∂Ω.
Finally we show that E and J are orthogonal: the inner product∫

Ω

E(x) · J(x) =

∫
Ω

(
G

∇ ·G

)
· uu =

∫
∂Ω

(G · n) · u = 0, (3.26)

vanishes because we have shown for fields in E the potential u is zero at the boundary, and for fields in J the
flux G · n is zero.

Now we can consider equations

J0(x) + J(x) = L(x)(E0(x) + E(x)), (3.27)

with J0(x), E0(x) ∈ U , J(x) ∈ J , E(x) ∈ E , and

L(x) = Z
−1/2
0 Z(x)Z

−1/2
0 . (3.28)

This is exactly the abstract formulation associated with the theory of composite materials (see Section 2.2 of
the review Chapter 2, or Section 12.7 of Milton 2002). For example, in the concrete setting of the conductivity
equations in a periodic medium, U consists of the space of constant fields, E consists of electric fields that are
gradients of periodic potentials, E(x) = −∇V (x), and J consists of divergence free fields J(x) that have
zero average value (i.e., ∇ · J = 0 and 〈J〉 = 0 where the angular brackets denote a volume average).

Therefore many results about composites carry over directly to this new setting. In particular, in Section
3.5, we will see that the analyticity properties of the effective tensor L∗ as a function of the component moduli
carry over. One distinction between solving (3.27) in a body, rather than in a composite, is that in a composite
the operators Γ0, Γ1 and Γ2 defined as the projections onto the spaces U , E and J are local operators in
Fourier space, which is not the case when we are considering a body, although being projections they still
have norm 1.

The inverse problem we discuss in Chapter 5 is recovering L(x) from knowledge of the effective operator
L∗ using tools from the abstract theory of composites (such as bounds obtained from variational principles and
the translation method, and using analyticity and integral representations of the relevant analytic functions).
As shown in the next section, this effective operator L∗ can be obtained from the Dirichlet-to-Neumann map.
Once one has information about L(x) one can of course transfer it to information about Z(x), using (3.28).
This, of course, is the real goal in imaging: obtaining information about Z(x) from information (which may
be complete or partial) about the Dirichlet-to-Neumann map, or equivalently about L∗.

3.3 Relating the effective operator to the Dirichlet-to-Neumann map
Given a potential u0(x) at the boundary ∂Ω one may solve the minimization problem (3.13) to find the asso-
ciated field E0(x). Then one can solve the equations (3.27) for the remaining fields E(x), J0(x) and J(x).
This is exactly equivalent to solving the equations (3.4) subject to the differential constraints (3.6) with u0(x)
prescribed at the boundary ∂Ω. Since J0 depends linearly on E0 we may write

J0 = L∗E0, (3.29)
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which defines the effective operator L∗ which is a linear map from U to U . It is to be stressed that L∗ is an
operator and that (3.29) does not imply J0(x) = L∗E0(x) for some matrix L∗.

To see the meaning of this take an orthonormal basis Uβ of U indexed by β. For simplicity we will
assume that our basis is a countable set so that β ranges over a discrete set ℵ. For example, in two-dimensions
if Ω was the unit disk and u was an m-component vector then we could take ℵ as the set of m-tuples β =

(k1, k2, . . . , km), where the ki are integers, and the field Uβ = Z
1/2
0 u uβ could be that associated with

solving the equation tZ0 u uβ = 0 with boundary-values

{uβ}j(x) = cos(|kj |φ) if kj ≥ 0

= sin(|kj |φ) if kj < 0, (3.30)

at points x = (cosφ, sinφ) on the boundary ∂Ω, where {uβ}j(x) denotes the j-th component of the vector
uβ(x), j = 1, 2, . . . ,m. If we were in three dimensions and Ω was a sphere, we could prescribe the boundary-
value of the component {uβ}j(x) to be a spherical harmonic. If we had some other smoothly shaped domain
we could choose boundary-values that were the image of spherical harmonics under a map that takes the
boundary of the sphere to the boundary of this smoothly shaped domain.

We now resolve our “applied field” E0 = Z
1/2
0 u u0 into its components

E0β =

∫
Ω

Uβ ·E0 =

∫
Ω

Gβ(x) · uu0 =

∫
∂Ω

n ·Gβu0, (3.31)

where the boundary-value of u0 is the potential which we impose at ∂Ω. We assume the field Uβ has been
calculated (this probably has to be done numerically, rather than analytically, if Ω is not a circular disk or
sphere) and thus the boundary-value of n ·Gβ and the coefficients E0β can be obtained. We similarly resolve
our “response field” J0 = Z

−1/2
0 G0 into its components as well:

J0γ =

∫
Ω

Uγ · J0 =

∫
Ω

(uuγ) · G0(x) =

∫
∂Ω

n ·G0uγ , (3.32)

where G0 is associated with J0, i.e., G0 = Z−1/2J0, and n ·G0 is the “surface flux” associated with it. Again
the coefficients can be obtained from the prescribed value of uγ on ∂Ω (see, for example, (3.30)) and the
measured value of n ·G0.

In this basis the relation (3.29) takes the form

J0γ =
∑
β∈ℵ

L∗γβE0β . (3.33)

where the L∗γβ are the elements of the matrix representing the operator L∗ : U → U in this basis. Since
the basis of U contains infinitely many fields one would in practice want to truncate this matrix: for example,
by ignoring those basis fields that are generated from potentials that oscillate rapidly around the boundary,
such as the high order Fourier modes in (3.30) with large kj for some j. Note that from the definition of the
effective tensor, there are, according to (3.27), fields E ∈ E and J ∈ J such that

G(x) = Z
1/2
0 [J0(x) + J(x)], F(x) = Z

−1/2
0 [E0(x) + E(x)] (3.34)

satisfy
G(x) = Z(x)F(x), tG = 0, F = uu, (3.35)
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where on the boundary ∂Ω, n ·G(x) = n ·G0(x) and u(x) = u0(x). These boundary fields u0(x) and
n ·G0(x) are thus related via the Dirichlet-to-Neumann map.

Now (3.31), (3.32) and (3.33) imply∫
∂Ω

n ·G0(x)uγ(x) dS =
∑
β∈ℵ

L∗γβ

∫
∂Ω

n ·Gβ(x)u0(x)dS. (3.36)

Knowing the left-hand side for all γ ∈ ℵ gives us the components of n ·G0(x) in the basis of surface fields
uγ(x), from which we can recover n ·G0(x). Thus, from the effective tensor L∗ we obtain the Dirichlet-to-
Neumann map Λ mapping the potential u0 on ∂Ω to the flux t0 = n ·G0 on ∂Ω. In the example where Ω
was the unit disk, the choice of basis fields (3.30) gives us the Fourier components of n ·G0(x), which, by
taking the Fourier transform, allows us to recover n ·G0(x). The effective tensor L∗ gives us an alternate
representation of the Dirichlet-to-Neumann map. Of course we need to know the fields in the space U , and in
general this requires some numerical computation.

Alternatively, we could prescribe the flux t(x) = n ·G(x) at the boundary ∂Ω and solve the minimization
problem (3.15) for the associated field J0(x). Then we could solve (3.27) for the remaining fields J(x), E0(x),
and E(x). Since the relation between E0 and J0 is linear we can write

E0 = L−1
∗ J0, (3.37)

which defines the inverse effective operator L−1
∗ which is a map from U to U , and which can be connected

with the inverse of the Dirichlet-to-Neumann map.
A remark is that everything extends more or less directly to coupled field problems where the constitutive

relation looks like 

G(1)

G(2)

...
G(n)

F̃ (1)

F̃ (2)

...
F̃ (n)


= M(x)



F (1)

F (2)

...
F (n)

G̃(1)

G̃(2)

...
G̃(n)


, (3.38)

where

G(i) =

(
G(i)

∇ ·G(i)

)
, F (i) = uu(i), F̃ (i) = uũ(i), G̃(i) =

(
G̃(i)

∇ · G̃(i)

)
. (3.39)

3.4 Quadratic forms
The connection between the Dirichlet-to-Neumann map and the effective operator can also be made through
the quadratic forms associated with them. Given two possibly complex-valued vector fields p1 and p2 (at
least one of which is infinitely differentiable, in C∞) defined on the surface ∂Ω let us define their “◦” product
to be

p1 ◦ p2 =

∫
∂Ω

p1(x) · p2(x) dS. (3.40)
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Note that there is no complex conjugation here. Assuming Z(x) is a symmetric (possibly complex-valued)
matrix, the Dirichlet-to-Neumann map Λ is a symmetric operator in the sense that

u1 ◦ (Λu2) = (Λu1) ◦ u2 for all u1, u2 ∈ C∞. (3.41)

To see this, let u1(x), G1(x), F1(x), G1(x) and u2(x), G2(x), F2(x), G2(x) be the fields inside the body,
respectively, associated with the given boundary potentials u1(x) and u2(x). Then, using the key identity
and the symmetry of Z(x) [that ZT (x) = Z(x)], we have

u1 ◦ (Λu2) =

∫
∂Ω

u1 · (n ·G2)

=

∫
Ω

F1 · G2 =

∫
Ω

F1 · [ZF2] =

∫
Ω

[ZF1] · F2 =

∫
Ω

G1 · F2

=

∫
∂Ω

n ·G1u2 = (Λu1) ◦ u2, (3.42)

which establishes (3.42). Thus the form in (3.41) is a symmetric bilinear form of u1 and u2, and by the
“polarization identity”

4u1 ◦ (Λu2) = (u1 + u2) ◦ [Λ(u1 + u2)]− (u1 − u2) ◦ [Λ(u1 − u2)], (3.43)

we see that we can recover Λ from knowledge of the quadratic form

f(u0) = u0 ◦ (Λu0) =

∫
Ω

F · G, (3.44)

where F(x) and G(x) are the fields inside the body, satisfying F = uu, tG = 0 where u(x) = u0 on ∂Ω.
Making the substitution (3.34) and using the orthogonality of the spaces U , E and J we see that f(u) can be
determined from L∗ and from the field E0 associated with the boundary-value of u:

f(u0) =

∫
Ω

E0(x) · J0(x), (3.45)

in which J0 = L∗E0. [Again, to emphasize the point, we cannot write the integrand as E0(x) · L∗J0(x).]
By following steps similar to that in (3.42) we see that

u0 ◦ (Λu0) =

∫
Ω

F · [ZF ]

=

∫
Ω

(F ′ − iF ′′) · [Z(F ′ + iF ′′)]

=

∫
Ω

F ′ · [ZF ′] + F ′′ · [ZF ′′],

(3.46)

where we have used the symmetry of Z to cancel the cross terms, and F ′ and F ′′ are the real and imaginary
parts of F. Taking imaginary parts of both sides gives

Im[u0 ◦ (Λu0)] =

∫
Ω

F ′ · [Im(Z)F ′] + F ′′ · [Im(Z)F ′′]. (3.47)

So the quadratic form associated with the Dirichlet-to-Neumann map Λ has a positive semi-definite imaginary
part when the imaginary part of Z(x) is positive semi-definite for all x.
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3.5 Analyticity properties of effective tensors
Suppose the body has n-phases, each having varying orientations, so that the tensor field L takes the form

L(x) = Q(R(x))

[
n∑
i=1

χi(x)Li

]
[Q(R(x))]T , (3.48)

in which Q(R) is the orthogonal matrix (satisfying QQT = I) associated with a rotation R acting on elements
in the tensor space, R(x) is a field of rotation matrices giving the local orientation of each phase, and χi(x)
represents the characteristic function that is 1 in phase i and zero elsewhere. For example, L(x) could represent
the moduli in an n-phase polycrystalline material. In that case the matrices L1, . . . ,Ln represent the moduli
of the pure crystalline phases, while R(x) represents the field of rotation matrices required to account for the
different crystal orientations throughout space.

The proof of the analytic properties of L∗ as a function of the component tensors L1,L2, . . . ,Ln carries
over directly from the theory of composites, and is a straightforward extension of an argument of Bruno
(1991b) (see also Bruno and Leo 1992). For composites, the extension is given on page 372 of Milton (2002),
although there I should have referenced Section 14.7 page 300, rather than Section 14.6 on page 298, since if
L(x) is complex it is not self-adjoint). The argument given in Section 14.7 itself needs a minor correction, as
the inner product (P,LP) needs to be replaced by Re(P,LP): the correct analysis is given here in Section
2.4.

In Section 2.4 we obtained the formula (2.35) for the effective tensor as a series expansion

L∗ =

∞∑
j=0

Γ0L[Γ1(I− L/σ0)j ]Γ0. (3.49)

Note that each term in this series expansion is a polynomial in the elements of the matrices L1, . . . ,Ln. As a
sequence of analytic functions that converge uniformly on any compact subset of a domain is analytic in that
domain [see theorem 10.28 Rudin (1987)], it follows that if this series converges, then it will be an analytic
function of all the elements of L1,L2, . . . ,Ln in this region of convergence.

In Section 2.4 we established the series converges when L is bounded, i.e., there is some β > 0 such that

β > sup
P∈H
|P|=1

|LP|, (3.50)

and L is coercive in the sense that there is some α > 0 with

Re(P,LP) ≥ α|P|2 for all P ∈ H. (3.51)

With the natural choice (3.22) of inner product these conditions are satisfied if the tensors L1,L2, . . . ,Ln
are all bounded, and coercive in the sense that (2.50) holds, i.e., if for some angle θ (independent of j), the
self adjoint part of eiθLj is strictly positive definite for all j. This condition holds, for example, when the
tensors Lj are all symmetric with positive definite imaginary parts. Hence L∗ is an analytic function of
L1,L2, . . . ,Ln in the domain where for some angle θ (independent of j), the self adjoint part of eiθLj is
strictly positive definite for all j.

For time-harmonic problems each of the tensors L1,L2, . . . ,Ln are often analytic functions of the fre-
quency ω in the upper half plane Imω > 0, having positive definite imaginary parts, Im Li > 0 for all i.
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Since an analytic function of analytic function is an analytic function, it follows that in this case L∗ will be an
analytic function of frequency in the upper half plane Imω > 0.

Note that, since in (3.36) the basis fields Uβ(x) (and hence uβ(x) and Gβ(x)) only depend on Z0 and not
on the component moduli, it follows that the Dirichlet-to-Neumann map Λ will inherit the analytic properties
of the effective operator L∗ as a function of the component moduli, or component tensors. The Herglotz
properties of Λ as a function of the component moduli, or component tensors, then follow immediately from
(3.47).

We also remark that there are results (Alessandrini and Vessella 2005; Beretta and Francini 2011; Beretta,
de Hoop, and Qiu 2013; Beretta, Francini, and Vessella 2014) on Lipschitz stability of the Dirichlet-to-
Neumann map, when the moduli are piecewise constant. These results are not only for stability when the
moduli change with fixed geometry (which could be derived using the analyticity properties established here)
but also, and more importantly, for stability under changes in the geometry.

3.6 Partial data
The structure extends to the case when there is partial data. Again there is a modified subspace collection.
This observation is basically made (in the general setting) in (29.1) and below on page 620 of Milton (2002).
One considers the restricted subspace U ′ to be that subspace of U associated with boundary data where u can
only be nonzero on a portion ∂Ω′ of ∂Ω. Then we suppose U ′⊥ is the orthogonal complement of U ′ in the
space U . Fields in U ′⊥ have a flux G ·n which is zero on ∂Ω′ (as the inner product of two fields in U involves
at the boundary the flux of one, and the potential of the other). Keep the Hilbert space the same as before, but
redefine the subspaces

J ′ = U ′⊥ ⊕ J , E ′ = E . (3.52)

Then everything goes through. The solutions are exactly the same as before but now the field J0 + J gets
re-expressed as J0

′ + J′, where J0
′ ∈ U ′ and J′ ∈ J ′. There is an effective tensor L′∗ which maps fields in

U ′ to fields in U ′.
More generally, we can just do a set of M measurements where, say, u at the boundary takes values u1,

u2, . . ., uM . Given Z0, associated with these are fields E1, E2, . . ., EM in U . We then take U ′ to be the space
spanned by these fields, and define J ′ and E ′ through (3.52). The associated effective operator L′∗ can then
be represented by an M ×M matrix.

One can also consider partial data where the flux G·n is nonzero only on a portion ∂Ω′′ of ∂Ω. Again there
is a subspace U ′′ of U associated with such boundary data. We suppose U ′′⊥ is the orthogonal complement of
U ′′ in the space U . Fields in U ′′⊥ have a potential u which is zero on ∂Ω′′. Let

J ′′ = J , E ′′ = E ⊕ U ′′⊥, (3.53)

and everything proceeds as before. There is an effective tensor L′′∗ which maps fields in U ′′ to fields in U ′′.
Again more generally, we can just do a set of M measurements where, say, the flux G ·n at the boundary

takes values t1, t2, . . ., tM , and obtain an effective operator L′∗ represented by an M ×M matrix.

3.7 Mixed data
Now suppose we have mixed data where u is prescribed on a portion ∂Ω′′ of ∂Ω, while the flux G · n is
prescribed on the remaining portion ∂Ω′ of ∂Ω, where ∂Ω′ ∪ ∂Ω′′ = ∂Ω. We first consider two problems
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separately: first the problem where the flux G · n is prescribed on the portion ∂Ω′ of ∂Ω, and u is zero on
∂Ω′′; and second where u is prescribed on a portion ∂Ω′′ of ∂Ω, and the flux G · n is zero on ∂Ω′. These
are essentially the same problems considered in the previous section when we have partial data. Therefore
let us define the subspaces U ′, E ′, J ′, and U ′′, E ′′, J ′′ as in the previous section. For the first problem the
appropriate effective tensor is L′∗, since the field E0

′ will have nonzero u on ∂Ω′ and zero u on ∂Ω′′ . For
the second problem the appropriate effective tensor is L′′∗ , since the field J0

′′ will have nonzero flux G · n on
∂Ω′′ and a zero flux G · n = 0 on the remaining part ∂Ω′ of the boundary.

In the first problem we apply a field J0
′ associated with the prescribed flux G · n on ∂Ω′, then E0

′ =
(L′∗)

−1J0
′ gives us the potential u on ∂Ω, which will be zero on the portion ∂Ω′′. Applying L∗ to E0

′ gives

J0 = L∗(L
′
∗)
−1J0

′, (3.54)

and from this field we can obtain the flux G · n on ∂Ω, which will coincide with the prescribed flux on ∂Ω′.
Thus we obtain the response, which is the potential u on ∂Ω′ and the flux G · n on ∂Ω′′.

In the second problem we apply a field E0
′ associated with the prescribed potential u on ∂Ω′′, then J0

′′ =
L′′∗E0

′′ gives us the flux G · n on ∂Ω, which will be zero on the portion ∂Ω′. Applying (L∗)
−1 to J0

′′ gives

E0 = (L∗)
−1L′′∗J0

′′, (3.55)

and from this field we can obtain the potential u on ∂Ω, which will coincide with the prescribed potential on
∂Ω′′. Thus we obtain the response, which is the potential u on ∂Ω′ and the flux G · n on ∂Ω′′.

Finally by summing the responses for the first and second problem, we obtain the response for the original
mixed boundary conditions.

3.8 Applicability to the Schrödinger and heat conduction equations in
the time domain

Recall from Chapter 1, the heat conduction (diffusion) equation (1.151) for the temperature (or particle con-
centration) T ,  qx

qt
∇ · qx + ∂qt

∂t


︸ ︷︷ ︸

G

=

ik(x) 0 0

0 0 − iα(x)
2

0 iα(x)
2 0


︸ ︷︷ ︸

Z

∇T∂T
∂t

T


︸ ︷︷ ︸
F

, (3.56)

and the Schrödinger equation (1.187) for the wavefunction ψ of an electron, or many electrons, in a potential
V :  qx

qt
∇ · qx + ∂qt

∂t


︸ ︷︷ ︸

G

=

−A 0 0

0 0 − ih̄2
0 ih̄

2 −V


︸ ︷︷ ︸

Z

∇ψ∂ψ
∂t

ψ


︸ ︷︷ ︸
F

, (3.57)

where the meanings of the various quantities are explained in Chapter 1. These equations are of the form
(3.6) and (3.4) with ∇ replaced by

∇ =

(∇
∂
∂t

)
. (3.58)

Therefore, all the preceding analysis applies with∇ replaced by∇ and Ω replaced by a “space–time” body Ω˜ .
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3.9 Adding source terms
These are easily handled in the theory, and follow the treatment in Section 1.19. With a source term h(x)
weighted by a constant θ0 the equations take the form

G(x) = Z(x)F(x) + θ0h(x), (3.59)

which we can reformulate as ( G(x)

∇ · r(x)

)
︸ ︷︷ ︸
G′(x)

=

(
Z(x) h(x)

h(x)† d(x)

)
︸ ︷︷ ︸

Z′(x)

(F(x)

θ0

)
︸ ︷︷ ︸
F ′(x)

, (3.60)

where we are free to choose d(x) (often it is chosen so Z′(x) is positive definite). Here F ′ satisfies the

differential constraint that θ0 is constant, G(x) =

(
G

∇ ·G

)
and the vector field r(x) is not subject to any

differential constraints (and in general is not uniquely determined by the equations, only its divergence). We
have the key identity: ∫

Ω

G′ · F ′ =

∫
∂Ω

(
n ·G
n · r

)
·
(

u(x)

θ0

)
, (3.61)

and all of the analysis applies, although we may not be able to physically measure r(x) at the boundary since
it is ∇ · r(x) which has the physical significance.

We start by choosing a positive definite reference tensor Z′0 and look at those fields satisfying (3.60) with
Z′(x) replaced by Z′0: the associated fields (Z′0)1/2F ′(x) = (Z′0)−1/2G′(x) span a subspace which we define
to be U ′. We take E ′ to consist of fields E′(x) that are square integrable in Ω taking the form

E′(x) = (Z′0)1/2

∇u(x)

u(x)

0

 , (3.62)

for some potential u(x) with u(x) = 0 when x ∈ ∂Ω. The space J consists of fields J′(x) that are square
integrable in Ω of the form

J′(x) = (Z′0)−1/2

 G(x)

∇ ·G(x)

∇ · r(x)

 , (3.63)

where n ·G = n · r = 0 on ∂Ω. Equivalently J consists of fields of the form

J′(x) = (Z′0)−1/2

 G(x)

∇ ·G(x)

S(x)

 , (3.64)

where n ·G = 0 on ∂Ω, and the average of S(x) over Ω, 〈S〉, is zero.
Defining L′(x) = (Z′0)−1/2Z′(x)(Z′0)−1/2 the equations become

(J0
′(x) + J′(x)) = L′(x)(E0

′(x) + E′(x)), (3.65)
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with J0
′, E0

′ ∈ U , J′(x) ∈ J , E′(x) ∈ E . The effective operator L′∗ defined by

J0
′ = L′∗E0

′ (3.66)

then governs how the field n·G at the boundary ∂Ω responds to applied potentials u(x) and θ0 at the boundary.
We skip the analysis which parallels (3.29) to (3.36).

3.10 Static and quasistatic equations
We can consider electrical and thermal conduction, elasticity, piezoelectricity, magnetostriction, Hall Effect
conductivity, thermoelectricity, thermoelasticity, the steady-state Biot equations, magnetic permeability, fluid
flow in porous media (with spatially varying permeability), the dielectric problem, plate equations, chemi-
cal diffusion, neutron diffusion, antiplane elasticity (see e.g., Section 2 of Milton 2002). These can all be
formulated as (

G(x)

∇ ·R(x)

)
︸ ︷︷ ︸

G′(x)

=

(
A(x) B(x)

C(x) D(x)

)
︸ ︷︷ ︸

Z′(x)

(∇u(x)

θ0

)
︸ ︷︷ ︸
F ′(x)

, (3.67)

where θ0 is a constant `-component vector (possibly ` = 0 when the equations are simply G = A∇u,
∇·G = 0), u(x) is anm−component vector field, G(x) is a d×m dimensional matrix satisfying∇·G(x) = 0
and R(x) is a d× ` component matrix-valued vector field. When the body is subject to time-harmonic fields
varying at a frequency ω such that the wavelength is much bigger than the size of the body, then the quasistatic
equations are often appropriate. These retain the same form, only the fields G′(x), F ′(x) and tensor Z′(x)
become complex: the physical fields are Re[e−iωtG′(x)] and Re[e−iωtF ′(x)].

We have the key identity:∫
Ω

(
G(x)

∇ ·R(x)

)
·
(∇u(x)

θ0

)
=

∫
∂Ω

n ·G(x)u(x) + n ·R(x)θ0, (3.68)

and all of the analysis applies, although again we may not be able to physically measure R(x) at the boundary
since it is∇ ·R(x) which has the physical significance.

We start by choosing a positive definite reference tensor Z′0 and look at those fields satisfying (3.60) with
Z′(x) replaced by Z′0: the associated fields (Z′0)1/2F ′(x) = (Z′0)−1/2G′(x) span a subspace which we define
to be U ′. We take E ′ to consist of fields E′(x) that are square integrable in Ω taking the form

E′(x) =

(∇u(x)

0

)
, (3.69)

for some potential u(x) with u(x) = 0 when x ∈ ∂Ω. The space J consists of fields J′(x) that are square
integrable in Ω of the form

J′(x) =

(
G(x)

∇ ·R(x)

)
, (3.70)

where∇ ·G = 0 inside Ω and n ·G = n ·R = 0 on ∂Ω. Equivalently J consists of fields of the form

J′(x) =

(
G(x)

S(x)

)
, (3.71)
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where∇ ·G = 0 inside Ω, n ·G = 0 on ∂Ω, and the average of S(x) over Ω, 〈S〉, is zero.
Defining L′(x) = (Z′0)−1/2Z′(x)(Z′0)−1/2 the equations become

(J0
′(x) + J′(x)) = L′(x)(E0

′(x) + E′(x)), (3.72)

with J0
′, E0

′ ∈ U , J′(x) ∈ J , E′(x) ∈ E . The effective operator L′∗, defined by

J0
′ = L′∗E0

′, (3.73)

then governs how the field n·G at the boundary ∂Ω responds to applied potentials u(x) and θ0 at the boundary.
Again we skip the analysis which parallels (3.29) to (3.36).

3.11 Applicability to acoustics and elastodynamics in the time domain
Recall from Chapter 1, that with

∇˜ ≡
(
∇
∂
∂x4

)
=

( ∇
− ∂
∂t

)
, (3.74)

we have the equation (1.118) for acoustics in the time domain,

∇˜ · j(x˜) = 0, j(x˜) = Z(x˜)∇˜P (x˜), (3.75)

where P is the pressure and x˜ = (x1, x2, x3, x4), with x4 = −t where t is the time. Also recall from
Chapter 1, the equation (1.126) for elastodynamics in the time domain,

∇˜ · J = 0, J = Z∇˜v, (3.76)

where v is the velocity. Both these equations are of the form (3.67) (with θ0 = B = D = 0) with x replaced
by x˜ and ∇ replaced by ∇˜ . Therefore, with Ω replaced by a space-time body Ω˜ all the results carry through
and the problem can be reformulated in the language of the theory of composites.

3.12 The electromagnetic equations in the frequency domain
For electromagnetism at fixed frequency ω in a three-dimensional body Ω the governing equations for the
electric field e(x) and magnetic field intensity h(x) are( −ih

i∇× h

)
︸ ︷︷ ︸

G

=

(
−[ωµ(x)]

−1
0

0 ωε(x)

)
︸ ︷︷ ︸

Z

(∇× e

e

)
︸ ︷︷ ︸

F

, (3.77)

where µ(x) is the magnetic permeability tensor and ε(x) is the electrical permittivity tensor. We have the
key identity (Poynting’s theorem):∫

Ω

G(x) · F(x) =

∫
∂Ω

−in · (e× h) =

∫
∂Ω

i(n× h) · {[I− nnT ]e}, (3.78)
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in which [I−nnT ]e = n×e×n is nothing but the tangential component of the electric field, I−nnT being
the projection operator onto this tangential component.

The mapping from the field [I−nnT ]e at the boundary ∂Ω to the field i(n×h) is what we define as our
Dirichlet-to-Neumann map. The appearance of n(x)×h(x) on the left of this relation is quite natural. In the
special relativity form of Maxwell’s equations in Section 1.15 the electric field e(x) enters F as a vector with
3 spatial components while the magnetizing field h enters the field G (1.167) as an antisymmetric matrix:

h =

 0 −h3 h2

h3 0 −h1

−h2 h1 0

 . (3.79)

The associated flux is n ·h=n×h. In the next section, an alternative Dirichlet-to-Neumann map from e×n to
n×h×n is used. If we use the invariance of the time-harmonic Maxwell’s equations under the interchanges

e⇔ h, d⇔ b, i⇔ −i, ε⇔ µ (3.80)

then this map transforms to a map from h×n to n× e×n, which is the inverse of the map considered here.
Both maps differ from the map of Uhlmann and Zhou (2015) which maps n× e to n× h.

We take a positive definite real tensor Z0 and consider the solutions to( −ih
i∇× h

)
︸ ︷︷ ︸

G0

= Z0

(∇× e

e

)
︸ ︷︷ ︸
F0

, (3.81)

as the boundary fields range over all possible data. For any prescribed real value of the tangential field eT =
(I− nnT )e we calculate

min
e

(I−nnT )e=eT on ∂Ω

∫
Ω

(∇× e

e

)
· Z0

(∇× e

e

)
. (3.82)

Provided eT has sufficient regularity the minimum exists, is unique and at the minimum

0 =

∫
Ω

(∇× δe
δe

)
·
(−ih
ωd

)
= −i(∇× δe) · h + δe · ωd, (3.83)

for all δe with zero tangential value at the boundary. By integrating this last expression by parts we see that
ωd = i∇×h. So for any sufficiently regular real-valued boundary condition (I−nnT )e = eT there exists a
unique field F0(x) which corresponds to it. For a complex prescribed field eT = e′T + ie′′T we find the fields
F ′0(x) and F ′′0 (x) associated with e′T and e′′T to get the field F0 = F ′0 +F ′′0 associated with eT = e′T + ie′′T .

We define U as the space of values of Z
1/2
0 F0(x) as the tangential field eT = (I− nnT )e is varied. The

space E consists of fields of the form

E = Z
1/2
0

(∇× e

e

)
, (3.84)

as e is varied with (I− nnT )e = 0 at ∂Ω. The space J consists of fields of the form

J = Z
−1/2
0

( −ih
i∇× h

)
, (3.85)
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as h is varied with n × h = 0 on ∂Ω. All the analysis goes through as before. In particular the effective
tensor L∗ and hence the Dirichlet-to-Neumann map, mapping the boundary field eT = (I − nnT )e to the
boundary field i(n×h) in an n-phase medium is an analytic function of the matrix elements of ωεi and ωµi,
i = 1, 2, . . . , n when the imaginary parts of all these tensors are positive definite. A separate and rigorous
proof of this fact is given in the next chapter.

3.13 The electromagnetic equations in the time domain
In the time domain, the desired form of the electromagnetic equations from (1.171), (1.172), and (1.173) is
given by (−h

d

)
=

(−[µ(x)]−1 0

0 ε(x)

)
︸ ︷︷ ︸

Z

Θ

(
Φ

φ

)
, Θ†

(−h

d

)
= 0, (3.86)

where

Θ =

(∇× 0

− ∂
∂t −∇

)
, Θ† =

(∇× ∂
∂t

0 ∇·

)
. (3.87)

We take a positive definite matrix Z0 and consider the solutions to the equations

G0(x) = Z0F0(x), F0 = Θ

(
Φ0

φ0

)
, Θ†G0(x) = 0. (3.88)

These are generated by taking some potentials Φ0(x) and φ0 defined at the boundary of the space–time body
Ω˜ and considering

min
Φ, φ

Φ=Φ0, φ=φ0 on ∂Ω

∫
Ω˜
[
Θ

(
Φ

φ

)]
· Z0

[
Θ

(
Φ

φ

)]
. (3.89)

The minimizing potentials, called Φ0 and φ0, give fields

U0 = Z
1/2
0 Θ

(
Φ0

φ0

)
, (3.90)

which generate a space U as the boundary potentials are varied. The space E consists of fields of the form

E = Z
1/2
0 Θ

(
Φ

φ

)
, (3.91)

as Φ and φ vary with Φ = φ = 0 on ∂Ω˜ . The space J consists of fields of the form

J = Z
−1/2
0

(−h

d

)
, with Θ†

(−h

d

)
= 0, (3.92)

as h and d vary (subject to the last constraint in (3.92)) with d = 0 and nx × h = 0 on ∂Ω˜ . All the analysis
applies as before. However, from a practical viewpoint the vector potential Φ cannot be directly measured: it
is the magnetic field b(x) which has the physical significance. Nevertheless, if we have a n-phase body where
the moduli µ(x) and ε(x) are piecewise constant, then the Dirichlet-to-Neumann map will be a Herglotz
function of the component tensors µj and εj , j = 1, 2, . . . , n. Unlike in the time-harmonic case, complex
values of µi and εj do not have a physical significance.
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Abstract

In this chapter we derive the analyticity properties of the electromagnetic Dirichlet-to-Neu-
mann map for the time-harmonic Maxwell’s equations for passive linear multicomponent
media. Moreover, we discuss the connection of this map to Herglotz functions for isotropic
and anisotropic multicomponent composites.

Key words: multicomponent media, electromagnetic Dirichlet-to-Neumann map, analytic properties, Her-
glotz functions

4.1 Introduction
In this chapter, we study the analytic properties of the electromagnetic “Dirichlet-to-Neumann” (DtN) map
for a composite material. Using passive linear multicomponent media, we will prove that this DtN map is an
analytic function of the dielectric permittivities and magnetic permeabilities (multiplied by the frequency ω)
which characterize each phase. More specifically, it belongs to a special class of functions known as Herglotz
functions. In that sense, this chapter is highly connected to the previous one by Graeme Milton since both are
proving analyticity properties on the DtN map, but with different methods. In Chapter 3, these analyticity
properties are derived by using the theory of composite materials, whereas in this chapter they are proved via
spectral theory in the usual functional framework associated with the time-harmonic Maxwell’s equations.
Maxwell’s equations at fixed frequency ω involve the electric permittivity ε(x, ω) (also called the dielectric
constant if measured relative to the permittivity of the vacuum) and the magnetic permeability µ(x, ω). The
approach taken in the current chapter has the important advantage of being applicable to bodies where the
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moduli ωε(x, ω) and ωµ(x, ω) are not piecewise constant but instead vary smoothly (or not) with position.
In this case we establish (in Subsection 4.3.4) the Herglotz properties of the Dirichlet-to-Neumann map, as a
function of frequency, assuming the material is passive at each point x, i.e., that ωε(x, ω) and ωµ(x, ω) are
Herglotz functions of the frequency ω.

The use of theory of Herglotz functions in electromagnetism and in the theory of composites has many
important impacts and consequences (Bergman 1978, 1980, 1982; Milton 1980, 1981a, 1981c, 2002; Golden
and Papanicolaou 1983; Dell’Antonio, Figari, and Orlandi 1986; Bruno 1991a; Lipton 2000, 2001; Gustafsson
and Sjöberg 2010; Bernland, Luger, and Gustafsson 2011; Liu, Guenneau, and Gralak 2013; Welters, Avniel,
and Johnson 2014) especially in developing bounds on certain physical quantities. Based on this and the work
of Golden and Papanicolaou (1985), Bergman (1986), Milton (1987a, 1987b) and Milton and Golden (1990)
on developing bounds on effective tensors of composites containing more than two phases using analyticity
of the effective tensors as a multivariable function of the moduli of the phases, we also establish that the DtN
map is an analytic function of the permittivity and permeability tensors of each phase. Another potential ap-
plication of these analytic properties is to derive information about the DtN map for real frequencies by using
the theory of boundary-values of Herglotz functions (for instance, see Gesztesy and Tsekanovskii 2000 and
Naboko 1996). Moreover, as the DtN map is usually used as data in electromagnetic inverse problems (see,
for instance, Albanese and Monk 2006; Uhlmann and Zhou 2015, Ola, Päivärinta, and Somersalo 2012), we
believe these analyticity properties and the connection to the theory of Herglotz functions will have important
applications in this area of research (see Chapter 5 of this book). The Herglotz properties might also be im-
portant to characterize the complete set of all possible Dirichlet-to-Neumann maps (either at fixed frequency
or as a function of frequency) associated with multiphase bodies with frequency independent permittivity and
permeability. Indeed such analyticity properties were a key ingredient to characterize the possible dynamic re-
sponse functions of multiterminal mass-spring networks (Guevara Vasquez, Milton, and Onofrei 2011). These
response functions are the discrete analogs of the Dirichlet-to-Neumann map in that problem. Additionally,
analytic properties were a key ingredient in the theory of exact relations (Grabovsky 1998; Grabovsky and
Sage 1998; Grabovsky, Milton, and Sage 2000: see also Chapter 17 in Milton 2002 and Grabovsky 2004)
satisfied by the effective tensors of composites, and for establishing links between effective tensors. These
are generally nonlinear relations that are microstructure independent and thus, besides their intrinsic interest,
are useful as benchmarks for numerical methods and approximations. They become linear (Grabovsky 1998)
after a suitable fractional linear matrix transformation is made (which is nonunique and involves an arbitrary
unit vector n). After any such transformation is made and once certain algebraic relations are satisfied (for
all unit vectors n) it can be proved that all terms in the series expansion satisfy the exact relation, and then
analyticity is needed to prove the relation holds (in the domain of analyticity) even if the series expansion does
not converge (Grabovsky, Milton, and Sage 2000).

We split this chapter in three sections. In the first one, we consider the electromagnetic DtN map for a
layered media. In this setting, the DtN map can be expressed explicitly in terms of the transfer matrix as-
sociated with the medium. This gives a good example in which one can see these analytic properties in the
context of matrix perturbation theory (Baumgärtel 1985; Kato 1995; Welters 2011a). In the second section,
we restrict ourselves to bounded media but with a large class of different geometries, more precisely, Lipschitz
domains. In this case, using a variational reformulation of the time-harmonic Maxwell’s equations (Cessenat
1996; Kirsch and Hettlich 2015; Monk 2003; Nedelec 2001), we prove both the well-posedness and the ana-
lyticity of the DtN map. Also we consider bodies where the moduli ωε(x, ω) and ωµ(x, ω) are not piecewise
constant but instead vary with position, and at each point x are Herglotz functions of the frequency ω. In this
case we establish the Herglotz properties of the Dirichlet-to-Neumann map, as a function of frequency. In both
sections, the key step to prove the multivariable analyticity is Hartogs’ Theorem from complex analysis which
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essentially says that analyticity in each variable separately implies joint analyticity (see Theorem 4 below).
Concerning the connection to Herglotz functions, an energy balance equation is derived (which is essentially
Poynting’s Theorem for complex frequencies) that allows us to prove that the imaginary part of the DtN map is
positive definite, as a consequence of the positivity of the imaginary part of the material tensors. Nevertheless,
in the case of anisotropic media, the connection to Herglotz functions has to be made more precise. Indeed, we
leave here the usual framework of Herglotz functions of scalar variables since we are concerned with dielectric
permittivity and magnetic permeability tensors as input variables. Thus, the purpose of the last section is to
provide a rigorous definition of Herglotz functions in this general framework, that provides an alternative to
the one developed in Section 18.8 of Milton (2002), by connecting this notion to the theory of holomorphic
functions on tubular domains with nonnegative imaginary part as described in Vladimirov 2002 (see Sections
17–19). This new link is especially significant since this class of functions (like the Herglotz functions in-
troduced in Section 18.8 of Milton (2002)) admits integral representations analogous to Herglotz functions
of one complex variable (the representation in the one variable case as described in Theorem 3 below) and
are deeply connected to the theory of multivariate passive linear systems (see Section 20 in Vladimirov 2002)
with the notions of convolutions, passivity, causality, Laplace/Fourier transforms, and analyticity properties.

This chapter is essentially self-contained, and written in a rigorous mathematical style. Care has been
taken to explain most technical definitions so that it should be accessible to non-mathematicians.

Before we proceed, let us introduce some notation, definitions and theorems used in this chapter. We
denote:

• the complex upper-half plane by C+ = {z ∈ C | Im z > 0},

• the Banach space of allm×nmatrices with complex entries byMm,n(C) equipped with any norm, with
the square matrices Mn,n(C) denoted by Mn(C), and we treat Cn as Mn,1(C) (recall that a Banach
space is a complete normed vector space: unlike a Hilbert space, it does not necessarily have an inner
product defined on the space, just a norm.)

• by · the operation defined for all vectors u,v ∈ Cn via u · v = uTv = uivi, where T denotes the
transpose. Note that there is no complex conjugation in this definition, so u · u is not generally real.

• the open, connected, and convex subset of Mn(C) of matrices with positive definite imaginary part by

M+
n (C) = {M ∈Mn(C) | Im M > 0} ,

where Im M = (M−M∗)/(2i) with M∗ = M
T the adjoint of M, and the inequality M > 0 holds in

the sense of quadratic forms. We remark that this set is invariant by the operation: M→ −M−1 since
if M ∈M+

n (C) then M is invertible and

− Im(M−1) = (M−1)∗ Im(M) M−1 > 0

• by L(E,F ) the Banach space of all continuous linear operators from a Banach space E to a Banach
space F equipped with the operator norm.

Definition 1. (Analyticity) LetE and F be two complex Banach spaces and U be an open set ofE. A function
f : U → F is said to be a analytic if it is differentiable on U .
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Definition 2. (Herglotz functions) Letm,n,N ∈ N, where N is the set of natural numbers (positive integers),
and T = (C+)n or (M+

N (C))n. An analytic function h : T → C or h : T → Mm(C) is called a Herglotz
function (also called Pick or Nevanlinna function) if

Im(h(z)) ≥ 0, ∀z ∈ T .

We note here that Definition 2 is the standard definition of a Herglotz function when T = C+ (see Gesztesy
and Tsekanovskii 2000, Berg 2008) and T = (C+)n (in Agler, McCarthy, and Young 2012 it is called a Pick
function), but not when T = (M+

N (C))n. Its justification in this last case is given in Section 4.4.
A particular and useful property of Herglotz functions defined on a scalar variable, which has been a

key-tool to use analytic methods to derive bounds, is the following representation theorem.

Theorem 3. A necessary and sufficient condition for a function h : C+ → C to be a Herglotz function is that
there exist α, β ∈ R with α ≥ 0 and a positive regular Borel measure µ for which

∫
R dµ(λ)/(1 +λ2) is finite

such that
h(z) = α z + β +

∫
R

(
1

λ− z −
λ

1 + λ2

)
dµ(λ), for z ∈ C+. (4.1)

For an extension of this representation theorem, for instance, in the case of matrix-valued Herglotz func-
tions h : C+ →Mm(C), we refer to Gesztesy and Tsekanovskii (2000).

Theorem 4. (Hartogs’ Theorem) If h : U → E is a function with U an open subset of Cn and E is a Banach
space then h is a multivariate analytic function (i.e., jointly analytic) if and only if it is an analytic function
of each variable separately.

A proof of Hartogs’ Theorem when E = C can be found in Hörmander (1990) (see Section 2.2, p. 28,
Theorem 2.2.8). For the general case, we refer the reader to Mujica (1986) (see Section 36, p. 265, Theorem
36.1).

Theorem 5. Let E and F denote two Banach spaces and U an open subset of Cn. If h : U → L(E,F ) is
an analytic function and for each z ∈ U the value h(z) is an isomorphism, then the function z → h(z)−1 is
analytic from U into L(F,E).

For a proof of Theorem 5 when n = 1, we refer the reader to Kato (1995) (see Chapter 7, Section 1, pp.
365–366). The proof for an integer n > 1 is then obtained by using Hartogs’ Theorem.

The next theorem, which is a rewriting of Theorem 3.12 of Kato (1995) shows that the notion of weak
analyticity of a family of operators in L(E,F ) implies the analyticity of this family for the operator norm of
L(E,F ). More precisely, we have the following result:

Theorem 6. Let E and F be two Banach spaces, U an open subset of C and h : U → L(E,F ). We denote
by 〈·, ·〉 the duality product of F and its dual F ∗. If the function

hφ,ψ(z) = 〈h(z)φ, ψ〉 , ∀z ∈ U,

is analytic on U for all φ in a dense subset of E and for all ψ in a dense subset of F ∗, then h is analytic in U
for the operator norm of L(E,F ).

The following is a theorem for taking the derivative under the integral of a function which depends analyt-
ically on a complex parameter (see Mattner 2001). It introduces the notion of a measure space that we briefly
recall here. A measure space (Ω,F , µ) is roughly speaking a triple composed of a set Ω, a collection F of
subsets of Ω that one wants to measure (F is called a σ−algebra) and a measure µ defined on F .
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Theorem 7. Let (Ω,F , µ) be a measure space, let U be an open set of C and f : Ω× U → C be a function
subject to the following assumptions:

• f(·, z) is F measurable for all z ∈ U and f(x, ·) is analytic for almost every x in Ω,

•
∫

Ω
|f(x, ·)|dµ(x) is locally bounded, that is, for every z0 ∈ U there exists a δ > 0 such that

sup
z∈U ||z−z0|≤δ

∫
Ω

|f(x, z)|dµ(x) <∞,

then the function F : U → C defined by

F (z) =

∫
Ω

f(x, z) dµ(x),

is analytic in U and one can take derivatives under the integral sign:

F (k)(z) =

∫
Ω

∂kf(x, z)

∂zk
dµ(x), ∀k ∈ N.

4.2 Analyticity of the DtN map for layered media

4.2.1 Formulation of the problem
We consider passive linear two-component layered media (material 1 with moduli ε1,µ1; material 2 with
moduli ε2,µ2) with layers normal to the z-axis. The geometry of this problem, as illustrated in Figure 4.1, is
as follows: First, a layered medium in the region Ω = Ω1 ∪ Ω2 = [−d, d] consisting of a two-phase material
lies between z = −d and z = d. A homogeneous passive linear material lies between −d2 ≤ z ≤ d2 (denote
this “inner” region by Ω2 = [−d2, d2]) with permittivity and permeability ε2,µ2. Another homogeneous
passive linear material lies between −d ≤ z < −d2, i.e., the region Ω1,− = [−d,−d2), and d2 < z ≤ d, i.e.,
the region Ω1,+ = (d2, d] (denote “outer” region by Ω1 = Ω1,− ∪ Ω1,+) with permittivity and permeability
ε1,µ1. The unit outward pointing normal vectors to the boundary surfaces of these regions are n ∈ {e3,−e3},
where e3 =

[
0 0 1

]T
.

The dielectric permittivity ε and magnetic permeabilityµ are 3×3 matrices that depend on the frequency
ω and the spatial variable z only (i.e., spatially homogeneous in each layer) which are defined by

ε = ε(ω, z) = χΩ1
(z)ε1(ω) + χΩ2

(z)ε2(ω), z ∈ [−d, d], ω ∈ C+, (4.2)
µ = µ(ω, z) = χΩ1

(z)µ1(ω) + χΩ2
(z)µ2(ω), z ∈ [−d, d], ω ∈ C+. (4.3)

Here χΩj
denotes the indicator function of the region Ωj , for j = 1, 2. Moreover, they have the passivity

properties (see, for example, section 1.6)

Im(ωε(ω, z)) > 0, Im(ωµ(ω, z)) > 0, for Imω > 0, (4.4)

and ε,µ are analytic functions of ω in the complex upper-half plane for each fixed z, i.e.,

ωεj(ω), ωµj(ω) : C+ →M+
3 (C) are Herglotz functions, for j = 1, 2. (4.5)
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Figure 4.1: A plane-parallel, two-component layered medium Ω consisting of two phases, ε1,µ1 and
ε2,µ2, of linear passive materials with layers normal to the z-axis. The core containing the homogeneous
material 2 (with permittivity ε2 and permeability µ2) is sandwiched between the shell containing the
homogeneous material 1 (with permittivity ε1 and permeability µ1). Moreover, the system is symmetric
about the xy-plane.

The time-harmonic Maxwell’s equations in Gaussian units without sources are

curl E =
iω

c
B, curl H = − iω

c
D, D = εE, B = µH, (4.6)

where c denotes the speed of light in a vacuum.
Let us now introduce some classical functional spaces associated to the study of Maxwell’s equations (4.6)

in layered media:

• For a bounded interval I ⊆ R, we denote by L1(I), the Lebesgue space of integrable functions on I . It
is a Banach space with norm

||f ||1=

∫
I

|f(z)|dz, f ∈ L1(I). (4.7)

• For a bounded interval I ⊆ R, we denote by AC(I), the Banach space of all absolutely continuous
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functions equipped with the norm

||f ||1,1=

∫
I

|f(z)|dz +

∫
I

|f ′(z)|dz, f ∈ AC(I). (4.8)

Recall, that any f ∈ AC(I) is continuous on I into C, differentiable almost everywhere on I (i.e.,
except on a set of Lebesgue measure zero), and is given in terms of its derivative f ′ = df

dz (which is
integrable on I) by

f(z) = f(z0) +

∫ z

z0

f ′(u)du, z0, z ∈ I. (4.9)

• Denote the Banach space of all m × n matrices with entries in the Banach space E with norm ||·||,
where (E, ||·||) ∈ {(L1(I), ||·||1), (AC(I), ||·||1,1), (C, |·|)}, by Mm,n(E) and equipped with norm

||M||=

 m∑
i=1

n∑
j=1

||Mij ||2
 1

2

, M = [Mij ] ∈Mm,n(E), (4.10)

with Mn,n(E) denoted by Mn(E), and we treat En as Mn,1(E).

• Similar to AC(I), any M ∈Mm,n(AC(I)) is continuous on I , differentiable almost everywhere on I ,
and in terms of its derivative M′ = dM

dz = [M ′ij ] is given by

M(z) = M(z0) +

∫ z

z0

M′(u)du =

[
Mij(z0) +

∫ z

z0

M ′ij(u)du

]
, z0, z ∈ I. (4.11)

• Denote the standard inner product on Cn by (·, ·) : Cn × Cn → C, where

(ψ1, ψ2) = ψT1 ψ2, ψ1, ψ2 ∈ Cn. (4.12)

Now, because of the translation invariance of the layered media in the x, y coordinates, solutions of equa-
tion (4.6) are sought in the form[

E
H

]
=

[
E(z)

H(z)

]
ei(k1x+k2y), x, y ∈ R, z ∈ [−d, d], κ = (k1, k2) ∈ C2, ω ∈ C+, (4.13)

in whichκ is the tangential wavevector. Maxwell’s equations (4.6) for this type of solution can be reduced [see
the appendix in Shipman and Welters (2013) and also Berreman (1972) for more details] to an ordinary linear
differential equation (ODE) for the vector of tangential electric and magnetic field components ψ, where

ψ(z) =
[
E1(z) E2(z) H1(z) H2(z)

]T
, (4.14)

−iJdψ
dz

= A(z)ψ(z), ψ ∈ (AC([−d, d]))4, (4.15)

in which

J =

[
0 ρ

ρ∗ 0

]
, ρ =

[
0 1

−1 0

]
, J∗ = J−1 = J, (4.16)

A = A(z) = A(z,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω)), z ∈ [−d, d], κ ∈ C2, ω ∈ C+, . (4.17)



102 4. Analyticity of the Dirichlet-to-Neumann map for the time-harmonic Maxwell’s equations

Here A = A(z) is a piecewise constant function of z into M4(C) (for fixed κ, ω) with the following explicit
representation in terms of the entries of the matrices ε = [εij ], µ = [µij ] in (4.2), (4.3):

A = V‖‖ −V‖⊥ (V⊥⊥)
−1

V⊥‖, (4.18)

where

V⊥⊥ = 1
c

[
ωε33 0

0 ωµ33

]
, (4.19)

V‖‖ = 1
c


ωε11 ωε12 0 0

ωε21 ωε22 0 0

0 0 ωµ11 ωµ12

0 0 ωµ21 ωµ22

 , (4.20)

V‖⊥ = 1
c


ωε13 0

ωε23 0

0 ωµ13

0 ωµ23

+


0 k2

0 −k1

−k2 0

k1 0

 , (4.21)

V⊥‖ = 1
c

[
ωε31 ωε32 0 0

0 0 ωµ31 ωµ32

]
+

[
0 0 −k2 k1

k2 −k1 0 0

]
. (4.22)

From these matrices the normal electric and magnetic field componentsφ are given in terms of their tangential
components by

φ =
[
E3 H3

]T
= −(V⊥⊥)−1V⊥‖ψ. (4.23)

The fact that the matrix V⊥⊥(z, ω) is invertible follows immediately from the fact that the passivity properties
(4.4) imply

Im(V⊥⊥(z, ω)) > 0. (4.24)

We will now prove in the next proposition [using the methods developed in the appendix of Shipman and
Welters (2013) and in the Ph.D. thesis of Welters (2011b)], some fundamental properties associated to the
ODE (4.15). In particular, we will show that the solution of the initial-valued problem for the ODE (4.15)
depends analytically on the phase moduli.

Proposition 8. For each z0 ∈ [−d, d] (and for fixed κ, ω), the initial-value problem for the ODE (4.15), i.e.,

−iJdψ
dz

= A(z)ψ(z), ψ(z0) = ψ0, (4.25)

has a unique solution ψ in (AC([−d, d]))4 for each ψ0 ∈ C4 which is given by

ψ(z) = T(z0, z)ψ0, z ∈ [−d, d], (4.26)

where the 4× 4 matrix T(z0, z) is called the transfer matrix. This transfer matrix T has the properties

T(z0, z) = T(z1, z)T(z0, z1), T(z0, z1)−1 = T(z1, z0), T(z0, z0) = I, (4.27)
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for all z0, z1, z ∈ [−d, d]. Furthermore, the map

T = T(z0, z) = T(z0, z,κ, ω)

= T(z0, z,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω)), z0, z ∈ [−d, d], κ ∈ C2, ω ∈ C+, (4.28)

belongs to M4(AC([−d, d])) as a function of z (for fixed z0,κ, ω) and it is an analytic function as a map of
(κ, ω) into M4(C) (for fixed z0, z). More generally, the map

Z 7→ T(z0, z,κ, ωε1, ωε2, ωµ1, ωµ2) (4.29)

is analytic as a function of Z = (ωε1, ωε2, ωµ1, ωµ2) ∈ (M+
3 (C))4 into M4(C) (for fixed z0, z,κ).

Proof. First, it follows from Hartogs’ Theorem (see Theorem 4), the hypotheses (4.2), (4.3), (4.5), the formulas
(4.17)–(4.22), and Theorem 5 that

(κ, ω) 7→ A(·,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω)) (4.30)

is analytic as a function into M4(L1(I)), where I = [−d, d], from C2 × C+. And, more generally, it follows
from these theorems, hypotheses, and formulas that the map

(κ,Z) 7→ A(·,κ,Z) (4.31)

is analytic as a function of (κ,Z) ∈ C2 × (M+
3 (C))4 into M4(L1(I)), where Z is the variable Z =

(ωε1, ωε2, ωµ1, ωµ2).
In particular, for either fixed variables (κ, ω) ∈ C2×C+ or (κ,Z) ∈ C2×(M+

3 (C))4, we have A = A(z)
from (4.17) is inM4(L1(I)). Fix a z0 ∈ I . Then by the theory of linear ordinary differential equations [see, for
instance, Theorem 1.2.1 in Chapter 1 of Zettl (2005)], the initial-value problem (4.25) has a unique solutionψ
in (AC(I))4 for eachψ0 ∈ C4. Denote the standard orthonormal basis vectors of R4 by wj , for j = 1, 2, 3, 4.
Let ψj ∈ (AC(I))4 denote the unique solution of the ODE (4.15) satisfying ψj(z0) = wj , for j = 1, 2, 3, 4.
Now let T(z0, z) = [ψ1(z)|ψ2(z)|ψ3(z)|ψ4(z)] ∈ M4(C) denote the 4 × 4 matrix whose columns are
T(z0, z)wj = ψj(z) for j = 1, 2, 3, 4 and z ∈ I . This matrix T(z0, z) is known in the electrodynamics of
layered media as the transfer matrix.

Now it follows immediately from the uniqueness of the solution to the initial-value problem (4.25) and the
definition of the transfer matrix T(z0, z), that T = T(z0, z) as a function of z ∈ I belongs to M4(AC(I)),
it has the properties (4.27), and it is the unique matrix-valued function inM4(AC(I)) satisfying: if ψ0 ∈ C4

then ψ(z) = T(z0, z)ψ0 for all z ∈ I is an (AC(I))4 solution to the initial-value problem (4.25). From
this uniqueness property of the transfer matrix T(z0, z), it follows that T(z0, z) is the unique solution to the
initial-value problem:

Ψ′(z) = iJ−1A(z)Ψ(z), Ψ(z0) = I, Ψ ∈M4(AC(I)), (4.32)

where I ∈M4(C) is the identity matrix.
Now we wish to derive an explicit representation for T(z0, z) in terms of J and A. To do this we first

introduce some results from the integral operator approach to the theory of linear ODEs. For fixed M ∈
M4(L1(I)), define the linear map I[M, z0] : M4(AC(I))→M4(AC(I)) by

(I[M, z0]N)(z) =

∫ z

z0

M(u)N(u)du, N ∈M4(AC(I)), z ∈ I. (4.33)
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It follows that I[M, z0] is a continuous linear operator on the Banach space M4(AC(I)), i.e., it belongs to
L(M4(AC(I)),M4(AC(I))). Next, define the linear map T [M, z0] : M4(AC(I))→M4(AC(I)) by

T [M, z0] = 1− I[M, z0], (4.34)

where 1 ∈ L(M4(AC(I)),M4(AC(I))) denotes the identity operator on M4(AC(I)). Then it follows
that T [M, z0] ∈ L(M4(AC(I)),M4(AC(I))) and, moreover, T [M, z0] is invertible with T [M, z0]−1 ∈
L(M4(AC(I)),M4(AC(I))), i.e., T [M, z0] is an isomorphism. The fact that T [M, z0] is invertible follows
immediately from the existence and uniqueness of the solution Y ∈ M4(AC(I)) for each C ∈ M4(C),
F ∈ M4(L1(I)) to the inhomogeneous initial-value problem [see, for instance, Theorem 1.2.1 in Chapter 1
of Zettl (2005)]:

Y′(z) = M(z)Y(z) + F(z), Y(z0) = C. (4.35)

In other words, Y is the unique solution in M4(AC(I)) to the integral equation

T [M, z0]Y = I[M, z0]F + C. (4.36)

Hence, the solution is given explicitly by

Y = T [M, z0]−1(I[M, z0]F + C). (4.37)

In particular, it follows from this representation and the fact that the transfer matrix T(z0, z) is the unique
solution to the initial-value problem (4.32) that with F = 0, C = I in the notation above,

T(z0, ·) = T [iJ−1A, z0]−1(I), (4.38)

where A = A(z) as you will recall belongs toM4(L1(I)) as a function of z ∈ I (ignoring its dependence on
the other variables) and hence so does iJ−1A.

Now since iJ−1A is an analytic function of either of the variables (κ, ω) or (κ,Z) into M4(L1(I)) as a
function of z ∈ I , for fixed z0, then it follows immediately from this, the representation (4.38), and Theorem
5 that (κ, ω) 7→ T(z0, z,κ, ω) and (κ,Z) 7→ T(z0, z,κ,Z) are analytic functions into M4(AC(I)) as a
function of z ∈ I , for fixed z0. Finally, the proof of the rest of this proposition now follows immediately
from these facts and the fact that the Banach space AC(I) can be continuously embedded into the Banach
space C(I) of continuous functions from I into C equipped with the sup norm ||f ||∞= supz∈I |f(z)|, that
is, the identity map ι : AC(I)→ C(I) between these two Banach spaces [i.e., ι(f) = f for f ∈ AC(I)] is a
continuous (and hence bounded) linear map under their respective norms [i.e., ι ∈ L(AC(I), C(I))].

Remark 9. Using Proposition 8 and due to the simplicity of the layered media considered we can derive a
simple explicit representation of the transfer matrix T(z0, z) for all z0, z ∈ [−d, d]. First, the transfer matrix
T(−d, z), z ∈ [−d, d] takes on the simple form

T(−d, z) =


eiJA1(z+d), −d ≤ z ≤ −d2,

eiJA1(d−d2)eiJA2(z+d2), −d2 ≤ z ≤ d2,

eiJA1(d−d2)eiJA2(2d2)eiJA1(z−d2), d2 ≤ z ≤ d,
(4.39)

where A1 and A2 are the matrices (4.17) for a z-independent homogeneous medium filled with only material
1 (with permittivity and permeability ε1 and µ1) and with only material 2 (with permittivity and permeability
ε2 and µ2), respectively (see Figure 4.1).
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Therefore, in terms of this explicit form for T(−d, z), it follows from (4.27) that the transfer matrix
T(z0, z), z0, z ∈ [−d, d] is given explicitly in terms of (4.39) by

T(z0, z) = T(−d, z)T(z0,−d) = T(−d, z)T(−d, z0)−1. (4.40)

4.2.2 Electromagnetic Dirichlet-to-Neumann Map
Now every solution to Maxwell’s equations (4.6) of the form (4.13) has in terms of its tangential components
(4.14) a corresponding solution of the ODE (4.15) with normal components given by (4.23). And conversely,
every solution of the ODE (4.15) gives the tangential components of a unique solution to equations (4.6) of
the form (4.13) with normal components expressed in terms of its tangential components by (4.23). We use
this correspondence to now define the electromagnetic “Dirichlet-to-Neumann” (DtN) map in terms of the
transfer matrix T whose properties are described in Proposition 8.

The DtN map is a function

Λ = Λ(z0, z1) = Λ(z0, z1,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω)), (4.41)
z0, z1 ∈ [−d, d], z0 < z1,κ ∈ C2, ω ∈ C+,

which can be defined as the block operator matrix

Λ(z0, z1)

[
E× n|z=z1
E× n|z=z0

]
=

[
in×H× n|z=z1
in×H× n|z=z0

]
, (4.42)

where E,H denote a solution of the time-harmonic Maxwell’s equations (4.6) of the form (4.13), i.e., a
function of the form (4.13) whose tangential components ψ with the form (4.14) satisfy the ODE (4.15) and
whose normal components are given in terms of these tangential components ψ by (4.23).

A more explicit definition of this DtN map can be given as follows. First, on C3, with respect to the
standard orthonormal basis vectors, we have the matrix representations

e3× =

0 −1 0

1 0 0

0 0 0

 , −e3 × e3× =

1 0 0

0 1 0

0 0 0

 , (4.43)

and this allows us to write E× n = −n× E and n×H× n = −n× n×H as matrix multiplication so that
we can write Λ as a 6× 6 matrix which can be written in the 2× 2 block matrix form as

Λ =

[
Λ11 Λ12

Λ21 Λ22

]
. (4.44)

We now want to get an explicit expression of this block form. Thus, we define the projections

Pt =

1 0

0 1

0 0

 , Qt,1 =

[
1 0 0 0

0 1 0 0

]
, Qt,2 =

[
0 0 1 0

0 0 0 1

]
. (4.45)

It follows from this notation that

E× e3 = −ei(k1x+k2y)e3 ×Pt [Qt,1ψ(z)] , n×H× n = ei(k1x+k2y)Pt [Qt,2ψ(z)] .
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Hence, we have [
in×H× n|z=z1
in×H× n|z=z0

]
= iei(k1x+k2y)

[
Pt 0

0 Pt

] [
Qt,2ψ(z1)

Qt,2ψ(z0)

]
= iei(k1x+k2y)

[
Pt 0

0 Pt

]
Γ(z0, z1)

[
Qt,1ψ(z1)

Qt,1ψ(z0)

]

= i

[
Pt 0

0 Pt

]
Γ(z0, z1)

[
Pt 0

0 Pt

]T [
n× E× n|z=z1
n× E× n|z=z0

]

= i

[
Pt 0

0 Pt

]
Γ(z0, z1)

[
Pt 0

0 Pt

]T [
e3× 0

0 −e3×

] [
E× n|z=z1
E× n|z=z0

]
,

where we have used the fact that since[
u1

v1

]
=

[
Qt,1ψ(z1)

Qt,2ψ(z1)

]
,

[
u0

v0

]
=

[
Qt,1ψ(z0)

Qt,2ψ(z0)

]
, T(z0, z1)

[
u0

v0

]
=

[
u1

v1

]
,

then by Proposition 13 (given later in Section 4.2.3) we must have

Γ(z0, z1)

[
Qt,1ψ(z1)

Qt,1ψ(z0)

]
=

[
Qt,2ψ(z1)

Qt,2ψ(z0)

]
,

where Γ(z0, z1) is defined in (4.53) [which is well-defined provided the matrix T12(z0, z1) in the block de-
composition of T(z0, z1) in (4.55) is invertible]. Therefore, the DtN map Λ(z0, z1) can be defined explicitly
as follows.

Definition 10 (Electromagnetic Dirichlet-to-Neumann map). The electromagnetic DtN map Λ(z0, z1) is de-
fined to be the 6× 6 matrix (4.44) defined in terms of the 4× 4 matrix Γ(z0, z1) in (4.53) and the 3× 2 matrix
Pt in (4.45) by

Λ(z0, z1) = i

[
Pt 0

0 Pt

]
Γ(z0, z1)

[
Pt 0

0 Pt

]T [
e3× 0

0 −e3×

]
, (4.46)

and in the 2× 2 block matrix form its entries are the 3× 3 matrices

Λ11(z0, z1) = iPtΓ11(z0, z1)PT
t e3×, (4.47)

Λ12(z0, z1) = −iPtΓ12(z0, z1)PT
t e3×, (4.48)

Λ21(z0, z1) = iPtΓ21(z0, z1)PT
t e3×, (4.49)

Λ22(z0, z1) = −iPtΓ22(z0, z1)PT
t e3×, (4.50)

where e3× is the 3× 3 matrix in (4.43).

Now for any z0, z1 ∈ [−d, d], z0 < z1, we want to know whether the DtN map Λ(z0, z1) is well-defined
or not. The next theorem addresses this.

Theorem 11. If Imω > 0 and κ ∈ R2 then for any 3×3 matrix-valued Herglotz functions ωεj(ω), ωµj(ω),
j = 1, 2 with range inM+

3 (C), the electromagnetic DtN map Λ(z0, z1,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω))
is well-defined.
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Proof. Let ωεj(ω), ωµj(ω), j = 1, 2 be any 3× 3 matrix-valued Herglotz functions with range in M+
3 (C).

Choose any valuesω ∈ C andκwith Imω > 0 andκ ∈ R2. Consider the time-harmonic Maxwell’s equations
(4.6) for the plane parallel layered media in Figure 4.1 at the frequency ω for solutions of the form (4.13) with
tangential wavevector κ, where the dielectric permittivity ε and magnetic permeability µ are defined in (4.2)
and (4.3).

For z0, z1 ∈ [−d, d] with z0 < z1, the transfer matrix (defined in Section 4.2.1) of the layered media with
tensors ε(z, ω), µ(z, ω) is T(z0, z1,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω)). For simplicity we will suppress
the dependency on the other parameters and denote this transfer matrix by T(z0, z1). It now follows from the
passivity property (4.4) and Theorem 15, given below, that the matrix J − T(z0, z1)∗JT(z0, z1) is positive
definite. By Proposition 14, given below, it follows that the 2 × 2 matrices Tij(z0, z1), 1 ≤ i, j ≤ 2, that
make up the blocks for the transfer matrix T(z0, z1) in the 2 × 2 block form in (4.52), are invertible. It
follows from this that the matrix Γ(z0, z1) defined in (4.53) terms of these 2×2 matrices is well-defined. And
therefore it follows from the fact that Γ(z0, z1) is well-defined that the electromagnetic DtN map Λ(z0, z1) =
Λ(z0, z1,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω)), as given in Definition 10, is well-defined. This completes
the proof.

The main result of this section on the analytic properties of the DtN map is the following:

Theorem 12. For any κ ∈ R2 and any 3 × 3 matrix-valued Herglotz functions ωεj(ω), ωµj(ω), j = 1, 2

with range in M+
3 (C), the function

ω 7→ Λ(z0, z1,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω)) (4.51)

is analytic from C+ into M+
6 (C) and, in particular, it is a matrix-valued Herglotz function. More generally,

it is a Herglotz function in the variable Z = (ωε1, ωε2, ωµ1, ωµ2) ∈ (M+
3 (C))4 (see Definition 2).

Proof. Fix any 3×3 matrix-valued Herglotz functions ωεj(ω), ωµj(ω), j = 1, 2 with range inM+
3 (C). Then

for any electromagnetic field E, B with tangential components ψ with Imω > 0 and tangential wavevector
κ ∈ R2 we have, by Theorem 15 and its proof, that([

E× n|z=z1
E× n|z=z0

]
, Im [Λ (z0, z1)]

[
E× n|z=z1
E× n|z=z0

])
= Re

([
E× n|z=z1
E× n|z=z0

]
,

[
n×H× n|z=z1
n×H× n|z=z0

])
= Re {(E× n|z=z1 ,n×H× n|z=z1) + (E× n|z=z0 ,n×H× n|z=z0)}

= −1

2
(ψ (z1) ,Jψ (z1)) +

1

2
(ψ (z0) ,Jψ (z0))

=
1

c

z1∫
z0

(H, Im [ωµ (z, ω)] H) + (E, Im [ωε (z, ω)] E) dz ≥ 0,

with equality if and only if ψ ≡ 0. It now follows from this and Theorem 15, which tells us that J −
T(z0, z1)∗JT(z0, z1) is positive definite, that we must have Im Λ(z0, z1) > 0.

We will now prove that the functionω 7→ Λ(z0, z1,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω)) is analytic from
C+ into M+

6 (C). By Proposition 8 we know that the map

ω 7→ T(z0, z1,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω))
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is an analytic function into M4(C). This implies by (4.53), (4.54) and Theorem 6 that

ω 7→ Γ(z0, z1,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω))

is an analytic function into M4(C) and so by (4.46) it follows that

ω 7→ Λ(z0, z1,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω))

is an analytic function into M+
6 (C).

Now we introduce the variable Z = (ωε1, ωε2, ωµ1, ωµ2) ∈ (M+
3 (C))4. Here M+

3 (C) is an open,
connected, and convex subset of M3(C) as a Banach space in any normed topology (as all norms on a finite-
dimensional vector space are equivalent) and hence so is (M+

3 (C))4 as a subset of (M3(C))4. Our goal
is to prove that the function Z 7→ Λ(z0, z1,κ,Z) is analytic. Now as (M3(C))4 equipped with any norm
is a Banach space and is isomorphic to the Banach space C36 (by mapping the components of the 4-tuple
and their matrix entries to a 36-tuple) equipped with standard inner product on C36. Thus, by Theorem 4
(Hartogs’ Theorem) it suffices to prove that for each component Zj of Z as an element of C36, the function
Zj 7→ Λ(z0, z1,κ,Z) is analytic for all other components of Z ∈ (M+

3 (C))4 fixed. But this proof follows
exactly as we did for proving ω 7→ Λ(z0, z1,κ, ωε1(ω), ωε2(ω), ωµ1(ω), ωµ2(ω)) is an analytic function
into M+

6 (C). Therefore, Z 7→ Λ(z0, z1,κ,Z) is analytic. This completes the proof.

4.2.3 Auxiliary results
In this section we will derive some auxiliary results that are used in the preceding subsection. First, we write
the transfer matrix T(z0, z1) in the 2× 2 block matrix form

T =

[
T11 T12

T21 T22

]
(4.52)

with respect to the decomposition C4 = C2 ⊕ C2. We next define the 4 × 4 matrix Γ(z0, z1) in the 2 × 2
block matrix form by

Γ(z0, z1) =

[
Γ11(z0, z1) Γ12(z0, z1)

Γ21(z0, z1) Γ22(z0, z1)

]
(4.53)

=

[
T22(z0, z1)T12(z0, z1)−1 T21(z0, z1)−T22(z0, z1)T12(z0, z1)−1T11(z0, z1)

T12(z0, z1)−1 −T12(z0, z1)−1T11(z0, z1)

]
, (4.54)

provided T12(z0, z1) is invertible.
Let us now give an overview of the purpose of the results in this section. Using the next proposition,

Proposition 13, we are able to give an explicit formula for the DtN map Λ(z0, z1) in terms of the transfer matrix
T(z0, z1) using the matrix Γ(z0, z1), the latter of which requires the invertibility of the matrix T12(z0, z1).
The proposition which follows after this one, i.e., Proposition 14, then tells us that the matrix T12(z0, z1) is
invertible, provided the matrix J −T(z0, z1)∗JT(z0, z1) is positive definite. And, finally, Theorem 15 tells
us that this matrix is positive definite (due to passivity).

Proposition 13. If T12(z0, z1) is invertible then for any u0,u1 ∈ C2 there exist unique v0,v1 ∈ C2 satisfying

T(z0, z1)

[
u0

v0

]
=

[
u1

v1

]
. (4.55)
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These unique vectors v0,v1 are given explicitly in terms of the vectors u0,u1 by the formula[
v1

v0

]
= Γ(z0, z1)

[
u1

u0

]
. (4.56)

Proof. Assume T12(z0, z1) is invertible. Let u0,u1 ∈ C2. Then we have[
u1

v1

]
= T(z0, z1)

[
u0

v0

]
=

[
T11(z0, z1)u0 + T12(z0, z1)v0

T21(z0, z1)u0 + T22(z0, z1)v0

]
if and only if [

0 I

I 0

] [
I −T22(z0, z1)

0 T12(z0, z1)

] [
v1

v0

]
=

[
I −T11(z0, z1)

0 T21(z0, z1)

] [
u1

u0

]
,

and this holds if and only if[
v1

v0

]
=

[
I T22(z0, z1)T12(z0, z1)−1

0 T12(z0, z1)−1

] [
0 I

I 0

] [
I −T11(z0, z1)

0 T21(z0, z1)

] [
u1

u0

]
=

[
T22(z0, z1)T12(z0, z1)−1 T21(z0, z1)−T22(z0, z1)T12(z0, z1)−1T11(z0, z1)

T12(z0, z1)−1 −T12(z0, z1)−1T11(z0, z1)

] [
u1

u0

]
.

The proof of this proposition follows immediately from these equivalent statements.

Proposition 14. The matrix J−T∗JT [dropping dependency on (z0, z1) for simplicity] has the block form

J−T∗JT =

[
2 Re (T∗11ρT21) ρ− (T∗21ρ

∗T12 + T∗11ρT22)

[ρ− (T∗21ρ
∗T12 + T∗11ρT22)]

∗
2 Re (T∗12ρT22)

]
, (4.57)

where Re(M) = 1
2 (M + M∗) denotes the real part of a square matrix M. In particular, if J−T∗JT > 0

then Re (T∗11ρT21) > 0, Re (T∗12ρT22) > 0, and Tij is invertible for 1 ≤ i, j ≤ 2.

Proof. The block representation (4.57) follows immediately from the block representations (4.16), (4.52) by
block multiplication. Suppose J − T∗JT > 0. Then it follows immediately from the block representation
(4.57) that Re (T∗11ρT21) > 0, Re (T∗12ρT22) > 0. Now it is a well-known fact from linear algebra that if
Re M > 0 for a square matrix M then M is invertible. From this it immediately follows that Tij is invertible
for 1 ≤ i, j ≤ 2. This completes the proof.

Now we define the indefinite inner product [·, ·] : C4 × C4 → C in terms of the standard inner product
(·, ·) : C4 × C4 → C by

[ψ1,ψ2] =
c

16π
(Jψ1,ψ2) , ψ1,ψ2 ∈ C4. (4.58)

We also define the complex Poynting vector S for functions of the form (4.13) to be

S =
c

8π
E×H = e−2(Im(k1)x+Im(k2)y)S (z) , S (z) =

c

8π
E (z)×H (z)

The energy conservation law for Maxwell’s equations (4.6) for functions of the form (4.13) is now described
by the next theorem.
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Theorem 15. Assume Imω > 0 and κ ∈ R2. Then for any z0, z1 ∈ [−d, d], z0 < z1 and any solution ψ
of the ODE (4.15) with

[
E H

]T
the corresponding solution of Maxwell’s equations (4.6) of the form (4.13)

whose tangential components (4.14) are ψ, we have

[ψ(z0),ψ(z0)]− [ψ(z1),ψ(z1)] = −
z1∫
z0

∂z [Re S (z) · e3] dz = −
z1∫
z0

∇ · Re (S) dz (4.59)

=
1

8π

z1∫
z0

(H, Im [ωµ (z, ω)] H) + (E, Im [ωε (z, ω)] E) dz ≥ 0, (4.60)

with equality if and only if ψ ≡ 0. In particular, this implies

J−T(z0, z1,κ, ω)∗JT(z0, z1,κ, ω) > 0. (4.61)

Proof. The equalities in (4.59) follow immediately from the equalities

Re S (z) · e3 = −1

2

([
E (z)

H (z)

]
,

[
0 e3×

−e3× 0

] [
E (z)

H (z)

])
=

1

2
(ψ (z) ,Jψ (z)) .

The proof of the last term in (4.59) being equal to (4.60) is proved in almost the exact same way as the proof
of Poynting’s Theorem for time-harmonic fields [see Section 6.8 in Jackson (1999) and also Section V.A of
Welters, Avniel, and Johnson (2014)] and so will be omitted. The inequality in (4.60) follows from passivity
(4.4) and necessary and sufficient conditions for equality follow immediately from this. These facts imply
immediately the inequality in (4.61). This completes the proof.

4.3 Analyticity of the DtN map for bounded media

4.3.1 Formulation of the problem

For the sake of simplicity, we consider here an electromagnetic medium (see Figure 4.2 for an example)
composed of two isotropic homogeneous materials which fills an open connected bounded Lipschitz domain
Ω ⊂ R3 (we refer to the Section 5.1 of Kirsch and Hettlich 2015 for the definition of Lipschitz bounded
domains which includes domains with nonsmooth boundary as polyhedra). However, our result could be easily
extended to a medium composed of a finite number of anisotropic homogeneous materials, this is discussed
in the last section. Thus, the dielectric permittivity ε and the magnetic permeability µ which characterized
this medium are supposed to be piecewise constant functions which take respectively the complex values ε1

and µ1 in the first material, and ε2 and µ2 in the second one. Moreover, we assume that both materials are
passive, thus these functions have to satisfy (see Milton 2002; Welters, Avniel, and Johnson 2014; Bernland,
Luger, and Gustafsson 2011; Gustafsson and Sjöberg 2010):

Im(ωε) > 0 and Im(ωµ) > 0 for Imω > 0, (4.62)

where ω denotes the complex frequency.
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Figure 4.2: Example of the body Ω.

The time-harmonic Maxwell’s equations (in Gaussian units) which link the electric and magnetic fields E
and H in Ω are given by:

(P)


curl E− iωµ c−1H = 0 in Ω,

curl H + iωε c−1E = 0 in Ω,

E× n = f on ∂Ω.

where n denotes here the outward normal vector on the boundary of Ω: ∂Ω, c the speed of light in the vacuum
and f the tangential electric field E on ∂Ω.

Let us first introduce some classical functional spaces associated to the study of Maxwell’s equations:

• L2(Ω) which is a Hilbert space endowed with the inner product:

(f ,g)L2(Ω) =

∫
Ω

f(x) · g(x) dx,

• H(curl ,Ω) =
{
u ∈ L2(Ω) | curl u ∈ L2(Ω)

}
,

• H0(curl ,Ω) = {u ∈ H(curl ,Ω) | u× n = 0 on ∂Ω},

• H− 1
2 (div , ∂Ω) = {(u× n)∂Ω | u ∈ H(curl ,Ω)},

• H− 1
2 (curl , ∂Ω) = {n× (u× n)∂Ω | u ∈ H(curl ,Ω)} .

Here H(curl ,Ω) and H0(curl ,Ω) are Hilbert spaces endowed with the norm ‖·‖H(curl ,Ω) defined by

‖u‖2H(curl ,Ω) = ‖u‖2L2(Ω) + ‖curl u‖2L2(Ω) .
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Concerning the functional framework associated with the spaces of tangential traces and tangential trace com-
ponentsH− 1

2 (div , ∂Ω) andH− 1
2 (curl , ∂Ω), we refer to the Section 5.1 of Kirsch and Hettlich (2015). These

spaces are respectively Banach spaces for the norms ‖·‖
H−

1
2 (curl ,∂Ω)

and ‖·‖
H−

1
2 (div ,∂Ω)

introduced in the

Definition 5.23 of Kirsch and Hettlich (2015) and are linked by the duality relation: (H−
1
2 (div , ∂Ω))∗ =

H−
1
2 (curl , ∂Ω). Moreover, their duality product 〈·, ·〉 (see Theorem 5.26 of Kirsch and Hettlich (2015))

satisfies the following Green’s identity:∫
Ω

u · curl v − v · curl u dx = 〈n× (v × n),u× n〉 , ∀u,v ∈ H(curl ,Ω). (4.63)

Here we look for solutions (E,H) ∈ H(curl ,Ω)2 of the problem (P) for data f ∈ H− 1
2 (div , ∂Ω).

4.3.2 The Dirichlet-to-Neumann map
We introduce the variable Z = (ωε1, ωε2, ωµ1, ωµ2) ∈ (C+)4. The electromagnetic Dirichlet-to-Neumann
map ΛZ : H−

1
2 (div , ∂Ω)→ H−

1
2 (curl , ∂Ω) associated to the problem (P) is defined as the linear operator:

ΛZ f = in× (H× n)∂Ω, ∀f ∈ H− 1
2 (div , ∂Ω). (4.64)

Remark 16. This definition of the DtN map (4.64) is slightly different from the one introduced in Albanese
and Monk (2006), Ola, Päivärinta, and Somersalo (2012) and Uhlmann and Zhou (2015). Here, the rotated
tangential electric field f = E× n is mapped (up to a constant) to the tangential component of the magnetic
field n×(H×n) = (I−nnT )H and not to the rotated tangential magnetic field H×n. This definition is closer
to the one used in Chaulet (2014) to construct generalized impedance boundary conditions for electromagnetic
scattering problems.

We want to prove the following theorem:

Theorem 17. The DtN map ΛZ is well-defined, is a continuous linear operator with respect to the datum f
and is an analytic function of Z in the open set (C+)4. Moreover, the operator ΛZ satisfies

Im
〈
ΛZ f , f

〉
> 0, ∀f ∈ H− 1

2 (div , ∂Ω)− {0}, (4.65)

and as an immediate consequence, the function

hf (Z) =
〈
ΛZ f , f

〉
defined on (C+)4 for all f ∈ H− 1

2 (div , ∂Ω) (4.66)

is a Herglotz function of Z (see Definition 2).

Remark 18. A similar theorem is obtained in the previous chapter of this book for a DtN map defined as
the operator which maps the tangential electric field n × (E × n) to in × H on ∂Ω . But for a regular
boundary ∂Ω (for example C1,1), this other definition of the DtN map can be rewritten as −QΛZQ with the
isomorphismQ : H−

1
2 (curl , ∂Ω)→ H−

1
2 (div , ∂Ω) defined byQ(g) = −n×g. Thus, one can show in the

same way that the function

hg(Z) = 〈g,−QΛZQg〉 , ∀g ∈ H− 1
2 (curl , ∂Ω)

is a Herglotz function on (C+)4. But, as it is mentioned in Remark 1, p. 30 and Corollary 2, p. 38 of Cessenat
(1996), the isomorphism Q may not be well-defined if the function n is not regular enough. That is why,
in order to make this connection, we assume that the boundary ∂Ω is slightly more regular than Lipschitz
continuous.



4.3. Analyticity of the DtN map for bounded media 113

4.3.3 Proof of the Theorem 17
We will first prove that the linear operator TZ : H−

1
2 (div , ∂Ω) → H(curl ,Ω)2 which associates the data f

to the solution (E,H) ∈ H(curl ,Ω)2 of (P) is well-defined, continuous and analytic in Z in (C+)4. In other
words that the problem (P) admits a unique solution (E,H) which depends continuously on the data f and
analytically on Z. The approach we follow is standard, it uses a variational reformulation of the time-harmonic
Maxwell’s equations (P) (see Cessenat 1996; Kirsch and Hettlich 2015; Monk 2003; Nedelec 2001).

The first step is to introduce a lifting of the boundary data f . As f ∈ H−
1
2 (div , ∂Ω), there exists (see

Theorem 5.24 of Kirsch and Hettlich 2015) a continuous lifting operator R : H−
1
2 (div , ∂Ω)→ H(curl ,Ω)

such that
R(f) = E0, (4.67)

that is a field E0 ∈ H(curl ,Ω) which depends continuously on f such that E0 × n = f on ∂Ω. Thus, the
field Ẽ = E−E0 satisfies the following problem with homogeneous boundary condition:

(P̃)


curl Ẽ− iωµ c−1H = −curl E0 in Ω,

curl H + iωε c−1Ẽ = −iωε c−1E0 in Ω,

Ẽ× n = 0 on ∂Ω.

Now multiplying the second Maxwell’s equation of (P̃) by a test function ψ ∈ H0(curl ,Ω), integrating
by parts and then eliminating the unknown H by using the first Maxwell’s equation, we get the following
variational formula for the electrical field Ẽ:∫

Ω

−c2 (µω)−1 curl Ẽ · curlψ + ωε Ẽ ·ψ dx =

∫
Ω

c2 (µω)−1curl E0 · curlψ − ωεE0 ·ψ dx, (4.68)

satisfied by all ψ ∈ H0(curl ,Ω). The variational formula (4.68) and the problem (P) are equivalent.

Proposition 19. Ẽ ∈ H0(curl ,Ω) is a solution of the variational formulation (4.68) if and only if (E =
Ẽ + E0,H = c (iµω)−1curl (Ẽ + E0)) ∈ H(curl ,Ω)2 satisfy the problem (P).

Proof. This proof is standard. For more details, we refer to the demonstration of the lemma 4.29 in Kirsch
and Hettlich (2015).

For all Z ∈ (C+)4, we introduce the sesquilinear form:

aZ(φ,ψ) =

∫
Ω

−c2(µω)−1 curlφ · curlψ + ωεφ ·ψ dx,

defined on H0(curl ,Ω)2. One easily proves by using the Cauchy–Schwarz inequality that:

|aZ(φ,ψ)|≤ max (c2
∥∥(ωµ)−1

∥∥
∞ , ‖ωε‖∞ ) ‖φ‖H(curl ,Ω) ‖ψ‖H(curl ,Ω) , (4.69)

where ‖·‖∞ denotes the L∞ norm. Thus, aZ is continuous and as such it allows us to define a continuous
linear operator AZ ∈ L(H0(curl ,Ω), H0(curl ,Ω)∗) by

〈AZφ,ψ〉H0(curl ,Ω) = aZ(φ,ψ), ∀φ,ψ ∈ H0(curl ,Ω), (4.70)
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where 〈·, ·〉H0(curl ,Ω) stands for the duality product betweenH0(curl ,Ω) and its dualH0(curl ,Ω)∗. We now
introduce the antilinear form lZ(E0)(·):

lZ(E0)(ψ) =

∫
Ω

c2 (µω)−1curl E0 · curlψ − ωεE0 ·ψ dx, ∀ψ ∈ H0(curl ,Ω).

In the same way as (4.69), one can easily check:

|lZ(E0)(ψ)|≤ max (c2
∥∥(ωµ)−1

∥∥
∞ , ‖ωε‖∞ ) ‖E0‖H(curl ,Ω) ‖ψ‖H(curl ,Ω) .

Hence, the linear operator LZ : H(curl ,Ω)→ H0(curl ,Ω)∗ defined by

〈LZE0,ψ〉H0(curl ,Ω) = lZ(E0)(ψ), ∀E0 ∈ H(curl ,Ω) and ∀ψ ∈ H0(curl ,Ω), (4.71)

is well-defined and continuous. Thus, we deduce from the relations (4.69) and (4.71) that the variational
formula (4.68) is equivalent to solve the following infinite dimensional linear system

AZ Ẽ = LZ E0. (4.72)

Proposition 20. If Z ∈ (C+)4, then the operator AZ is an isomorphism from H0(curl ,Ω) to H0(curl ,Ω)∗

and its inverse A−1
Z depends analytically on Z in (C+)4.

Proof. Let Z be in (C+)4. The invertibility ofAZ is an immediate consequence of the Lax–Milgram Theorem.
Indeed, the coercivity of the sesquilinear form aZ derives from the passivity hypothesis (4.62) of the material:

|aZ(φ,φ)|≥ Im (aZ(φ,φ)) ≥ α ‖φ‖2H(curl ,Ω) , ∀φ ∈ H0(curl ,Ω),

where α = min ( Im(ωε1), Im(ωε2),−c2 Im( (ωµ1)−1),−c2 Im(ωµ2)−1)) > 0.
Now the analyticity in Z of the operator A−1

Z is proved as follows. First, one can verify easily that for
all φ, ψ ∈ H0(curl ,Ω), the sesquilinear form aZ(φ, ψ) depends analytically on each component of Z when
the others are fixed. It follows immediately from this and Theorem 6 that the operator AZ [defined by the
relation (4.70)] is analytic in the operator norm of L(H0(curl ,Ω), H0(curl ,Ω)∗) and hence by Theorem
4 (Hartogs’ Theorem) it is analytic in Z in the open set (C+)4. Thus, since AZ is an isomorphism which
depends analytically on Z in the open set (C+)4, then by Theorem 5 its inverse A−1

Z depends analytically on
Z in (C+)4.

Using Theorem 4 again, one can easily check in the same way as for the operator AZ that the operator LZ

defined by (4.71) is also analytic in Z in (C+)4. Hence, the variational formula (4.68) admits a unique
solution:

Ẽ = A−1
Z LZ E0 = A−1

Z LZR(f) (4.73)

which depends continuously on the data f and analytically on Z in (C+)4.

Corollary 21. The linear operator TZ : H−
1
2 (div , ∂Ω)→ H(curl ,Ω)2 which maps the data f to the solution

(E,H) ∈ H(curl ,Ω)2 of (P) is well-defined, continuous and depends analytically on Z in (C+)4.

Proof. This result is just a consequence of Propositions 19 and 20 which prove that the time-harmonic Max-
well’s equations (P) admits a unique solution (E,H) = TZ(f) ∈ H(curl ,Ω)2 for data f ∈ H− 1

2 (div , ∂Ω)
where the linear operator TZ is defined by the following relation:

TZ(f) = (R(f) + Ẽ, c (iµω)−1curl (Ẽ +R(f)), ∀f ∈ H− 1
2 (div , ∂Ω), (4.74)



4.3. Analyticity of the DtN map for bounded media 115

where Ẽ = A−1
Z LZR(f) by the relation (4.73) andR stands for the lifting operator defined in (4.67). With the

relation (4.74), the continuity of TZ with respect to f and its analyticity with respect to Z follow immediately
from the corresponding properties of the operator A−1

Z , LZ and R.

We now introduce the tangential component trace operator γT : H(curl ,Ω) → H−
1
2 (curl , ∂Ω) defined

by:
γT (H) = n× (H× n)∂Ω, ∀H ∈ H(curl ,Ω), (4.75)

which is continuous (see Theorem 5.24 of Kirsch and Hettlich 2015) and the continuous linear operator P :
H(curl ,Ω)2 → H(curl ,Ω) defined by:

P (E,H) = H, ∀E,H ∈ H(curl ,Ω). (4.76)

This gives us the following operator representation of the electromagnetic DtN map defined in (4.64).

Proposition 22. (Electromagnetic Dirichlet-to-Neumann map) The electromagnetic Dirichlet-to-Neumann
map ΛZ : H−

1
2 (div , ∂Ω) → H−

1
2 (curl , ∂Ω) is the continuous linear operator defined by the composition

of the continuous linear operators γT in (4.75), P in (4.76) and TZ in (4.74) by

ΛZ(f) = i γT P TZ(f), ∀f ∈ H− 1
2 (div , ∂Ω). (4.77)

Proof. Let f ∈ H− 1
2 (div , ∂Ω). Then (E,H) = TZ(f) is the solution of problem (P). Thus, by definition

of γT and P we have PTZ(f) = H and hence iγTPTZ(f) = in × (H × n)∂Ω. Therefore, by the definition
(4.64) of the DtN map we have ΛZ(f) = iγTPTZ(f). The fact that ΛZ is a continuous linear operator follows
immediately from this representation. This completes the proof.

We can now derive the regularity properties of the DtN map ΛZ by expressing this operator in terms of the
operator TZ. The analyticity of the DtN map ΛZ with respect to Z in (C+)4 is now an immediate consequence
of the fact that ΛZ is the composition of two continuous linear operators i γT and P independent of Z with
the continuous linear operator TZ which is analytic in Z (see Corollary 21).

Finally, to prove the positivity of Im
〈
ΛZf , f

〉
, we apply Green’s identity (4.63) to the solution (E,H) of

the problem (P) for any nonzero data f ∈ H− 1
2 (div , ∂Ω). It yields

i

∫
Ω

E · curl H−H · curl E dΩ = i
〈
n× (H× n),E× n

〉
=
〈
ΛZ f , f

〉
.

Since (E,H) is a solution of the time-harmonic Maxwell equations (P), we can rewrite this last relation as:∫
Ω

ωε c−1 |E|2 − ωµ c−1 |H|2 dx =
〈
ΛZ f , f

〉
. (4.78)

By taking the imaginary part of (4.78) and using the passivity hypothesis (4.62) of the materials which com-
pose the medium Ω, we get the positivity of Im

〈
ΛZf , f

〉
(4.65) (since (E,H) 6= (0, 0) for f 6= 0) and it

follows immediately that the function hf defined by (4.66) is a Herglotz function of Z.
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4.3.4 Extensions of Theorem 17 to anisotropic and continuous media
Here we first extend Theorem 17 to the case of a medium Ω composed byN anisotropic homogeneous phases.
Therefore, the dielectric permittivity ε(x) and magnetic permeability µ(x) are now 3×3 tensor-valued func-
tions of x, which take for j = 1, · · · , N the constant values εj and µj in the jth material. Again, each
material is supposed to be passive, in the sense that Im(ωεj) and Im(ωµj) have to be positive tensors for all
j = 1, · · · , N (see Milton 2002, Welters, Avniel, and Johnson 2014, Bernland, Luger, and Gustafsson 2011,
Gustafsson and Sjöberg 2010).

First, we want to emphasize that besides the fact that ε and µ are now tensor-valued, the time-harmonic
Maxwell’s equations (P) in Ω and its associated functional spaces remain the same. Moreover, as the vector
space M3(C) is isomorphic to C9, we prove exactly in the same way that the DtN map ΛZ defined by (4.64)
is well-defined, is linear continuous with respect to f , and is an analytic function with respect to Z, where Z is
here the vector of the 18N coefficients which are the elements (in some basis) of the tensors ωεj and ωµj for
j = 1, · · · , N , in the open set O of C18N characterized by the passivity relation (4.62). As O is isomorphic
to the open set (M+

3 (C))2N , this is equivalent to say (as it is explained in the last paragraph of the subsection
4.2.2) that ΛZ is an analytic function of the vector Z, whose components are now those of the permittivity
tensors ωεj and permeability ωµj (for j = 1, · · · , N ) in each phase. Using the passivity assumption which is
associated with the elements of (M+

3 (C))2N , one proves also identically the relation (4.65) on the DtN map
for all Z ∈ (M+

3 (C))2N .
The problem is now to define the notion of a Herglotz function. Indeed, when the tensors εj andµj of each

composite are not all diagonal, it is not possible anymore to define the DtN map as a multivariate Herglotz
function hf on some copy of the upper-half plane: (C+)n. The major obstruction to this construction is based
on the simple observation that off-diagonal elements of a matrix inM+

3 (C) will not necessarily have a positive
imaginary part. Nevertheless, it is natural to define a Herglotz function which maps points Z represented by
a 2N -tuple of matrices L′1,L

′
2, . . .L

′
2N with positive definite imaginary parts, i.e., Z = (L′1,L

′
2, . . .L

′
2N ), to

the upper half-plane.
One way to preserve the Herglotz property is to use a trajectory method (see Bergman 1978 and Sec-

tion 18.6 of Milton 2002), in other words, consider an analytic function s 7→ Z(s) from C+ into (M+
3 (C))2N ,

i.e., a trajectory in one complex dimension (a surface in two real directions). Then, along this trajectory, we
obtain immediately that the function

hf (s) =
〈
ΛZ(s)f , f

〉
, ∀f ∈ H− 1

2 (div , ∂Ω), (4.79)

is a Herglotz function (see Definition 2) of s in C+: analyticity follows from the fact that analyticity is pre-
served under composition of analytic functions, while, when s has positive imaginary part, nonnegativity of
the imaginary part of hf (s) follows from the fact that Z(s) lies in the domain where the imaginary part of the
operator ΛZ(s) is positive semi-definite.

A particularly interesting trajectory for electromagnetism, in an N -phase material, is the trajectory

s = ω → Z(ω) = (ωε1(ω), ωε2(ω), . . . , ωεN (ω), ωµ1(ω), ωµ2(ω), . . . , ωµN (ω)),

where εj(ω) andµj(ω) are the physical electric permittivity tensor and physical magnetic permeability tensor
of the actual material constituting phase i as functions of the frequency ω. Due to the passive nature of these
materials the trajectory maps ω in the upper half plane C+ into a trajectory in (M+

3 (C))2N . The physical
interest about this trajectory is that one can in principle measure ΛZ(ω) along it, at least for real frequencies
ω.
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In the case of the trajectory method, one can easily generalize Theorem 17 to continuous anisotropic
composites where ε and µ are matrix-valued functions of both variables (x, ω) ∈ Ω × C+. In this case, we
suppose that

• (H1) For all ω ∈ C+, ε(·, ω) and µ(·, ω) are L∞ matrix-valued functions on Ω which are locally
bounded in the variable ω, in other words, we suppose that there exists δ > 0 such that the open ball of
center ω and radius δ: B(ω, δ) is included in C+ and that

sup
z∈B(ω,δ)

‖ε(·, z)‖∞<∞ and sup
z∈B(ω,δ)

‖µ(·, z)‖∞<∞ (4.80)

• (H2) The composite is passive which implies that for almost every x ∈ Ω, the functions ω 7→ ωε(x, ω)
and ω 7→ ωµ(x, ω) are analytic functions from C+ to M+

3 (C) (see Section 11.1 of Milton 2002).

• (H3) For all ω ∈ C+, there exists Cω > 0 such that

ess inf
x∈Ω

Im(ωε(·, ω)) ≥ Cω Id and ess inf
x∈Ω
−(Im(ωµ(·, ω))−1 ≥ Cω Id . (4.81)

Remark 23. The hypotheses (H1) and (H3) may seem complicated but they are satisfied for instance when
ε and µ are continuous functions of both variables (x, ω) ∈ cl Ω × C+, where cl Ω denotes the closure
of Ω. In that case, one can see immediately that (H1) is satisfied. Moreover, if we assume also that the
passivity assumption (H2) holds on cl Ω (instead of just Ω), the hypothesis (H3) is also satisfied since the
functions Im(ωε(·, ω)) and −(Im(ωµ(·, ω)))−1 are continuous functions on a compact set and thus reach
their minimum value which is a positive matrix.

Under these hypotheses, Theorem 17 remains valid: the function hf (ω) given by (4.66) is a Herglotz
function of the frequency (by interpreting each formula of Section 4.3 with Z = ω ∈ C+ as a new analytic
variable and ε and µ as matrix valued functions of the variables (x, ω)). Moreover, the proof is basically
the same as the one in Subsection 4.3.3. We just make precise here the justification of some technical points
which appear when one reproduces this proof in this framework.

We first remark that the assumption (H1) on the tensors ε and µ implies that the tensors ωε(·, ω) and
(ωµ(·, ω))−1 are bounded functions of the space variable x. Thus the bilinear form aω remains continuous
and the operators Aω and Lω are still well-defined and continuous. With the coercivity hypothesis (H3), one
can easily check that ∀φ ∈ H0(curl ,Ω),

|aω(φ,φ)|≥ Cω ‖φ‖2H(curl ,Ω) ,

and apply again the Lax–Milgram theorem to show the invertibility of Aω . Then, the analyticity of the op-
erators Aω and Lω with respect to ω in C+ is still obtained (thanks to the relations (4.70) and (4.71)) from
their weak analyticity (see Theorem 6). This weak analyticity is proved by using Theorem 7 to show the an-
alyticity of the integrals which appear in the expression of 〈Aωφ,ψ〉H0(curl ,Ω) and 〈LωE0,ψ〉H0(curl ,Ω) for
φ, ψ ∈ H0(curl ,Ω) and E0 ∈ H(curl ,Ω) (since the assumptions (H1) and (H2) imply the hypotheses of
Theorem 7). Then the analyticity ofA−1

ω is proved by using again Theorem 5 and the rest of the proof follows
by the same arguments as in the isotropic case.
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4.4 Herglotz functions associated with anisotropic media
A theory of Herglotz functions directly defined on tensors and not only on scalar variables is particularly
useful in the domain of bodies containing anisotropic materials such as, for instance, sea ice (see Carsey 1992,
Stogryn 1987, Golden 1995, Golden 2009, Gully, Lin, Cherkaev, and Golden 2015) or in electromagnetism
where it will even extend to complicated media such as gyrotropic materials for which the dielectric tensors
and magnetic tensors are anisotropic but not symmetric (as there is no reciprocity principle in such media,
see Landau, Lifshitz, and Pitaevskiı̆ 1984). The idea for Herglotz representations of the effective moduli of
anisotropic materials was first put forward in the appendix E of Milton (1981c), and was studied in depth
in Chapter 18 of Milton (2002), see also Barabash and Stroud (1999). In connection with sea ice, one is
particularly interested in bounds where the moduli are complex: such bounds are an immediate corollary
of appendix E of Milton (1981c) and series expansions of the effective conductivity (Willemse and Caspers
1979; Avellaneda and Bruno 1990) that are contingent on assumptions about the polycrystalline geometry, and
more generally are obtained (even for viscoelasticity with anisotropic phases) in Milton (1987b) (to make the
connection, see the discussion in Section 15 of the companion paper (Milton 1987a)), and also see the bounds
(16.45) in Milton (1990). Explicit calculations were made by Gully, Lin, Cherkaev, and Golden (2015) and
are in good agreement with sea ice measurements.

The trajectory method provides the desired representation, as shown in Section 18.8 of Milton (2002). We
slightly modify that argument here. Given any tensors Lj = ωεj and Lj+N = ωµj , for j = 1, 2, . . . N ,
which we assume to have strictly positive definite imaginary parts, and given a reference tensor L0 which is
real, but not necessarily positive definite, define the real matrices

Aj = Re[(L0 − Lj)
−1], Bj = Im[(L0 − Lj)

−1], j = 1, 2, . . . , 2N, (4.82)

where, according to our assumption, Bj is positive definite for each j. Then consider the trajectory

Z(s) = (L′1(s),L′2(s), . . .L′2N (s)), where L′j(s) = L0 − (Aj + sBj)
−1. (4.83)

Each of the matrices L′j(s) have positive definite imaginary parts when s is in C+, and so Z(s) maps C+ to
(M+

3 (C))2N . Furthermore, by construction our trajectory passes through the desired point at s = i:

Z(i) = (ωε1, ωε2, . . . , ωεN , ωµ1, ωµ2, . . . ωµN ). (4.84)

Now ΛZ(s) is an operator valued Herglotz function of s, and so has an integral representation involving a
positive semi-definite operator-valued measure deriving from the values that Z(s) takes when s is just above
the positive real axis. That measure in turn is linearly dependent on the measure derived from the values
that ΛZ(L′1,L

′
2,...L

′
2N ) takes as imaginary parts of L′j become vanishingly small. Thus Z(i) can be expressed

directly in terms of this latter measure, involving an integral kernel KL0
(L1,L2, . . .L2N ,L

′
1,L
′
2, . . .L

′
2N )

that is singular with support that is concentrated on the trajectory traced by (L′1(s),L′2(s), . . .L′2N (s)) as s
is varied along the real axis. The formula for ΛZ(i) obtained from the above prescription can be rewritten
(informally) as

ΛZ(L1,L2,...L2N ) =

∫
KL0

(L1,L2, . . .L2N ,L
′
1,L
′
2, . . .L

′
2N ) dm(L′1,L

′
2, . . .L

′
2N ). (4.85)

With extra work, an explicit formula could be obtained for the kernel KL0
(L1,L2, . . .L2N ,L

′
1,L
′
2, . . .L

′
2N )

which is non-zero except on the path traced out by (L′1(s),L′2(s), . . .L′2N (s)) as s varies over the reals, and
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this path depends on L0 and the moduli of L1,L2, . . .L2N . The measure dm(L′1,L
′
2, . . .L

′
2N ) is derived

from the values that ΛZ(L′1,L
′
2,...L

′
2N ) takes as imaginary parts of L′j become vanishingly small.

The trajectory method has been unjustly criticised for failing to separate the dependence of the function
(in this case ΛZ(L1,L2,...L2N )) on the moduli (in this case the tensors L1,L2, . . .L2N ) from the dependence
on the geometry, which is contained in the measure (in this case derived from the values that ΛZ(L′1,L

′
2,...L

′
2N )

takes as imaginary parts of L′j become vanishingly small.) But we see that (4.85) makes such a separation.
Now there are differences between this representation and standard representation formulas for multi-

variate Herglotz functions, but the main difference is that the kernel KL0
(L1,L2, . . .L2N ,L

′
1,L
′
2, . . .L

′
2N ),

unlike the Szegő kernel which enters the polydisk representation of Korányi and Pukánszky (1963), is sin-
gular, being concentrated on this trajectory. However, for each choice of L0 there is a representation, each
involving a kernel with support on a different trajectory and so one can average the representations over the
matrices L0 with any desired smooth nonnegative weighting, to obtain a family of representations with less
singular kernels that are the average over L0 of KL0

(L1,L2, . . .L2N ,L
′
1,L
′
2, . . .L

′
2N ). This nonuniqueness

in the choice of kernel reflects the fact that the measure satisfies certain Fourier constraints on the polydisk
(see Rudin (1969)).

Another approach to considering of the notion of Herglotz functions in anisotropic multicomponent media
is as follows. It will consist of proving that (M+

3 (C))2N is isometrically isomorphic to a tubular domain
(defined below) ofC18N and use it to extend the definition of Herglotz functions via the theory of holomorphic
functions on tubular domains with nonnegative imaginary part from Vladimirov 2002.

As we have already mentioned in the introduction to this chapter and at the end of Subsection 4.3.4, this
extended definition is significant because these multivariate functions provide a deep connection to the theory
of multivariate passive linear systems as described in Section 20 of Vladimirov 2002, for instance, and in
the study of anisotropic composites (e.g., sea ice or gyrotropic media). In addition to this, such an extension
may allow for a more general approach of the efforts of Golden and Papanicolaou (1985) and Milton and
Golden (1990) to derive integral representations of multivariate Herglotz functions in (C+)N , beyond that
provided in Section 18.8 of Milton (2002), or for deriving bounds in the theory of composites using the
analytic continuation method (see Chapter 27 in Milton 2002).

Let us first introduce the definition of a tubular domain from Chapter 2, Section 9 of Vladimirov 2002.

Definition 24. Let Γ be a closed convex acute cone in RN with vertex at 0. We denote byC = int(Γ∗), where
Γ∗ stands for the dual of C (in the sense of cones’ duality) and int(Γ∗) denotes the (topological) interior of
Γ∗. Thus, C is an open, convex, nonempty cone. Then, a tubular domain in CN with base C is defined as:

T = RN + iC =
{
z = x + iy|x ∈ RN and y ∈ C

}
.

We will now show that M+
N (C) is isometrically isomorphic to a tubular domain T C of CN2

[see Propo-
sition 25, Proposition 26, and Theorem 27 below (which we state without proof as they are easily verified)].
Toward this purpose, we first use the decomposition

M =
M + M∗

2
+ i

M−M∗

2i
, ∀M ∈MN (C),

to parameterize the space M+
N (C) as

M+
N (C) =

{
M1 + iM2|M1 ∈ HN (C) and M2 ∈ H+

N (C)
}
,

whereHN (C) andH+
N (C) denote the sets of Hermitian and positive definite Hermitian matrices, respectively.
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Then, we recall with the two following propositions thatHN (C) is a Euclidean space andH+
N (C) is a cone

in HN (C) with some remarkable properties that we will use to construct the basis C of our tubular region.
First, denote the standard orthonormal basis vectors of RN by ek, k = 1, . . . , N . With respect to this basis,
let Ekl, 1 ≤ k, l ≤ N denote the matrices in MN (C) such that as operators on CN are equal to

Ekl = eke
T
l for k, l ∈ {1, . . . , N}, (4.86)

i.e., Ekl is the N ×N matrix with 1 in the kth row, lth column and zeros everywhere else.

Proposition 25. The Hermitian matrices HN (C) endowed with the inner product:

(A,B)HN (C) = Tr(AB), ∀A,B ∈ HN (C) (4.87)

is a Euclidean space of dimension N2. Furthermore, an orthonormal basis of this space is given by the
matrices:

Ekk for k ∈ {1, 2, 3, ..., N}, (4.88)
1√
2

(Ekl + Elk),
i√
2

(Ekl −Elk) for l, k ∈ {1, 2, 3, ..., N} such that l < k. (4.89)

Moreover, if we denote by IN = {1, · · · , N}, then the linear map φ : HN (C) 7→ RN2

given by

φ(A) = ((Akk)k∈IN , (
√

2 ReAkl)(k,l)∈I2N |k<l, (
√

2 ImAkl)(k,l)∈I2N |k<l) ∈ RN
2

. (4.90)

which represents the coordinates of A in the orthonormal basis (4.88) defines an isometry in the sense that

(A,B)HN (C) = φ(A) · φ(B), ∀A,B ∈ HN (C), (4.91)

for · the standard dot product of RN2

.

Proposition 26. In the Euclidean spaceHN (C), denote the closure ofH+
N (C) by clH+

N (C) and its (topolog-
ical) interior by int

(
clH+

N (C)
)
. Then

clH+
N (C) = {M ∈MN (C)|Im M ≥ 0}, (4.92)

i.e., the set all positive semidefinite (Hermitian) matrices in MN (C). Furthermore, it is a closed, convex,
acute cone with vertex at 0 and is self-dual (in sense of cones’ duality). Moreover, int

(
clH+

N (C)
)

= H+
N (C)

and it is an open, convex, nonempty cone (in the sense of the definition in Sec. 4.4 of Vladimirov 2002).

In particular, it follows immediately from the Propositions 25 and 26 that:

Theorem 27. The set M+
N (C) = HN (C) + iH+

N (C) is isometrically isomorphic to a tubular domain T C =

RN2

+ i C in CN2

where RN2

and C are respectively defined by the relations RN2

= φ(HN (C)) and
C = φ(H+

N (C)) for φ the isometry defined in (4.90).

As the Cartesian product of tubular domains is also a tubular domain, we obtain immediately that the
space of tensors (M+

3 (C))2N associated to a medium Ω composed of N anisotropic passive composites is
isometrically isomorphic to the tubular region (T C)2N = T C2N

(where T C is the tubular domain defined in
the Theorem 27). Hence, identifying (M+

3 (C))2N with T C2N

via this isometry allows us to define in Theorem
17 the function

hf (Z) =
〈
ΛZ f , f

〉
, ∀f ∈ H− 1

2 (div , ∂Ω),

on (M+
3 (C))2N as an Herglotz function of Z in the sense that it is an holomorphic function on a tubular

domain with a nonnegative imaginary part and it justifies Definition 2 given in the introduction.
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5 The inverse problem: Obtaining
information about what’s inside

a body

Graeme W. Milton
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Abstract

Using the fact that the Dirichlet-to-Neumann map derives from an effective tensor, which has
the same abstract definition as effective tensors in composites, we employ bounds on these
effective tensors to obtain bounds which correlate the Dirichlet-to-Neumann map at different
frequencies. These bounds can be used in an inverse fashion to give information about the
moduli inside the body. Also in two phase nonmagnetic bodies, with constant magnetic
permeability, the Dirichlet-to-Neumann map is an analytic function of frequency, and there
can be special complex frequencies where the electrical permittivity is the same for both
phases. The Dirichlet-to-Neumann map can therefore be determined exactly (numerically)
at these frequencies. Then measurements of the transient behavior of the response fields at
the boundary of the body, for various time-dependent applied fields at the boundary can be
correlated with perturbations to the Dirichlet-to-Neumann near these special frequencies, and
information about the geometry can be extracted from bounds on these perturbations. In a
similar vein, in quasistatic elastodynamics in a two-phase body, there may be special complex
frequencies where the complex shear moduli of the phases coincide (though no necessarily
their bulk moduli). With the right boundary conditions at these special frequencies one can
extract information about the geometry from the Dirichlet-to-Neumann map, and that in
turn can be correlated with the transient behavior of the traction fields at the boundary of
the body, for various applied, time-dependent, displacement fields imposed at the boundary.
For two-phase conducting, or dielectric, media in the quasistatic limit the analysis is even
simpler and one does not have to look for these special frequencies. The transient response of
the boundary fields can be directly correlated with perturbations of the Dirichlet-to-Neumann
map for a nearly homogeneous material, and from bounds on these perturbations one can
extract information about the geometry. Finally instead of measuring the transient response,
one could measure the Dirichlet-to-Neumann map at a set of frequencies and results on
the Nevanlinna–Pick interpolation problem for operator-valued functions give us bounds on
the perturbations of the Dirichlet-to-Neumann map for a nearly homogeneous material, and
thereby bounds on the geometry.

123
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5.1 Introduction
Due to the enormous applications in medicine, geophysical prospecting, and homeland security, the field of
inverse problems, where one tries to say something about what is inside a body from external measurements,
has received enormous attention: see, for example, the books of Isakov (2006), Kirsch (2011), Mueller and
Siltanen (2012), Kabanikhin (2012), Ammari, Garnier, Jing, Kang, Lim, Sølna, and Wang (2013), the confer-
ence proceedings Stefanov, Vasy, and Zworski (2014) in honor of Gunther Uhlmann, and of course the many
articles in the journals “Inverse Problems”, “Journal of Inverse and Ill-Posed Problems”, “Inverse Problems
and Imaging”, and “Inverse Problems in Science and Engineering” devoted to the subject.

Here the waves we probe the body with could be acoustic (sound) waves, electromagnetic waves or elastic
(seismic) waves. Or they could be static fields applied to the boundary of the body: electrical potentials, current
fluxes, prescribed deformations (displacement fields) or prescribed tractions (force applied to the body). Or
these applied fields could vary with time, perhaps sinusoidally (at one frequency) but more generally they
could have a variety of dependencies with time. One of the simplest is when fields are suddenly applied to
the body: perhaps one suddenly deforms the body and measures how the tractions at the boundary relax with
time (stress relaxation), or perhaps one suddenly exerts a traction on the body and watches how it deforms
with time (creep test). Or in acoustics one could apply a pressure field and watch how the fluid moves.

So the problem is: given measurements of the Dirichlet-to-Neumann map, or partial measurements per-
haps for a variety of frequencies, or perhaps one measures the transient response for time-varying applied
fields, how does one recover information about what’s inside the body? Usually there is an overabundance of
data. The question is, how do you interpret those data?

Unless the body is almost homogeneous, the difficulty is that the Dirichlet-to-Neumann map depends
nonlinearly and in a complicated way (that is nonlocal) on the moduli of materials inside the body and on
their positioning. Waves scatter, diffract, bend, interact with inclusions and the scattered waves they produce
can scatter off other inclusions. In general it looks like an intractable mess.

What the results of this chapter do is find a path through this mess to allow one to systematically interpret
data in new ways never envisaged before.

There are two main ideas which allow us to do this. The first is the recognition that mathematically
speaking the Dirichlet-to-Neumann map is the exact analog of an effective tensor in a composite material
and hence many results in the theory of composites can be directly mapped over to Dirichlet-to-Neumann
operators. In particular, many bounds and the techniques for obtaining them can be carried over. These
bounds correlate the Dirichlet-to-Neumann map at many different frequencies with the internal geometry and
moduli (see Section 5.3). Also the analytic properties of the Dirichlet-to-Neumann map as a function of the
component moduli, as established in the previous two chapters, allows one to correlate either the transient
response of the body, or the response of the body at a set of frequencies with the internal geometry.

The second affiliated result is the recognition that the Dirichlet-to-Neumann map, when appropriately
defined, is an analytic function of the frequency ω, having a positive semidefinite imaginary part when ω has
positive imaginary part. Thus it is essentially an operator-valued “Herglotz function”, and has an integral
representation involving an operator-valued positive semi-definite measure. Also, in the cases considered
here, one can also introduce τ = ω2 and express the response of the body as a Stieltjes function of τ . This
then enables one to bound the transient behavior of the body, using the procedure detailed in the following
chapter. The bounds allow one to extrapolate the measured data at a variety of frequencies or measured
transient responses, to special frequencies (possibly complex) where the medium is almost homogeneous —
and where information about the internal geometry is much easier to recover (see Sections 5.7, 5.8, and 5.9).

Another approach, we which we do not explore here, but which has been very successful for two-phase
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composites (Day and Thorpe 1999; Day, Grant, Sievers, and Thorpe 2000; Cherkaev 2001; Zhang and
Cherkaev 2009; Cherkaev and Bonifasi-Lista 2011) is to take the experimental data of the response, per-
haps at various frequencies or perhaps to other time varying applied fields, and find approximations fitting
this data, as nearly as possible, for the (operator-, matrix-, or scalar-valued) measure that enters the integral
representation of the response functions. Then one can use relations between this measure and the geome-
try (sum-rules) to extract information about the geometry. The inverse problem of finding the measure from
experimental measurements is notorously ill-posed (Cherkaev 2001) so some regularization has to be made.
This approach has the advantage of being suitable even when there are significant errors in the measurements,
although (as is common in inverse problems) it is hard to assess how accurate the result is. Test cases can help
give one confidence in the method to produce useful results.

An alternative hybrid approach, introduced by McPhedran, McKenzie, and Milton (1982), is to use the fact
that the bounds imply that rational functions satisfying the required analytic constraints pass through the exact
data, at a given finite set of frequencies, if the rational functions are of the appropriate degree. Then, if there
are errors in the measurements (with known error bars), one can generate a family of such rational functions
that are compatible with the data and in this way one obtains not only information about the geometry, but
also an idea of the probable error associated with these predictions. It could happen that there is no rational
function compatible with the data. This could be a sign that the errors have been underestimated, or that there
is some physics involved which has not been captured by the underlying equations.

We caution that our results for bounds on the transient electrical response of bodies for the full Maxwell’s
equations, or for the quasistatic dielectric equations, might be of limited practical utility due to the fast electri-
cal relaxation times of many materials, especially conductors. According to Table 7.7.1 in Haus and Melcher
(1989), typical relaxation times are 1.5 × 10−19 seconds for copper; 3.6 × 10−6 seconds for distilled water;
0.55 seconds for corn-oil; and 5.1 × 104 seconds for mica. Measurements would need to be made on those
time scales to capture the transient response.

This chapter assumes the reader is familiar with the contents of Chapters 1, 2, and 3 although not neces-
sarily Chapter 4.

5.2 Transformations

Given any relation

G(x) = Z(x)F(x), (5.1)

we are free to rotate this in the complex plane and consider

G̃(x) = Z̃(x)F̃(x), G̃(x) = eiθG(x),

F̃(x) = eiαF(x), Z̃(x) = ei(θ−α)Z(x). (5.2)

Also, as observed by Cherkaev and Gibiansky (1994), when the tensor Z(x) is symmetric, but complex, any
equation of the form 5.1 can be expressed in terms of its real and imaginary parts,(G′

G′′
)

=

(−Z′′ Z′

Z′ Z′′

)(G′′
F ′
)
, (5.3)
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where the primed quantities denote real parts, while the double primed quantities denote imaginary parts, and
subsequently reformulated as(F ′′

G′′
)

︸ ︷︷ ︸
G(x)

=

(
[Z′′]−1 [Z′′]−1Z′

Z′[Z′′]−1 Z′′ + [Z′][Z′′]−1[Z′]

)
︸ ︷︷ ︸

Z(x)

(−G′
F ′
)

︸ ︷︷ ︸
F(x)

. (5.4)

This manipulation is useful, because Z(x) is real and symmetric and is positive definite if Z′′ is positive
definite. Cherkaev and Gibiansky (1994) noticed that the quadratic form associated with the matrix entering
the constitutive law in (5.3) is saddle shaped, and could be converted to a convex quadratic form by making
a partial Legendre transform which is equivalent to rewriting the constitutive law in the form (5.4). Partial
Legendre transforms are well known in thermodynamics for converting convex functions to saddle-shaped
functions and vice versa (see, for example, Callen 1960a). Similar manipulations can be made for other
non-self-adjoint problems (Milton 1990; Fannjiang and Papanicolaou 1994; Norris 1997; Carini and Mattei
2015; see also Chapter 14 of this book). In Chapter 5 of Cherkaev (2000) these ideas are extended to other
optimization problems. Also the key identity holds and all of the analysis applies. Note that in (5.1) we are
free to replace G = G′ + iG′′ and F = F ′ + iF ′′ with iG = iG′ − G′′ and iF = iF ′ − F ′′, i.e., make the
replacements

G′ → −G′′, G′′ → G′, F ′ → −F ′′, F ′′ → F ′. (5.5)

Naturally this invariance extends to the equation (5.4) and so we have(F ′
G′
)

= Z(x)

( G′′
−F ′′

)
. (5.6)

I learned of this breakthrough result from Gibiansky and Cherkaev during a visit to Russia in 1987, and
subsequently realized (Milton 1990) that the same procedure could be used to reformulate other problems
with a non-self-adjoint Z(x), having a positive definite self-adjoint part, into an equivalent problem having
a self-adjoint Z(x) that is positive definite. Consider the equation (5.1) in conjunction with a solution to the
adjoint problem, G′(x) = Z†(x)F ′(x) where Z† denotes the adjoint of Z (and the primes no longer denote
real parts), and let

Zs = Z + Z†, Za = Z− Z†,

Fs =
1

2
(F + F ′), Gs =

1

2
(G + G′),

Fa =
1

2
(F − F ′), Ga =

1

2
(G − G′). (5.7)

Then the equation with its adjoint can be reformulated as(Fs
Ga

)
︸ ︷︷ ︸
G(x)

=

(
Z−1
s −Z−1

s Za
ZaZ

−1
s Zs − ZaZ

−1
s Za

)
︸ ︷︷ ︸

Z(x)

(Gs
Fa

)
︸ ︷︷ ︸
F(x)

. (5.8)

Again the key identity holds and all of the analysis applies.
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5.3 Bounds on effective tensors applied to Dirichlet-to-Neumann maps
Now Z(x) also depends on frequency ω, i.e., Z(x, ω), and hence the associated L(x) also depends on
frequency, i.e., L(x, ω). Suppose we take measurements of the Dirichlet-to-Neumann map at frequencies
ω1, ω2, . . . , ωs. Lets make the transformations described in Section 5.2 to Z(x, ω1), . . . ,Z(x, ωs), with as-
sociated Hermitian positive definite tensors L(x, ω1), . . . ,L(x, ωs). The equations are now

J0(x, ω) + J(x, ω) = L(x, ω)[E0(x, ω) + E(x, ω)], (5.9)

with
J0,E0 ∈ U , E ∈ E , J ∈ J , (5.10)

where U , E , J are defined, given some choice of reference medium Z0, in a similar way the spaces U , E , and
J are defined in Section 3.2 given the reference medium Z0. Now E and J each have some components that
derive from potentials, and some components that are associated with fluxes.

Then, when the tensors L(x, ωi) are Hermitian and positive definite, the simplest uncoupled bounds (see
Section 2.7 in this book or, for example, Section 13.1 and Chapter 22 of Milton 2002), are the classical
bounds

L∗(ωi) ≥ 0,

L∗(ωi) ≤ Γ0L(x, ωi)Γ0,

[L∗(ωi)]
−1 ≤ Γ0L

−1(x, ωi)Γ0, (5.11)

where Γ0 is the projection onto the space U . Note that since Z0 is given, one can in principle numerically
calculate the fields in the space U : thus the operator Γ0 can be considered to be known.

The idea is to use the second and third bounds in an inverse fashion to say something about L(x). The
bounds tell us something about∫

Ω

U1(x)L(x, ωi)U2(x),

∫
Ω

U1(x) [L(x, ωi)]
−1

U2(x), (5.12)

as U1,U2 vary over all fields in U . It might be the case that we know something about how L(x, ω) and hence
L(x, ω) depend on frequency. For instance, for the quasistatic dielectric problem (or for electromagnetism),
with isotropic constituent materials, it is common to assume the complex dielectric constant at low frequencies
takes the form

ε(x, ω) = εR(x) +
iσ(x)

ω
. (5.13)

So measurements at different frequencies will give us information on εR(x) and σ(x).
The second bound in (5.11) is also a direct consequence of a variational principle obtained by Milton,

Seppecher, and Bouchitté (2009). that generalizes the variational principles Cherkaev and Gibiansky (1994)
obtained for quasistatics. [The breakthrough observation which led to this generalization was the recognition
that these equations could be written in the forms (3.7), (3.8), and (3.77) where the key identity holds and,
after possibly multiplying it by complex number, the tensor entering the constitutive relation has a positive
semi-definite imaginary part.] The variational principle (in the absence of any source term) involves the
function

Y (ũ′, G̃′) =

∫
Ω

(
F̃ ′
−G̃′

)
· Z
(
F̃ ′
−G̃′

)
, (5.14)
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where F̃ ′ and G̃′ are given by

F̃ ′ =

(∇ũ′

ũ′

)
, G̃′ =

(
G̃′

∇ · G̃′

)
, (5.15)

and the real-valued trial fields ũ′ and G̃′ satisfy the boundary conditions

ũ′ = u′0, n · G̃′ = t′0 for x ∈ ∂Ω. (5.16)

In terms of these functions and fields the variational principle is

Y (u′,G′) = inf
ũ′

inf
G̃′
Y (ũ′, G̃′), (5.17)

where u′ and G′ satisfy the boundary conditions u′ = u′0 and n ·G′ = t′0 on ∂Ω and are the real parts of
complex fields u and G solving (

G

∇ ·G

)
= Z

(∇u

u

)
, (5.18)

with Z(x) being complex. We could take trial fields so that F̃ ′ = F ′0 and G̃′ = G′0 where the fields F ′0 and
G′0 are the real parts of fields F0 = F ′0 + iF ′′0 and G0 = G′0 + iG′′0 such that

F0 =

(∇u0

u0

)
, G0 =

(
G0

∇G0

)
, (5.19)

and (F ′′0
G′′0

)
︸ ︷︷ ︸
G

0
(x)

= Z0

(−G′0
F ′0

)
︸ ︷︷ ︸
F0(x)

. (5.20)

We could set our boundary conditions (5.16) to match those of these given fields. Then we have

Y (u′0,G
′
0) =

∫
Ω

U0 · L U0, (5.21)

where
U0 = Z

−1/2
0 G0(x) = Z

1/2
0 F0(x) ∈ U , L(x) = Z

−1/2
0 Z(x)Z

−1/2
0 . (5.22)

With a bit more work, using an argument analogous to the way the identity (3.45) was obtained, it can be
shown that

Y (u′,G′) =

∫
Ω

U0(x) · [L∗U0](x), (5.23)

where to obtain [L∗U0](x) we need to apply the operator L∗ to the field U0, and then evaluate the resulting
field at the point x. Hence the bound

Y (u′,G′) ≤ Y (u′0,G
′
0), (5.24)

implied by the variational principle (5.17) implies the second bound in (5.11). Similarly the third inequality
in (5.11) follows from the variational principle which is dual to (5.17), given in equation (2.51) in Milton,
Seppecher, and Bouchitté (2009).
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Of course the variational principles (5.17) allow a much wider choice of trial field, and consequently
should yield even tighter bounds on the moduli when used in an inverse manner as discussed in Section 6 of
Milton, Seppecher, and Bouchitté (2009) [except that the last bound in that paper, equation (6.8), is not useful
at all, since the right side minus the left side is always positive no matter what the geometry]. This method
for obtaining information about the geometry is similar to one proposed by Berryman and Kohn (1990) in
the context of the conductivity equations. A variant of it has been implemented numerically by Borcea, Gray,
and Zhang (2003) with some limited success. The inverse problem for the conductivity problem, known as
electrical impedance tomography, is notoriously ill-posed and so we would hope for better resolution when one
probes the medium with waves provided the medium is not too lossy (for electromagnetism) or viscous (for
acoustics or elastodynamics). We remark that the variational principles of Cherkaev and Gibiansky (1994),
in conjunction with the translation method (described in Section 5.5 below), have been used by Kang, Kim,
Lee, Li, and Milton (2014) to obtain very tight bounds on the volume fraction of the phases in a two phase,
two-dimensional body from a few measurements of complex potential and complex flux, associated with the
quasistatic conductivity problem at a fixed frequency (when one or both of the two component conductivities
are complex): see also Thaler and Milton (2015). For two-phase composite materials, bounds on the volume
fraction have been obtained from known values of the effective complex dielectric constant, and the complex
dielectric constants of the two-phases by McPhedran, McKenzie, and Milton (1982), McPhedran and Milton
(1990), and Cherkaev and Golden (1998).

5.4 Choosing the reference tensor Z0

To gain some insight into how one may choose the reference tensor Z0 it is helpful to look for solutions to the
equations (

G

∇ ·G

)
= Z0

(∇u

u

)
, (5.25)

with a positive definite reference tensor Z0 of the form

Z0 =

(
λ1I 0

0 λ2I

)
, (5.26)

where the eigenvalues λ1 and λ2 are both positive. We then have

G = λ1∇u, ∇ ·G = λ2u, (5.27)

implying
∇2u = (λ2/λ1)u. (5.28)

This, for example, has the solution

u = v0e
k0·x, where k0 = n0/`, ` =

√
λ1/λ2, (5.29)

where v0 and k0 are constant vectors, and n0 is a unit vector. These solutions decay exponentially with
a characteristic length ` =

√
λ1/λ2. If ` is much smaller than the diameter of the body Ω then for most

boundary conditions the fields U(x) associated with them are going to decay rapidly away from the boundary.
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Similarly, if associated with the equation (5.4) we take a reference tensor

Z0 =

(
Z−1

0 0

0 Z0

)
=


I/λ1 0 0 0

0 I/λ2 0 0

0 0 λ1I 0

0 0 0 λ2I

 , (5.30)

then the characteristic length scale will still be `. If ` is much smaller than the body Ω then quantities like
those in (5.12) will be fairly insensitive to the values of L(x, ωi) that are well away from the edges: we can
expect that generally the fields U1(x) and U2(x) will decay away from the boundary with a skin depth of the
order of `. Therefore we should choose a reference tensor Z0 with λ larger than the size of the body.

However, since the deep interior of a body is most easily probed with waves it might be best to choose a
reference tensor Z0 which corresponds with a Z0 that is close to those associated with waves such as

Z0 =

(
(−z1 + iδ1)I 0

0 (z2 + iδ2)I

)
, (5.31)

where z1 and z2 are positive, while δ1 and δ2 are positive and fairly small. Then the fields (5.29) still solve
the equations with a complex value for `:

` = `′ + i`′′ =
√
λ1/λ2 =

√
(−z1 + iδ1)/(z2 + iδ2). (5.32)

It might be useful to choose parameters such that the wavelength `′ is smaller than the size of the objects inside
the body we wish to probe, while the attenuation length `′′ is larger than the size of the body. The associated
reference tensor Z0 will according to (5.4) be

Z0 =


I/δ1 0 −z1I/δ1 0

0 I/δ2 0 z2I/δ2
−z1I/δ1 0 (δ1 + z2

1/δ1)I 0

0 z2I/δ2 0 (δ2 + z2
2/δ2)I

 . (5.33)

5.5 Translation method bounds on Dirichlet-to-Neumann maps
The elementary bounds (5.11) can be improved by using the “Translation Method”, which is one of the most
powerful methods for bounding the effective tensors of composites. It is also known as the method of compen-
sated compactness when it is used to say something about products of sequences of fields satisfying differential
constraints, as arises in the theory of composites when one treats the composite as a sequence of materials,
with possibly finer and finer microstructure. The method was introduced by Murat and Tartar (Tartar 1979b;
Murat and Tartar 1985; Tartar 1985); see in particular theorem 8 of Tartar (1979b), and independently by
Lurie and Cherkaev (1982, 1984). For nonlinear media the two approaches give different types of bounds, as
discussed in Section 25.1 of Milton (2002): the compensated compactness method of Murat and Tartar gives
bounds on the average fields, while the approach of Lurie and Cherkaev gives bounds on the energy. Since
both approaches yield identical results for linear media, the term translation method [introduced in Milton
(1990)] will be used to encompass both. The name arises because the bounds can be obtained by shifting, that
is, translating, the tensor field by a constant tensor and applying the classical bounds. The method is discussed
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in the books of Cherkaev (2000), Milton (2002), Allaire (2002), Torquato (2002), Tartar (2009) and references
therein.

The translation method was extended to the problem of bounding the Dirichlet-to-Neumann map of bodies,
or more precisely in a two phase body to the problem of bounding the volume occupied by an inclusion phase
in a series of papers by Kang, Kim, and Milton (2012), Kang, Milton, and Wang (2014), Milton and Nguyen
(2012), Kang, Milton, and Wang (2014), Kang and Milton (2013), and Kang, Kim, Lee, Li, and Milton (2014):
see also the related splitting method employed to bound the volume of an inclusions by Milton and Nguyen
(2012) and Thaler and Milton (2015). At that time no one had made the connection between the Dirichlet-to-
Neumann map, and the effective tensor of an associated abstract problem in the theory of composites as we
did in Chapter 3.

In its simplest form, given a solution to say the equations (5.9) and (5.10) one looks for a constant tensor
T such that

TU ⊂ U and T E ⊂ J , (5.34)

by which we mean the fields
U′(x) = T U(x), J′(x) = T E(x), (5.35)

lie respectively in U and J , for all fields U and E that lie respectively in U and E .
Then using the fields which solve the equations (5.9) and (5.10) and taking Lt(x, ω) = L(x, ω) − T as

our translated medium, we easily construct a solution to the equations in this medium:

Jt0(x, ω) + Jt(x, ω) = Lt(x, ω)[E0(x, ω) + E(x, ω)], (5.36)

with
Jt0 = J0 −T E0 ∈ U , Jt = J−T E ∈ J . (5.37)

This implies the effective tensor gets translated as

Lt∗(ω) = L∗(ω)−T0, (5.38)

where T0 is the operator mapping U onto U whose action is defined by the first equation in (5.35). If T is
chosen to be Hermitian and so Lt(x) = L(x) − T is positive semidefinite then the classical bounds (5.11)
applied to the translated medium imply

L∗(ω)−T ≥ 0, Γ0[L(x, ω)−T]−1Γ0 ≥ [L∗(x, ω)−T0]−1, (5.39)

which are known as the comparison bounds and translation bounds, respectively. Such translations are known
as null-Lagrangians, as when one writes the minimizing variational principle for the equation, the quadratic
form associated with T does not influence the Euler–Lagrange equation. It is also possible to use a wider class
of translations whose quadratic forms are quasiconvex (Tartar 1979b; Murat and Tartar 1985; Tartar 1985)
or Q∗C-convex translations (see Section 1.5, Chapter 13, and Milton 2013b) but we do not explore this here:
see, however, Kang and Milton (2013) for related investigations using quasiconvex functions.

Now with the choice (5.30) of reference tensor, with F(x) defined by (5.4), consider a field in the space
E given by (−J′(x)

E′(x)

)
︸ ︷︷ ︸

E

≡ Z
1/2
0 F(x) =


−G′/

√
λ1

−∇ ·G′/
√
λ2√

λ1∇u′√
λ2u

′

 , (5.40)
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with u′ = 0 and n ·G′ = 0 on ∂Ω. The matrix

T =

(
0 t1I

t2I 0

)
, (5.41)

where t1 and t2 are possibly complex numbers, has the property that for E ∈ E

(
0 t1I

t2I 0

)
E =

(
t1E
′(x)

−t2J′(x)

)
= Z

−1/2
0


∇(t1u

′)

t1u
′

−t2G′
−∇ · (t2G′)

 ∈ J . (5.42)

Also the space U is constructed by looking for fields

G(x) =


∇u′′

u′

G′′

∇ ·G′′

 , F(x) =


−G′

−∇ ·G′
∇u′

u′

 , (5.43)

such that G(x) = Z0 F(x), which decouples into the equations,( −G′

−∇ ·G′
)

︸ ︷︷ ︸
−G′

= Z0

(∇u′′

u′

)
︸ ︷︷ ︸
F ′′

,

(
G′′

∇ ·G′′
)

︸ ︷︷ ︸
G′′

= Z0

(∇u′

u′

)
︸ ︷︷ ︸
F ′

, (5.44)

where Z0 is given by (5.26). Consequently U consists of fields

U =

(
U1

U2

)
, with U1,U2 ∈ U , (5.45)

where U is the space associated with Z0. Due to (5.42) and (5.45) the tensor T given by (5.41) has the desired
properties (5.34) of a translation, and the bounds (5.39) apply when t2 = t1 and L(x)−T ≥ 0 for all x.

More generally, with this choice (5.30) of reference tensor (without using the specific differential con-
straints on the fields), we can obtain translation method bounds which couple effective tensors by looking
at

M∗ =



L∗(ω1)
. . .

L∗(ωk)

[L∗(ωk+1)]
−1

. . .
[L∗(ωs)]

−1


, (5.46)

where the blocks off the diagonal are zero, and the frequencies ω1, ω2, . . . , ωk, ωk+1, . . . , ωs are not neces-
sarily ordered, and not necessarily even distinct (they could even all be equal to a single frequency ω0) if we
are interested in bounds that couple the responses to different applied fields at the same frequency. For static
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composite material problems (where ω0 = 0) such extended matrices (supertensors) M∗, involving effective
tensors and their inverses, were first introduced by Cherkaev and Gibiansky (1992, 1993) for bounding the
possible moduli of two-phase composites as the geometry varies over all configurations. In fact, for static and
quasistatic composite material problems, if one is given a set U of n component materials with tensors L1,
L2, . . ., Ln and one obtains sharp microstructure independent bounds from below on the quadratic form as-
sociated with such supertensors then one can completely determine the set of all possible effective tensors L∗
as the microstructure varies, which is known as the G-closure of U , GU (Francfort and Milton 1994; Milton
1994; Milton and Cherkaev 1995; Chapter 30 of Milton (2002)). In other wordsG-closures are characterized
by the minimums of these quadratics forms in much the same way that convex sets can be characterized as the
envelope of their tangent planes, i.e., through Legendre transforms.

Also we let

M(x) =



L(x, ω1)
. . .

L(x, ωk)

[L(x, ωk+1)]
−1

. . .
[L(x, ωs)]

−1


, (5.47)

where again the blocks off the diagonal are zero. Then we take a “translation” T of the form (actually its a
null-Lagrangian)

T =



α11 . . . α1k

...
. . .

...
αk1 . . . αkk

β11 . . . β1m
...

. . .
...

βk1 . . . βkm
β11 . . . βk1

...
. . .

...
β1m . . . βkm

γ11 . . . γ1m
...

. . .
...

γm1 . . . γmm


, (5.48)

where m = s− k and the matrices αij , βij , and γij take the block form

αij =

(
0 α

(1)
ij I

α
(2)
ij I 0

)
, βij =

(
β

(1)
ij I 0

0 β
(2)
ij I

)
, γij =

(
0 γ

(1)
ij I

γ
(2)
ij I 0

)
, (5.49)

and satisfy
αji = αij , γji = γij , (5.50)

to ensure that T is Hermitian. These matrices αij , βij , and γij need to be chosen so that M(x) − T ≥ 0,
which requires us to have some information on the maximum and minimum moduli inside the body. Let T0

be that operator acting on U2s such that if U′ = T0U with U′, U ∈ U2s then U′(x) = TU(x) for all x.
Then we have the “comparison bounds” M∗ ≥ T0 for all T0 satisfying the constraint that M(x)−T ≥ 0

and we have the “translation bounds”:

Γ0 [M(x)−T]
−1

Γ0 ≥ [M∗ −T0]
−1
. (5.51)
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Again the idea is that the right hand side can be approximately measured and this places bounds on the left
hand side, and hence gives us direct information about the geometry inside the body.

The condition that T be chosen so that M(x) − T ≥ 0 for all x is easiest to determine if we have a
n-phase body and we know the moduli of the phases at the frequencies ω1, ω2, . . . , ωs. Then the condition
will be satisfied if the matrices αij , βij , and γij are chosen so that

Mk −T ≥ 0 for k = 1, 2, . . . , N, (5.52)

where the Mk are the assumed known moduli of phase k.
With the choice (5.33) of reference tensor we have to take more care. In the context of the equations (5.9)

and (5.10). Lets look for a translation of the form

T = Z
−1/2
0

(
0 tI

sI 0

)
Z
−1/2
0 . (5.53)

Fields in the space U have the form

U = Z
−1/2
0

(
(F0)′′

(G0)′′

)
= Z

+1/2
0

(−(G0)′

(F0)′

)
, (5.54)

where the subfields entering these equations satisfy the usual differential constraints. Due to the equivalence
between (5.6) and (5.4), (5.54) implies

Z
−1/2
0

(
(F0)′

(G0)′

)
= Z

+1/2
0

(
(G0)′′

−(F0)′′

)
∈ U . (5.55)

Now multiplying (5.54) on the left by T gives

T U = Z
−1/2
0

(
t(F0)′

−s(G0)′

)
, (5.56)

which from (5.55) will lie in U provided we choose s = −t. (T will then be Hermitian if t is proportional to
i). With this choice of T, let us look at its action on a field E ∈ E given by

E = Z
1/2
0 F, with F =


−G′

−∇ ·G′
∇u′

u′

 , (5.57)

with n ·G′ = 0 and u′ = 0 on ∂Ω. We have

T E = Z
−1/2
0

(
0 tI

−tI 0

)
−G′

−∇ ·G′
∇u′

u′

 = tZ
−1/2
0


∇u′

u′

G′

∇ ·G′

 ∈ J . (5.58)

In summary we have

T1U ⊂ U , T1E ⊂ J , with T1 = Z
−1/2
0

(
0 I

−I 0

)
Z
−1/2
0 . (5.59)
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Similarly it follows from the same line of reasoning (swapping the roles of E and J , and the roles of Z0 and
Z−1

0 ) that

T2U ⊂ U , T2J ⊂ E , with T2 = Z
1/2
0

(
0 I

−I 0

)
Z

1/2
0 . (5.60)

Therefore the bounds (5.51) still hold with a choice of translation T of the form

T =



α11T1 . . . α1kT1
...

. . .
...

αk1T1 . . . αkkT1

β11I . . . β1mI
...

. . .
...

βk1I . . . βkmI

β11I . . . βk1I
...

. . .
...

β1mI . . . βkmI

γ11T2 . . . γ1mT2
...

. . .
...

γm1T2 . . . γmmT2


, (5.61)

with parameters αij , βij , and γij chosen with

αji = −αij , βji = βij , γji = −γij , (5.62)

to ensure T is Hermitian, and with T0 being that operator acting on Uk+m such that if U′ = T0U with U′,
U ∈ Uk+m then U′(x) = TU(x) for all x.

5.6 Analogous bounds for 2-phase composites
The question arises as to whether the bounds (5.51) can uniquely determine the microstructure for an appro-
priate choice of frequencies ω1, ω2,...,ωs in the limit as s→∞. To shed some light on this it is helpful to look
at an analogous problem in the theory of periodic composites. Here we modify the analysis that Cherkaev and
Gibiansky (1992) used to obtain sharp bounds coupling the effective electric permittivity and magnetic perme-
ability tensors in two-dimensions. Since we are not incorporating differential constraints on the fields, beyond
the orthogonality of U , E , and J , we restrict the translations to those that only reflect this orthogonality.

Suppose, for simplicity, we have a two-phase composite of two isotropic phases with conductivities σ(i)
1 I

and σ(i)
2 I where i = 1, 2 parameterizes the conductivities under 2 different experiments. Suppose also the

composite is isotropic with effective conductivities σ(i)
∗ I. Let us define the tensors

Mj =

(
σ

(1)
j I 0

0 I/σ
(2)
j

)
, (5.63)

for j = 1, 2, ∗. We take translations of the form

T =

(
0 tI

tI 0

)
, (5.64)

where the constant t is real, and must be chosen such that M1 −T ≥ 0 and M2 −T ≥ 0. Defining

Y∗ = −f2M1 − f2M2 + f1f2(M1 −M2)(f1M1 + f2M2 −M∗)
−1(M1 −M2), (5.65)
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in which f1 and f2 = 1 − f1 are the volume fractions of the two phases, the bounds (5.51) take the form
Y∗ + T ≥ 0, which for the special forms of Y∗ and T given by (5.63)-(5.64) is equivalent to the bound
Y∗ − T ≥ 0 (as can be seen by swapping the signs of the off diagonal blocks, which does not change the
positive semidefiniteness of the matrix). In summary, the bound(

y
(1)
∗ −t
−t 1/y

(2)
∗

)
≥ 0, (5.66)

in which

y
(i)
∗ = −f2σ

(i)
1 − f2σ

(i)
2 + f1f2(σ

(i)
1 − σ

(i)
2 )(f1σ

(i)
1 + f2σ

(i)
2 − σ

(i)
∗ )(σ

(i)
1 − σ

(i)
2 ), (5.67)

is satisfied for all real t such that (
σ

(1)
j −t
−t 1/σ

(2)
j

)
≥ 0 for j = 1, 2. (5.68)

Let us suppose the phases have been labeled so that

σ
(1)
1 /σ

(2)
1 ≥ σ(1)

2 /σ
(2)
2 . (5.69)

Then the inequalities (5.68) will be satisfied with

t2 = σ
(1)
2 /σ

(2)
2 , (5.70)

and (5.66) generates the bound
y

(1)
∗ ≥ y(2)

∗ σ
(1)
2 /σ

(2)
2 . (5.71)

Now by switching experiment i = 1 with experiment i = 2 and taking

t2 = σ
(2)
1 /σ

(1)
1 , (5.72)

we get the additional bound
y

(2)
∗ ≥ y(1)

∗ σ
(1)
1 /σ

(2)
1 . (5.73)

The bounds (5.71) and (5.73) are exactly those of (Prager 1969), who obtained them using variational princi-
ples. They also can be obtained using the analytic method [see, for example, (27.18) in Milton (2002), although
Bergman (1978) could easily have derived them, as he derived even tighter bounds assuming isotropy: see
equations (4.36) and (4.37) in his paper].

It is an open, and very interesting question as to whether with an appropriate choice of the matrices αij ,
βij , and γij one can recover the entire hierarchy of bounds derived using the analytic method that correlate
the values of σ(i)

∗ = σ∗(σ
(i)
1 , σ

(i)
2 ) for i = 1, 2,,..s with the volume fraction f1 = ∂σ∗(σ1, 1)/∂σ1|σ1=1. In

applications to composites the hierarchy was derived by Milton (1981c) (and rederived by Bergman 1993).
In a mathematical wider context it is essentially similar to the much studied problem of Nevanlinna–Pick
interpolation, solved by Pick (1915) and Nevanlinna (1919, 1929): see for example Delsarte, Genin, and
Kamp (1981). For the case when the ratios σ(i)

1 /σ
(i)
2 are all real and positive, the interpolation result in

theorem 3.1 of Chapter 5 of Kreı̆n and Nudel’man (1974) is applicable. The Nevanlinna–Pick interpolation
has been extended to matrix-valued functions (Fedčina 1972; Delsarte, Genin, and Kamp 1979); Chen and
Koç 1994, 1995) and operator-valued functions (see Theorem 2.2 in Chapter VIII of Foiaş and Frazho 1990).
This hierarchy of bounds converges to the exact analytic function σ∗(σ1, σ2) and hence in this limit one can
recover exactly the volume fraction. For bodies instead of composites the analog of the volume fraction would
be the operator Γ0χΓ0, where χ(x) is the indicator function which is 1 in phase 1, and 0 in phase 2.
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5.7 Transient response to electromagnetic fields in a two-phase body
Let us suppose we have a two-phase body with isotropic phases, having electrical permittivities ε1, ε2 and
magnetic permeabilities µ1, µ2. Also suppose µ1, µ2 are real and frequency independent satisfying µ1 = µ2.
We assume the electrical permittivities of both phases take the form

ε1(ω) = ε1R + i
σ1

ω
, ε2(ω) = ε2R + i

σ2

ω
, (5.74)

so that
ε(ω,x) = χ(x)ε1(ω) + (1− χ(x))ε2(ω), (5.75)

where

χ(x) =

{
1, in phase 1,
0, in phase 2.

(5.76)

Now at the complex frequency ω = ip, where p is real, we have

ε1(ω) = ε1R +
σ1

p
, ε2(ω) = ε2R +

σ2

p
. (5.77)

Consequently we have ε1(ω) = ε2(ω) when ω = ω0, where

ω0 = ip0 = i
σ2 − σ1

ε1R − ε2R︸ ︷︷ ︸
p0

, (5.78)

in which we assume σ2 − σ1 and ε1R − ε2R have the same sign.
Now the equations of electromagnetism can be written [as follows from equations 4.16 and 4.20 in Milton,

Seppecher, and Bouchitté (2009)] as(
h

iωd

)
︸ ︷︷ ︸
G(x)

=

(−(ω2µ)−1 0

0 ε

)
︸ ︷︷ ︸

Z(x)

(−ω2b

iωe

)
︸ ︷︷ ︸
F(x)

. (5.79)

At the frequency ω0,
ε1 = ε2 = ε0 ≡ ε1R +

σ1

p0
(5.80)

is real, and we have Z1 = Z2 = Z0 with

Z0 =

(
(p2

0µ1)−1 0

0 ε0

)
. (5.81)

We take Z0 as our reference tensor. It should be quite easy to numerically calculate the fields G0(x) and
F0(x) which solve the equations when Z(x) = Z0, as the boundary conditions vary, and they generate the
space U of fields Z1/2F0(x) = Z−1/2G0(x) = U0. The spaces E and J are defined in Section 3.12, and our
equations take the form

(J0 + J) = L(E0 + E), with E0,J0 ∈ U , E ∈ E , and J ∈ J . (5.82)
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Now note the equations (5.79) in the time domain take the form(
h

−∂ddt

)
= K ∗

(
∂2b
∂t2

−∂edt

)
, (5.83)

where the asterisk denotes a convolution in time, and Z(x, ω) is the Fourier transform of the operator K. Since
the fields entering this relation are real, so too K must be real. It follows that Z(x, ω) satisfies the symmetry
relations

Z(x, ω) = Z(x,−ω), (5.84)

which in particular imply Z is real if ω = ip with p real and positive. Furthermore in the quadrant Reω > 0,
Imω > 0 the imaginary part of Z must be positive definite in both phases. As Z(x, ω) is analytic in the upper
half ω plane, we may introduce the variable τ = ω2 it terms of which ω =

√
τ , with the square root having a

branch cut just below the positive real axis in the τ = ω2 plane. It follows that Z1 and Z2 are matrix-valued
Herglotz functions of τ . [A matrix-valued Herglotz function has the property that the matrix elements are
analytic functions of τ for τ in the upper half plane, Im(τ) > 0 and the imaginary part of the function takes
positive semi-definite values in the upper half τ plane.] Then, from the analytic properties of L∗ as a function
of L1 and L2 it must inherit this property, and hence has the integral representation (see, for example, Theorem
5.4 in Gesztesy and Tsekanovskii 2000)

L∗(τ) = Aτ + B +

∫ ∞
0

dµ(τ ′)

(
1

τ ′ − τ −
τ ′

1 + (τ ′)2

)
, (5.85)

where, the variable τ ′ is real, A is a positive semidefinite operator, B is a real-valued operator, and dµ is a
positive operator-valued measure on the bounded Borel subsets of R, such that∫ ∞

0

µ(τ ′)(1 + (τ ′)2)−1 (5.86)

is bounded. Think of it as approximately, i.e., as the limit of functions of the form,

L∗(τ) =

∫ ∞
0

R(τ ′)

τ ′ − τ dτ
′, (5.87)

where R(τ ′) is a positive semidefinite operator-valued function.
Now perturb L(x) around I (corresponding to the solution with Z(x) = Z0):

L = I + ε(δL(x)), (5.88)

where ε is a small parameter. We fix E0, which corresponds to taking boundary conditions with a fixed value
of the tangential field eT = (I− nnT )e. The remaining fields have the series expansions

J0 = E0 + εJ
(1)
0 + ε2J

(2)
0 + . . . , J = εJ(1) + ε2J(2) + . . . , E = εE(1) + ε2E(2) + . . . . (5.89)

Substituting these in the constitutive law and collecting those terms of order ε gives

J
(1)
0 + J(1) = δL(x)E0 + E(1). (5.90)
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Applying the projection operator Γ0 onto the space U to both sides of this equation, gives the expression

L∗ = I + εΓ0δLΓ0 + . . . , (5.91)

for the effective tensor to first order in ε. It then follows that

∂L∗
∂τ

∣∣∣∣
τ=−p20

= Γ0
∂L(x)

∂τ

∣∣∣∣
τ=−p20

Γ0 ≡ F0, (5.92)

where, from (5.74),

∂L(x)

∂τ

∣∣∣∣
τ=−p20

= Z
−1/2
0

∂Z(x)

∂τ

∣∣∣∣
τ=−p20

Z
−1/2
0

= Z
−1/2
0

(
1/(p2

0µ) 0

0 [σ1χ(x) + σ2(1− χ(x))]/(2p3
0)

)
Z
−1/2
0 . (5.93)

We have the constraints

L∗(−p2
0) = I,

∂L∗(τ)

∂τ

∣∣∣∣
τ=−p20

= F0. (5.94)

These provide constraints that are linear in the measure (sum rules). If P denotes the projection onto a finite
dimensional spaceM, we have

PL∗(τ)PT =

∫ ∞
0

PR(τ ′)PT

τ ′ − τ dτ ′, (5.95)

and the sum rules become

PL∗(−p2
0)PT = PPT ,

P
∂L∗(τ)

∂τ

∣∣∣∣
τ=−p20

PT = PF0P
T . (5.96)

Of course measuring or computing PY∗(τ)PT at a set of values of τ is much easier since we only need to
consider “applied fields” inM.

Now given an “applied field” Ẽ0(t) in U that depends on time, there is some response J̃0(t) in U given
by some kernel K∗, i.e.,

J̃0(t) =

∫ t

−∞
K∗(t− t′)Ẽ0(t′) dt′. (5.97)

Basically K∗ is the Fourier (or Laplace) transform of L∗(ω) and depends linearly on the measure PR(τ)PT .
Therefore we may use the linear programming theory methods in the next chapter to bound the response which
can then be used in an inverse fashion to bound PF0P

T .
Note that there may be other frequenciesω1

0 , ω
2
0 , . . . , ω

J
0 for general materials, with some other dependence

of ε1(ω), ε2(ω) where ε1(ωj0) = ε2(ωj0), and these need not necessarily lie on the imaginary ω−axis. Of
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course there could be no such frequencies. In the case there are other such frequencies this, with τj = (ωj0)2,
will give other sum rules of the form

PL∗(τj)P
T = PL

(j)
0 PT ,

P
∂L∗(τ)

∂τ
|τ=τjP

T = PF
(j)
0 PT . (5.98)

with consequent improvement in the bounds.

5.8 Quasistatic dielectric response in a body with two isotropic phases
and related problems

In quasistatics the wavelength is very large compared to the body and we can just use the usual dielectric
equations, but with complex fields. Also we can take a homogeneous reference tensor, which is also isotropic
Z0 = ε0I and by choosing the scales of our dimensions we can assume ε0 = 1 so that we do not have to
distinguish fields that are multiplied by Z

1/2
0 or Z

−1/2
0

Now L∗ is an analytic function of ε1, ε2, which is homogeneous

λL∗(ε1, ε2) = L∗(λε1, λε2), (5.99)

for all real and complex λ. We also have Im(L∗(ε1, ε2)) ≥ 0 when Im(εi) ≥ 0, i = 1, 2.
This analyticity and the subsequent results in this section of course also apply in a body with two isotropic

phases for the isomorphic problems of antiplane elasticity (in the viscoelastic case) and magnetic response (in
quasistatics where the magnetic permeability tensor is complex). It also applies to quasistatic elasticity with
two isotropic incompressible phases (for which the Dirichlet-to-Neumann map is an analytic function of the
shear moduli µ1 and µ2 of the phases).

Following Bergman (1978) we introduce

s =
ε2

ε2 − ε1
. (5.100)

Then L∗(ε1, ε2)/ε2 is an analytic function of ε1/ε2, and also of s which is real when ε1, ε2 are real and
positive. Also following Bergman (1978) (but replacing his symbol t with u as here t represents time) we
introduce

u =
1/ε2

1/ε2 − 1/ε1
=

ε1

ε1 − ε2
= 1− s, (5.101)

and let us set
L̂∗

(
1

ε1
,

1

ε2

)
= [L∗(ε1, ε2)]

−1
. (5.102)

Define
F(s) = I− L∗

(
1− 1

s
, 1

)
, G(u) = I− L̂∗

(
1− 1

u
, 1

)
. (5.103)

The functions F(s) and G(u) (in Bergman’s notation G(u) is Φ(t)) have the approximate spectral represen-
tations:

F(s) =

n∑
i=0

Bi

s− si
, G(u) =

m∑
i=0

Pi

u− ui
, (5.104)
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where the operator-valued residues Bi and Pi are positive semidefinite and self-adjoint and the poles si, ui
are real with

0 ≤ s0 ≤ s1 ≤ . . . ≤ sn ≤ 1,

0 ≤ u0 ≤ u1 ≤ . . . ≤ um ≤ 1. (5.105)

These operator-valued residues and poles must be such that

n∑
i=0

Bi

1− si
≤ I,

m∑
i=0

Pi

1− ui
≤ I, (5.106)

to ensure L∗ and L̂∗ are positive semidefinite when ε1 = 0 and ε2 = 0 respectively.
Now given an “applied electric field” ẽ0(t) in U that depends on time, there is some response displacement

field d̃0(t) taking values in U . We have

d̃0(t) = ε2(t) ∗ ẽ0(t)−
n∑
i=0

BiL−1

[
ε2(λ)

s(λ)− si

]
(t) ∗ ẽ0(t), (5.107)

where ∗ denotes a convolution, L−1 denotes the inverse Laplace transform and λ is the Laplace transform
parameter. The ε2(λ) and s(λ) are known from the response of the phases:

d(x, t) =
∑
i=1,2

χi(x)L−1 [εi(λ)] (t) ∗ e(x, t), (5.108)

where as usual χi(x) is the indicator function of phase i, and d and e denote the electric displacement field
and electric field respectively. We assume here that L−1(εi(λ)) is known. Since d̃0(t), at any fixed time
t = t0, is a linear function of the residues Bi, we may apply linear programming theory and all of the
analysis in the next chapter applies. That is we can obtain bounds on d̃0(t0) and even bounds correlating
d̃0(t0), d̃0(t1), . . . , d̃0(tk). Moreover it may be easier to measure the current field j = ∂d/∂t and we can use
the same method to obtain bounds correlating j̃0(t0), j̃0(t1), . . . , j̃0(tk). Note that equivalently these bound
the currents n · j̃0(t0),n · j̃0(t1), . . . ,n · j̃0(tk), which can be measured at the surface of the body

Dually, given an “applied field” d̃0(t) in U that depends on time, there is a response ẽ0(t) taking values
in U . We have

ẽ0(t) = [ε2(λ)]−1 ∗ d̃0(t)−
m∑
i=0

PiL−1

[
(ε2(λ))−1

u(λ)− ui

]
(t) ∗ d̃0(t), (5.109)

and since this is a linear function of the residues Pi, we may again apply all of the analysis of the next chapter.
Thus we can obtain bounds on ẽ0(t0) and even bounds correlating ẽ0(t0), ẽ0(t1), . . . , ẽ0(tk).

These bounds may be used in an inverse way to bound

∂L∗(ε1, 1)

∂ε1

∣∣∣∣
ε1=1

, (5.110)

and thus extract information about the geometry.
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By direct analogy with (5.91) we have

∂L∗(ε1, 1)

∂ε1

∣∣∣∣
ε1=1

= Γ0χΓ0 ≡ F0. (5.111)

This derivative is essentially the Dirichlet-to-Neumann map for an almost homogeneous material. Calderón
(1980) showed that small perturbations in the scalar-valued dielectric constant (and in particular the indica-
tor function χ(x) in our problem) could be uniquely determined, from this Dirichlet-to-Neumann map and
furthermore gave a reconstruction method which was implemented in three dimensions by Boverman, Isaac-
son, Kao, Saulnier, and Newell (2008) and Delbary, Hansen, and Knudsen (2011) [see also Section 16.2 of
Mueller and Siltanen (2012)]. We remark that the scalar-valued dielectric constant can be recovered even if
the perturbation is not small [Sylvester and Uhlmann 1987; Astala and Päivärinta 2006]. On the other hand, if
we have a small anisotropic perturbation of the conductivity tensor of a homogeneous isotropic medium, then
this anisotropic perturbation cannot be recovered from the first order perturbation of the Dirichlet-to-Neumann
map (Sylvester 1993).

Also one can bound
∂PT

0 L∗(ε1, 1)P0

∂ε1

∣∣∣∣
ε1=1

= PT
0 χP0, (5.112)

where P0 projects onto a finite dimensional space Ũ0 ⊂ U , by taking “applied fields” ẽ0(t) that only take
values in Ũ0.

5.9 Quasistatic viscoelastic response in a two-phase body
Here, rather than analyze the response of the body in terms of the effective operator L∗, we use the alternate
description of using the Dirichlet-to-Neumann map Λ, mapping displacements u0 at the boundary ∂Ω to
tractions t = n · σ at ∂Ω. The Dirichlet-to-Neumann map Λ inherits the analytic properties of the effective
operator L∗ as functions of the component tensors L1 and L2, or equivalently as functions of the bulk moduli
κ1, κ2 and shear moduli µ1 and µ2 of the phases. These moduli usually depend on the frequency ω. Since
they are Fourier transforms of real integral kernels , they satisfy the symmetry relations

κi(x, ω) = κi(x,−ω), µi(x, ω) = µi(x,−ω), i = 1, 2, (5.113)

and are analytic functions of ω when Imω > 0, taking real values when ω is purely imaginary. Furthermore
they have nonnegative imaginary parts whenω is in the quadrant Imω > 0,Reω > 0. As a function of τ = ω2

they have nonnegative (or nonpositive) imaginary part according to whether τ has a positive (or, respectively,
negative) imaginary part, and the Dirichlet-to-Neumann map Λ has accordingly a positive semidefinite (or
negative semidefinite) imaginary part and is an analytic function of τ except possibly on the positive τ -axis

These facts imply that the Dirichlet-to-Neumann map Λ(τ) has the representation of an operator-valued
Herglotz function with no measure on the negative real τ -axis, i.e,

Λ(τ) = Aτ + B +

∫ ∞
0

dµ(τ ′)

(
1

τ ′ − τ −
τ ′

1 + (τ ′)2

)
, (5.114)

where τ ′ is real, A is a positive semidefinite operator, B is a real-valued operator, and dµ is a positive operator-
valued measure on the bounded Borel subsets of R, such that∫ ∞

0

µ(τ ′)(1 + (τ ′)2)−1 (5.115)
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is bounded.
In the case of quasistatic elasticity, where the wavelength is long compared to the body, we look for (gen-

erally complex) frequencies such that µ1(ωk0 ) = µ2(ωk0 ), where µ is the shear modulus. It is not necessary
that the bulk moduli are equal. At these frequencies ωj0, the operator Λ([ωk0 ]2) = Λ(k) still depends on the
geometry but for appropriate boundary conditions it follows from the work of Hill (1963) and the general-
ization of Thaler and Milton (2014), that there exist boundary conditions for u(x) on the boundary of Ω such
that the displacement field inside the body is the gradient of a scalar potential φ, i.e., u = ∇φ inside Ω. This
is not true for all boundary conditions, just these special ones. To find these special boundary conditions,
one imagines embedding the body in an infinite homogeneous medium with appropriate “applied fields” at
infinity, i.e., u ≈ ∇g as |x|→ ∞. Then from the known exterior Dirichlet-to-Neumann map, which can be
calculated numerically, and from Λ(k), one can find these special boundary conditions (see Thaler and Mil-
ton 2014) on u(x) at the boundary ∂Ω such that u = ∇φ inside Ω. Note when the body Ω is absent, the
exterior Dirichlet-to-Neumann map takes the displacement on ∂Ω to the traction on ∂Ω when fields are ap-
plied at infinity. We remark that for two-phase composites having the same real bulk modulus in both phases,
Cherkaev and Bonifasi-Lista (2011) have used an analytic representation for the response as a function of
the shear modulus of one (possibly viscoelastic) phase, assuming the other phase had a real shear modulus,
to estimate the volume fraction of bone from numerically simulated measurements of the Young’s modulus
at various frequencies (they assumed the bone had a cylindrical structure, with properties constant along the
axial direction, which may be unrealistic.)

The following analysis provides a test which must be satisfied if we have the right boundary conditions.
Suppose we are in three dimensions, d = 3. Take any scalar potential ψ inside Ω and consider the matrix-
valued field G with elements

Gil = eijl
∂

∂xj
ψ(x). (5.116)

Here eijl is the completely antisymmetric Levi-Civita tensor, taking a value of 1 if ijl is an even permutation of
1, 2, 3; −1 if it’s an odd permutation; 0 otherwise. ClearlyGil is an antisymmetric tensor, while∇u = ∇∇φ
is a symmetric tensor. So we see that

0 =

∫
Ω

Gil
∂

∂xi
ul =

∫
Ω

−
[
∂

∂xi
Gil

]
ul +

∫
∂Ω

niGilul

=

∫
Ω

−
��

���
��

��:0[
∂

∂xi

∂

∂xj
eijlψ

]
ul +

∫
∂Ω

nieijlul
∂

∂xj
ψ, (5.117)

i.e., ∫
∂Ω

nieijlul
∂

∂xj
ψ = 0, (5.118)

for all functions ψ. If this condition is not exactly satisfied (due to some numerical error) it makes sense to
project u(x) at ∂Ω onto the space of fields satisfying this condition. It may be the case that if this condition
is satisfied for all ψ then necessarily u = ∇φ inside Ω for some φ but I am unsure about that. Having found
boundary conditions on u(x) at ∂Ω such that u(x) = ∇φ inside Ω, then the strain is

ε(x) = ∇∇φ, (5.119)

and the stress is

σ(x) = λ(x)[Tr ε(x)]I + 2µε(x)

= λ(x)[∆φ]I + 2µ∇∇φ, (5.120)
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where λ = κ−2µ/d is the Lamé modulus, κ is the bulk modulus and d is the dimension. Since∇·σ(x) = 0
inside Ω we get

∇(λ(x)∆φ) + 2µ∇(∆φ) = 0. (5.121)

Integrating this gives
λ(x)∆φ+ 2µ∆φ = α, (5.122)

where α is some constant. Then we have

∆φ =
α

λ(x) + 2µ
. (5.123)

Note that ∫
Ω

∆φ =

∫
∂Ω

(∇φ) · n =

∫
∂Ω

u · n, (5.124)

implies

α =

∫
∂Ω

u · n
[∫

Ω

1/[λ(x) + 2µ]

]−1

. (5.125)

So the source term is piecewise constant:

∆φ =

{
k1, in phase 1,
k2, in phase 2,

(5.126)

where

ki =
1

λi + 2µ

∫
∂Ω

u · n
[

f1

λ1 + 2µ
+

f2

λ2 + 2µ

]−1

. (5.127)

Also in the exterior medium we have imagined, suppose λ(x) = λ2. From the “applied field” at infinity
∆g = Cg is known and since∇φmust be constant in this exterior medium too,∇φ = Cg there and Cg = k2.
So as observed by Thaler and Milton (2014) we can determine the volume fraction f1 and f2 = 1 − f1. So
now from u at the boundary of Ω we can determine ∇φ, and hence φ and the flux n · ∇φ where n is the
outward normal. Also from σ · n we know n · ∇∇φ (note ∆φ is known).

The problem of recovering the geometry is known as the gravimetric problem, because of its origins of
finding the mass inside a body given the gravitational field outside. Without additional restrictions on the
inclusion shape there is no unique solution to this problem: a spherical shell of material of finite thickness
produces the same gravitational field outside as a solid sphere with the same center and appropriate radius.
In Section 3.1 of Isakov (1990) [see also Section 4.1 of Isakov (2006)] it is proven that the three-dimensional
inclusion shape is unique if either it is convex, or star shaped with respect to its center of gravity. In two-
dimensions an algorithm for recovering the shape of a simply connected star shaped inclusion was developed
and implemented by Ring (1995). If the “inclusion phase” consists of a number of very small islands, then
their location and size in two and three dimensions can be obtained using the algorithms of Kang and Lee
(2004) and Kolokolnikov and Lindsay (2015).

As in the next chapter, one considers the response

J̃1(t) =

∫ t

−∞
KΛ(t− t′)Ẽ1(t′) dt′, (5.128)
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for some applied field Ẽ1(t), or set of applied fields Ẽ
(j)
1 (t), and since the response (or set of responses) is

linear in the measure one can bound J̃
(j)
1 (t).

Now the constraints on the measure become

Λ([ωk0 ]2) = Λ(k). (5.129)

As these are linear constraints, one can apply linear programming theory to bound J̃
(1)
1 (t), J̃

(2)
1 (t),. . .,J̃(n)

1 (t)

in terms of all the Y
(k)
0 . The idea is to use these in an inverse fashion to bound the Y

(k)
0 from all the experi-

mental data, then to extract information about the geometry from the Y
(k)
0 . In practice one will let Ẽ0 be the

space spanned by the Ẽ
(j)
1 (t) as j and t vary. Let P0 be the projection onto this space, then we just measure

the P0J̃
(j)
1 (t):

P0J̃
(j)
1 (t) =

∫
P0KΛ(t− t′)PT

0 P0Ẽ
(j)
1 (t)′dt′. (5.130)

The problem then involves just an m×m matrix-valued measure where m ≥ n is the dimension of Ẽ0.

5.10 Probing the body using measurements at a discrete set of frequen-
cies

Let us return to the problem of extracting information about the geometry in a two-phase system probed
by quasistatic electromagnetic fields with the two isotropic phases having complex permittivities ε1(ω) and
ε2(ω). Suppose we have measured them×m response matrix PT

0 L∗P0 of the body at a set of frequencies ω1,
ω2....ωs. Rather than using the variable ε2/(ε2− ε1) it is preferable to begin by using the variable h = ε1/ε2.
Then we have the approximate representation

PT
0 [L∗(h, 1)]P0 = A0h+ A1 −

N∑
i=2

Ai

h+ hi
, (5.131)

where hi > 0 for all i, for all i the matrices Ai are positive semidefinite and

D ≡ A1 −
N∑
i=2

Ai

hi
≥ 0, (5.132)

to ensure PT
0 L∗(0, 1)P0 ≥ 0. The constraint that L∗(1, 1) = I implies

PT
0 P0 = A0 + A1 −

N∑
i=2

Ai

1 + hi
. (5.133)

Subtracting this from (5.131) gives

PT
0 [L∗(h, 1)− I]P0 = A0(h− 1) +

N∑
i=2

Ai

1 + hi
−

N∑
i=2

Ai

h+ hi

= A0(h− 1) +

N∑
i=2

(h− 1)Ai

(1 + hi)(h+ hi)
, (5.134)
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giving
PT

0 [L∗(h, 1)− I]P0

h− 1
= A0 +

N∑
i=2

A′i
h+ hi

, where A′i = Ai/(1 + hi). (5.135)

We now introduce the variables η =
√
−h and ηi =

√
hi, where the square root function

√
t is taken with a

branch cut just below the positive real t = −h axis, so its range is the upper half η-plane. Then the function

G(η) ≡ ηPT
0 [L∗(−η2, 1)− I]P0

−η2 − 1
= ηA0 +

N∑
i=2

ηA′i
η2
i − η2

= ηA0 +

N∑
i=2

[
A′i/2

ηi − η
− A′i/2

ηi + η

]
, (5.136)

from this representation evidently has a positive semidefinite imaginary part when η has positive imaginary
part. So G(η) is a matrix-valued Herglotz function of η. Furthermore it has the symmetry properties

G(−η) = −ηPT
0 [L∗(−η2, 1)− I]P0

−η2 − 1
= −G(η), (5.137)

where we have used the fact that L∗(h, 1) is real symmetric, i.e., L∗(h, 1) = L∗(h, 1). Now introducing the
Cayley transform

z =
η − i
η + i

, (5.138)

which maps the upper half plane to the unit disk, we see that the function

W(z) = −iG[i(1 + z)/(1− z)] (5.139)

is in the Carathéodory class of matrix-valued rational functions, i.e., having a positive-semidefinite real part
when z is in the unit disk. Given knowledge of the functions ε1(ω) and ε2(ω), then from measurements of
PT

0 L∗P0 at a set of frequencies ω1, ω2....ωs, we can determine the values of the matrices

Wi = W(zi), with zi =

√
−h◦i − i√
−h◦i + i

, where h◦i = ε1(ωi)/ε2(ωi), (5.140)

for i = 1, 2,...s. Furthermore (5.137) implies W(z) is real symmetric, i.e., W(z) = W(z). So if zi is not
real (i.e., η is not purely imaginary) then we also know W(z) at the complex conjugate points zi:

Wi = W(zi), (5.141)

and these can be incorporated among our known function values.
The Nevanlinna–Pick interpolation problem for matrix-valued functions consists of finding a matrix-

valued function W(z) in the Carathéodory class that interpolates the known matrix values, i.e., is such that
Wi = W(zi). The criterion for the existence of such a function (Delsarte, Genin, and Kamp 1979) is that
the block-Pick matrix defined by

P =


W1+W1

1−z1z1 · · · W1+Ws

1−z1zs
...

. . .
...

Ws+W1

1−zsz1 · · · Ws+Ws

1−zszs

 , (5.142)
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(i.e., with block entries Pij = (Wi + Wj)/(1− zizj) which are m×m matrices) is positive semidefinite.
Of course the experiments have errors and it may be the case that the experimentally measured W◦

i are not
compatible with the Pick criterion. The Pick criterion (5.142) defines an admissible region in W1,W2...Wi...
space. We should pick a point in this admissible region which is the closest (in some appropriate norm) to
the experimentally measured point (W◦

1,W
◦
2 ,...,W◦

i ,...). Given that this criterion is satisfied, algorithms are
available (Chen and Koç 1994, 1995) for finding an interpolating function W(z). Note that if an interpolating
function W(z) does not satisfy the symmetry W(z) = W(z) then we can replace it by [W(z) + W(z)]/2
to obtain one that does.

Also it may happen that the interpolating function does not satisfy the inequality

lim
δ→0

W(−1 + δ)

δ
= lim

δ→0

G(iδ/2)

2iδ/2

= lim
δ→0

PT
0 [L∗(δ

2/4, 1)− I]P0

2(δ2/4− 1)

= PT
0 [I− L∗(0, 1)]P0/2

≤ PT
0 P0/2, (5.143)

implied by the positive semidefiniteness of L∗(0, 1). Then, following the same argument as used later in 6.6,
we can without loss of generality assume that PT

0 [L∗(0, 1)]P0 = 0. To see this we pick an extremely small
constant ε and add to the right hand side of (5.131) an extra pole at h = −hN+1 = −ε with a tiny residue
AN+1 = εD, where D is given by (5.132). Then (5.131) becomes

PT
0 [L∗(h, 1)]P0 = A0h+ A1 −

N∑
i=2

Ai

h+ hi
− εD

h+ ε
, (5.144)

where the additional term we have added ensures PT
0 [L∗(0, 1)]P0 = 0, but at the same time has little effect

on the function when h is not extremely small. In practice we could pick a small positive real value for δ and
take as an additional known value

W(−1 + δ) = (1− r)δPT
0 P0/2, (5.145)

where r is a small parameter which ensures one has strict inequality but approximate equality in (5.143) when
δ is small but not infinitesimal.

Having found an interpolating function we can calculate

W(0) = −iG(i) = lim
h→1

PT
0 [L∗(h, 1)− I]P0

h− 1
=
∂PT

0 L∗(h, 1)P0

∂h

∣∣∣∣
h=1

= PT
0 χP0, (5.146)

and from knowledge of this hopefully extract the microstructure.
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Abstract

In order to derive bounds on the strain and stress response of a two-component composite
material with viscoelastic phases, we revisit the so-called analytic method (Bergman 1978),
which allows one to approximate the complex effective tensor, function of the ratio of the
component shear moduli, as the sum of poles weighted by positive semidefinite residue ma-
trices. The novelty of the present investigation lies in the application of such a method,
previously applied (Milton 1980; Bergman 1980) to problems involving cyclic loadings in the
frequency domain, to derive bounds in the time domain for the antiplane viscoelasticity case.

The position of the poles and the residues matrices are the variational parameters of the
problem: the aim is to determine such parameters in order to have the minimum (or max-
imum) response at any given moment in time. All the information about the composite,
such as the knowledge of the volume fractions or the transverse isotropy of the composite,
is translated for each fixed pole configuration into (linear) constraints on the residues, the
so-called sum rules. Further constraints can be obtained from the knowledge of the response
of the composite at specific times (in this paper, for instance, we show how one can include
information about the instantaneous and the long-term response of the composite).

The linearity of the constraints, along with the observation that the response at a fixed time
is linear in the residues, enables one to use the theory of linear programming to reduce the
problem to one involving relatively few nonzero residues. Finally, bounds on the response
are obtained by numerically optimizing over the pole positions. In the examples studied, the
results turn out to be very accurate estimates: if sufficient information about the composite is
available, the bounds can be quite tight over the entire range of time, allowing one to predict
the transient behavior of the composite. Furthermore, the bounds incorporating the volume
fractions (and possibly transverse isotropy) can be extremely tight at certain specific times:
thus measuring the response at such times, and using the bounds in an inverse fashion, gives
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very tight bounds on the volume fraction of the phases in the composite. The work in this
chapter forms part of the PhD thesis of Ornella Mattei (Mattei 2016).

6.1 Introduction
The problem of calculating the mechanical response of a composite material has been extensively investigated
in the literature, with particular attention being paid to the derivation of approximation formulas and bounds
on the effective properties of the composite. This has taken precedence over the determination of the exact
response of the material, which represents a difficult task even in the rare situations where the microstructure
is known.

Historically, in the elasticity case, the determination of bounds on the overall properties of the compos-
ite followed from the formulation of suitable extremum variational principles, as illustrated, for instance, in
the pioneering work of Hill (1952), Hashin and Shtrikman (1962,1963), and Hashin (1965a), which paved
the way to the calculation of rigorous geometry-independent bounds. Such bounds have proven to be useful
benchmarks for testing experimental results and for setting limits on the range of possible responses, which
is relevant when one is optimizing the microstructure to maximize performance. Variational principles are
useful even when some of the moduli are negative: in Kochmann and Milton 2014, the authors have ruled out
the possibility of achieving very stiff statically stable composites by combining materials with positive and
negative moduli, as suggested by Lakes and Drugan (2002). The variational method is especially powerful
when coupled with the translation method of Tartar and Murat, and Lurie and Cherkaev [see Chapter 24 of
Milton 2002 for relevant references], who used it to derive optimal bounds on the possible effective conduc-
tivity tensors of two and three dimensional two-phase conducting composites. The translation method can
also be used to bound the response of inhomogeneous bodies or, inversely, to bound the volume fraction of
the phases from measurements of the fields at the surface of the body (Kang and Milton 2013). For surveys
of bounds on the effective properties of composites (and the various methods used to derive them) see the re-
view articles of Willis (1981a) and Hashin (1983) and the books of Nemat-Nasser and Hori (1999), Cherkaev
(2000), Milton (2002), Allaire (2002), Torquato (2002), Tartar (2009) and references therein.

For the viscoelasticity case, instead, the lack in the time domain of variational formulations analogous to
the ones for the elasticity problem first prompted several authors to apply the correspondence principle (Hashin
1965b; Christensen 1971) to the well-established results of the elastic problem in order to study the linear vis-
coelastic response of composites subject to a cyclic loading with a certain frequency. In fact, for low frequency
harmonic vibrations, where the inertia effects can be neglected and the viscoelastic loss is small compared
to the elastic moduli (thus ruling out phases which are viscous fluids or gel-like), the bounds that have been
obtained which couple the effective properties with the derivatives of the effective properties with respect to
the moduli (such as those obtained by Prager (1969)) when the moduli are real, imply the correspondence
principle bounds on the complex effective properties (Schulgasser and Hashin 1976). The correspondence
principle itself requires justification, and this justification is provided by the analyticity of the effective moduli
as functions of the component moduli [see Section 11.4 in Milton 2002]. This analyticity was first recognized
by Bergman (1978) in the context of the dielectric problem for composites of two isotropic components. Some
of the assumptions underlying his initial analysis were incorrect (Milton 1979): in particular, he assumed that
for periodic media the effective dielectric constant is a rational function of the component moduli. This is not
true in two-phase checkerboard geometries, where the function has a branch cut, and if branch cuts can appear
one may ask: why cannot they occur when the dielectric constants have positive imaginary parts, and not just
when the ratio of the dielectric constants is real and negative?
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A plausible justification for Bergman’s approach was first provided by Milton (1981a), based on the as-
sumption that the composite could be approximated by a resistor network containing two types of impedances,
where the length scale of the network grid in the circuit is much smaller than that of the composite microstruc-
ture (see, for example, Figure 8.5(a)). Later, Golden and Papanicolaou (1983, 1985) gave a rigorous proof
of the analytic properties and, moreover, they established the analyticity for multicomponent media and ob-
tained a integral representation formula for the effective conductivity tensor as a function of the component
conductivities which separates the dependence on the component conductivities (contained in an appropriate
integral kernel) from the dependence on the microstructure (the relevant information about which is con-
tained in a positive measure). These analytic properties enabled Milton (1980, 1981a, 1981c) and Bergman
(1980, 1982), in independent works, to show that the complex effective dielectric constant (no matter how
lossy the materials are, provided only that the quasistatic approximation is valid) is confined to a nested set
of lens–shaped regions in the complex plane, where the relevant lens–shaped region is determined by what
information is known about the composite (such as the volume fractions of the phases, whether it is isotropic
or transversely isotropic, the values of real or complex dielectric constant at a set of other frequencies).

One can consider a composite containing inclusions (possibly at random orientations) in a matrix and take
the dilute limit of these bounds as the volume fraction goes to zero. This gives bounds on the quasistatic
average complex polarizability (Milton, McPhedran, and McKenzie 1981, Figures 2 and 3) that imply the
bounds on the absorption of radiation by dispersions of small particles (governed by the imaginary part of the
average complex polarizability) recently derived by Miller, Hsu, Reid, Qiu, DeLacy, Joannopoulos, Soljačić,
and Johnson (2014). In a major advance, using a strikingly simple argument, such bounds have also been
obtained by Miller, Polimeridis, Reid, Hsu, DeLacy, Joannopoulos, Soljačić, and Johnson (2016) for the full
time-harmonic Maxwell’s equations, without making the quasistatic approximation, and thus are applicable
when the particle size is comparable to that of the wavelength.

Many of these bounds on the complex effective dielectric constant are implied by bounds on Stieltjes
functions: see Milton (1986a), the discussion in the Introduction of Milton 1987b and references therein, and
Chapter V in Kreı̆n and Nudel’man (1974). To emphasize the remark made in Section 2.10 of Chapter 2,
we reiterate that there is also a close connection to the Nevanlinna–Pick interpolation problem, solved by
Nevanlinna (1919, 1929) and Pick (1915), of obtaining sharp bounds which correlate the values a Herglotz-
function takes at a set of points in the upper half of the complex plane (a Herglotz function is a function which
is analytic in the upper half of the complex plane, and has positive imaginary part there). Generalizations
of the Nevanlinna–Pick interpolation problem, and different ways to obtain these generalizations, have been
the subject of much research [see Ball and Trent (1998), the book of Agler and McCarthy (2002), the ap-
pendix of Charina, Putinar, Scheiderer, and Stöckler (2015), and references therein]. Of particular relevance
to the theory of composites (as for anisotropic materials the effective tensor is represented by a matrix) is that
the Nevanlinna–Pick interpolation problem has been solved for matrix-valued Herglotz functions (Delsarte,
Genin, and Kamp 1979) and that algorithms are available for computing interpolations (Chen and Koç 1994,
1995). Nevanlinna–Pick interpolation and its generalizations to multivariate functions are also important in
circuit and system theory, network synthesis, and control theory (Delsarte, Genin, and Kamp 1979; Kummert
1989; Ball and ter Horst 2010).

With a small modification the bounds in Milton (1981c) also apply to the related problem of bounding the
viscoelastic moduli of homogeneous materials at one frequency, given the viscoelastic moduli at several other
frequencies (Eyre, Milton, and Lakes 2002). An alternate approach to this problem is to directly recover the
relaxation spectrum from measurements of viscoelastic moduli at various frequencies (Zhang, Lamoureux,
Margrave, and Cherkaev 2011). A separate and interesting question is whether the relaxation models assumed
in both approaches, although commonly used with much success, have any sound theoretical basis. The
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models are justified if one assumes the relaxation kernel has a completely monotonic behavior (Beris and
Edwards 1993), but there seems to be no physical reason for assuming this monotonicity of all derivatives of
the relaxation kernel. Certainly the complete monotonicity fails if there are substructures in the material that
can resonate. There is also a parallel between linear elastic moduli and dielectric moduli, and no one would
suggest that dielectric relaxation kernels are necessarily completely monotonic: indeed substances such as
gold, silver, and silicon carbide can have a negative real part of the dielectric constant at infrared and visible
frequencies, which is prohibited by these models. The approach we use in this chapter is valid even if the
relaxation kernel is not completely monotonic.

The bounds in the two-dimensional case immediately imply bounds for the mathematically equivalent
problem of antiplane elasticity (in this connection it is to be noted that the claim of Bergman (1980) that the
two-dimensional bounds of Milton (1980) were not attained by assemblages of doubly coated cylinders was,
in fact, wrong: curiously an earlier version of his paper, which did not reference the doubly coated cylinder
geometry in Milton (1980), but which did reference the paper, had claimed that the three-dimensional bounds
were attained by doubly coated spheres, which is incorrect). Interestingly in the two dimensional case (i.e,
the antiplane elastic or antiplane viscoelastic case) for two component media (and polycrystals of a single
crystal), the characterization of the analytic properties is complete, and moreover the functional dependence
of the matrix-valued effective dielectric tensor on the component moduli (or on the crystal tensor) can be
mimicked to an arbitrarily high degree of approximation by a hierarchical laminate structure (Milton 1986b;
Clark and Milton 1994) [see also Section 18.5 in Milton 2002] or when the two-component composite is
isotropic by an assemblage of multicoated cylinders (Milton 1981a) [see the paragraph preceding Section
VI]. Consequently the entire hierarchy of (antiplane viscoelasticity) bounds for two-dimensional transversely
isotropic composites derived by Milton (1981c) are sharp, as are those obtained by Clark and Milton (1995).

For two-component media, Kantor and Bergman (1984) obtained a integral representation formula for
the analytic properties of the effective elasticity tensor along a one-parameter trajectory in the moduli space
(later generalized to two-parameter trajectories by Ou (2012)). A general framework for representation for-
mulas, which yields representation formulas for the effective tensor for dielectrics, elasticity, piezoelectricity,
thermoelasticity, thermoelectricity, and other coupled field problems in multicomponent (possibly polycrys-
talline) nonlossy or lossy media (with possibly nonsymmetric local tensors or having real and imaginary parts
which do not necessarily commute) was developed by Milton [see Sections 18.6, 18.7, and 18.8 of Milton
2002]. When more than two (real or complex) moduli are involved, another powerful approach, the field
equation recursion method which is based on subspace collections, generates a whole hierarchy of bounds
on effective tensors (not just on their associated quadratic forms), including the effective dielectric tensors
of multicomponent (possibly polycrystalline) dielectric media with real or complex moduli, and the effec-
tive elastic or viscoelastic tensors of multicomponent (possibly polycrystalline) phases (Milton 1987a, 1987b)
[see also Chapter 29 of Milton (2002)]. These bounds are applicable provided the real and imaginary parts
of the local dielectric tensor, or viscoelasticity tensor, commute (i.e., can be simultaneously diagonalized in
an appropriate basis).

Another breakthrough came when Cherkaev and Gibiansky (1994) derived variational principles for elec-
tromagnetism with lossy materials and for viscoelasticity, assuming quasistatic equations and (fixed fre-
quency) time-harmonic fields. This provided a powerful tool for obtaining bounds on the complex dielectric
constant of multicomponent (possibly anisotropic) media (Milton 1990) and for obtaining bounds on the com-
plex bulk and shear moduli of two- and three-dimensional two-phase composites (Gibiansky and Milton 1993,
Gibiansky and Lakes 1993, 1997, Milton and Berryman 1997, and Gibiansky, Milton, and Berryman 1999),
using both Hashin–Shtrikman method and the translation method. These variational principles of Cherkaev
and Gibiansky have been extended to media with nonsymmetric tensors by Milton (1990) [such as occur in
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conduction when a magnetic field is present: see Briane and Milton 2011, where bounds are developed us-
ing these variational principles] and to beyond the quasistatic regime, to the full time-harmonic equations
of electromagnetism, acoustics, and elastodynamics in lossy inhomogeneous bodies (Milton, Seppecher, and
Bouchitté 2009; Milton and Willis 2010).

By contrast, very few results have been obtained regarding bounds on the creep and relaxation functions
in the time domain: Schapery (1974) provided some interesting results via pseudo-elastic approximations;
Huet (1995) using the concept of a pseudo-convolutive bilinear form derived useful unilateral and bilateral
bounds for the relaxation function tensor; Vinogradov and Milton (2005) obtained bounds which correlate
the very short time response with the long time asymptotic behavior; and Carini and Mattei (2015) have
derived some elementary bounds from their novel variational principles in the time domain, which exploit the
positive definiteness of a part of the constitutive law operator, combined with the transformation technique of
Cherkaev and Gibiansky (1994) and Milton (1990) (note that Milton’s work was based on that of Cherkaev and
Gibiansky). The bounds of Carini and Mattei correlate the response at different times, while we are primarily
interested in bounds on the response at a fixed given time.

Here we use the analytic integral representation formula developed by Bergman (1978) (justified by Mil-
ton (1981a) and proved by Golden and Papanicolaou (1983)) to obtain bounds on the macroscopic response
of a two component composite (with microstructure independent of x1) in the time domain for antiplane vis-
coelasticity. Our objective is to bound the transient response of the composite material. The key point which
leads to the bounds is the observation that the response at a fixed time is linear in the residues (or eigenvalues
of the residues when they are matrix-valued) which enter the representation formula. This enables one to use
linear programming theory to reduce the problem to one involving relatively few nonzero residues and then
the optimization over the pole positions (and orientation of the residue matrices if they are anisotropic) can
be done numerically.

There are two main conclusions that follow from our work. The first is that if sufficient information about
the composite is incorporated in the bounds, such as the volume fractions of the phases and the fact that the
geometry is transversely isotropic, the bounds can be quite tight over the entire range of time. This should be
very useful for predicting the transient behavior of composites. The second very significant point is that the
bounds incorporating the volume fractions (and possibly transverse isotropy) can be extremely tight at certain
specific times: thus measuring the response at such times, and using the bounds in an inverse fashion, could
give very tight (and presumably useful) bounds on the volume fraction of the phases in the composite. As
suggested to us by Yuhang Hu, of the University of Illinois at Urbana-Champaign, these bounds can be used
in other ways too: if the volume fraction was known, but the elastic moduli of the purely elastic phase were
not, then from the response at these specific times one could get tight bounds on the shear modulus of this
elastic phase. The bounds we derive could be tightened further, for example, by incorporating information
about the complex effective tensor measured at one or more frequencies (with cyclical loading).

An important application of our work is to the torsion of two-phase beams (or other cylindrical struc-
tures not necessarily with circular cross-sections) with microstructure, such as fiberous materials with very
long parallel fibers surrounded by matrix material. It is assumed that the moduli are independent of the x1-
coordinate, where the x1 axis is chosen to be parallel to the beam. Then provided there is a wide separation
of length scales the beam behaves as a homogeneous elastic material with monoclinic symmetry (as it has
reflection symmetry about any plane x1 = c, where c is a constant) and thus (see, for example, Love 1906)
locally undergoes antiplane shear, the only non-zero components of the macroscopic shear ε(x, t) being the
ε12(x, t) and ε13(x, t) components. The applicability of homogenization theory is established in more detail
in the two-scale analyses of Tokarzewski, Telega, and Galka (2001) and Bonifasi-Lista and Cherkaev (2008).
[There are also results on the torsion of composite beams where homogenization theory does not apply: see
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Benveniste and Chen (2003) and Barretta, Luciano, and Willis (2015). In this case our analysis is not directly
applicable.] Note that even a homogeneous circular cylinder under torsion locally undergoes antiplane shear-
ing, even though it does not look like an antiplane deformation since u1(x) = 0 for all x. Let us suppose the
beam undergoes some time varying torsion, and let us ignore Saint-Venant end effects and ignore the travel
time for disturbances to propagate along the beam. Then assuming the microstructure was independent of
x1, transversely isotropic, and the same throughout a cross-section of the beam, each representative volume
element would within a proportionality factor and moduli rotations undergo the same response as a function
of time. In this way our analysis for bounding the response of each representative volume element will directly
translate into bounds on the response of the whole beam, such as bounds on the torque generated in response
to time varying rotations applied at the ends of the cylindrical structure. Therefore it would be interesting if
the predictions of our theory could be tested via such torsion experiments.

We remark that the method we use here is immediately applicable to bounding the transient response of
three-dimensional two-component composites of lossy dielectric materials (or mixtures of a lossy material
with a nonlossy one)(the case of two-dimensional two-component composites is of course mathematically
isomorphic to the antiplane viscoelastic case studied here). This will be presented in a separate paper, directed
towards physicists and electrical engineers. The observation made at the end of the Introduction of the previous
chapter is also relevant here: such an analysis might be of limited practical utility due to the fast electrical
relaxation times of many materials, especially conductors, and measurements would need to be made on those
time scales to capture the transient response. We also believe the method can be extended to obtain bounds
on the transient response of fully three-dimensional viscoelastic composites, not just in the antiplane case. In
this setting, it is likely that the representation formulas for the effective elasticity tensor derived by Kantor and
Bergman (1984) and Ou (2012) and in Sections 18.6, 18.7, and 18.8 of Milton (2002), or their generalizations,
will prove useful.

This chapter is mostly self-contained and can be read separately from the rest of the book.

6.2 Summary of the results
The results here presented concern bounds on the response, in terms of stresses and strains, of a two-component
viscoelastic composite material in the time domain. We suppose that the external loadings are applied in such
a way as to generate an antiplane shear state within the material. We recall that such a state is achieved
when the components u2(x, t) and u3(x, t) of the displacement field u(x, t) are zero (x is the coordinate
with respect to a Cartesian orthogonal reference system), for every x ∈ Ω and every t ∈ [0,+∞), and the
corresponding strain and stress states are of pure shear in the 12- and 13-planes, that is, by means of Voigt
notation, they are represented by the two-component vectors ε(x, t) = [2ε12(x, t) 2ε13(x, t)]

T andσ(x, t) =

[σ12(x, t) σ13(x, t)]
T. To ensure that a state of antiplane shear exists we assume that the microgeometry and,

hence, the moduli depend only on x2 and x3.
We assume that both phases have an isotropic behavior, so that the direct and inverse constitutive laws,

ruled by the 2× 2 matrices C(x, t) and M(x, t), read as follows

σ(x, t) = C(x, t) ∗ ε(x, t) with C(x, t) =
∑
i=1,2

χi(x)µi(t)I, (6.1)

ε(x, t) = M(x, t) ∗ σ(x, t) with M(x, t) =
∑
i=1,2

χi(x) ζi(t)I, (6.2)
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where ∗ indicates a time convolution, I is the identity matrix, χi(x) is the indicator function of phase i,
and µi(t) and ζi(t) are, respectively, the shear stiffness and the shear compliance of phase i, both functions of
time. A word about the notation may be helpful: on the left hand side of (6.1) [and (6.2)]σ(x, t) [respectively
ε(x, t)] refers to the stress [strain] at a specific time t, while on the right hand side C(x, t) and ε(x, t) [M(x, t)
and σ(x, t)] refer to the relaxation kernel and strain [creep kernel and stress] as functions of time from time
0 (before which there is no stress or strain) up to time t, which are convolved together to produce the stress
[strain] at the specific time t.

In this investigation, we are interested in determining the effective behavior of the composite (we consider
the most general case for which the composite does not have any specific symmetry), described by the effective
direct and inverse constitutive law operators C∗(t) and M∗(t) as follows

σ(t) = C∗(t) ∗ ε(t), ε(t) = M∗(t) ∗ σ(t), (6.3)

where here and henceforth the bar denotes the volume average operation. In particular, we seek estimates for
the shear stress and strain components σ12(t) and ε12(t) for each time t ∈ [0,∞).

By applying the so-called analytic method, based on the analyticity properties of the Laplace transforms
C∗(λ) and M∗(λ) (λ is the Laplace transform parameter) of the operators C∗(t) and M∗(t) as functions of
the Laplace transforms µi(λ) and ζi(λ) of µi(t) and ζi(t), i = 1, 2 (see Section 6.3), the effective constitutive
laws (6.3) turn into:

σ(t) = µ2(t) ∗ ε(t)−
m∑
i=0

Bi L−1

[
µ2(λ)

s(λ)− si

]
(t) ∗ ε(t), (6.4)

ε(t) = ζ2(t) ∗ σ(t)−
m∑
i=0

Pi L−1

[
ζ2(λ)

u(λ)− ui

]
(t) ∗ σ(t), (6.5)

where L−1 represents the inverse of the Laplace transform, si and ui are, respectively, the poles of the func-
tions

F(s) = I− C∗(λ)

µ2(λ)
, G(u) = I− M∗(λ)

ζ2(λ)
, (6.6)

with residues Bi and Pi, respectively, where the parameters s(λ) and u(λ) are defined as follows

s(λ) =
µ2(λ)

µ2(λ)− µ1(λ)
, u(λ) =

ζ2(λ)

ζ2(λ)− ζ1(λ)
. (6.7)

The poles si and ui lie in the semi-closed interval [0, 1) and the residues Bi and Pi are positive semi-definite
matrices. It must be noted that equations (6.4) and (6.5) hold only in the case when C∗(λ) and M∗(λ) are
rational functions of the eigenvalues µi(λ) and ζi(λ), i = 1, 2, respectively. There is no lack of generality in
considering only rational functions, since, from a physical viewpoint, the antiplane elasticity problem under
consideration is mathematically equivalent to one for electrical conductivity and as pointed out by Milton
(1981a) one can approximate the composite by a discrete resistor network, for which these functions are
rational (to get the idea, see Figure 2.6). Mathematically, the representation of these functions involve Stieltjes
functions (i.e., functions of the form (1.184)) and irrational Stieltjes functions can be approximated to an
arbitrarily high degree of approximation by rational ones, except in the near vicinity of the negative real axis
and far from the origin. (Then the kernel entering the representation formula is a smoothing operation and
consequently the measure associated with an irrational Stieltjes function can be approximated by a discrete
measure).
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All the information about the composite, such as the knowledge of the volume fractions or the eventual
isotropy of the material, is then transformed into constraints on the residues Bi and Pi, the so-called sum
rules, introduced by Bergman (1978) and discussed in Section 6.3. Such constraints are then contextualized
in Section 6.4 so that bounds on the components σ12(t) and ε12(t) are derived by means of the theory of
linear programming. In particular, for each information available about the composite, that is, for each sum
rule that is taken into account, we provide analytic expressions for the maximum and minimum values of the
field components σ12(t) and ε12(t) at each instant in time, when the applied fields are respectively ε(t) =
[ε12(t) 0]T and σ(t) = [σ12(t) 0]T (see Section 6.5).

In this section we present some numerical results by specifying the models used for the behavior of the
two phases, so that the inverse of the Laplace transform in (6.4) and (6.5) can be calculated explicitly.

6.2.1 Bounds on the stress response
For the sake of simplicity, we suppose that phase 2 is characterized by a linear elastic behavior, with shear
modulus µ2(t) = G2δ(t), δ(t) being the Dirac delta function, and that phase 1 is described by the Maxwell
model. We recall that such a model is represented by a purely Newtonian viscous damper (viscosity coefficient
ηM ) and a purely Hookean elastic spring (elastic modulus GM ) connected in series so that the shear modulus
of phase 1 is µ1(t) = GMδ(t)−G2

M/ηMexp[−GM t/ηM ]. We caution that the Maxwell model has only one
relaxation time ηM/GM , while real materials may have an extraordinarily broad range of relaxation times
extending over many decades (Lakes and Quackenbush 1996). Our methods extend to them too: the Maxwell
model is just used for simplicity, and because some of the calculations can be done analytically.

To capture the most interesting case, we suppose that the material is not “well-ordered”, that is, the product
of the difference of the instantaneous moduli (very close to t = 0) and the long time moduli (as t tends to
infinity) is negative, i.e., G2 < GM . Nevertheless, for completeness, in the following we will show also
some results concerning the “well-ordered” case, that is, when the product of these differences is positive
(G2 > GM ).

We consider the classical relaxation test in which the applied average stain is held constant after being
initially applied, i.e., ε(t) = ε0 = [ε0 0]T. From (6.4) we derive the following expression for σ12(t):

σ12(t) = G2ε0 −G2ε0

m∑
i=0

1−
exp

[
− G2(1−si)t
ηM
(

G2
GM
−si

(
G2
GM
−1
))]

G2

GM
− si

(
G2

GM
− 1
)


B

(i)
11

1− si
, (6.8)

where B(i)
11 are the 11-components of the 2× 2 matrices Bi.

Now suppose that no information about the geometry of the composite is available. As shown in Subsection
6.5.1, in order to optimize σ12(t) for any given time t ∈ [0,∞), it suffices (by linear programming theory) to
take only one element B(0)

11 to be nonzero. In particular, it turns out that B(0)
11 = 1− s0 and the expression of

σ12(t) is then given by

σ12(t) = G2ε0
exp

[
− G2(1−s0)t
ηM [s0(1−G2/GM )+G2/GM ]

]
s0 (1−G2/GM ) +G2/GM

. (6.9)

The maximum (or minimum) value of σ12(t) is obtained by varying the pole s0 over its domain of validity,
i.e., [0, 1). Since the response (6.9) corresponds to that of a laminate oriented with the x2 axis normal to the
layer planes, varying s0 corresponds to varying the volume fraction of the phases in the laminate (since no
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Figure 6.1: Lower and upper bounds on σ12(t) when no information about the composite is given. The
stress σ12(t) is normalized with respect to the elastic stress in phase 2, equal to ε0G2. The material purely
made of phase 1 provides the upper bound for t ≤ t1 = 0.83 and the lower bound for t ≥ t2 = 1.15,
whereas the material purely made of phase 2 attains the lower bound for t ≤ t2 = 1.15 and the upper
for t ≥ t1 = 1.67. For t1 ≤ t ≤ t3 the upper bound is realized by a laminate of the two components.

information about the composite is available, the volume fraction f1 of phase 1 can be varied from 0 to 1). In
particular, the case s0 = 0 corresponds to a “composite” which contains only phase 1, while the case s0 → 1
corresponds to a “composite” which contains only phase 2.

As shown in Figure 6.1, where σ12(t) is normalized with respect to the stress state in the elastic phase,
G2ε0, the material purely made of phase 1 (s0 = 0) attains the upper bound for t ≤ t1 = ηM/GM (1 −
G2/GM ) (equal to 0.83 in Figure 6.1) and the lower bound for t ≥ t2 = ηM/GM log(GM/G2) (equal to
1.15 in Figure 6.1), whereas the material purely made of phase 2 (s0 → 1) attains the lower bound for t ≤ t2
and the upper one for t ≥ t3 = ηM/G2(1−G2/GM ) (equal to 1.67 in Figure 6.1): the same microstructure
can provide both the maximum and the minimum response depending on the interval of time considered.
Furthermore, for t1 ≤ t ≤ t3 the upper bound is realized by a laminate of the two components corresponding
to the pole s0 positioned at

sopt0 =

tG2

ηK
− G2

GK

(
1− G2

GK

)
(

1− G2

GK

)2 . (6.10)

Due to the dependence of sopt0 on time t, it follows that the volume of the phases in the laminate attaining the
bounds needs to be adjusted according to the time at which one is optimizing the response.
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Figure 6.2: Comparison between the lower and upper bounds on σ12(t) (normalized with respect to the
elastic stress in phase 2, equal to ε0G2) in the following three cases: no information about the composite
is given; the volume fraction of the components is known (f1 = 0.4); and the composite is isotropic with
given volume fractions. The bounds become tighter and tighter as more information on the composite
structure is included, so that if color is missing from the figure the outermost pair of bounds are those
with no information, the middle pair include just the volume fraction, and the innermost pair include
both volume fraction and isotropy.

Specifically, the upper bound is given by

σmax
12 (t) =


ε0GMexp

[
−GM

ηM
t
]

s0 = 0 , t ≤ t1,
ε0
ηM
t

(
1− G2

GM

)
exp

[
1− t

ηM
G2GM

GM−G2

]
s0 = sopt0 , t1 ≤ t ≤ t3,

ε0G2 s0 → 1 , t ≥ t3,
(6.11)

whereas the lower bound corresponds to

σmin
12 (t) =

{
ε0G2 s0 → 1 , t ≤ t2,
ε0GMexp

[
−GM

ηM
t
]

s0 = 0 , t ≥ t2.
(6.12)

In the case when the volume fractions of the components are known, tighter bounds can be obtained. In
particular, in Figure 6.2 we compare the results obtained by considering the following situations: no informa-
tion about the composite is available (the case analyzed in detail above), the volume fraction of the constituents
is known (two poles), and the composite is transversely isotropic with given volume fractions (three poles).
It is worth noting that the bounds corresponding to the latter case are very tight and therefore the response of
the composite in terms of σ12(t) is almost completely determined.
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Significantly, the bounds in Figure 6.2 which include the volume fraction (and possibly, transverse iso-
tropy) are extremely tight at particular times t, and so, if the volume fraction is unknown, we can measure the
value of σ12(t) at these times, and then use the bounds in an inverse fashion to determine (almost exactly) the
volume fraction. To understand why the bounds are extremely tight at these times we rewrite the relation (6.8)
in the form

σ12(t) = G2ε0 −G2ε0

m∑
i=0

K(si, t)B
(i)
11 , (6.13)

with coefficients

K(si, t) =

1−
exp

[
− G2(1−si)t
ηM
(

G2
GM
−si

(
G2
GM
−1
))]

G2

GM
− si

(
G2

GM
− 1
)


1

1− si
. (6.14)

If at a time t = τ0 the coefficients K(si, t) were almost independent of si, i.e., K(si, τ0) ≈ c0 for all i, then
by substituting this in (6.13) and using the sum rule given later in (6.39), we see that

σ12(τ0) ≈ G2ε0 −G2ε0c0f1. (6.15)

Alternatively, if at another time t = τ1 the coefficientsK(si, t) depend almost linearly on si, i.e.,K(si, τ1) ≈
c0 + c1si for all i, and the geometry is transversely isotropic, then by substituting this in (6.13) and using the
sum rules given later in (6.39) and (6.40) we see that

σ12(τ1) ≈ G2ε0 −G2ε0(c0f1 + c1f1f2/2). (6.16)

Video 11 showsK(si, t) as a function of time for our example, and we see indeed that the coefficientsK(si, t)
are almost independent of si at the times when the bounds which incorporate only the volume fraction are
very tight (for example, at τ0 = 0.78 and at τ0 = 4.3 — see also Figure 6.2), and they depend almost linearly
on si at the times when the bounds which incorporate the volume fractions and the transverse isotropy are
very tight (for instance, at τ1 = 2.8 and τ1 = 8.21 — see also Figure 6.2).

Other information about the composite can be considered, such as the knowledge of the value of σ12(t) at
a specific time. Figs. 6.3 and 6.4 show the results obtained in the case when the value of σ12(t) at t = 0 and
t→∞, respectively, is given.

With reference to Figure 6.3, notice that the combination of the knowledge of the volume fraction and of
the value of σ12(t) at t = 0, σ12(0), provides very tight bounds on σ12(t).

Concerning Figure 6.4, a few remarks should be made. First of all, notice that for the case when only
the value of σ12(t) for t → ∞, σ12(∞), is prescribed, the upper bound seems to not reach such a value: it
provides a constant stress state equal to the one in the material purely composed of phase 2. This is due to
the fact that the only nonzero residueB(0)

11 = (1− s0) (1− σ12(∞)/(G2ε0)) in (6.8) takes a value very close
to zero when the corresponding pole s0 tends to 1 and, consequently, the predicted response is that of phase
2 (see equation (6.8)). However, in the near vicinity of t → ∞, the upper bound rapidly converges to the
prescribed value σ12(∞). Regarding the upper bound obtained by considering both the values of σ12(t) at
t → ∞ and the volume fractions to be known, notice that it presents a small slope which allows it to slowly
reach the value σ12(∞) for t→∞.

1All videos in this chapter are available at http://www.math.utah.edu/books/milton, along with high-resolution copies of the
figures in this chapter.
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Figure 6.3: Comparison between the lower and upper bounds on σ12(t) (normalized with respect to the
elastic stress in phase 2, equal to ε0G2) in the following three cases: no information about the composite
is given; the value of σ12(t) at t = 0 is prescribed; and the value of σ12(t) at t = 0 and the volume
fractions are known (f1 = 0.4). The bounds become tighter and tighter as more information about the
composite structure is included, and this allows the bounds to be identified when their colors have not
been reproduced.

The “well ordered” case, corresponding to the choice G2 > GM , is less interesting due to the fact that
the curves representing the behavior of phase 1 and phase 2 do not intersect. However, for completeness, in
Figure 6.5, we provide bounds on σ12(t) for G2 > GM in the following cases: no information about the
composite is available; the volume fraction is known; and the composite is transversely isotropic with given
volume fraction. Again, the bounds become tighter the more information about the composite is considered.
Nevertheless, the bounds are wide compared to the case G2 < GM , and are tightest at t = 0.

Besides optimizing the component σ12(t) of the averaged stress field σ(t), one would like to determine also
what are the possible values the vector σ(t) = [σ12(t) σ13(t)]T can take as time evolves. One way to get
some information about this is to look for the maximum or minimum value attained by a linear combination
of the components σ12(t) and σ13(t) of σ(t). Let us consider, then, the following scalar objective function,
for each fixed angle α:

F(t) = sinασ12(t) + cosασ13(t), (6.17)

where, in general, σ12(t) and σ13(t) are given by (6.4).

Let us assume that the same hypotheses valid for the bounds on σ12(t) still hold, i.e., phase 1 is described
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Figure 6.4: Comparison between the lower and upper bounds on σ12(t) (normalized with respect to the
elastic stress in phase 2, equal to ε0G2) in the following three cases: no information about the composite
is given; the value of σ12(t) at t→∞ is prescribed; and the value of σ12(t) at t→∞ and the volume
fractions are known (f1 = 0.4). In the last two cases, the upper bound attains the assigned value of
σ12(t) at t → ∞ only in the near vicinity of t → ∞, whereas the lower bound converges very fast. In
the first two cases the two upper bounds are almost indistinguishable (and essentially independent of t)
for a large range of t greater than about 1.5, and the two lower bounds are almost indistinguishable (and
essentially independent of t) for t less than about 1: this, and the fact that the bounds do not get worse
as more information is included, allows one to identify them when their color is missing.

by the Maxwell model, phase 2 is elastic, and ε(t) = ε0 = [ε0 0]T. Then, we have

σ(t) = G2ε0 −G2

m∑
i=0

1−
exp

[
− G2(1−si)t
ηM
(

G2
GM
−si

(
G2
GM
−1
))]

G2

GM
− si

(
G2

GM
− 1
)


Bi

1− si
ε0. (6.18)

Furthermore, we suppose that the microstructure has reflective symmetry, that is, it is symmetric with respect
to reflection about a certain plane. Such an assumption implies that all residues Bi in (6.18) are diagonal
matrices with respect to the same basis (i.e., they commute). In general, optimizing the quantity F(t) for
a fixed α and, then, varying α will only allow us to find the convex hull of the set of possible vectors σ(t)
at each time t. However, in the case of reflective symmetry, we can first fix the orientation of the residues
(i.e., the orientation of the composite) 2 and, then, we can find the minimum value of F(t), and a (possibly

2Fixing the orientation of the composite means fixing the value of the angle θ = θi, for each i, in equation (6.42). In particular, when
the orientation is fixed, two possible configurations of the microstructure are admissible: one corresponds to the angle θ and the other,
reflected with respect to the first one, corresponds to the angle θ + π/2. Strictly speaking the microstructure does not necessarily have
this additional reflective symmetry, but the associated effective tensor does have it.
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Figure 6.5: Comparison between the lower and upper bounds on σ12(t) (normalized with respect to
the elastic stress in phase 2, equal to ε0G2) in the “well-ordered case” G2 > GM . The following
three subcases are considered: no information about the composite is given; the volume fraction of the
components is known (f1 = 0.4); and the composite is isotropic with given volume fractions. The bounds
become tighter as more information on the composite structure is included, and this allows them to be
identified when their color is missing. However the bounds remain quite wide except near t = 0.

nonunique) function σ(t, α) which realizes it (observe that finding the maximum value of F(t) is the same as
finding the minimum when α is replaced by α+π). Next, for each t construct the set which is the union of the
points σ(t, α) as α varies between 0 and 2π, and take its convex hull: the boundary of this convex hull is the
trajectory of σ(t, α) as α increases, except if there is a jump in the value of σ(t, α), for which the successive
values ofσ(t, α) are joined by a straight line. Finally, we take the union of these convex hulls as the orientation
is varied. In this way we obtain bounds which at any instant of time t confine the pair (σ13(t), σ12(t)) to a
region which is not necessarily convex.

In the case when no information about the geometry of the composite is available, apart from the reflective
symmetry, the optimum value of F(t) is attained when a maximum of two residues are nonzero.

Video 2, plots σ12(t) against σ13(t) (both normalized byG2ε0, the stress state in phase 2) for each moment
of time, in the case when the orientation of the composite is fixed (blue curve). To enrich the results, the video
also plots the domain (σ13(t), σ12(t)) corresponding to the stress state in a laminate with the prescribed
orientation (red curve). We recall that for a laminate the stress state is unequivocally determined, since the
eigenvalues of the two nonnull residues are related to the harmonic and arithmetic means of the moduli of the
two phases. Note that, since no information about the composite is available, the volume fraction f1 of phase
1 can vary from 0 to 1. In the initial frame of the video, at t = 0, the point (0, 1) (corresponding to s0 →
1, s1 → 1) represents the instantaneous stress state within phase 2, whereas the point (0, 2) (corresponding
to s0 = s1 = 0) represents the stress state within phase 1. Obviously, both points belong also to the red curve
representing the laminate behavior. As time goes by, the domain becomes smaller and smaller with the upper
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vertex still representing the behavior of phase 1 while the lower vertex, the point (0, 1), remaining fixed as
it represents the elastic behavior of phase 2. For times t between t1 = 0.83 and t3 = 1.67 a change takes
place: the upper vertex does not represent the response of a phase 1, nor even that of a laminate. Then for
times t > t3 = 1.67, the upper vertex coincides with the point (0, 1), representing the behavior of phase 2.
The lower vertex describes the behavior of phase 2 until t = t2 = 1.15, after which it represents the behavior
of phase 1.

When the orientation of the composite is not known, one has to perform the previous analysis for each
possible orientation and, then, take the union of the resulting domains, as shown in Video 3.

For each fixed value of the angle α, sharp bounds on the function F(t) (6.17) give the straight lines
forming an angle equal to α, with respect to the σ13(t)-axis, which are tangent to the domain of possible
(σ13(t), σ12(t)). For each time, the values of (σ13(t), σ12(t)) which attain the bounds on F(t) correspond to
those points where the tangent line intersects this domain.

We do not provide numerical results bounding the functionF(t) for the case in which the volume fractions
of the components are known, due to the large number of variables involved.

6.2.2 Bounds on the strain response
In this case, we suppose that phase 2 is still elastic, with ζ2(t) = 1/G2δ(t), while we represent the behavior
of phase 1 by means of the Kelvin–Voigt model, composed by a purely viscous damper (ηK) and purely
elastic spring (GK) connected in parallel, so that ζ1(t) = exp(−GKt/ηK)/ηK . The most interesting results
correspond to the non “well-ordered” case, corresponding to G2 < GK .

Moreover, if we consider the classical creep test, for which the applied averaged stress field is constant in
time after it has been initially imposed, i.e., σ(t) = σ0, and we set σ0 = [σ0 0]T, then equation (6.5) yields:

ε12(t) =
σ0

2G2
− σ0

2G2

m∑
i=0

GK −G2 +G2

exp
[
− (GK(1−ui)+uiG2)t

ηK(1−ui)

]
1− ui

 P
(i)
11

GK − ui(GK −G2)
, (6.19)

where the P (i)
11 are the 11-components of the residues Pi.

In the case when no information about the geometry of the composite is available, bounds on ε12(t) are
obtained by taking only one residue to be nonzero (see Subsection 6.5.2). In particular, it turns out that
P

(0)
11 = 1− u0 and ε12(t), from (6.19), takes the following form:

ε12(t) =
σ0

2G2

1−
(1− u0)(GK −G2) +G2exp

[
−GK−u0(GK−G2)

ηK(1−u0) t
]

GK − u0(GK −G2)

 . (6.20)

As shown in Figure 6.6, the material purely made of phase 1 (u0 = 0) attains the lower bound for t ≤ tI =
ηK
GK

log
(

G2

G2−GK

)
= 2.78 and the upper bound for t ≥ tII = 5.14, whereas the material purely made of

phase 2 (u0 → 1) attains the lower bound for t ≥ tI = 2.78. For tI ≤ t ≤ tII the upper bound is achieved
by a laminate. Figs. 6.7, 6.8, and 6.9 depict the bounds on ε12(t) for different combinations of information
about the composite. In particular, Figure 6.7 shows the results when the volume fraction is known and the
composite is transversely isotropic, Figure 6.8 when f1 and ε12(0) are assigned, and Figure 6.9 when f1 and
ε12(∞) are prescribed. For each case, very tight bounds on ε12(t) are obtained.

With reference to Figure 6.8, it is worth noting that the upper bound attains the value ε12(0) by converg-
ing to such a value only in the near vicinity of t = 0. This is due to the fact that the only nonzero residue



164 6. Bounds for the transient response of viscoelastic composites

t
0 2 4 6 8 10

ǫ
1
2
(t
)

0

0.5

1

1.5

2

Phase 1

Phase 1

Phase 2

Laminate

Upper bound
Lower bound

Figure 6.6: Lower and upper bounds on ε12(t) (normalized with respect to the elastic strain in phase 2,
equal to σ0/(2G2)) in the case when no information about the composite is given. The material purely
made of phase 1 provides the lower bound for t ≤ tI = 2.84 and the upper bound for t ≥ tII = 5.16,
whereas the material purely made of phase 2 attains the lower bound for t ≥ tI = 2.84. For t ≤ tII = 5.16
the upper bound is realized by a laminate of the two components.

P
(0)
11 = (1− u0)(1−G2ε12(0)/σ0) tends to zero as u0 → 1.

One would like also to seek bounds on the values of the vector ε(t) = [ε12(t) ε13(t)]T as time evolves.
We do this by seeking bounds on a linear combination of the components ε12(t) and ε13(t) of ε(t). Let us
consider, then, the following objective function, at a fixed angle α:

G(t) = sinα ε12(t) + cosα ε13(t). (6.21)

We suppose that the following hypotheses still hold: phase 1 is described by the Kelvin–Voigt model,
phase 2 has an elastic behavior, and the applied stress history is constant in time for t > 0. Then, equation
(6.5) turns into

ε(t) =
σ0

2G2
− 1

2G2

m∑
i=0

GK −G2 +G2

exp
[
− (GK(1−ui)+uiG2)t

ηK(1−ui)

]
1− ui

 Pi

GK − ui(GK −G2)
σ0. (6.22)

We assume the composite has reflection symmetry and following the same argument adopted for deriving
bounds on F(t) (6.17), we first fix the orientation of the composite (i.e., residues), then for each time t we
minimize the function G(t) (6.21), where the components ε13(t) of ε(t) are given by (6.22), and we look for a
function ε(t, α) which achieves the minimum. Next, for each t we construct the set which is the union of the
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Figure 6.7: Comparison between the lower and upper bounds on ε12(t) (normalized with respect to the
elastic strain in phase 2, equal to σ0/(2G2)) in the following three cases: no information about the
composite is given; the volume fraction of the components is known (f1 = 0.4); and the composite is
isotropic with given volume fractions. Again they get tighter as more information is included which allows
them to be identified in the absence of color.

points σ(t, α) as α varies between 0 and 2π, and take its convex hull. Finally, we take the union of the results
as the orientation of the composite is varied.

In Videos 4 and 5, we plot the domain ε13(t)–ε12(t) (where both strains have been normalized by the
strain field in the elastic phase σ0/(2G2)) for each time t ∈ [0,∞), for the case when no information about
the composite is available. In particular, in Video 4 we suppose one knows the orientation of the composite,
while in Video 5 we suppose that such information is not available and, therefore, we consider the union of
the domains calculated for each fixed orientation. Once again, the results are enriched by considering also the
exact solution provided by a laminate.

The optimum value of G(t) is attained when a maximum of two residues are nonzero. At t = 0, the strain
field turns out to be ε(0) = (0, 0) and, therefore, it does not depend on the position of the poles u0 and u1.
For times t > 0, instead, we maximize (or minimize) G(t) by varying the position of the two poles. The point
(0, 1), corresponding to u0 → 1, u1 → 1, keeps fixed since it represents the elastic response of phase 2. As
the time goes by, the domain becomes smaller and smaller converging towards this point. At t = tI = 2.78,
the domain coincides with the one representing the laminate response and, then, for t > tI = 2.78 it becomes
bigger and bigger above the point (0, 1).

Assigned the angle α (see equation (6.21)), bounds on G(t) are derived by considering the points of
intersection between the domain (ε13(t), ε12(t)) and the tangents having slope equal to tanα, for each time t.
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Figure 6.8: Comparison between the lower and upper bounds on ε12(t) (normalized with respect to the
elastic strain in phase 2, equal to σ0/(2G2)) in the following three cases: no information about the
composite is given; the value of ε12(t) at t = 0 is prescribed; and the value of ε12(t) at t = 0 and the
volume fractions are known (f1 = 0.4). In the last two cases, the upper bound attains the assigned
value of ε12(t) at t = 0 only in the near vicinity of t = 0. In the first two cases the lower bounds are
indistinguishable (and essentially independent of t) for t greater than about 2. This and the ordering of
the bounds allows them to be identified when their color is missing.

6.3 Formulation of the problem
We consider a 3D body Ω made of a statistically homogeneous two-phase composite material with a length
scale of inhomogeneities much smaller than the length scale of the body (that is, Ω can be interpreted as the
Representative Volume Element (RVE) of the composite), and subject on the boundary Γ either to prescribed
displacements or to assigned tractions, applied in such a way as to generate a shear antiplane state within the
solid.

In the case when the volume average of the strain field ε(t) is assigned, we choose kinematic boundary
conditions of the affine type all over the surface Γ:

u1(x, t) = 2H(t) (ε12(t)x2 + ε13(t)x3) , u2(x, t) = u3(x, t) = 0, (6.23)

withH(t) the Heaviside unit-step function of time, whereas in the case when the volume average of the stress
field σ(t) is prescribed, we apply homogeneous tractions p(x, t) on Γ:

p1(x, t) = H(t) (σ12(t)n2(x) + σ13(t)n3(x)) , p2(x, t) = p3(x, t) = 0, (6.24)

where n(x) is the unit outward normal to ∂Ω.
The local constitutive equations are given by (6.1) and (6.2), while the effective constitutive laws are

expressed by equation (6.3).
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Figure 6.9: Comparison between the lower and upper bounds on ε12(t) (normalized with respect to the
elastic strain in phase 2, equal to σ0/(2G2)) in the following three cases: no information about the
composite is given; the value of ε12(t) at t→∞ is prescribed; and the value of ε12(t) at t→∞ and the
volume fractions are known (f1 = 0.4). The ordering of the bounds allows them to be identified when
their color is missing.

By applying the Laplace transform to (6.3), we obtain

σ(λ) = C∗(λ)ε(λ), ε(λ) = M∗(λ)σ(λ), (6.25)

where the matrices C∗(λ) and M∗(λ) are analytic functions of the eigenvalues µi(λ) and ζi(λ), i = 1, 2
(Bergman 1978, Milton 1981a, Golden and Papanicolaou 1983). Consequently, by exploiting such analytic
properties, an integral representation formula for the operators C∗(λ) and M∗(λ) can be derived (for a rigor-
ous mathematical proof, refer to the papers by Golden and Papanicolaou (1983, 1985)).

In particular, let us focus on the operator C∗(λ). By introducing the parameter s(λ), defined by (6.7),
and the function F(s), given by (6.6), Golden and Papanicolaou (1983) enunciated and proved the so-called
Representation theorem, which asserts that there exists a finite Borel measure η(y), defined over the interval
[0, 1] such that the measure is positive semi-definite matrix-valued satisfying

F(s) =

∫ 1

0

dη(y)

s− y , (6.26)

for all s 6∈ [0, 1].
In the case when C∗(λ), and hence F(s), are rational functions the measure is concentrated at the poles

s0, s1, ..., sm of the rational function F(s) and equation (6.26) turns into

F(s) =

m∑
i=0

Bi

s− si
, (6.27)
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in which the poles si lie on the semi-closed interval [0, 1) and the residues Bi are positive semi-definite
matrices, that is

0 ≤ s0 ≤ s1 ≤ ... ≤ sm < 1 and Bi ≥ 0 for all i. (6.28)

Notice that, since C∗(λ) is real and positive definite when the ratio µ1(λ)/µ2(λ) is real and positive, and
in particular as such a ratio tends to zero, from the definition (6.6) of F(s) it follows that, as s→ 1

F(1) =

∫ 1

0

dη(y)

1− y ≤ I, (6.29)

and, in the case of rational functions, the latter reduces to the following constraint on the poles and residues
of F(s):

F(1) =

m∑
i=0

Bi

1− si
≤ I. (6.30)

In order to further reduce the number of free parameters si and Bi, all the available information about the
composite microstructure has to be translated into constraints, the so-called sum rules, on such parameters.
In particular, the sum rules are obtained by expanding the representation (6.26) of F(s) in powers of 1/s as
s→∞, which corresponds to consider the case µ1(λ) = µ2(λ) = 1, that is, when the microscopic structure
is nearly homogeneous. When s → ∞, the denominator in (6.26) can be expanded as a series expansion in
powers of 1/s to give

F(s) =

∞∑
j=0

Aj

sj+1
with Aj =

∫ 1

0

yjdη(y). (6.31)

It is clear that constraints on the moments of the measure are provided by the knowledge of the leading
terms in the series, such as A0 and A1, which were derived through perturbation analysis by Brown, Jr. (1955)
and Bergman (1978): see also equation (28) in Milton (1981a). In particular, if the volume fractions f1 and
f2 = 1− f1 of the constituents are known, the first and second moments of the measure are given by

A0 =

∫ 1

0

dη(y) = f1I, (6.32)

TrA1 =

∫ 1

0

y dη(y) = f1 f2, (6.33)

and the consequent constraints on the residues Bi and poles si read

m∑
i=0

Bi = f1I, (6.34)

Tr

(
m∑
i=0

Bisi

)
= f1 f2. (6.35)

Concerning the inverse constitutive law operator M∗(λ), an analogous procedure leads to the following spec-
tral representation:

G(u) =

m∑
i=0

Pi

u− ui
, (6.36)



6.4. Sum rules 169

where the parameter u(λ) is defined by (6.7) and the function G(u) is given by (6.6).
The residues Pi and poles ui satisfy the same constraints fulfilled by Bi and si. In particular, they satisfy

inequalities (6.28) and (6.30), and equations (6.34) and (6.35), provided one replaces Bi and si with Pi and
ui.

6.4 Sum rules
The sum rules we develop here are implicit in the work of Bergman (1978), but we reproduce them here for
completeness. Let us consider the σ12(t) component of the averaged stress field σ(t) that from (6.4) is given
in the most general case by :

σ12(t) = µ2(t) ∗ ε12(t)−
m∑
i=0

B
(i)
11 L−1

[
µ2(λ)

s− si

]
(t) ∗ ε12(t), (6.37)

where for simplicity we set ε13(t) = 0. In order to optimize the value of σ12(t) for each t ∈ [0,∞) as
a function of the 11-components B(i)

11 of the residues Bi, the constraints illustrated in Section 6.3 must be
translated into constraints on B(i)

11 , nonnegative quantities by virtue of (6.28). In particular, inequality (6.30)
rephrased as

∑m
i=0 eTBie/(1− si) ≤ 1 delivers with e = [1 0]T,

1−
m∑
i=0

B
(i)
11

1− si
≥ 0. (6.38)

We remark that given any set of poles 0 ≤ s0 ≤ s1 ≤ s2 ≤ . . . ≤ sm < 1 and any set of nonnegative residues
B

(0)
11 , B

(1)
11 , B

(2)
11 , . . . , B

(m)
11 one can find a composite (which is a laminate of laminates) which realizes the

response (6.37) for all times [see Appendix B of Milton (1981c) and Section 18.5 of Milton (2002)]. This
implies that all our bounds based on the representation (6.37) will be optimal (and attained within this class of
laminates of laminates), except those bounds that assume transverse isotropy. The bounds assuming transverse
isotropy will likely not be optimal as they fail to take into account the phase interchange relation of Keller
(1964), which places a nonlinear constraint on the residues.

By rephrasing the constraint (6.34) as
∑m
i=0 eTBie = f1, we have

m∑
i=0

B
(i)
11 = f1. (6.39)

Finally, by introducing the hypothesis of a transversely isotropic material (for which the residues Bi are diag-
onal matrices with B(i)

11 = B
(i)
22 ), the constraint (6.35) turns into

m∑
i=0

B
(i)
11 si =

f1f2

2
. (6.40)

Due to the linearity with respect toB(i)
11 of σ12(t) and of the above constraints, we can apply the theory of

linear programming (Dantzig 1998) to optimize σ12(t), as shown in Section 6.5.
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In the case when the function to optimize is the scalar quantity F(t) defined by (6.17), the sum rules must be
written in terms of the four components of the 2× 2 matrices Bi.

The constraint (6.28) on the positive semi-definiteness of the residues Bi yields a condition on the deter-
minant of Bi, which is quadratic with respect to the components of Bi. In order to have only linear constraints,
we express the residues in the following form:

Bi = RT
i biRi, i = 0, 1, ...,m, (6.41)

with

Ri =

[
cos θi − sin θi
sin θi cos θi

]
, bi =

[
bAi 0

0 bBi

]
. (6.42)

Consequently, the condition on the positive semi-definiteness of the residues is translated into the following
linear constraint on the elements bAi and bBi, for i = 0, 1, ...,m:

bAi ≥ 0 and bBi ≥ 0. (6.43)

Regarding the constraint (6.30), in order to avoid the condition of nonnegativity of the determinant of the
matrix I−∑m

i=0 Bi/(1−si), which is quadratic with respect to bAi and bBi, we initially restrict our attention
to the case of composites endued with reflective symmetry. In such composites the angles of rotation θi (6.42)
take the same value for each residue, that is, the residues are diagonal matrices with respect to the same basis,
so that θi = θ for every i = 0, 1, ...,m, and the constraint (6.30) turns into the following linear conditions on
bAi and bBi :

1−
m∑
i=0

bAi
1− si

≥ 0, 1−
m∑
i=0

bBi
1− si

≥ 0. (6.44)

Furthermore, under the reflective symmetry property, relations (6.34), (6.35) lead to

m∑
i=0

bAi = f1,

m∑
i=0

bBi = f1f2, (6.45)

m∑
i=0

(bAi + bBi)si = f1f2. (6.46)

It is understood that in the case when one would like to optimize the strain response, such as the ε12(t)
component of the average stress field (6.5):

ε12(t) = ζ2(t) ∗ σ12(t)−
m∑
i=0

P
(i)
11 L−1

[
ζ2(λ)

u− ui

]
(t) ∗ σ12(t), (6.47)

where we set σ13(t) = 0, or the function G(t) (6.21), the constraints above still hold, provided we rephrase
them in terms of the residues Pi and poles ui of the function G(u) (6.6). Again, it is true that given any set
of poles 0 ≤ u0 ≤ u1 ≤ u2 ≤ . . . ≤ um < 1 and any set of nonnegative residues P (0)

11 , P
(1)
11 , P

(2)
11 , . . . , P

(m)
11

one can find a composite (which is a laminate of laminates) which realizes the response (6.47) for all times
[see the last paragraph in Section 18.5 of Milton (2002)]. This implies that all our bounds based on the
representation (6.47) will be optimal (and attained within this class of laminates of laminates), except those
bounds that assume transverse isotropy.
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6.5 Derivation of bounds in the time domain
The spectral representations (6.27) and (6.36) of the matrix-valued functions F(s) and G(u) respectively
provide bounds on the response of the material expressed in terms of bounds on the stress component σ12(t)
(6.37) and onF(t) (6.17) or on the strain component ε12(t) (6.47) and on G(t) (6.21). These bounds are found
by suitably varying the associated residues and poles in order to satisfy the sum rules shown in Section 6.4.
Since the parameters µi(λ) and ζi(λ), i = 1, 2, are real it follows that s(λ) and u(λ) (6.7) are also real.

6.5.1 Bounds on the stress response
By virtue of equations (6.6) and (6.27) the direct complex effective constitutive law (6.25) can be rephrased
as follows

σ(λ) = µ2(λ)

[
ε(λ)−

m∑
i=0

Bi

s− si
ε(λ)

]
, (6.48)

and by applying the inverse of the Laplace transform, the averaged stress field in the time domain is given
by (6.4). Notice that in (6.4) the inverse of the Laplace transform of µ2(λ)/(s(λ) − si) can be calculated
explicitly, provided we know the functions µi(λ), i = 1, 2.

Now the problem is to bound σ12(t) (6.37) for each fixed value of t. The idea is to take a fixed but
large value of m and find the maximum (or minimum) value of σ12(t) as the poles si and the nonnegative
components B(i)

11 of the residues Bi are varied subject to the constraints (6.38), (6.39) and (6.40). Since the
resulting maximum (or minimum) could depend on m, we should ideally take the limit as m tends to infinity.
However, it turns out that the extremum does not depend on m, provided m is large enough, and therefore
there is no need to take limits.

It is worth noting that varying the poles si and the residues Bi corresponds, roughly speaking, to varying
the microgeometry of the composite. Therefore, the procedure described above may be compared to finding
the maximum (or minimum) value of F(t) as the geometry of the composite is varied over all configurations.
Strictly speaking this is not quite correct as not all combinations of poles si and the residues Bi correspond to
composites, as composites satisfy the phase interchange relation of Keller (1964), which we have ignored as
it places a nonlinear constraint on the residues. This implies that the bounds we obtain assuming transverse
isotropy, or the bounds we obtain by minimizing F(t) (6.17) or G(t) (6.21), are probably not optimal (though
we emphasize that our bounds on σ12(t) and ε12(t) which do not assume transverse isotropy are optimal).

No available information about the composite In this case the maximum (or minimum) value of σ12(t) is
achieved when either one residue is nonzero or all residues are zero. In particular, the extremum occurs either
when the constraint (6.38) is satisfied as an equality by B(0)

11 , which takes the value B(0)
11 = 1 − s0, while

B
(i)
11 = 0, for i = 1, ...,m, or when B(i)

11 = 0 for every i = 0, 1, ...,m. Consequently, either

σ12(t) = µ2(t) ∗ ε12(t)− (1− s0)L−1

[
µ2(λ)

s(λ)− s0

]
(t) ∗ ε12(t), (6.49)

with s0 ∈ [0, 1), or
σ12(t) = µ2(t) ∗ ε12(t). (6.50)

It is clear that the latter case is a subcase of (6.49) when s0 → 1, and corresponds to an isotropic material
purely composed of phase 2, whereas when s0 = 0 in (6.49), by means of the definition (6.7) of s(λ), (6.49)
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provides the stress state in an isotropic material purely composed of phase 1, i.e., σ12(t) = µ1(t)∗ ε12(t). All
that remains (and in general this is best done numerically) is to find, for each time t, the position of the pole
s0 which maximizes or minimizes (6.49).

The upper and lower limits of the function (6.49) are given by equations (6.11) and (6.12) and they are
shown in Figure 6.1 for the specific case when the response of one phase is given by the Maxwell model and
the other having purely elastic behavior, with constant applied strain history.

The volume fraction of the constituents is known If f1 is prescribed, then σ12(t) is optimized by consid-
ering either only one nonzero residue satisfying constraint (6.39) or only two nonzero residues fulfilling the
constraint (6.39) and relation (6.38) as an equality. In the first case B(0)

11 = f1 and

σ12(t) = µ2(t) ∗ ε12(t)− f1 L−1

[
µ2(λ)

s(λ)− s0

]
(t) ∗ ε12(t), (6.51)

with s0 ∈ [0, f2], whereas in the second case B(0)
11 = (1−s0)(s1−f2)

s1−s0 , B(1)
11 = (1−s1)(f2−s0)

s1−s0 and

σ12(t) = µ2(t) ∗ ε12(t)− (1− s0)(s1 − f2)

s1 − s0
L−1

[
µ2(λ)

s(λ)− s0

]
(t) ∗ ε12(t)

− (1− s1)(f2 − s0)

s1 − s0
L−1

[
µ2(λ)

s(λ)− s1

]
(t) ∗ ε12(t),

(6.52)

with s0 ∈ [0, f2] and s1 ∈ [f2, 1).
We point out that equation (6.51) is a specific case of (6.52), when the pole s1 approaches 1. The remaining

optimization over the position of the poles in general needs to be done numerically.
Figure 6.2 shows the bounds obtained from equation (6.52), in the case when phase 1 is modeled by the

Maxwell model and phase 2 has an elastic behavior, with the further assumption that the strain history is
constant.

The composite is isotropic with known volume fractions Bounds on σ12(t) can then be derived by either
considering two nonzero residues satisfying equations (6.39) and (6.40), so that B(0)

11 = f1
s1−f2/2
s1−s0 , B(1)

11 =

f1
f2/2−s0
s1−s0 (subject to the constraint that the inequality (6.38) is satisfied) or by taking only three residues to

be nonzero, with (6.38) holding as an equality, so that

B
(0)
11 =

(1− s0)(1− s1)(1− s2)

(s1 − s0)(s2 − s0)

[
1− f1

1− s2
− f1

s2 − f2/2

(1− s1)(1− s2)

]
, (6.53)

B
(1)
11 =

(1− s0)(1− s1)(1− s2)

(s1 − s0)(s2 − s1)

[
f1

1− s0
+ f1

f2/2− s0

(1− s0)(1− s2)
− 1

]
,

B
(2)
11 =

(1− s0)(1− s1)(1− s2)

(s2 − s0)(s2 − s1)

[
1− f1

1− s0
− f1

f2/2− s0

(1− s0)(1− s1)

]
.

Again the remaining optimization over the position of the poles in general needs to be done numerically. This
case is shown in Figure 6.2 for the Maxwell model-Elastic model case with constant strain history.

Apart from the knowledge of the volume fractions and of the possible isotropy of the composite, other in-
formation may be given. For instance, the value of σ12(t) at t = 0 or at t → ∞ may be known. In such a
case, we can derive bounds on σ12(t) as follows:
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Given the value of σ12(t) at t = 0 or at t→∞ The maximum (or minimum) value of the 12-component
of the averaged stress field can be obtained either by considering only one nonzero residue satisfying equation
(6.37) evaluated at t = 0 or at t → ∞, respectively, or only two nonzero residues fulfilling constraint (6.37)
(evaluated at t = 0) and relation (6.38) as an equality.

It is worth noting that tighter bounds can be derived by considering combinations of information, such as
the value of σ12(t) at zero or infinity and the volume fraction of the material (see Figs.6.3 and 6.4). For the
sake of brevity we do not report here the explicit results for that case but it is understood that they are derived
following the same procedure applied above.

Now let us look at the problem of bounding the function F(t) (6.17) for a composite with reflective sym-
metry, with the angles α and θ fixed.

Bounds in the case when no information about the composite is available In the case when the only
available information about the composite is the shear modulus µi(λ) of each constituent, then bounds on
F(t) (6.17) have to be sought by considering the constraints (6.43) and (6.44). The optimum value of F(t)
is attained when maximum two residues are nonzero. In particular, the representative case can be considered
as the one for which both the constraints given by (6.44) are fulfilled as equalities. Then, only one of the
bAi elements and only one of the bBj elements, with i 6= j, are nonzero, that is, either bA0 = 1 − s0 and
bB1 = 1−s1 or bA1 = 1−s1 and bB0 = 1−s0, where s0 has to be varied over [0, 1) and s1 over [s0, 1) to give
the optimum value of F(t). Note that the second case can be recovered from the first one, by switching the
angle θ to θ+π/2 (see equation (6.42)). Let us consider, then, the first option. The corresponding expression
for the averaged stress field σ(t) (6.4) reads:

σ(t) = µ2(t) ∗ ε(t)− (1− s0)

[
cos2 θ − sin θ cos θ

− sin θ cos θ sin2 θ

]
L−1

[
µ2(λ)

s− s0

]
(t) ∗ ε(t)

− (1− s1)

[
sin2 θ sin θ cos θ

sin θ cos θ cos2 θ

]
L−1

[
µ2(λ)

s− s1

]
(t) ∗ ε(t),

(6.54)

and the maximum (or minimum) value of F(t) has to be determined by varying the poles s0 and s1 over
the respective validity intervals. Finally the union of the resulting possible values of σ(t) is taken as θ is
varied (see Video 3). This case can be considered as the representative combination because, when either the
poles approach 1 (with the associated residue tending to zero) or take the same value, all the other possible
combinations can be derived consequently.

Bounds in the case when the volume fractions are known In the case when the volume fractions f1 and
f2 of the constituents are known, bounds on F(t) (6.17) can be derived by considering also the constraints
provided by equations (6.45) and (6.46). Specifically, the maximum (or minimum) value of the function F(t)
is attained by one of the combinations which range from the two poles case to the five poles case. In the
former situation, the bound is realized by considering either two nonzero bAi and one nonzero bBj , where
j is equal to one of the two i, or vice versa. In the five poles case, instead, the bound on F(t) is attained
by considering those bAi and bBj which satisfy (6.45)-(6.46) and constraints (6.44) as equalities, that is, by
considering either three nonzero bAi and two nonzero bBj , with i 6= j, or vice versa. We stress the fact that
the five poles case is the representative one (and the only one which needs to be considered) in the sense that
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all the other combinations can be consequently recovered by letting some poles collapse to the same value or
approach 1.

6.5.2 Bounds on the strain response
Let us consider the complex effective inverse constitutive law (6.25). Thanks to the relation between M∗(λ)
and G(u), given by (6.6), and the spectral representation (6.36) of the function G(u), the averaged strain field
in the complex domain is then described by the following equation:

ε(λ) = ζ2(λ)

[
σ(λ)−

m∑
i=0

Pi

u− ui
σ(λ)

]
, (6.55)

while in the time domain, by applying the inverse of the Laplace transform, ε(t) is given by (6.5).
In this case, the problem consists in bounding the ε12(t) component (6.47) of the averaged strain field.

Alternatively, the aim could be the optimization of the function G(t) (6.21). In both cases, following the
same arguments adopted in Subsection 6.5.1, bounds analogous to those obtained for F(t) and σ12(t) can be
deduced also for G(t) and ε12(t), respectively.

6.6 Composites without reflective symmetry
Bounds on the functions F(t) (6.17) and G(t) (6.21) have been derived under the hypothesis of reflective
symmetry. In particular, such an assumption allows one to derive linear constraints on the diagonal elements
bAi and bBi of the matrices bi (6.42). Nevertheless, in the case when the composite is not symmetric with
respect to a certain plane, that is, the reflective symmetry assumption does not hold, we can still derive linear
constraints on the elements bAi and bBi.

To see this, let us introduce an additional pole sm+1 = 1 − δ, where δ is a sufficiently small parameter,
with residue

Bm+1 = δD, D = I−
m∑
i=0

Bi

1− si
.

Then, the introduction of a fictitious pole with very small residue does not affect the bounds on the analytic
function, except in the near vicinity of s = 1. Consequently, inequality (6.30) can be replaced by the following
equality:

m+1∑
i=0

Bi

1− si
= I, (6.56)

which provides three linear constraints with respect to the bAi and bBi:

m+1∑
i=0

bAi cos2 θi + bBi sin2 θi
1− si

= 1,

m+1∑
i=0

bAi sin2 θi + bBi cos2 θi
1− si

= 1,

m+1∑
i=0

(bAi − bBi) cos θi sin θi
1− si

= 0. (6.57)



6.6. Composites without reflective symmetry 175

Finally, relations (6.34) and (6.35) written in terms of the bAi and bBi lead, respectively, to

m∑
i=0

bAi cos2 θi + bBi sin2 θi = f1,

m∑
i=0

bAi sin2 θi + bBi cos2 θi = f1, (6.58)

m∑
i=0

(bAi − bBi) cos θi sin θi = 0, (6.59)

and
m∑
i=0

(bAi + bBi) si = f1f2. (6.60)

In contrast to the case with reflective symmetry, the bounds onF(t) (as α is varied), for fixed t, necessarily
restrictσ(t) to a convex region in the (σ12(t), σ13(t)) plane. However the range of values ofσ(t), as the poles
and residue matrices are varied (subject to the constraints (6.6), and, if the volume fractions are known, (6.58)
and (6.60)) is in fact a convex set in the (σ12(t), σ13(t)) plane. To see this, suppose m is enormously large.
Then there is no loss of generality if we take the poles to be evenly spaced: si = i/(m + 2), and take the
angles θi to increase by small amounts going in total many times “around the clock”: θi = 2π(m mod k)/k,
where k is chosen with m � k � 1, and only vary the bAi and bBi. Then, if a set of parameters bAi and
bBi, i = 0, 1, . . . ,m satisfy the constraints, and another set b′Ai and b′Bi also satisfy it, so will the linear
combination wbAi+(1−w)b′Ai and wbAi+(1−w)b′Ai, for any weight w ∈ (0, 1) and the resulting response
vector σw(t) will be a linear combination of the two response vectors, σ(t) and σ′(t) associated with the
original two sets of parameters.

In the following, we show the procedure to be adopted in order to derive bounds on the functionF(t) (6.17).
In contrast to the case with reflective symmetry, the bounds on F(t) (as α is varied) for fixed t necessarily
restrict σ(t) to a convex region in the (σ13(t), σ12(t)) plane. Another method needs to be devised to obtain
bounds that confine σ(t) to regions that are not-necessarily convex in the (σ13(t), σ12(t)) plane.

Bounds in the case when no information about the composite is available For the sake of brevity, we do
not report the explicit expression taken by the stress field (6.4) for each combination of poles related to this
case but we consider only the representative case. In particular, the optimal value of F(t) is attained when
either only one or only three residues are nonzero. In particular, the representative combination of residues
corresponds to the case for which the three constraints given by (6.56) are fulfilled. Such a condition holds
when either only three elements among the bAi are nonzero, while bBi = 0 for every i = 0, 1, ...,m, and vice
versa, or when only two elements among the bAi and one element among the bBj , with i 6= j, are nonzero,
and vice versa. It is worth noting that, by suitably choosing the angles θi (6.42), the latter case is equivalent
to the former one.

Bounds in the case when the volume fractions are known The combinations of residues which provide
the maximum (or minimum) value ofF(t) are those which satisfy the seven equations given by the constraints
(6.56), (6.58) and (6.60). In particular, the combination with the minimum number of poles is given by three
nonzero bAi and the corresponding three nonzero bBi (three poles in total), while the combination with the
maximum number of poles consists of seven poles and can be achieved either considering six nonzero bAi
and one nonzero bBj , i 6= j, and vice versa, or five nonzero bAi and two nonzero bBj , i 6= j, and vice
versa, or four nonzero bAi and three nonzero bBj , i 6= j, and vice versa. We remark that all combinations
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corresponding to the same number of poles are equivalent, since we are free to replace each rotation angle θi
(6.42) by θi + π/2. We emphasize that the seven pole case is the representative one (and the only one which
needs to be considered) in the sense that all the other combinations can be consequently recovered by letting
some poles collapse to the same value or approach 1 (implying that the associated residue tends to zero).

6.7 Bounding the homogenized relaxation and creep kernels
Note that the relation (6.4) when ε(t) is chosen to be a constant ε0 for all t > 0 can be written in the form

σ(t) = Ch(t)ε0, (6.61)

where Ch(t), the homogenized relaxation kernel, is given by

Ch(t) = µ2(t)−
m∑
i=0

Bi L−1

[
µ2(λ)

s(λ)− si

]
(t). (6.62)

The same arguments that were used in the previous section to show that the range of values of σ(t), as the
poles and residue matrices are varied is in fact a convex set, can also be applied here: the range of values of
the matrix-valued relaxation kernel Ch(t) as the poles and residue matrices are varied (subject to any linear
sum rules on the residues, implied by the known information about the composite) is also a convex set.

To find this convex set we consider for each fixed time t the objective function

F(V) = Tr(VCh(t)), (6.63)

where V is any 2× 2 real-valued symmetric matrix. By substituting (6.62) in this expression we see that the
objective function depends linearly on the residue matrices Bi, and thus we can use the same techniques as
before to find the minimum values of F for a given matrix V (incorporating, if desired, known information
about the composite which impose sum rules on the residues): let us call this minimum Fmin(V). The
constraint that

Tr(VCh(t)) ≥ Fmin(V) (6.64)

confines Ch(t) to lie on one side of a “hyperplane” in a 3-dimensional space with the elements of Ch(t) as
coordinates (as it is a symmetric 2× 2 matrix there are only 3 independent elements). Finally, by varying V
we constrain Ch(t) to the desired convex set in this 3-dimensional space.

In a similar way the relation (6.5) when σ(t) is chosen to be a constant, σ0, for all t > 0 can be written in
the form

ε(t) = Mh(t)σ0, (6.65)

whereMh(t), the homogenized creep kernel, is given by

Mh(t) = ζ2(t)−
m∑
i=0

Pi L−1

[
ζ2(λ)

u− ui

]
(t). (6.66)

AsMh(t) depends linearly on the residues Pi we can also use the same approach to bound it (subject to any
linear sum rules on the residues, implied by the known information about the composite).
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6.8 Correlating the transient response to different applied fields at dif-
ferent times

We have been focusing on deriving bounds on the transient response of the composite at a single time t, and
for a single applied field. However, if desired, the method allows one to obtain coupled bounds which correlate
the responses at a set of different times t = t1, t2, . . . , tn, and for different applied fields (which may or may
not be all the same). To see this, suppose for example that we are interested in coupling the stresses σ(j)(t(j)),
for j = 1, 2, . . . , n that arise respectively in response to the applied strains ε(j)(t), for j = 1, 2, . . . , n. From
(6.4) it directly follows that

σ(j)(t(j)) = µ2(t(j)) ∗ ε(t(j))−
m∑
i=0

Bi L−1

[
µ2(λ)

s− si

]
(t(j)) ∗ ε(j)(t(j)). (6.67)

The same arguments that were used in Section 6.6 to show that the range of values of σ(t), as the poles and
residue matrices are varied is in fact a convex set, can also be applied here: the range of values of the n-tuple
(σ(1)(t(1)),σ(2)(t(2)), . . . ,σ(n)(t(n))) as the poles and residue matrices are varied (subject to any linear sum
rules on the residues, implied by the known information about the composite) is also a convex set.

To find this convex set, consider the objective function

F(v(1),v(2), . . . ,v(n)) =

n∑
j=1

v(j) · σ(j)(t(j)). (6.68)

By substituting (6.67) in this expression we see that the objective function depends linearly on the residue
matrices Bi, and thus we can use the same techniques as before to find the minimum values of F for a given
set of vectors v(1),v(2), . . . ,v(n) (incorporating, if desired, known information about the composite which
impose sum rules on the residues): let us call this minimum Fmin(v(1),v(2), . . . ,v(n)). The constraint that

n∑
j=1

v(j) · σ(j)(t(j)) ≥ Fmin(v(1),v(2), . . . ,v(n)) (6.69)

confines the n-tuple (σ(1)(t(1)),σ(2)(t(2)), . . . ,σ(n)(t(n))) to lie on one side of a “hyperplane” in a 2n-
dimensional space with the elements of the σ(j)(t(j)) as coordinates. Finally by varying the vectors v(1),
v(2), . . ., v(n) we constrain the n-tuple to the desired convex set in this multidimensional space.

Note that the applied strains ε(j)(t) could all be identical, and in this case the bounds will correlate the
values of the resulting stress field σ(t) at times t = t1, t2, . . . , tn. These bounds, correlating the transient
response to different applied fields at a set of different times, might be very useful for predicting the response
to a new applied field, given measurements (at specific times) for the response to a set of test applied fields.
Or they could be very useful if used in an inverse fashion to determine information about the composite, such
as the volume fractions of the phases.

It is clear that the method can easily be extended in the obvious way to obtain bounds which correlate
the matrix values of the relaxation kernel Ch(t) (6.62) at different times or the creep kernelMh(t) (6.66) at
different times.
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6.9 Concluding remarks
In this chapter we proposed a new approach to derive bounds on the response of a two-component viscoelastic
composite under antiplane loadings, in the time domain. The starting point is represented by the so-called
analytic method, first proposed by Bergman (1978) to bound effective conductivities when the component
conductivities are real, and later extended to bound the complex effective tensor of a two-component dielectric
composite in the frequency domain (see, for instance, Milton (1980, 1981a, 1981c), and Bergman (1980)) but,
to the best of our knowledge, the method until now has been applied only in the frequency domain, for cyclic
external actions at a certain frequency. This work may be the first to extend the field of applicability of the
analytic method to problems defined in the time domain with noncyclic external actions.

The core of the analytic method is based on the fact that, by virtue of the analyticity property of the
complex effective tensor of the viscoelastic composite with respect to the complex moduli of the components,
one can write the complex effective tensor as the sum of poles weighted by positive semi-definite matrix-valued
residues. Consequently, the response of the material, in terms of stresses or strains, turns out to depend only
on the position of the poles and on the value of the associated residues, which are the variational parameters
of the problem. The aim is to find the combinations of such parameters which provide the maximum (or
minimum) response of the composite for each moment of time.

The optimization of the response of the material is performed in two steps. First, all the available infor-
mation about the composite, such as the knowledge of the volume fraction of the constituents or of the value
of the response of the material at a certain moment of time, is translated into (linear) constraints on the poles
and residues. Then, the response of the material being linear in the residues, allows one to apply the theory
of linear programming to limit the number of nonzero residues, so that the problem is reduced to a new one
with a relatively small number of nonzero residues. Finally, the optimization over the positions of the poles
is performed numerically for two specific cases: when the stress response has to be bounded, we consider a
composite made of an elastic phase and a phase with a behavior describable by the Maxwell model, whereas
when we bound the strain response, we consider a composite made of an elastic phase and a phase modeled
by the Kelvin–Voigt model.

The estimates given by the numerical results prove to be increasingly accurate the more information about
the composite is incorporated. In particular, when information such as the volume fraction of the compo-
nents or the value of the response at a specific time is considered, the bounds are quite tight over the entire
range of time, thus allowing one to predict the transient behavior of the composite. Most noticeably, when
combinations of information are considered, such as the knowledge of the volume fractions and the eventual
transverse isotropy of the composite, the bounds are extremely tight at certain specific times, suggesting the
possibility of measuring the response of such times and, by using the bounds in an inverse fashion, almost
exactly determining the volume fraction of the components of the composite.
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Abstract

A natural connection between rational functions of several real or complex variables, and
subspace collections is explored. A new class of function, superfunctions, are introduced
which are the counterpart to functions at the level of subspace collections. Operations on
subspace collections are found to correspond to various operations on rational functions,
such as addition, multiplication and substitution. It is established that every function that
is matrix valued, with matrix elements that are rational and homogeneous of degree 1,
can be generated from an appropriate, but not necessarily unique, subspace collection: the
mapping from subspace collections to rational functions is onto, but not one to one. For
some applications superfunctions may be more important than functions, as they incorporate
more information about the physical problem, yet can be manipulated in much the same way
as functions. Previously subspace collections had been introduced when there was an inner
product on the vector (or Hilbert) space, and appropriate subspaces were mutually orthogonal.
In that setting certain normalization and reduction operations on subspace collections led to
a continued fraction expansion of the associated function, which allowed one to bound the
function in terms of a set of weight matrices and normalization matrices that are derived from
series expansions. Here we also initiate the theory of normalization and reduction operations,
appropriate when there is no inner product on the space.

7.1 Introduction
Subspace collections have a rich algebraic structure, and a close connection with rational functions of several
real or complex variables. Here we are interested in three types of subspace collections. The first type of
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subspace collection is finite-dimensional vector spaces H (over the real or complex numbers) that have the
decomposition

H = U ⊕ E ⊕ J = P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.1)

which we call aZ(n) subspace collection. Here U , E , andJ could be any vector subspaces, the only condition
being that there is no nonzero vector in common to any pair of them and that their span is H. Similarly P1,
P2, and Pn could be any n subspaces, the only condition being that there is no nonzero vector in common to
any pair of them and that their span isH.

The second type of subspace collection is finite-dimensional vector spaces K (over the real or complex
numbers) that have the decomposition

K = E ⊕ J = V ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.2)

which we call a Y (n) subspace collection, where the E and J entering (7.2) are not to be confused with the
subspaces E and J entering (7.1). Here E , and J could be any pair of vector subspaces, the only condition
being that there is no nonzero vector in their intersection and that their span is K. For technical reasons it
is usually convenient to assume V has no nonzero vector in common with either E or J . Apart from that
restriction, V , P1, P2, and Pn could be any n+ 1 subspaces, the only condition being that there is no nonzero
vector in common to any pair of them and that their span is K.

The third type of subspace collection is finite-dimensional vector spaces K (over the real or complex
numbers) that have the decomposition

K = E ⊕ J = VI ⊕ VO ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.3)

which we call a superfunction F s(n). In a superfunction the space VI and the space VO are called the input
and output subspaces respectively, and they have the same dimension. Again, E , and J could be any pair of
vector subspaces, the only condition being that there is no nonzero vector in their intersection and that their
span is K. For superfunctions we require the technical condition that for any choice of vectors EI ,JI ∈ VI
and EO,JO ∈ VO there exist vectors EP and JP in P1 ⊕ P2 ⊕ · · · ⊕ Pn such that

E = EI + EO + EP ∈ E , J = JI + JO + JP ∈ J . (7.4)

Apart from that restriction, VI , VO, P1, P2, and Pn could be any n+ 2 subspaces, the only condition being
that there is no nonzero vector in common to any pair of them and that their span is K.

As we will see there is a close connection between a superfunction F s(n) and a Y (n) subspace collection,
and also many connections between them and Z(n) subspace collections. All are intertwined and that is the
beauty of the theory. Z(3) and Y (2) subspace collections and superfunctions F s(1) can be visualized in
3-dimensional space: examples of these are given Figure 7.1.

One reason Y (n) subspace collections, Z(n) subspaces collections, and superfunctions F s(n) are impor-
tant is because they arise in many physical problems. For examples in network theory and in the theory of
the effective moduli of composite materials, see the review in Chapter 2 and Milton (2002). There are also
many other physical problems where subspace collections arise as is apparent in Chapters 1, 3, 8, 9, 12, 13,
and 14 of this book. In physics applications the subspaces are usually orthogonal with respect to some inner
product on the spaceH or K but as this chapter shows the theory of them can be developed without reference
to an inner product. This generalization is important to make contact between general rational functions of
complex variables, thus extending the notion of a function: hence the name superfunction. The generalization
is also important for applications, such as speeding up numerical methods for calculating the fields that solve
the problem: we will see an example of this in the next chapter.
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Figure 7.1: Shown in (a) is an example of a Z(3) subspace collection, in (b) a Y (2) subspace collection,
and in (c) a superfunction F s(1). The rays denote one-dimensional subspaces: they should really be
drawn as lines, but for clarity they are drawn as rays and should be extended in the opposite direction as
the ray. The circles, which look like ellipses as they are tilted, represent two-dimensional subspaces.

It may very well be the case that superfunctions become more important than functions in some applica-
tions, as suggested by the flow chart of Figure 7.2. The reason is that when one extracts the function from
a superfunction, which we will see how to do shortly, one generally loses information that is contained in a
superfunction. For example, in the context of physical problems where there is an inner product on the space
this information may came in the form of a series expansion for the fields up to a given order, and from this
series expansion one can extract the “weight matrices” and “normalization matrices”, introduced by Milton
and Golden (1985) and Milton (1987a, 1987b). These matrices basically encode the information about the
“angles” between the various subspaces (when there is an inner product). One can then develop a contin-
ued fraction expansion for the function associated with the superfunction, with the normalization factors and
weight matrices that enter it at each level having the property that they are positive semidefinite, with the
weight matrices summing to one. Truncating the continued fraction gives approximations to the function,
that are similar in some respects the diagonal Padé approximants, and in fact give bounds on the function
if the truncation is done appropriately. The information contained in the weight matrices and normalization
matrices, cannot in general be recovered (at least when n ≥ 4) from the series expansion of the associated
function. (Although one can potentially determine these matrices from the series expansion of the functions
associated with coupled field problems, as shown in Chapter 9). This theory was established by Milton and
Golden (1985) and Milton (1987a, 1987b, 1991). (see also Chapters 19, 20, and 29 in Milton (2002)) for
the case of Z(n) subspace collections, for any integer n ≥ 1. In this paper we develop the basic theory of
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Figure 7.2: Two routes to solving a physical problem formulated in terms of subspace collections. It is
suggested that the route on the right may result in a better approximation as more information is kept.

subspace collections in the case where there is no inner product on the vector space H or K. We also make
the first steps towards generating continued fraction expansions in the case where there is no inner product on
the vector spaceH or K.

Let us first suppose V and U are one-dimensional. We will see that there are generally homogeneous
(of degree 1) rational functions Y (z1, z2, . . . , zn) and Z(z1, z2, . . . , zn) (over the real or complex num-
bers) of degree 1 that are associated respectively with these Y (n) and Z(n) subspace collections, where
Z(z1, z2, . . . , zn) satisfies the additional constraint that Z(1, 1, . . . , 1) = 1. Conversely, we will see that
given any rational functions Y (z1, z2, . . . , zn) and Z(z1, z2, . . . , zn) with these properties, then there exists
at least one subspace collection realizing these functions as its associated function. There are also operations
on these subspace collections that correspond to operations on the associated function, such as substitution.

For superfunctions the simplest case is when the input and output spaces VI and VO are one-dimensional.
Then with a specific basis for VI and VO the corresponding function F(z1, z2, . . . , zn) is 2 by 2 matrix-valued
with the elementsF11(z1, z2, . . . , zn) andF22(z1, z2, . . . , zn) being homogeneous of degree zero, the element
F12(z1, z2, . . . , zn) being homogeneous of degree minus 1, and F21(z1, z2, . . . , zn) being homogeneous of
degree 1. There are operations on superfunctions that correspond to addition, multiplication and forming an
inverse (and hence division) of the associated functions. So superfunctions form an algebra. Also one can
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do substitutions at the level of subspace collections. Actually the operation of addition of superfunctions is
naturally done with the associated Y -problem, although one could equally do addition of superfunctions with
the associated inverse Y -problem (where the spaces E and J are interchanged). Thus there is an inherent
ambiguity of how one wants to define addition of superfunctions. The definitions of addition, multiplication.
and substitution of subspace collections may seem a little complicated and abstract, yet they are the exact
counterpart of similar operations one may do on multiterminal electrical networks, and they do produce the
corresponding action on the associated functions. (In fact it was thinking about electrical circuits which guided
the construction of these operations in a more general setting).

When V and U have dimension greater than 1, then Y (z1, z2, . . . , zn) and Z(z1, z2, . . . , zn) get replaced
by linear operator-valued functions Y(z1, z2, . . . , zn) and Z(z1, z2, . . . , zn) which map V to V and U to U
respectively. Similarly, the function F(z1, z2, . . . , zn) should really be thought of as a linear operator mapping
VI to VO

The original motivation for studying subspace collections, and their associated functions, arose from the
study of the effective conductivity tensor Z of periodic composite materials. For a composite with n isotropic
phases, with scalar conductivities z1, z2, . . . , zn, the effective conductivity tensor was found to be a homoge-
neous (of degree 1) analytic function Z(z1, z2, . . . , zn) of the component conductivities with positive definite
imaginary part when the component conductivities have positive imaginary part [Bergman 1978; Milton 1979,
1981a, Golden and Papanicolaou 1983] (see also Chapter 18 of Milton (2002)). It was also recognized (Mil-
ton 1987a, 1990) that the problem of determining the effective conductivity function could be formulated in
terms of three mutually orthogonal spaces in the Hilbert space H of square integrable functions: namely the
space U of constant fields, the space E of periodic square integrable electric fields (having zero curl), and the
space J of square integrable current fields (having zero divergence), and if the composite had n isotropic
phases, with conductivities z1, z2, . . . , zn, then it was also natural to decompose H into the direct sum of n
mutually orthogonal subspaces P1,P2, . . . ,Pn where Pi consists of those square integrable fields which are
nonzero only within component i. This formulation, in terms of a Z(n) subspace collection, evolved out of
earlier Hilbert space formulations of the problem (Fokin 1982; Kohler and Papanicolaou 1982; Papanicolaou
and Varadhan 1982; Golden and Papanicolaou 1983; Kantor and Bergman 1984; Dell’Antonio, Figari, and
Orlandi 1986) and can easily be extended to the elastic, thermoelastic, piezoelectric, and poroelastic equations
of multiphase and polycrystalline materials (see, for example, Chapter 12 in Milton (2002)). The formula-
tion has proved to be particularly important in the theory of exact relations of composite materials (Grabovsky
1998; Grabovsky and Sage 1998: Grabovsky and Milton 1998; Grabovsky, Milton, and Sage 2000; Grabovsky
2004) (see also Chapter 17 in Milton (2002)) where one seeks microstructure independent relations satisfied
by effective tensors. For two-dimensional polycrystals a complete correspondence was established between
subspace collections and a representative class of multiple rank laminate polycrystal geometries (Clark and
Milton 1994), thus showing that the subspace collection of any two-dimensional polycrystal, with any config-
uration of crystal grains, could be approximated arbitrarily closely by the subspace collection of one of these
multiple rank laminate polycrystal geometries.

Curiously the connection between Z(n) subspace collections and the effective conductivity allowed the
effective conductivity function Z(z1, z2, . . . , zn) to be expanded as a new type of continued fraction, involving
matrices of increasing dimension as one proceeds down the continued fraction when n > 2 (Milton 1987a,
1987b, 1991; see also Chapters 19, 20, and 29 in Milton 2002). The coefficients in the weight and normaliza-
tion matrices entering the continued fraction can be expressed in terms of inner products between fields that
enter the series expansion of the solution field in a nearly homogeneous medium (with all the conductivities
z1, z2, . . . , zn being close to one another). One application of the continued fraction expansion has been to
obtain bounds on the diagonal elements of the complex effective conductivity tensor of a three phase con-
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ducting composite, with complex conductivities z1, z2 and z3, that were tighter than bounds obtained by any
other method (see Figure 4 in Milton 1987b). This procedure essentially extended to multivariate functions
the procedure (using successive fractional linear transformations) that was used to obtain bounds (Baker, Jr.
1969) on the values in the complex plane that Stieltjes functions can take when a finite number of Taylor series
coefficients are known (see also Golden and Papanicolaou 1983; Bergman 1986) where essentially the same
transformation is used to derive bounds on the complex dielectric constant of two component media using se-
ries expansion coefficients, as noted in the appendix in Milton 1986a, and see Milton 1981c, where the same
set of bounds is derived using a different procedure, namely the method of variation of poles and zeros.)

In the case n = 2 the continued fraction reduces to a usual continued fraction expansion, like those
continued fractions associated with Padé approximants (see Chapter 4 of Part I of Baker, Jr. and Graves-
Morris 1981). Y (n) subspace collections enter, for example, if one eliminates from the Hilbert space the
constant fields and then reformulates the conductivity equations in terms of the remaining fields: the driving
fields are then fields which are constant in each phase but have zero average value (see Chapter 19 in Milton
2002 and references therein). The interrelationship between Z(n) subspace collections and Y (n) subspace
collections is what gives rise to these novel continued fractions.

Finite-dimensional Z(n) and Y (n) subspace collections also arise naturally in the study of the effective
resistance of electrical circuits constructed from n types of resistors having conductances z1, z2, . . . zn (see
Chapter 20 in Milton 2002). This is not surprising as periodic resistor networks can be seen as discrete
approximations to conducting composite materials (see, for example, Milton 1981a and Figure 8.5(a) in this
book). Figure 7.3 illustrates a discrete network of impedances, and gives an indication of the physical meaning
of the Z(n) and Y (n) subspace collections in this context.

In this figure, the vector space H is 6-dimensional, and is the direct sum of the two-dimensional space
P1 consisting of fields that are nonzero only along the resistors c1z1 and c3z1; the two-dimensional space P2

consisting of fields that are nonzero only along the resistors c2z2 and c5z2; and the one-dimensional space
P3 consisting of fields that are nonzero only along the resistor c4z3. The response of the network, when one
terminal is grounded (with zero voltage) is a 3 × 3 matrix. When it acts on the vector, having as elements
the voltages at the three remaining terminals, it gives the three currents flowing through these terminals. The
3 × 3 matrix-valued function Z(z1, z2, z3) gives the matrix-valued response relative to the response when
z1 = z2 = z3 = 1. Now, let us imagine all the resistors, or impedances, in (a) are on one side of the circuit
board, with the terminals being conducting posts that penetrate the board. On the other side of the board these
posts are connected to a tree-like graph of batteries (or alternating current sources if the fields vary sinusoidally
in time) shown in (b). The three fields in these batteries constitute the space V . The Y (3) subspace collection
contains fields on both sides of the board in K = H ⊕ V . The associated 3 × 3 matrix-valued Y -function
Y(z1, z2, z3) gives the current going through the three batteries, in response to the voltages across them. Note
that Y(z1, z2, z3) is not diagonal: a voltage across one battery, sends current through the other two batteries,
even when they have zero voltage across them.

Superfunctions are a natural generalization of multiport electrical circuits with input ports and output
ports, as illustrated in Figure 7.4. The function F gives the currents and potential drops across the output
batteries/resistors that are generated in response to currents and potential drops across the input batteries.
Note that the networks associated with superfunctions automatically satisfy the “port condition” that the net
flow of current from the input terminals to the output terminals is zero.

In this chapter we show that the connection between finite-dimensional Z(n) and Y (n) subspace collec-
tions and homogeneous (degree 1) operator-valued rational functions Y(z1, z2, . . . , zn) and Z(z1, z2, . . . , zn)
persists even when the subspaces in each decomposition are not necessarily mutually orthogonal, and indeed
even in the absence of an inner product (on the space H or K). The results developed in (Milton, 1987a,
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Figure 7.3: Shown in (a) is a 4 terminal electrical network, which is representative of a Z(3) subspace
collection. Here the ci are real positive scaling constants: the conductance of each element is cjzk where
zk is real or complex (when z is complex we should refer to cjzk as an admittance rather than as a
conductance). Complex values of z are appropriate when the applied potentials vary sinusoidally with
time, and some of the impedence elements are capacitors or inductors. Figure (b) shows the batteries on
the back side of the circuit board, representing the space V, which combined with the resistors on the
front side is representative of a Y (3) subspace collection. The Y -function Y(z1, z2, z3) gives the current
going through the three batteries, in response to the voltages across them.

1987b, 1991 and in Chapters 19, 20, and 29 of Milton, 2002) are extended to the case where there is no inner
product. Accordingly, some steps in the analysis and some assumptions need to be revised. In this more gen-
eral setting we can generate, from an appropriate Z(n) subspace collection, any desired scalar-valued rational
function Z(z1, z2, . . . , zn) satisfying the homogeneity property Z(1, 1, . . . , 1) = 1.

It is to be emphasized that subspace collections, with the associated rules for addition, multiplication,
division, subtraction and substitution, are algebraic objects in their own right: there is no need to think of the
associated analytic functions (that are in general operator-valued), except that the correspondence makes it
easier to think about subspace collections. The resistor network examples of Y (n) subspace collections made
it possible for me to see how the operations of addition, multiplication and substitution of subspace collections
should be defined in the general case. Although these operations seem a bit foreign and convoluted, they are
quite natural when seen through the lens of the resistor network example.

My belief is that the geometrical structure of subspace collections (and in particular superfunctions) will
be reflected in the algebraic geometrical structure of their associated rational functions. If this is the case,
understanding the topological features of subspace collections might shed light on the geometrical features of
algebraic varieties. While this paper does not directly address this issue, it sheds the first light on the relation
between finite-dimensional subspace collections and rational functions of several complex variables, in the
case where the subspaces are not mutually orthogonal, and it introduces superfunctions. The functions derived
from superfunctions are well studied and have widespread applications in signal processing, control theory,
network synthesis and design, and in optics, acoustics and elastodynamics (usually in layered media), where
they are called a variety of names including transfer matrices, transmission matrices, transfer functions, system
functions, and network functions. In these contexts it is the function that is studied, but people do not think
of the superfunction. I thank Aaron Welters and Mihai Putinar for drawing my attention to the connection
between transfer functions and response functions (such the effective conductivity tensor of composites).

We remark that forZ(3) orthogonal subspace collections, with U being one-dimensional, it is still an open
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Figure 7.4: Shown in (a) is a 5 terminal electrical network, which is representative of a Z(3) subspace
collection. Here the ci are real positive scaling constants: the admittance of each element is cjzk where
zk is real or complex. Figure (b) shows the batteries on the back side of the circuit board, representing the
space V, which is divided into the input space VI , consisting of those vectors in K that are nonzero only
in the batteries I1 and I2 and the output space VO, consisting of those vectors in K that are nonzero only
in the batteries/resistors 01 and 02. Figure (c) shows a 6 terminal electrical network, and the naturally
associated subspace V represented by the batteries in Figure (d). To convert this to a problem where the
dimension of V is even we remove the battery at the top, and accordingly reduce the dimension of both
V and J by one. Figure (e) shows the input space VI , consisting of those vectors that are nonzero only
in the batteries I1 and I2 and the output space VO, consisting of those vectors in K that are nonzero
only in the batteries/resistors 01 and 02.

and intriguing question as to whether there could be a one-to-one correspondence between them (assuming
they are pruned as described in Section 7.15 and modulo trivial equivalences between subspace collections)
and scalar functions Z(z1, z2, z3) satisfying the homogeneity, Herglotz and normalization properties. The Z-
problem described the next section provides a nonlinear map from the Z(3) orthogonal subspace collection
to an associated scalar function Z(z1, z2, z3) satisfying the homogeneity, Herglotz and normalization prop-
erties, but the question is whether one can uniquely recover the pruned subspace collection, modulo trivial
equivalences, given only the function Z(z1, z2, z3)? The intriguing counting argument given in Section 29.2
of Milton (2002) suggests the possibility of a one-to-one correspondence. There is a similar counting argu-
ment for nonorthogonal subspace collections given in Section 7.18, but in this case we will see in an explicit
example that a one-to-one correspondence does not hold.

This chapter is mostly self-contained, but it is suggested that the reader browse Chapters 1, 2 and 3 to
understand the application of (nonorthogonal) subspace collections to physical problems.
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7.2 Subspace collections and their associated functions
Let K be a vector space which has a decomposition into two different direct sums of subspaces

K = E ⊕ J = V ⊕H, (7.5)

whereH itself is a direct sum of n subspaces

H = P1 ⊕ P2 ⊕ · · · ⊕ Pn. (7.6)

Any vector K ∈ K has a unique decomposition into component vectors,

K = E + J = v + H, H = P1 + P2 + · · ·+ Pn, (7.7)

each in the associated subspaces:

E ∈ E , J ∈ J , v ∈ V, H ∈ H, Pi ∈ Pi for i = 1, 2, . . . , n. (7.8)

This decomposition serves to define projection operators Γ1 and Γ2 onto E and J , projection operators Π1

and Π2 onto V andH, and projection operators Λi onto the subspaces Pi. By definition we have

E = Γ1K, J = Γ2K, v = Π1K, H = Π2K, Pi = ΛiK. (7.9)

Associated with this subspace collection is a linear operator-valued function Y(z1, z2, . . . , zn) acting on the
space V , which is a homogeneous function of degree 1 of the n complex variables z1, z2, . . . , zn. To obtain
the function we take each field E1 ∈ V and look for vectors J and E that solve the equations

E ∈ E , J ∈ J , J2 = LE2, where J2 = Π2J, E2 = Π2E, (7.10)

with E1 = Π1E, where

L =

n∑
i=1

ziΛi. (7.11)

We call this problem the Y -problem. The associated operator Y, by definition, governs the linear relation

J1 = −YE1, where J1 = Π1J. (7.12)

A necessary condition for J1 to be uniquely defined given E1 is that

V ∩ J = {0}, (7.13)

since if J and E solve (7.10) so too will J + v and E, for any v ∈ V ∩ J . The inverse Y -problem is to solve
(7.10) for each field J1 = Π1J ∈ V . A necessary condition for E1 to be uniquely defined given J1 is that

V ∩ E = {0}. (7.14)

If v1,v2, . . . ,vm is a basis of V , then the operator Y can be represented by a matrix, the Y -matrix, also
denoted by Y with elements Yik such that

Yvk =

m∑
i=1

Yikvi. (7.15)
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If m is even and V has the decomposition

V = VI ⊕ VO, (7.16)

where VI and VO have the same dimension (m/2) then we have a superfunction F s. The superfunction is
the collection of subspaces and there is a function F associated with it. The fields E1 and J1 have the unique
decomposition

E1 = EI + EO, J1 = JI + JO, (7.17)

with
EI ,JI ∈ VI , EO,JO ∈ VO, (7.18)

where the superscripts I and O refer to input and output respectively. We write

EI = ΠIE1, EO = ΠOE1, JI = ΠIJ1, JO = ΠOJ1, (7.19)

which defines the projections ΠI and ΠO onto the input and output spaces. Now the relation (7.12) can be
written as (

JI

JO

)
=

(
YII YIO

YOI YOO

)(
EI

EO

)
, (7.20)

and manipulated into the form (
EO

JO

)
= F

(
EI

JI

)
, (7.21)

which defines the linear operator-valued function

F =

(
FEE FEJ

FJE FJJ

)
=

( −(YIO)−1YII −(YIO)−1

[YOO(YIO)−1YII −YOI ] YOO(YIO)−1

)
, (7.22)

which, provided the operator YIO is nonsingular, is the function associated with the superfunction. This
relation can be inverted to yield Y in terms of F,

Y =

(
(FEJ)−1FEE −(FEJ)−1

[FJJ(FEJ)−1FEE − FJE ] −FJJ(FEJ)−1

)
, (7.23)

provided the operator FEJ can be inverted. The superfunction problem is for given input fields EI and JI

to find fields E and J that solve the Y -problem (7.10) and (7.11), with ΠIE = EI and ΠIJ = JI . It may
happen that the superfunction problem has a solution when the Y -problem does not (this happens if and only
if FEJ is singular), and conversely the Y -problem may have a solution when the superfunction problem does
not (this happens if and only if YIO is singular).

Another association between subspace collections and functions comes if a vector space H has the de-
composition

H = U ⊕ E ⊕ J = P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.24)

where E andJ are not to be confused with the spaces in (7.5). Any vector H ∈ H has a unique decomposition
into component vectors,

H = u + E + J = P1 + P2 + · · ·+ Pn, (7.25)
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each in the associated subspaces:

u ∈ U , E ∈ E , J ∈ J , Pi ∈ Pi for i = 1, 2, . . . , n. (7.26)

This decomposition serves to define projection operators Γ0, Γ1 and Γ2 onto U , E and J , and projection
operators Λi onto the subspaces Pi. Associated with this subspace collection is a linear operator-valued
function Z(z1, z2, . . . , zn) acting on the space U , which is a homogeneous function of degree 1 of the n
complex variables z1, z2, . . . , zn. To obtain the function we take each vector e ∈ U and look for vectors j, J
and E that solve the equations

j ∈ U , E ∈ E , J ∈ J , j + J = L(e + E), where L =

n∑
i=1

ziΛi. (7.27)

We call this problem the Z-problem. The associated operator Z, by definition, governs the linear relation

j = Ze. (7.28)

If u1,u2, . . . ,um is a basis of U , then the operator Z can be represented by a matrix, also denoted by Z with
elements Zik such that

Zuk =

m∑
i=1

Zikui. (7.29)

When z1 = z2 = · · · = zn = 1 (7.27) has the trivial solution

j = e, J = E = 0, (7.30)

and so we deduce that
Z(1, 1, . . . , 1) = I. (7.31)

The inverse Z-problem is to solve the equations (7.27) for each given vector j ∈ U .

7.3 Some simple examples
Consider a Y (n) subspace collection

K = E ⊕ J = V ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.32)

where E ,V,P1,P2, . . .Pn are all one-dimensional, and J is n-dimensional. Choose as our basis for K the
n+ 1 vectors p0 ∈ V , and pi ∈ Pi, i = 1, 2, . . . n. Vectors E ∈ E and J ∈ J can be expanded in this basis:

E =

n∑
i=0

Eipi, J =

n∑
i=0

Jipi. (7.33)

The relation Π2J = LΠ2E implies
Ji = ziE1. (7.34)

Let us suppose that E0 = 1. Then E1 and E2 are determined by the orientation of the one-dimensional
subspace E with respect to the subspaces V,P1,P2, . . .Pn. Also since J has codimension 1, there exist
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constants W0,W1, . . .Wn, determined by the orientation of the n-dimensional subspace J with respect to
the subspaces V,P1,P2, . . .Pn such that

n∑
i=0

WiJi = 0. (7.35)

Let us suppose that W0 = 1. Then we have

J0 = −
n∑
i=1

WiJi = −
n∑
i=1

WiEizi, (7.36)

which since E0 = 1 implies J0 = −Y E0, with

Y =

n∑
i=1

αizi, where αi = WiEi. (7.37)

As the Ei andWi are arbitrary constants, we see that Y can be any linear combination of the zi. In particular,
with W1E1 = 1 and WiEi = 0 when i 6= 1 we obtain

Y = z1. (7.38)

As a second example consider a Y (1) subspace collection

K = E ⊕ J = V ⊕ P1, (7.39)

where all the spaces E , J , V , and P1 are all two-dimensional. Choose as our basis for K two vectors p1 and
p2 in V and two vectors p3 and p4 in P1. Then since E is two-dimensional, there generically exist constants
e13, e14, e23 and e24 such that

p1 + e13p3 + e14p4 ∈ E , p2 + e23p3 + e24p4 ∈ E . (7.40)

Also since J is two-dimensional, there generically exist constants j31, j32, j41 and j42 such that

p3 + j31p1 + j32p2 ∈ J , p4 + j41p1 + e42p2 ∈ J . (7.41)

So the Y -problem is solved with vectors

E = p1 + e13p3 + e14p4,

E1 = p1, E2 = e13p3 + e14p4,

J2 = z1(e13p3 + e14p4),

J = z1[e13(p3 + j31p1 + j32p2) + e14(p4 + j41p1 + e42p2)],

J1 = z1[(e13j31 + e14j41)p1 + (e13j32 + e42j42)p2, (7.42)

and is also solved with vectors

E = p2 + e23p3 + e24p4,

E1 = p2, E2 = e23p3 + e24p4,

J2 = z1(e23p3 + e24p4),

J = z1[e23(p3 + j31p1 + j32p2) + e24(p4 + j41p1 + e42p2)],

J1 = z1[(e23j31 + e24j41)p1 + (e23j32 + e24j42)p2. (7.43)
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From these equations in follows that Y(z1) in this basis is the 2 by 2 matrix

Y(z1) = z1A, with A =

(
a11 a12

a21 a22

)
, (7.44)

where

a11 = e13j31 + e14j41, a12 = e13j32 + e42j42,

a21 = e23j31 + e24j41, a22 = e23j32 + e24j42. (7.45)

As the coefficients e13, e14, e23, e24, j31, j32, j41 and j42 can be any complex numbers we desire it follows
that we can realize any desired complex matrix A. By taking VI to be the one-dimensional space spanned by
p1 and taking VO to be the one-dimensional space spanned by p2 we obtain a superfunction Y S where the
associated function takes the form

F(z1) =

(
b11 b12/z1

b21z1 b22

)
, (7.46)

in which the parameters b11, b12, b21 and b22 can be any complex numbers we choose.
As a third example consider a Z(2) subspace collection

H = U ⊕ E ⊕ J = P1 ⊕ P2, (7.47)

where the subspaces U , E ,J and P2 are all one-dimensional, while P1 is two-dimensional. Choose, as our
basis for H, 3 vectors U0 ∈ U , E0 ∈ E and J0 ∈ J , and take a vector P as a basis for P2. The coefficients
PU , PE and PJ in the expansion

P = PUU0 + PEE0 + PJJ0 (7.48)

determine the orientation of P2 with respect to the subspaces U , E and J . In the basis U0, E0, and J0 the
equations

e + E = Q + αP, j + J = z1Q + z2αP, (7.49)

with
e, j ∈ U , E ∈ E , J ∈ J , Q ∈ P1, (7.50)

take the form  e

E

0

 =

QUQE
QJ

+ α

PUPE
PJ

 ,

j0
J

 = z1

QUQE
QJ

+ z2α

PUPE
PJ

 , (7.51)

and since Q ∈ P1 there exist constantsWU ,WE andWJ , which determine the orientation of P1 with respect
to U , E and J , such that

WUQU +WEQE +WJQJ = 0. (7.52)
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Hence we obtain the equations

WUe+WEE = α(WUPU +WEPE +WJPJ) ≡ αW ·P,
0 = z1(E − αPE) + z2αPE ,

j = z1(e− αPU ) + z2αPU . (7.53)

Eliminating E and α from these equations gives j = Ze, with

Z = z1 +
(z2 − z1)WUPU

W ·P +WEPE(z2 − z1)/z1
. (7.54)

In particular if the subspaces are oriented so that

W ·P = WEPE = −WUPU , (7.55)

then (7.54) gives
Z = z2

1/z2, (7.56)

which with z2 = 1 produces the function z2
1 and with z1 = 1 produces the function 1/z2. Also, with

WEPE = 0 we obtain

Z = z1 +
(z2 − z1)WUPU

W ·P , (7.57)

which is a “weighted average” of z1 and z2, Z = w1z1 + w2z2 with “weights” w1 and w2 that sum to 1 but
which are not necessarily positive, nor even real.

7.4 Formulas for the associated functions
Following Section 12.8 of Milton (2002) a formula for the effective tensor Z results by applying the operator
Γ0 + Γ2 (which projects on the space U ⊕ J ) to both sides of the constitutive law e + E = L−1(j + J).
Solving the resulting equation

e = (Γ0 + Γ2)L−1(Γ0 + Γ2)(j + J), (7.58)

for j + J gives
j + J = [(Γ0 + Γ2)L−1(Γ0 + Γ2)]−1e, (7.59)

where the last inverse is to be taken on the subspace U ⊕J . By applying Γ0 to both sides of this equation we
see that

Z = Γ0[(Γ0 + Γ2)L−1(Γ0 + Γ2)]−1Γ0, (7.60)

which is the result given in (12.59) of Milton (2002).
Another formula for Z follows from noting that for any arbitrary constant z0 6= 0,

[z0I− Γ1(L− z0I)](e + E) = z0e + z0E− Γ1J− z0Γ1E = z0e. (7.61)

Solving this for e + E gives
e + E = z0[z0I− Γ1(L− z0I)]−1e, (7.62)
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and applying Γ0L to both sides yields

j = z0Γ0L[z0I− Γ1(L− z0I)]−1e. (7.63)

Thus we have a formula for the Z operator,

Z = z0Γ0L[z0I− Γ1(L− z0I)]−1Γ0 = z0Γ0 + z0Γ0(L− z0I)[z0I− Γ1(L− z0I)]−1Γ0, (7.64)

where we have used the identity

Γ0 = z0Γ0[z0I− Γ1(L− z0I)]−1Γ0, (7.65)

obtained by applying Γ0 to both sides of (7.62). This formula (7.64) is a special case of the formula (12.60)
given in Milton (2002), and is well known in different contexts (Kröner 1977).

To obtain a formula for Y notice that (7.10) and (7.12) imply that

0 = Γ2E
′ = Γ2E1 + Γ2E2 = Γ2E1 + Γ2L

−1Π2Γ2J
′, (7.66)

where the inverse of L is to be taken on the subspaceH. Solving for J′ gives

J′ = −(Γ2L
−1Π2Γ2)−1Γ2E1, (7.67)

where the inverse is to be taken on the subspace J . Then by applying Π1 to both sides of this equation and
equating Π1J

′ = J1 with −YE1 we obtain the desired formula

Y = Π1Γ2(Γ2L
−1Π2Γ2)−1Γ2Π1 (7.68)

for Y, as given in formula (19.29) of Milton (2002).
Another formula for Y is obtained by taking an arbitrary constant z0 6= 0, and defining

P′ = J′ − z0E
′. (7.69)

Applying Γ1 to both sides of (7.69) gives

Γ1P
′ = −z0E

′ = −z0(E1 + E2), (7.70)

and applying Π2 to both sides of (7.70) gives

Π2P
′ = J2 − z0E2 = (L− z0I)E2. (7.71)

Combining these results we see that P′ satisfies

[Γ1 + z0(L− z0I)−1Π1]P′ = −z0E1. (7.72)

Assuming that the operator [Γ1 + z0(L− z0I)−1Π1] is nonsingular this gives

P′ = −z0[Γ1 + z0(L− z0I)−1Π1]−1E1. (7.73)

Applying Π1 = I−Π2 to both sides yields

J1 − z0E1 = −(Y + z0I)E1 = −z0Γ1[Γ1 + z0(L− z0I)−1Π1]−1E1 (7.74)

As this holds for all E1 ∈ V we obtain the formula

Y = −z0Π1 + z0Γ1[Γ1 + z0(L− z0I)−1Π1]−1Π1 (7.75)

which is a special case of the formula (19.37) obtained in Section 19.5 of Milton (2002).
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7.5 Multiplying superfunctions
Multiplying superfunctions is similar the way electrical circuits, each with 2m terminal can be combined. An
example is shown in Figure 7.5.
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Figure 7.5: Multiplying superfunctions is like hooking networks, with an equal number of input and
output terminals, together in series. Shown in (a) and (b) are 6 terminal electrical networks, each (along
with their respective tree-like battery configurations on the opposite side of the circuit board that are
not shown here) represent a superfunction as the terminals have been divided into input terminals (I ′1,
I ′2, and I ′3 for the circuit (a), and I ′′1 , I ′′2 , and I ′′3 for the circuit (b)) and output terminals (O′1, O′2,
and O′3 for the circuit (a), and O′′1 , O′′2 , and O′′3 for the circuit (b)). The product superfunction is the
6 terminal electrical network (along with its tree-like battery configurations on the opposite side of the
circuit board ) shown in (c). Note there is some flexibility in how one multiplies superfunctions: instead
of connecting the terminals O′i with I ′′i for i = 1, 2, 3, one could for example, connect O′1,O′2, and O′3
with any permutation of I ′′1 , I ′′2 and I ′′3 . This is why, when taking a product, one needs to specify the
maps (ME and MJ) one is using between the output space of one superfunction, and the input space
of the second superfunction by which one is multiplying it.

Suppose we have two superfunctions, (F s)′ and (F s)′′:

K′ = E ′ ⊕ J ′ = (VI)′ ⊕ (VO)′ ⊕H′ with H′ = P ′1 ⊕ P ′2 ⊕ · · · ⊕ P ′j ,
K′′ = E ′′ ⊕ J ′′ = (VI)′′ ⊕ (VO)′′ ⊕H′′ with H′′ = P ′′1 ⊕ P ′′2 ⊕ · · · ⊕ P ′′k , (7.76)

where the spaces (VI)′, (VO)′, (VI)′′, (VO)′′ all have the same dimensionm. To take their product one needs
to first find two nonsingular linear operators ME and MJ which map (VO)′ to (VI)′′. The resulting product
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superfunction
F s = (F s)′ ×M (F s)′′, (7.77)

is the subspace collection
K = E ⊕ J = (VI)′ ⊕ (VO)′′ ⊕H, (7.78)

where
H = P ′1 ⊕ P ′2 ⊕ · · · ⊕ P ′j ⊕ P ′′1 ⊕ P ′′2 ⊕ · · · ⊕ P ′′′k , (7.79)

and the operator L acting onH is

L =

j∑
i=1

z′iΛ
′
i +

k∑
`=1

z′′` Λ′′` , (7.80)

in which Λ′i and Λ′′` are the projections onto P ′i and P ′′` . A vector E is in E if and only if we can find vectors

E′ = (EI)′ + (EO)′ + E′2 ∈ E ′,
E′′ = (EI)′′ + (EO)′′ + E′′2 ∈ E ′′, (7.81)

such that
(EI)′′ = ME(EO)′, E = (EI)′ + (EO)′′ + E′2 + E′′2 , (7.82)

with

(EI)′ ∈ (VI)′, (EO)′ ∈ (VO)′, E′2 ∈ H′, (EI)′′ ∈ (VI)′′, (EO)′′ ∈ (VO)′′, E′′2 ∈ H′′. (7.83)

A vector J is in J if and only if we can find vectors

J′ = (JI)′ + (JO)′ + J′2 ∈ J ′,
J′′ = (JI)′′ + (JO)′′ + J′′2 ∈ J ′′, (7.84)

such that
(JI)′′ = MJ(JO)′, J = (JI)′ + (JO)′′ + J′2 + J′′2 , (7.85)

with

(JI)′ ∈ (VI)′, (JO)′ ∈ (VO)′, J′2 ∈ H′, (JI)′′ ∈ (VI)′′, (JO)′′ ∈ (VO)′′, J′′2 ∈ H′′. (7.86)

To ensure that the two spaces E and J are independent we need to make the technical assumption that
ME and MJ are chosen so that the operator A mapping (VO)′ to (VI)′′, defined by

A = ME(ΠO)′Γ′1 − (ΠI)′′Γ′′1 [ME(ΠO)′Γ′1 + MJ(ΠO)′Γ′2], (7.87)

is nonsingular (i.e., the null–space of the operator contains only the zero vector). Our aim is to show that if A
is nonsingular and

E = (EI)′ + (EO)′′ + E′2 + E′′2 = J = (JI)′ + (JO)′′ + J′2 + J′′2 , with E ∈ E , J ∈ J (7.88)

then E = J = 0. First note that by resolving (7.88) into components in the spaces (VI)′, (VI)′′, H′, andH′′
we obtain

(EI)′ = (JI)′, (EO)′′ = (JO)′′, E′2 = J′2, E′′2 = J′′2 . (7.89)
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Also since E ∈ E and J ∈ J there exist vectors (EO)′, (JO)′ ∈ (VO)′ and (EI)′′, (JI)′′ ∈ (VI)′′ such that
(7.81) and (7.84) hold. Since E ′ ∩ J ′ = {0} and E ′′ ∩ J ′′ = {0} it follows that

P ≡ (EO)′ − (JO)′ = E′ − J′ 6= 0 or E′ = J′ = 0, (7.90)

and
Q ≡ (EI)′′ − (JI)′′ = E′′ − J′′ 6= 0 or E′′ = J′′ = 0. (7.91)

Now we have

(ΠO)′Γ′1P = (ΠO)′E′ = (EO)′, (ΠO)′Γ′2P = −(ΠO)′J′ = −(JO)′

(ΠI)′′Γ′′1Q = (ΠI)′′E′′ = (EI)′′, (ΠI)′′Γ′′2Q = −(ΠI)′′J′′ = −(JI)′′. (7.92)

Since (EI)′′ = ME(EO)′ and (JI)′′ = MJ(JO)′ we get from the first pair of equations in (7.92) the result
that

(EI)′′ = ME(ΠO)′Γ′1P, (JI)′′ = −MJ(ΠO)′Γ′2P, (7.93)

which implies
Q = [ME(ΠO)′Γ′1 + MJ(ΠO)′Γ′2]P. (7.94)

Substituting this back in the second pair of equations in (7.92), and using (7.93), gives

(ΠI)′′Γ′′1 [ME(ΠO)′Γ′1 + MJ(ΠO)′Γ′2]P = ME(ΠO)′Γ′1P

(ΠI)′′Γ′′2 [ME(ΠO)′Γ′1 + MJ(ΠO)′Γ′2]P = MJ(ΠO)′Γ′2P. (7.95)

These two equations are not independent since by adding them we obtain

[ME(ΠO)′Γ′1 + MJ(ΠO)′Γ′2]P = ME(ΠO)′Γ′1P + MJ(ΠO)′Γ′2P (7.96)

which is obviously satisfied. Also the first equation in (7.95) says P is in the null space of A, which by our
assumption implies P = 0. Then (7.94) implies Q = 0 and this rules out the first possibilities in (7.90) and
(7.91), implying E′ = J′ = 0 and E′′ = J′′ = 0. We conclude that E = J = 0.

To check that the space E⊕J spans (VI)′⊕(VO)′′⊕H , we just need to count dimensions. The dimension
of the space on the right is 2m+dim(H). The dimension of E according to (7.81) is dim(E ′)+dim(E ′′) less m
because of the m constraints (EI)′′ = ME(EO)′. Similarly the dimension of J is dim(J ′)+dim(J ′′)-m.
Adding these up, we get the dimension of E⊕J is dimK′+dimK′′-2m=2m+dim(H′)+dim(H′)=2m+dim(H).

Let F′ and F′ be the functions associated with the superfunctions (F s)′ and (F s)′′. Given operators

L′ =

j∑
i=1

z′iΛ
′
i, L′′ =

k∑
i=1

z′′i Λ′′i , (7.97)

where Λ′i projects onto P ′i and Λ′′i projects onto P ′′i , and given input fields (EI)′ and (JI)′ we can calculate(
(EO)′

(JO)′

)
= F′

(
(EI)′

(JI)′

)
,

(EI)′ = ME(EO)′′, (JI)′ = MJ(JO)′′,(
(EO)′′

(JO)′′

)
= F′′

(
(EI)′′

(JI)′′

)
. (7.98)
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From the knowledge of (EO)′ and (EI)′, and of (EO)′′ and (EI)′′, we can calculate the fields E′, E′′, J′, and
J′′ of the form (7.81) and (7.84) solving the Y ′ problem and the Y ′′ problem:

E′ ∈ E ′, J′ ∈ J ′, J′1 = L′E′1,

E′′ ∈ E ′′, J′′ ∈ J ′′, J′′1 = L′′E′′1 . (7.99)

Then the fields E and J given by (7.82) and (7.85) solve the Y problem in the space K, and the function
associated to the superfunction F s is given by the product rule

F = F′
(

ME 0

0 MJ

)
F′′. (7.100)

Let us choose a basis (vI1)′′, (vI2)′′, . . . , (vIm)′′ for (VI)′′, choose a basis (vO1 )′′, (vO2 )′′, . . . , (vOm)′′

for (VO)′′, take ME(vO1 )′′,ME(vO2 )′′, . . . ,ME(vOm)′′ as our basis for (VI)′, and choose a basis
(vO1 )′, (vO2 )′, . . . , (vOm)′ for (VO)′. Then the operator ME is represented as the identity matrix in the ba-
sis. Let us also choose the operator MJ so it is represented by minus the identity matrix in this basis. Then
in this basis the relation (7.100) takes the form

F = F′
(

I 0

0 −I

)
F′′. (7.101)

Note that we could have avoided this slightly awkward multiplication rule if we had replaced the definition
(7.21) of the associated function by (

EO

−JO

)
= F

(
EI

JI

)
. (7.102)

Then the multiplication rule (with this choice of ME and MJ ) would have become simply F = F′F′′. We
chose not to do this in the interest of preserving the symmetric roles of the spaces E and J in the definition
of the function associated with the superfunction.

In passing, let us suppose there is an inner product on the vector spaces K′ and K′′, and that the sets
of spaces {E ′,J ′}, {(VI)′, (VO)′,P ′1,P ′2, . . . ,P ′j}, {E ′′,J ′′}, {(VI)′′, (VO)′′,P ′′1 ,P ′′2 , . . . ,P ′′k } all contain
mutually orthogonal spaces. For any two fields

P = PI + PO + P′ + P′′, Q = QI + QO + Q′ + Q′′, (7.103)

in the vector space K, with

PI ,QI ∈ (VI)′, PO,QO ∈ (VO)′′, P′,Q′ ∈ H′, P′′,Q′′ ∈ H′′, (7.104)

let us define the inner product of them to be

(P,Q) = (PI ,QI)′ + (PO,QO)′′ + (P′,Q′)′ + (P′′,Q′′)′′, (7.105)

in which ( , )′ and ( , )′′ denote the inner product on the spacesK′ andK′′ respectively. It is immediately clear
from this definition that the subspaces (VI)′, (VO)′′, P ′1, P ′2, . . .,P ′j , P ′′1 , P ′′2 , . . ., P ′′k are mutually orthogonal
in the new superfunction. Now take a field E ∈ E and J ∈ J . By the definition of these subspaces there
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must exist fields E′ ∈ E ′ and E′′ ∈ E ′′ such that (7.81) to (7.83) hold, and fields J′ ∈ J ′, J′′ ∈ J ′′ such that
(7.84) to (7.86) hold. Consequently we have

(J,E) = (J′ + J′′ − (JO)′ − (JI)′′,E′ + E′′ − (EO)′ − (EI)′′)

= ((JO)′, (EO)′)′ + ((JI)′′, (EI)′′)′′ −
(J′, (EO)′)′ − (J′′, (EI)′′)′′ − ((JO)′,E′)′ − ((JI)′′,E′′)′′

= −((JO)′, (EO)′)′ − ((JI)′′, (EI)′′)′′

= −((JO)′, (EO)′)′ − (MJ(JO)′,ME(EO)′)′′

= −((JO)′, (EO)′)′ − ((ME)†MJ(JO)′, (EO)′)′, (7.106)

in which (ME)† is the adjoint of ME . So we see that the spaces J and E will be orthogonal if we choose

(ME)†MJ = −I. (7.107)

Note that the orthogonality of the spaces J and E immediately implies that they have no nonzero vector in
their intersection.

In the case of nonorthogonal subspace collections, we are free to choose the maps ME and MJ that map
(VO)′ to (VI)′′, so long as they and the map A are nonsingular. However, in view of (7.107), it would be
quite natural to restrict our definition of multiplication by requiring that MJ = −ME , i.e., one can pick a
nonsingular map M mapping (VO)′ to (VI)′′ and set

ME = M, MJ = −M. (7.108)

With this choice, subtracting the equations in (7.95) gives

(ΠI)′′(Γ′′1 − Γ′′2)M(ΠO)′(Γ′1 − Γ′2)P = MP. (7.109)

Returning to the case where the subspaces are orthogonal, (7.107) is satisfied if MM† = −I. An al-
ternative way to see that J and E have no nonzero vector in their intersection is as follows. Choose
an orthonormal basis (vO1 )′, (vO2 )′, . . . (vOm)′ for (VO)′ and take ME = −MJ as a map such that
ME(vO1 )′,ME(vO2 )′, . . .ME(vOm)′ form an orthonormal basis for (VI)′′. Then the operator ME is rep-
resented as the identity matrix in the basis, and MJ is represented by−I. Now, recalling the definition (2.37)
of the norm |Q|= (Q,Q)1/2 of a vector Q recall that the action of the operators (ΠO)′, (ΠI)′′ cannot in-
crease the norm of a vector, while Γ′1 −Γ′2 and Γ′′1 −Γ′′2 preserve the norm (as can be seen if we take a basis
where these are diagonal). Hence (7.109) can be satisfied only when there is a P ∈ (VO)′ such that

(Γ′1 − Γ′2)P ∈ (VO)′, (Γ′′1 − Γ′′2)MP ∈ (VI)′′. (7.110)

Then as Γ′1 + Γ′2 = I and Γ′′1 + Γ′′2 = I we obtain

(Γ′1 + Γ′2)P ∈ (VO)′, (Γ′′1 + Γ′′2)MP ∈ (VI)′′. (7.111)

Adding and subtracting (7.110) and (7.111) then implies

Γ′1P ∈ (VO)′, Γ′2P ∈ (VO)′, Γ′′1P ∈ (VI)′′, Γ′′2P ∈ (VI)′′, (7.112)

which is excluded by our assumption that V ′ has no vector in common with E ′ or J ′ and that V ′′ has no vector
in common with E ′′ or J ′′.
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7.6 Multiplicative identity superfunctions
Suppose we are given nonsingular maps ME and MJ which map the m-dimensional space (VO)′ to the
m-dimensional space (VI)′′. Let K′′ denote the 2m-dimensional space

K′′ = (VO)′ ⊕ (VI)′′. (7.113)

Within this space define E ′′ as the subspace consisting of all vectors of the form E = v + (ME)−1v with
v ∈ (VI)′′ and define J ′′ as the subspace consisting of all vectors of the form J = w + (MJ)−1w with
w ∈ (VI)′′. If these subspaces have a vector in common then

v + (ME)−1v = w + (MJ)−1w, i.e., v −w = (MJ)−1w − (ME)−1v. (7.114)

In this last equation the fields on the left and on the right lie respectively in (VI)′′ and (VO)′. As the intersec-
tion of these subspaces consists of only the zero vector, we conclude that both sides must be zero, i.e., w = v
and

u ≡= (ME)−1v = (MJ)−1v. (7.115)

Thus, MEu = v = Mju and if we assume that MJ −ME is nonsingular, then 0 = u = v = w. So
under this assumption the subspaces have only the zero vector in their intersection. Then, since they each
have dimension m we conclude that

K′′ = (VO)′ ⊕ (VI)′′ = E ′′ ⊕ J ′′, (7.116)

which defines a superfunction (F s)′′ in whichH is empty.
We now look at the associated superfunction problem. As the space H is empty, if we are given vectors

EI and JI in the input space (VI)′′, the superfunction problem then consists of finding vectors EO and JO in
the output space (VO)′ such that

EI + EO ∈ E ′′, JI + JO ∈ J ′′. (7.117)

From our definition of the subspaces E ′′ and J ′′ we immediately see that the superfunction problem is solved
with fields

E0 = (ME)−1EI , J0 = (MJ)−1JI , (7.118)

implying, through (7.21), that the associated function is

F′′ =

(
(ME)−1 0

0 (MJ)−1

)
. (7.119)

So if we take another superfunction (F s)′ and multiply it by this superfunction (F s)′′, the product rule
(7.100) implies that the resulting superfunction F s has the associated function

F = F′. (7.120)

We conclude that this superfunction (F s)′′ is the multiplicative identity, when multiplication is defined with
the maps ME and MJ .
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Figure 7.6: Adding Y -subspace collections is like hooking networks together in parallel. The 4 terminal
networks in (a) and (b), each representing (along with their respective tree-like battery configurations on
the opposite side of the circuit board that are not shown here) Y (3) and Y (2) subspace collections, are
added together to form the 4 terminal network in (c) which is a Y (4) subspace collection. Note that the
circuit in (b) is really only a 3 terminal network, so it has been embedded in a 4 terminal network (with
no electrical connections to the 4th terminal). Also note there is some flexibility in how one adds together
these subspace collections: we connected the terminals A′, B′, C ′, and D′, to respectively the terminals
A′′, B′′, C ′′, and D′′, but we could have connected them to any permutation of these terminals. This
flexibility is reflected in the need to introduce nonsingular operators S′ and S′′ which respectively map
V ′ and V ′′ to V, before addition can defined.

7.7 Addition of Y -subspace collections and embeddings
Adding superfunctions is similar the way electrical circuits, each with n terminals can be combined. An
example is shown in Figure 7.6.

Suppose we have Y (j) and Y (k) subspace collections:

K′ = E ′ ⊕ J ′ = V ′ ⊕H′ with H′ = P ′1 ⊕ P ′2 ⊕ · · · ⊕ P ′j ,
K′′ = E ′′ ⊕ J ′′ = V ′′ ⊕H′′ with H′′ = P ′′1 ⊕ P ′′2 ⊕ · · · ⊕ P ′′k , (7.121)

where the spaces V ′ and V ′′ have the same dimension n. To define the sum of the subspace collections we
need to introduce another n-dimensional space V and nonsingular operators S′ and S′′ which respectively
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map V ′ and V ′′ to V . Then the sum of the subspace collections

K = K′ +{S′,S′′} K′′ (7.122)

is the subspace collection
K = E ⊕ J = V ⊕H, (7.123)

where
H = H′ ⊕H′′ = P ′1 ⊕ P ′2 ⊕ · · · ⊕ P ′j ⊕ P ′′1 ⊕ P ′′2 ⊕ · · · ⊕ P ′′k . (7.124)

Here a field E = E1 + E2, with E1 ∈ V and E2 ∈ H, is in E if and only if there exist fields

E′ = E′1 + E′2 ∈ E ′, E′′ = E′′1 + E′′2 ∈ E ′′, (7.125)

with
E′1 ∈ V ′, E′2 ∈ H′, E′′1 ∈ V ′′, E′′2 ∈ H′′, (7.126)

such that
S′E′1 = S′′E′′1 = E1. (7.127)

Also a field J = J1 + J2, with J1 ∈ V and J2 ∈ H, is in J if and only if there exist fields

J′ = J′1 + J′2 ∈ E ′, J′′ = J′′1 + J′′2 ∈ E ′′, (7.128)

with
J′1 ∈ V ′, J′2 ∈ H′, J′′1 ∈ V ′′, J′′2 ∈ H′′, (7.129)

such that
S′J′1 + S′′J′′1 = J1. (7.130)

So given E1 ∈ V , we let E′1 = (S′)−1E and E′′1 = (S′′)−1E1, and we solve the Y -problem in each of the
two subspace collections Y (j) and Y (k), finding fields satisfying (7.125), (7.126), (7.128), and (7.129) with

J′2 = L′E2, J′′2 = L′′E′′2 , (7.131)

where

L′ =

j∑
i=1

z′iΛ
′
i, L′′ =

k∑
i=1

z′′i Λ′′i , (7.132)

and Λ′i projects onto P ′i while Λ′′i projects onto P ′′i . Hence we have

J2 = J′2 + J′′2 = L(E′2 + E′′2), with L = L′ + L′′. (7.133)

Then (7.130) implies
J1 = S′J′1 + S′′J′′1 = S′Y′E′1 + S′′Y′′E′′1 = YE1, (7.134)

where
Y = S′Y′(S′)−1 + S′′Y′′(S′′)−1. (7.135)

If we have a basis v1,v2, . . . ,vn for V , then it is natural to take (S′)−1v1, (S′)−1v2, . . ., (S′)−1vn as a basis
for V ′, and to take (S′′)−1v1, (S′′)−1v2, . . ., (S′′)−1vn as a basis for V ′′. Then the operators S′ and S′′ are
represented by identity matrices, and in these bases (7.135) becomes Y = Y′ + Y′′.
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In the case where either or both of the subspaces V ′ and V ′′ have dimension less than the dimension n of
the subspace V we can first do an embedding. For example suppose V ′ has dimension n′ < n. Then letW ′
be a space of dimension n− n′. Construct the subspace collection

K̃′ = Ẽ ′ ⊕ J ′ = Ṽ ′ ⊕H′, (7.136)

where
Ṽ ′ = V ′ ⊕W ′, Ẽ ′ = E ′ ⊕W ′. (7.137)

Then given a field Ẽ′1 ∈ Ṽ ′ we can express it as a sum E′1 + W′ with E′1 ∈ V ′ and W′ ∈ W ′. We write
E′1 = ΨẼ′1 where Ψ is the projection onto V ′. Given this E′1 and solving the Y -problem associated with K′
we obtain fields E′ and J′ satisfying

E′ = E′1 + E′2 ∈ E ′, E′1 ∈ V ′, E′2 ∈ H′,
J′ = J′1 + J′2 ∈ J ′, J′1 ∈ V ′, J′2 = LE2 ∈ H. (7.138)

It follows that the Y -problem in the space K̃′ is solved with fields

Ẽ′ = W + E′ = W + E′1 + E′2, and J′ = J′1 + J′2 with J′2 = LE2, (7.139)

implying that
J′1 = −YE′1 = −YΨẼ′1. (7.140)

We conclude that the new Y -problem has an operator Ỹ = YΨ, i.e., its range is not the whole space Ṽ ′ but
only at most the subspace V ′. After making such embeddings to ensure that V ′ and V ′′ (or rather Ṽ ′ and Ṽ ′′
have the same dimension as the dimension n of the subspace V , we are then free to add them.

The additive zero is easy to find. Let us consider the degenerate subspace collection

K′′ = E ′′ = V ′′. (7.141)

Clearly H′′ contains only the zero vector, and we are forced to choose L′′ = 0. Given E1 ∈ V ′′. The
Y -problem is solved with vectors

E′′ = E1, E1 = J1 = J2 = J = 0. (7.142)

Implying the associated Y -operator Y is zero. Thus the subspace collection (7.141) is the additive zero. Note
that this subspace collection does not satisfy the property E ′′ ∩ V ′′ = {0} which is needed for the inverse of
Y to exist, which is not surprising since Y = 0 has no inverse.

Now suppose we have a subspace collection

K′ = E ′ ⊕ J ′ = V ′ ⊕H′ with H′ = P ′1 ⊕ P ′2 ⊕ · · · ⊕ P ′j , (7.143)

with associated operator Y′(z′1, z
′
2, . . . , z

′
n) when

L′ =

j∑
i=1

z′iΛ
′
i. (7.144)
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It is clear that if we replace L′ by

L′ = −
j∑
i=1

z′iΛ
′
i, (7.145)

then the solution to the Y -problem will give the Y -operator

Y(−z′1,−z′2, . . . ,−z′n) = −Y(z′1, z
′
2, . . . , z

′
n), (7.146)

where to obtain this last identity we have used the homogeneity of the function. Since adding (7.146) to the
associated operator Y′(z′1, z

′
2, . . . , z

′
n) we started with gives zero, it is tempting to conclude that we have found

the additive inverse. However the function (7.146) is not the Y -operator-valued function of z′1, z′2, . . . , z′n
associated with the subspace collection (7.143), whose definition does not allow us to choose L′ of the form
(7.145). This is made more clear in the case where we have an orthogonal subspace collection since then
the imaginary part of (V,Y(z′1, z

′
2, . . . , z

′
n)V) is generally positive when z′1, z′2, . . . , z′n all have positive

imaginary parts, and −Y(z′1, z
′
2, . . . , z

′
n) then does not share this Herglotz property. So the additive inverse

of an orthogonal subspace collection should typically not be an orthogonal subspace collection. We will find
the proper additive inverse in section 7.12.

7.8 Substitution of subspace collections
Another familiar operation that we can do with rational functions is to make substitutions. Substitution of one
subspace collection in another is similar to the way it can be done in electrical circuits. An example is shown
in Figure 7.7. Thus if Y(z1, z2, . . . , zn) is a m×m matrix-valued homogeneous function of degree one and
Z ′(z′1, z

′
2, . . . , z

′
p) is a scalar-valued function, say normalized with

Z ′(1, 1, . . . , 1) = 1, (7.147)

then
Y′′(z′1, z

′
2, . . . , z

′
p, z2, . . . , zn) = Y(Z(z′1, z

′
2, . . . , z

′
p), z2, . . . , zn) (7.148)

will be another m×m matrix-valued homogeneous function of degree one. What is the analogous operation
on subspace collections? It is natural to expect there should be one, just as in a network of n types of resistors
one can replace each resistor of type 1 with a network of p other resistors.

Extending the treatment given in Section 29.1 of Milton (2002) let us suppose that we are given a Y (n)-
subspace collection

K = E ⊕ J = V ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.149)

and a (3, p)-subspace collection

H′ = U ′ ⊕ E ′ ⊕ J ′ = P ′1 ⊕ P ′2 ⊕ · · · ⊕ P ′p, (7.150)

in which V ism-dimensional and U ′ is one-dimensional. Let Y(z1, z2, . . . , zn) and Z ′(z′1, z′2, . . . , z′p) denote
the functions associated with these subspace collections. We take as our new (2, n+ p)-subspace collection,

K′′ = E ′′ ⊕ J ′′ = V ′′ ⊕ P ′′1 ⊕ P ′′2 ⊕ · · · ⊕ P ′′n , (7.151)

where
E ′′ = (E ⊗ U ′)⊕ (P1 ⊗ E ′), J ′′ = (J ⊗ U ′)⊕ (P1 ⊗ J ′), (7.152)
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Figure 7.7: Substitution of Y - and Z-subspace collections is like replacing all resistors of one type by a
compound network. If one takes a subspace collection, as, for example, represented by the 4-terminal
network in (a) and replaces z1 by the network in (b), where k1 + (1/k2 + 1/k3)−1 = 1, to ensure this
replacement does effect the resistance when z1 = z4 = z5 = 1, one obtains the subspace collection as
represented by the 4-terminal network in (c).

and

V ′′ = V ⊗ U ′,
P ′′i = P1 ⊗ P ′i for 1 ≤ i ≤ p,

= Pi+1−p ⊗ U ′ for p+ 1 ≤ i ≤ n+ p− 1, (7.153)

in which ⊗ denotes the operation of taking the tensor product of two subspaces. Vectors in the space

K′′ = E ′′ ⊕ J ′′ = (K ⊗ U ′)⊕ (P1 ⊗ (E ′ ⊕ J ′)), (7.154)

spanned by these subspaces are represented as a pair [P, u′] added to a linear combination of pairs of the
form [P1, P′], where P ∈ K, u′ ∈ U ′, P1 ∈ P1, and P′ ∈ E ′ ⊕ J ′.
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Now define

H = P1 ⊕ P2 ⊕ · · · ⊕ Pn,
H′′ = P ′′1 ⊕ P ′′2 ⊕ · · · ⊕ P ′′n , (7.155)

and suppose that we are given solutions to the equations

J2 =

n∑
i=1

ziΛiE2 with E1 + E2 ∈ E , J1 + J2 ∈ J , E1,J1 ∈ V, E2,J2 ∈ H,

j′ + J′ =

n∑
j=1

z′jΛ
′
j(e
′ + E′) with e′, j′ ∈ U ′, E′ ∈ E ′, J′ ∈ J ′,

(7.156)

where
z1 = Z(z′1, z

′
2, . . . , z

′
p), (7.157)

while Λi and Λ′j are the projections onto Pi and P ′j . Let us introduce

Pi = ΛiE2, P′j = Λ′j(e
′ + E′), (7.158)

and set

z′′i = z′i for 1 ≤ i ≤ p,
= zi+1−p for p+ 1 ≤ i ≤ n+ p− 1. (7.159)

Then, in the new subspace collection, the vectors

E′′1 = [E1, e′] ∈ V ′′, E′′2 = [E2, e′] + [P1, E′],

J′′1 = [J1, e′] ∈ V ′′, J′′2 = [J2, e′] + [P1, J′] (7.160)

satisfy
E′′1 + E′′2 ∈ E ′′, J′′1 + J′′2 ∈ J ′′. (7.161)

Additionally, we have

E′′2 = [

n∑
i=1

Pi, e′]− [P1, e′] + [P1,

p∑
i=1

P′i] =

n+p−1∑
i=1

P′′i ∈ H′′, (7.162)

where

P′′i = [P1, P′i] for 1 ≤ i ≤ p,
= [Pi+1−p, e′] for p+ 1 ≤ i ≤ n+ p− 1 (7.163)

satisfies P′′i ∈ P ′′i . Similarly, and using the fact implied by (7.157) that j′ = Ze′ = z1e
′, we have

J′′2 = [

n∑
i=1

ziPi, e′]− [P1, j′] + [P1,

p∑
i=1

z′iP
′
i] =

n+p−1∑
i=1

z′′i P′′i ∈ H′′. (7.164)
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Given a basis v1,v2, . . . ,vm for V and a vector u′ in U ′ it is natural to take (v1,u
′),(v2,u

′), . . ., (vm,u
′)

as our basis for V ′′. Choosing e′ so that e′ = u′, it is evident that Y(Z ′(z′1, z
′
2, . . . , z

′
p), z2, . . . , zn) is the

matrix-valued function associated the new subspace collection, represented in these bases.
There is a similar subspace operation corresponding to substituting the Z-function Z ′(z′1, z′2, . . . , z′p) into

another Z-function Z(z1, z2, . . . , zn) to obtain

Z′′(z′1, z
′
2, . . . , z

′
p, z2, . . . , zn) = Z(Z(z′1, z

′
2, . . . , z

′
p), z2, . . . , zn). (7.165)

Given a Z(n)-subspace collection

H = U ⊕ E ⊕ J = P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.166)

and a (3, p)-subspace collection

H′ = U ′ ⊕ E ′ ⊕ J ′ = P ′1 ⊕ P ′2 ⊕ · · · ⊕ P ′p, (7.167)

in whichU ism-dimensional andU ′ is one-dimensional, we take as our new (3, n+p−1)-subspace collection,

K′′ = U ′′ ⊕ E ′′ ⊕ J ′′ = P ′′1 ⊕ P ′′2 ⊕ · · · ⊕ P ′′n , (7.168)

where
U ′′ = U ⊗ U ′, E ′′ = (E ⊗ U ′)⊕ (P1 ⊗ E ′), J ′′ = (J ⊗ U ′)⊕ (P1 ⊗ J ′), (7.169)

and

P ′′i = P1 ⊗ P ′i for 1 ≤ i ≤ p,
= Pi+1−p ⊗ U ′ for p+ 1 ≤ i ≤ n+ p− 1. (7.170)

Suppose that we are given solutions to the equations

j + J =

n∑
i=1

ziΛi(e + E) with e, j ∈ U , E ∈ E , J ∈ J ,

j′ + J′ =

n∑
j=1

z′jΛ
′
j(e
′ + E′) with e′, j′ ∈ U ′, E′ ∈ E ′, J′ ∈ J ′,

(7.171)

where z1 = Z(z′1, z
′
2, . . . , z

′
p), while Λi and Λ′j are the projections onto Pi and P ′j . Let us introduce

Pi = Λi(e + E), P′j = Λ′j(e
′ + E′),

and define z′′i by (7.159), and P′′i ∈ P ′′i by (7.163). In the new subspace collection, the vectors

e′′ = [e, e′] ∈ U ′′, E′′ = [E, e′] + [P1, E′] ∈ E ′′,
j′′ = [j, e′] ∈ U ′′, J′′ = [J, e′] + [P1, J′] ∈ J ′′ (7.172)
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satisfy

e′′ + E′′ = [

n∑
i=1

Pi, e′] + [P1,

p∑
j=1

P′j ]− [P1, e′]

= [

n∑
i=2

Pi, e′] + [P1,

p∑
j=1

P′j ]

=

n+p−1∑
i=1

P′′i , (7.173)

and using (7.157) we get

j′′ + J′′ = [

n∑
i=1

ziPi, e′] + [P1,

p∑
j=1

z′iP
′
j ]− [P1, j′]

= [

n∑
i=2

ziPi, e′] + [P1,

p∑
j=1

z′iP
′
j ]

=

n+p−1∑
i=1

z′′i P′′i . (7.174)

Given a basis u1,u2, . . . ,um for U and a vector u′ in U ′ it is natural to take (u1,u
′),(u2,u

′), . . ., (um,u
′) as

our basis for U ′′. Choosing e′ so that e′ = u′, it is evident from (7.172) that Z(Z ′(z′1, z
′
2, . . . , z

′
p), z2, . . . , zn)

is the matrix-valued function associated the new subspace collection, represented in these bases.

7.9 Some other elementary operations on subspace collections
A further operation we can do on functions Y(z1, z2, . . . , zn) while retaining the homogeneity of degree
1 in the variables z1, z2, . . . , zn is to replace the function by [Y(1/z1, 1/z2, . . . , 1/zn)]−1. The analogous
operation on the associated Y (n)-subspace collection is to interchange the subspaces E and J . Similarly in
a Z(n) subspace collection, interchanging the subspaces E and J corresponds to replacing Z(z1, z2, . . . , zn)
by [Z(1/z1, 1/z2, . . . , 1/zn)]−1, as noted in Section 29.1 of Milton (2002). We call such a transformation a
duality transformation. As a consequence of the duality transformation (7.60) immediately implies the formula

Z−1 = Γ0[(Γ0 + Γ1)L(Γ0 + Γ1)]−1Γ0. (7.175)

One simple thing we can do in a function is set zj = zk: the analogous operation in a subspace collection is
to replace Pj ⊕ Pk by a single subspace.

Another elementary operation we can do on a Z(n) subspace collection is as follows. Let U be expressed
as the direct sum

U = U ′ ⊕W, (7.176)

which defines the projection Φ onto U ′. We now take as our subspace collection

H = U ′ ⊕ E ⊕ J ′ = P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.177)
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where
J ′ = J ⊕W. (7.178)

Then any solution to the Z-problem (7.27) with e ∈ U ′ immediately generates a solution to the Z-problem
associated with the subspace collection (7.177):

j′ ∈ U ′, E ∈ E , J′ ∈ J ′, j′ + J′ = L(e + E), (7.179)

where

L =

n∑
i=1

ziΛi, j′ = Φj, J′ = J + (I−Φ)j, (7.180)

which ensures that
j + J = j′ + J′ and (I−Φ)j ∈ W. (7.181)

Hence the new subspace collection has a Z-operator

Z′ = ΦZ, (7.182)

when applied to fields in U ′.

7.10 Realizing any Y -matrix with elements that are rational functions
of degree 1

Given any homogeneous rational function of degree 1,

Z(z1, z2, . . . , zn) =
p(z1, z2, . . . , zn)

q(z1, z2, . . . , zn)
, (7.183)

satisfying the normalization Z(1, 1, . . . , 1) = 1 where p(z1, z2, . . . , zn) and q(z1, z2, . . . , zn) are homoge-
neous polynomials of degree k and k − 1 respectively, where k is a positive integer, our first goal is to find a
Z(n) subspace collection

H = U ⊕ E ⊕ J = P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.184)

where U is one-dimensional which hasZ(z1, z2, . . . , zn) as its associated function. Without loss of generality
we could set zn =1, and then p(z1, z2, . . . , zn−1, 1) and q(z1, z2, . . . , zn−1, 1) are just arbitrary polynomials
of the n− 1 variables z1, z2, . . . , zn−1. Also without loss of generality we can assume

p(1, 1, . . . , 1) = q(1, 1, . . . , 1) = 1. (7.185)

The first step is to realize Z(z1, z2, 1) = z1z2 as an associated Z-function. Note that (7.56) implies we can
realize

Z(z1, 1) = z2
1 , (7.186)

and (7.57) implies we can realize
Z(z1, z2) = cz1 + (1− c)z2, (7.187)

for any constant c. Hence, by substitution we can realize

Z(z1, z2, 1) = 9(2z1/3 + z2/3)2/8− (2z1 − z2)2/8 = z1z2. (7.188)
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Making further substitutions, we can realize any product of the variables

Z(z1, z2, . . . , zn−1, 1) = za11 za22 . . . z
an−1

n−1 , (7.189)

where the ai are nonnegative integers. By repeated substitution in (7.187) we can realize any linear combina-
tion of such terms with coefficients summing to 1. Thus we can realize the polynomials p(z1, z2, . . . , zn−1, 1)
and q(z1, z2, . . . , zn−1, 1).

Furthermore (7.56), with the roles of z1 and z2 interchanged, implies we can realize

Z(z1, 1) = 1/z1, (7.190)

which by substitution into (7.188) implies we can realize

Z(z1, z2, 1) = z2/z1. (7.191)

Substituting p(z1, z2, . . . , zn−1, 1) for z2 and q(z1, z2, . . . , zn−1, 1) for z1 we see we can find a subspace
collection which realizes

Z(z1, z2, . . . , zn−1, 1) =
p(z1, z2, . . . , zn−1, 1)

q(z1, z2, . . . , zn−1, 1)
(7.192)

as its associated Z-function when zn = 1. When zn is not 1, the subspace collection will by homogeneity
realize the function (7.183).

Now from (7.44) we can realize

Y(z1) =

(
a11z1 0

0 0

)
, (7.193)

and realize

Y(z2) =

(
0 a12z2

0 0

)
. (7.194)

By substitution of subspace collections, we can realize any Y -matrix where in the above formulae z1 and z2

are replaced by any normalized rational homogeneous functions of degree 1 (normalized in the sense that
they take the value 1 when all variables take the value 1). Finally, by making suitable embeddings and adding
subspace collections we can realize any Y -matrix with elements that are homogeneous rational functions of
degree 1: (7.193) with the appropriate substitutions realizes each diagonal element, while (7.194) with the
appropriate substitutions realizes each off-diagonal element.

7.11 Extension operations on subspace collections
Let us suppose we have a Z(n) subspace collection

H = U ⊕ E ⊕ J = P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.195)

where U is m-dimensional. Let V be another m-dimensional space, and consider the space

K = V ⊕H. (7.196)
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Suppose there is a nonsingular mapping T fromU to V . Define the subspace Ẽ to consist of all vectors spanned
by u + Tu as u varies in U . Define J̃ to consist of all vectors spanned by u−Tu as u varies in U . Clearly
we have

V ⊕ U = Ẽ ⊕ J̃ , (7.197)

and consequently we obtain the Y (n) subspace collection

K = E ′ ⊕ J ′ = V ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.198)

in which
E ′ = Ẽ ⊕ E , J ′ = J̃ ⊕ J . (7.199)

Furthermore given vectors satisfying

j + J = L(e + E), E ∈ E , J ∈ J , e, j ∈ U , (7.200)

where

j = Ze, L =

n∑
`=1

ziΛi, (7.201)

we can set
E2 = e + E ∈ H, E1 = Te ∈ V, J2 = j + J ∈ H, J1 = −Tj. (7.202)

Then we have
E1 + E2 = Te + e + E ∈ E ′, J1 + J2 = −Tj + j + J ∈ J ′, (7.203)

and
J1 = −YE1, with Y = TZT−1. (7.204)

Given a basis u1,u2, . . . ,um for U , with respect to which the matrix-valued function Z(z1, z2, . . . , zn) is
defined, it is natural to take Tu1,Tu2, . . . ,Tum as our basis for V . Then T is represented by the identity ma-
trix, and the functions Z(z1, z2, . . . , zn) and Y(z1, z2, . . . , zn) are identical. We call the subspace collection
(7.198) the extension of the subspace collection (7.195).

7.12 Reference transformations and additive inverses
Given the impedance network illustrated in Figure 7.3 we are free the change the scaling constants ci assigned
to each bond to new constants c′i and accordingly replace zi with z′i = zici/c

′
i without changing the overall

electrical response of the network. Analogously, given a homogeneous rational function Y(z1, z2, . . . , zn) of
degree one, an operation which preserves the homogeneity is obviously to multiply the variables by constants
to obtain the function

Y′(z′1, z
′
2, . . . , z

′
n) = Y(d1z

′
1, d2z

′
2, . . . , dnz

′
n). (7.205)

The associated operation on the Y (n) subspace collection (E ,J ) and (V,P1,P2, . . . ,Pn) is found by gener-
alizing the analysis given after (29.3) in Milton (2002) and is as follows. Given nonzero (possibly complex)
constants cEi and cJi , i = 1, . . . , n we introduce the linear transformations

ψE(P) = Π1P +

n∑
i=1

cEi ΛiP, ψJ(P) = Π1P +

n∑
i=1

cJi ΛiP, (7.206)
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on fields P ∈ K, where Λ1 is the projection onto P1. These transformations leave the subspaces V and Pi
invariant. Define the spaces

E ′ = ψE(E) and J ′ = ψJ(J ). (7.207)
These will have the same dimension as E and J respectively. To see this, suppose ψE(E) = ψE(E′) for some
E,E′ ∈ E . Then ψE(E−E′) = 0 and since (7.206) implies ψE(P) = 0 only when P = 0 we conclude that
E = E′. We need to make the technical assumption that

ψE(E) 6= ψJ(J), for all nonzero E ∈ E ,J ∈ J , (7.208)

to ensure E ′ and J ′ have no nonzero vector in common. A more insightful meaning to the condition (7.208)
is given in the next section.

Let (E ′,J ′) and (V,P1,P2, . . . ,Pn) be our new subspace collection. Given a solution to the equations

E ∈ E , J ∈ J , (I−Π1)J =

n∑
i=1

ziΛiE, (7.209)

in the original subspace collection, in which Π1 is the projection onto V , the fields E′ = ψE(E) and J′ =
ψJ(J) will be a solution to the equations

E′ ∈ E ′, J′ ∈ J ′, (I−Π1)J′ =

n∑
i=1

z′iΛiE
′, (7.210)

in the new subspace collection with
z′i = zic

J
i /c

E
i . (7.211)

Since Π1E
′ = Π1E and Π1J

′ = Π1J, it follows that the Y-tensor functions of the two subspace collections
are related by (7.205) where

di = cEi /c
J
i . (7.212)

In particular, if we choose cEi = −cJi for all i we obtain di = −1. Then using the homogeneity of the
function Y(z1, z2, . . . , zn) we see that

Y′(z′1, z
′
2, . . . , z

′
n) = Y(−z′1,−z′2, . . . ,−z′n) = −Y(z′1, z

′
2, . . . , z

′
n). (7.213)

So if to another subspace collection, with an associated function Y′′(z1, z2, . . . , zn), we add this new subspace
collection according to the prescription given in Section 7.7, then it produces a subspace collection with an
associated Y -function which is obtained by subtracting Y(z1, z2, . . . , zn) from Y′′(z1, z2, . . . , zn). In other
words, when cEi = −cJi for all i, the subspace collection with subspaces (E ′,J ′) and (V,P1,P2, . . . ,Pn)
is the additive inverse of the original subspace collection, having subspaces (E ,J ) and (V,P1,P2, . . . ,Pn),
where (E ′,J ′) and (E ,J ) are linked by (7.207). If the technical condition (7.208) is not satisfied it appears
that the subspace collection has no arithmetic inverse.

7.13 Operations on subspace collections leaving the associated func-
tion invariant

Note from (7.212) that if we choose cJi = cEi for all i then the associated function remains invariant. More
generally, if we are interested in leaving the associated function invariant, we could take

E ′ = CE , J ′ = CJ , V ′ = CV, H′ = CH, P ′i = CPi, (7.214)
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where C is a nonsingular linear operator which maps K to itself. Then the fields E′ = CE and J′ = CJ will
be a solution to the equations

E′ ∈ E ′, J′ ∈ J ′, (I−Π′1)J′ =

n∑
i=1

ziΛ
′
iE
′, (7.215)

where
Π′1 = CΠ1C

−1, Λ′i = CΛiC
−1 (7.216)

are the projections onto V ′ and P ′i . If v1,v2, . . .vm is a basis for V then setting v′i = Cvi we can take
v′1,v′2,. . .,v′m as a basis for V ′. Since multiplying by C is a linear operation the coefficients in the expansions

Π′1E
′ =

m∑
i=1

E′iu
′
i, Π1E =

m∑
i=1

Eiui, Π′1J
′ =

m∑
i=1

J ′iu
′
i, Π1J =

m∑
i=1

Jiui (7.217)

can be equated:
E′i = Ei, J ′i = Ji, (7.218)

and as a consequence the same matrix Y whose coefficients govern the relation

Ji =

k∑
i=1

YikEk, (7.219)

also govern the relation

J ′i =

k∑
i=1

YikE
′
k. (7.220)

Due to this equivalence it suffices in the preceding section to limit attention to the transformations (7.206)
having cJi = 1 for all i: it is only the ratio di = cEi /c

J
i that has any real significance. Then ψJ(P) = P, and

the technical condition (7.208) is violated only when there are nonzero vectors E ∈ E and J ∈ J such that

E = E1 + E2, J + J1 + J2, E1 = J1 ∈ V, J2 = LE2 ∈ H, with L =

n∑
i=1

cEi Λi. (7.221)

Thus either Y(cE1 , c
E
2 , . . . , c

E
n ) has an eigenvalue of −1, or the Y -problem with zi = cEi for all i has a

nonunique solution (with a nontrivial solution having E2 6= 0 for the homogeneous problem with E1 = 0 and
also J1 = 0, the latter not being needed for nonuniqueness but being needed if (7.221) holds). If we are looking
for the arithmetic inverse we take cEi = −1 for all i, and the inverse exists except when Y(−1,−1, . . . ,−1) =
−Y(1, 1, . . . , 1) has eigenvalue −1 or when the Y -problem with zi = 1 for all i has a nonunique solution
(with the homogeneous problem having a nontrivial solution with both E1 and J1 being zero).

There is a similar invariance of matrix functions associated with Z(n) subspace collections under the
linear transformations,

U ′ = CU , E ′ = CE , J ′ = CJ , P ′i = CPi. (7.222)

These invariances are quite natural, as they are isomorphic to changing the basis in the vector spaces H
or K. Thus, up to these trivial equivalences, the arithmetic inverse defined in the previous section is unique.
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7.14 Multiplicative Inverses of superfunctions
To find the multiplicative inverse of a superfunction (F s)′ we letK′′ be a vector space with the same dimension
as K′, and we take C as a nonsingular map from K′ to K′′. We then let

J ′′ = C(J ′), H′′ = CH′,
(VI)′′ = C(VO)′, (VO)′′ = C(VI)′, P ′′i = CP ′i for i = 1, 2, . . . , j. (7.223)

Introduce the transformation
ψ(P) = Π′′1P−Π′′2 , (7.224)

where Π′′1 is the projection onto (VI)′′⊕(VO)′′ and Π′′2 is the projection ontoH′′. This is a special case of the
transformations in (7.206). We let E ′′ = ψ(CE ′). Note that the output space (VO)′ gets mapped to the input
space (VI)′′, and the input space (VI)′ gets mapped to the output space (VO)′′, and apart from these switch-
ings we have essentially made an additive inverse in the Y -problem. We still require the technical condition
mentioned in the last section, to ensure that this additive inverse exists: the operator Y(1, 1, . . . , 1)−I is non-
singular and the Y -problem with zi = 1 for all i has a unique solution (or more precisely the homogeneous
problem does not have a nontrivial solution with both E1 and J1 being zero).

Now suppose we are given a solution to the superfunction problem associated with (F s)′,

E′ = (EI)′ + (EO)′ + E′2 ∈ E ′, J′ = (JI)′ + (JO)′ + J′2 ∈ J ′, J′2 = L′E′2, (7.225)

where

L′ =

j∑
i=1

z′iΛ
′
i, (7.226)

in which Λ′i is the projection onto P ′i , and

(EI)′, (JI)′ ∈ (VI)′, (EO)′, (JO)′ ∈ (VO)′, E′2, J′2 ∈ H′. (7.227)

Now take vectors

E′′ = ψ(CE′), J′′ = −CJ′, E′′2 = −CE′2, J′′2 = −CJ′2

(EI)′′ = C(EO)′, (EO)′′ = C(EI)′, (JI)′′ = −C(JO)′, (JO)′′ = −C(JI)′. (7.228)

These solve the superfunction problem associated with (F s)′′,

E′′ = (EI)′′ + (EO)′′ + E′′2 ∈ E ′′, J′′ = (JI)′′ + (JO)′′ + J′′2 ∈ J ′′, J′′2 = L′′E′′2 , (7.229)

where

L′′ =

j∑
i=1

z′′i Λ′′i , z′′i = z′i, (7.230)

in which Λ′′i is the projection onto P ′′i , and

(EI)′′, (JI)′′ ∈ (VI)′′, (EO)′′, (JO)′′ ∈ (VO)′′, E′′2 , J′′2 ∈ H′′. (7.231)
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Next let M1 denote the restriction of C to the subspace (VO)′, i.e., that operator mapping (VO)′ to (VI)′′,
such that M1P = CP for all P ∈ (VO)′. Then from (7.228) we have (EI)′′ = M1(EO)′ and (JI)′′ =
−M1(JO)′. To see that (F s)′′ is the inverse of the superfunction (F s)′ when

L′ =

j∑
i=1

z′iΛ
′
i, L′′ =

j∑
i=1

z′iΛ
′′
i , (7.232)

we introduce the operator M2 which is the restriction of C−1 to the subspace (VO)′′, i.e., that operator
mapping (VO)′′ to (VI)′, such that M2P = CP for all P ∈ (VI)′. Then upon taking the product of the
superfunctions (7.228) implies (

(EO)′′

(JO)′′

)
= F

(
(EI)′

(JI)′

)
, (7.233)

where

F =

(
(M2)−1 0

0 −(M2)−1

)
(7.234)

is the multiplicative identity operator. From this analysis it looks like there are many multiplicative inverses,
parameterized by C, but in fact all are equivalent: this follows from the previous section.

7.15 Pruning the subspace collections
If anm terminal resistor network has a cluster of resistors which is not connected to the rest of the network, and
that cluster does not have any terminals, only internal nodes, then clearly we can discard it without affecting
the fields in the rest of the network and its response matrix. The analogous operation on subspace collections
is called pruning.

When L is close to z0I we can expand the inverses in (7.62) and (7.64) to obtain the series expansions

E =

∞∑
j=1

[Γ1(L− z0I)/z0]je, (7.235)

Z = z0Γ0 +

∞∑
j=1

Γ0(L− z0I)[Γ1(L− z0I)/z0]jΓ0. (7.236)

From these expansions it is evident that is only those fields in H that arise from products of the operators
Γ1, Λ1, Λ2, . . . , Λn applied to fields in U have any role in determining E and the associated function
Z(z1, z2, . . . , zn) (also j and J): so we may as well prune away any other fields from the vector space H.
Thus we can redefineH as the smallest subspace containing U that is closed under the action of Γ1, Λ1, Λ2,
. . . , Λn and redefine

E = Γ1H, J = Γ2H, Pj = ΛjH, j = 1, 2, . . . , n. (7.237)

This imposes constraints on the dimensions of these subspaces, as noted in Section 29.2 of Milton (2002)
where the results are given in the case where U has dimension 1 and where the spaces are orthogonal. Let pj
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be the dimension of Pj , j = 1, 2, . . . , n, and let m, q1 and q2 represent the dimensions of U , E and J . The
total dimension of the vector spaceH is therefore

h = m+ q1 + q2 = p1 + p2 + . . .+ pn. (7.238)

Now the space
[Λ1(U ⊕ E)]⊕ [Λ2(U ⊕ E)]⊕ . . .⊕ [Λn(U ⊕ E)] (7.239)

certainly contains U , and is closed under Γ1 (because it contains E) and is closed under Λj for each j. It
therefore must be H and Λj(U ⊕ E) which has at most dimension m + q1 must be Pj . Therefore for each j
we have the inequality

pj ≤ m+ q1, (7.240)

and by summing these over j we see that

q2 ≤ (n− 1)(m+ q1). (7.241)

Similarly the subspace
[Λ1(U ⊕ J )]⊕ [Λ2(U ⊕ J )]⊕ . . .⊕ [Λn(U ⊕ J )] (7.242)

can also be identified withH and we obtain the inequalities

pj ≤ m+ q2, q1 ≤ (n− 1)(m+ q2). (7.243)

In the particular case when n = 2 the constraints (7.241) and (7.243) imply that the dimensions of the sub-
spaces E and J can differ by at most m. Also in the case n = 2 we have

p1 = (m+ q2 − p2) + q1 = (m+ q1 − p2) + q2 ≥ max{q1, q2}, (7.244)

and similarly for p2.
Likewise we can redefine K as the smallest subspace containing V that is closed under the action of Γ1,

Λ1, Λ2, . . . , Λn and redefine

E = Γ1K, J = Γ2K, Pj = ΛjK, j = 1, 2, . . . , n. (7.245)

Let v be the dimension of V , pj be the dimension of Pj , j = 1, 2, . . . , n, and let q1 and q2 represent the
dimensions of E and J . The total dimension of the vector space K is therefore

h = q1 + q2 = v + p1 + p2 + . . .+ pn. (7.246)

The space
V ⊕ [Λ1(E)]⊕ [Λ2(E)]⊕ . . .⊕ [Λn(E)] (7.247)

certainly contains V , and is closed under Γ1 (because it contains E) and is closed under Λj for each j. It
therefore must be K and Λj(E) which has at most dimension q1 must be Pj . Thus for each j we have the
inequality

pj ≤ q1, (7.248)

and summing these over j we obtain
q2 ≤ v + (n− 1)q1. (7.249)
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Similarly since
K = V ⊕ [Λ1(J )]⊕ [Λ2(J )]⊕ . . .⊕ [Λn(J )], (7.250)

we obtain the inequalities
pj ≤ q2, q1 ≤ v + (n− 1)q2. (7.251)

When n = 2 the constraints (7.249) and (7.251) imply that the dimensions of the subspaces E and J can
differ by at most v. Also in the case n = 2 we have

p1 = (q2 − p2) + q1 − v = (q1 − p2) + q2 − v ≥ max{q1, q2} − v, (7.252)

with a similar inequality for p2.

7.16 Expressions for the numerator and denominator in the rational
function

Assume that a Z(n) subspace collection, with m = 1 has been pruned. Let w1,w2,. . . ,wq1+1 be a basis for
U ⊕ E with w1 in U and w2,w3,. . . ,wq1+1 in E . In this basis (Γ0 + Γ1)Λi(Γ0 + Γ1) is represented by a
(q1 + 1)× (q1 + 1) matrix Ai, and since the Λi sum up to the identity operator it follows that

n∑
i=1

Ai = I. (7.253)

Also, because the subspace is pruned, Λi(U ⊕E) can be identified with Pi which implies the matrix Ai must
have at most rank pi. It is exactly pi if Pi ∩ J = {0}. The formula (7.175) for the Z-function implies

1/Z(z1, z2, . . . , zn) = e1 · [
n∑
i=1

ziAi]
−1e1, (7.254)

where e1 is the q1 + 1 component unit vector [1, 0, 0, . . . 0]T . Hence, following the argument given in Section
29.2 of Milton (2002), Z(z1, z2, . . . , zn) can be expressed in the form (7.183) with numerator

p(z1, z2, . . . , zn) = det[

n∑
i=1

ziAi] =
∑

a1,a2,...,an

αa1a2...anz
a1
1 za22 . . . zann , (7.255)

of degree 1 + q1, in which the sum extends over all a1, a2, . . . , an with

n∑
i=1

ai = 1 + q1, 0 ≤ ai ≤ pi for i = 1, 2, . . . , n. (7.256)

Typically one expects that the maximum power of zi in this polynomial will be the rank of Ai. However, for
example, note that for the matrices

M1 =

0 0 0

1 1 1

0 1 1

 , M2 = I−M1, (7.257)
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the maximum power of z1 in

det[z1M1 + z2M2] = det[(z1 − z2)M1 + z2I] = z2[z2
2 + 2z2(z1 − z2)] (7.258)

is 1 while M1 has rank 2.
Next let w1,wq1+2,. . . ,wh be a basis for U ⊕J with w1 in U and wq1+2, wq1+3. . . ,wh in J . In this basis

(Γ0 + Γ2)Λi(Γ0 + Γ2) is represented by a (q2 + 1) × (q2 + 1) matrix Bi, and since the Λi sum up to the
identity operator it follows that

n∑
i=1

Bi = I. (7.259)

Also, because the subspace is pruned, Λi(U ⊕J ) can be identified with Pi which implies the matrix Bi must
have rank at most pi. It is exactly pi if Pi ∩ E = {0}. The formula (7.60) for the Z-function implies

Z(z1, z2, . . . , zn) = e2 · [
n∑
i=1

Bi/zi]
−1e2, (7.260)

where e2 is the q2 + 1 component unit vector [1, 0, 0, . . . 0]T . The denominator of this expression, as a
polynomial in the variables 1/zi, is

det[

n∑
i=1

Bi/zi] =
∑

b1,b2,...,bn

βb1b2...bn/z
b1
1 z

b2
2 . . . zbnn , (7.261)

in which the sum extends over all b1, b2, . . . , bn with

n∑
i=1

bi = 1 + q2, 0 ≤ bi ≤ pi for i = 1, 2, . . . , n. (7.262)

Consequently, for the denominator in the expression (7.183) for Z(z1, z2, . . . , zn), we can make the identifi-
cation

q(z1, z2, . . . , zn) =
∑

b1,b2,...,bn

βb1b2...bnz
p1−b1
1 zp2−b22 . . . zpn−bnn , (7.263)

which is a polynomial of degree h− (1 + q2) = q1. Furthermore the identities (7.253) and (7.259) imply the
polynomial p and q satisfy the normalization (7.185), i.e.,∑

a1,a2,...,an

αa1a2...an = 1,
∑

b1,b2,...,bn

βb1b2...bn = 1. (7.264)

7.17 The correspondence between rational functions of one variable
and Z(2) subspace collections with m = 1

In the case m = 1 and n = 2 there are two cases to consider. When the dimension of h is even, h = 2d, then
in order to satisfy the inequalities (7.240), (7.241) and (7.243) the subspaces E and J must have dimension d
and d − 1 or vice versa and the subspaces P1 and P2 must have dimension d. Without loss of generality, by
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making a duality transformation if necessary, let us suppose E has dimension d− 1. Given u ∈ U let us take
as our basis forH the vectors

v2j−1 = (Γ1Λ1)j−1u, v2j = (Λ1Γ1)j−1Λ1u, j = 1, 2, . . . , d, (7.265)

so that

v1 = u, v2j = Λ1ν2j−1, j = 1, 2, . . . , d, v2j+1 = Γ1ν2j−1, j = 1, 2, . . . , d− 1. (7.266)

These fields are independent since if they were not we could prune the subspace collection. The vectors
v2j+1, j = 1, 2, . . . , d− 1, which number d− 1, must form a basis for E and so it follows that

Γ1v2d =

d−1∑
i=1

γiv2i+1. (7.267)

Also we have

Γ0v1 = v1, Γ0v2j = δjv1, j = 1, 2, . . . , d, Γ0v2j+1 = 0, j = 1, 2, . . . , d− 1. (7.268)

The 2d− 1 constants γ1, . . . , γd−1 and δ1, . . . , δd characterize the geometry of the subspace collection. The
field e + E must have the expansion

e + E =

d∑
i=1

aiv2i−1, (7.269)

and consequently, setting z2 = 1 we get

j + J = [I + (z1 − 1)Λ1](e + E) =

d∑
i=1

aiv2i−1 + (z1 − 1)

d∑
i=1

aiv2i. (7.270)

Since Γ1(j + J) = 0 we arrive at the equations

0 =

d∑
i=2

aiv2i−1 + (z1 − 1)

d−1∑
i=1

aiv2i+1 + (z1 − 1)

d−1∑
i=1

adγiv2i+1

=

d−1∑
i=1

[ai+1 + ai(z1 − 1) + γiad(z1 − 1)]v2i+1, (7.271)

implying
ai+1 + ai(z1 − 1) + γiad(z1 − 1) = 0, i = 1, . . . , d− 1. (7.272)

Choosing a normalization with ad = (1− z1)d−1 these equations are solved with

ai = (1− z1)i−1 −
d−1∑
j=i

γd−1+i−j(1− z1)j . (7.273)

Since

Γ0(e + E) = a1v1, Γ0(j + J) = [a1 + (z1 − 1)

d∑
i=1

δiai]v1, (7.274)
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we obtain

Z(z1, 1) = 1 +
(z1 − 1)

∑d
i=1 δiai

a1
. (7.275)

Conversely suppose we are given a rational function Z(z1, 1) with a denominator of degree at most d− 1 and
a numerator of degree at most d satisfying Z(1, 1) = 1. It can be expressed in the form

Z(z1, 1) =
p(z1, 1)

q(z1, 1)
= 1−

∑d−1
j=0 tj(1− z1)j+1

1−∑d−1
j=1 sj(1− z1)j

. (7.276)

Comparing this with (7.275) we can make the identifications

1−
d−1∑
j=1

sj(1− z1)j = a1 = 1−
d−1∑
j=1

γd−j(1− z1)j ,

−
d−1∑
j=0

tj(1− z1)j+1 = (z1 − 1)

d∑
i=1

δiai

= −
d−1∑
j=0

δj+1(1− z1)j+1 +

d−1∑
j=0

j∑
i=1

δiγd−1+i−j(1− z1)j+1, (7.277)

which imply

sj = γd−j , t0 = δ1, tj = δj+1 −
j∑
i=1

δiγd−1+i−j , j = 1, . . . , d− 1. (7.278)

Given the coefficients s and t we can inductively uniquely determine the coefficients γ and δ:

γj = sd−j , δ1 = t0, δj+1 = tj +

j∑
i=1

δis1+j−i, j = 1, . . . , d− 1. (7.279)

On the other hand when the dimension of h is odd, h = 2d − 1, then in order to satisfy the inequalities
(7.240), (7.241) and (7.243) the subspaces E and J must have dimension d− 1 and the subspaces P1 and P2

must have dimension d − 1 and d or vice versa. Without loss of generality let us suppose P1 has dimension
d− 1. Given u ∈ U let us take as our basis forH the vectors

v2j−1 = (Γ1Λ1)j−1u, j = 1, 2, . . . , d− 1, v2j = (Λ1Γ1)j−1Λ1u, j = 1, 2, . . . , d, (7.280)

which satisfy

v1 = u, v2j = Λ1ν2j−1, v2j+1 = Γ1ν2j−1, j = 1, 2, . . . , d− 1. (7.281)

Again these fields are independent since if they were not we could prune the subspace collection. The vectors
v2j , j = 1, 2, . . . , d− 1, which number d− 1, must form a basis for P1 and so it follows that

Λ1v2d−1 =

d−1∑
i=1

γiv2i. (7.282)
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Also we have

Γ0v1 = v1, Γ0v2j = δjv1, j = 1, 2, . . . , d− 1, Γ0v2j+1 = 0, j = 1, 2, . . . , d− 1. (7.283)

The 2d − 2 constants γ1, . . . , γd−1 and δ1, . . . , δd−1 characterize the geometry of the subspace collection.
The field e + E has the expansion (7.269) and so, with z2 = 1,

j + J = [I + (z1 − 1)Λ1](e + E) =

d∑
i=1

aiv2i−1 + (z1 − 1)

d−1∑
i=1

aiv2i + (z1 − 1)

d−1∑
i=1

adγiv2i. (7.284)

Since Γ1(j + J) = 0 we arrive at the equations

0 =

d∑
i=2

aiv2i−1 + (z1 − 1)

d−1∑
i=1

aiv2i+1 + (z1 − 1)

d−1∑
i=1

adγiv2i+1

=

d−1∑
i=1

[ai+1 + ai(z1 − 1) + γiad(z1 − 1)]v2i+1, (7.285)

implying (7.272) which has the solution (7.273). Since

Γ0(e + E) = a1v1, Γ0(j + J) = [a1 + (z1 − 1)

d−1∑
i=1

δi(ai + adγi)]v1 = [a1 −
d−1∑
i=1

δiai+1]v1, (7.286)

we obtain

Z(z1, 1) = 1−
∑d−1
i=1 δiai+1

a1
. (7.287)

Conversely suppose we are given a rational function Z(z1, 1) with a denominator of degree at most d− 1 and
a numerator of degree at most d− 1. It can be expressed in the form

Z(z1, 1) = 1−
∑d−1
j=1 tj(1− z1)j

1−∑d−1
j=1 sj(1− z1)j

. (7.288)

Comparing this with (7.287) we can make the identifications

1−
d−1∑
j=1

sj(1− z1)j = a1 = 1−
d−1∑
j=1

γd−j(1− z1)j ,

d−1∑
j=1

tj(1− z1)j =

d−1∑
i=1

δiai+1

=

d−1∑
j=1

δj(1− z1)j −
d−1∑
j=2

j−1∑
i=1

δiγd+i−j(1− z1)j , (7.289)

which imply

sj = γd−j , j = 1, . . . , d− 1, t1 = δ1, tj = δj −
j−1∑
i=1

δiγd+i−j , j = 2, . . . , d− 1. (7.290)
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Given the coefficients s and t we can inductively uniquely determine the coefficients γ and δ:

γj = sd−j , j = 1, . . . , d− 1 δ1 = t1, δj = tj +

j∑
i=1

δisj−i, j = 2, . . . , d− 1. (7.291)

One can see from this analysis that there can be more than one pruned subspace collection associated
with a rational function Z(z1, 1). It may happen that one pruned Z(n) subspace collection gives rise to
polynomials p(z1, 1) = f(z1, 1)r(z1, 1) and q(z1, 1) = g(z1, 1)r(z1, 1) while another pruned Z(n) subspace
collection gives rise to polynomials p′(z1, 1) = f(z1, 1)r′(z1, 1) and q′(z1, 1) = t(z1, 1)r′(z1, 1), so that
both give rise to the same function Z(z1, 1). However there is a one-to-one correspondence if the pruned
subspace collection is such that the polynomials p(z1, z2) and q(z1, z2) have no factor in common, and this
correspondence is given by the above algorithm

7.18 On the correspondence between certain rational functions of two
variables and Z(3) subspace collections with m = 1

In the case m = 1 and n = 3 can we uniquely recover a generic subspace collection (modulo the linear
transformations (7.222)) from knowledge of the rational function Z(z1, z2, 1)? The answer is no, but let us
first provide a counting argument which suggests that, at least in the generic case, we can recover the subspace
collection up to a finite number of possibilities. The counting argument is similar to that given in Section 29.2
of Milton (2002) but here we do not assume that the subspaces are orthogonal.

How many independent coefficients αa1a2a3 are there in a polynomial

p(z1, z2, 1) =
∑

a1,a2,a3

αa1a2a3z
a1
1 za22 , (7.292)

that satisfies
a1 + a2 + a3 = 1 + q1, 0 ≤ ai ≤ pi ≤ 1 + q1, i = 1, 2, 3 ? (7.293)

Without loss of generality, following Section 29.2 of Milton (2002), let us suppose that p1 ≥ p2 ≥ p3. With
a1 fixed in the regime 0 ≤ a1 < 1+q1−p2, the constant a2 can take integer values from a2 = 1+q1−a1−p3

(where a3 = p3) to a2 = p2, that is, a total of p2 + p3 + a1 − q1 different values. With a1 fixed in the regime
1 + q1 − p2 ≤ a1 < 1 + q1 − p3, the constant a2 can take integer values from a2 = 1 + q1 − a1 − p3 (where
a3 = p3) to a2 = 1 + q1 − a1 (where a3 = 0) that is, a total of p3 + 1 different values. Finally, with a1 fixed
in the regime 1 + q1−p3 ≤ a1 ≤ p1, the constant a2 can take integer values from a2 = 0 to a2 = 1 + q1−a1

(where a3 = 0), that is, a total of 2 + q1 − a1 different values. Therefore the total number of coefficients in
the polynomial is

q1−p2∑
a1=0

(p2 + p3 + a1 − q1) +

q1−p3∑
a1=1+q1−p2

(p3 + 1) +

p1∑
a1=1+q1−p3

(2 + q1 − a1)

= (q1 − p2 + 1)(p2 + p3 − q1) +
1

2
(q1 − p2 + 1)(q1 − p2) + (p2 − p3)(p3 + 1)

+(p1 + p3 − q1)(2 + p3)− 1

2
((p1 + p3 − q1)(p1 + p3 − q1 + 1)

= k1 + 1, (7.294)
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where
k1 = [2(1 + q1)q2 − p2

1 − p2
2 − p2

3 + h]/2, (7.295)

in which h = p1 +p1 +p3 and q2 = h−1−q1. These coefficients are not all independent since, from (7.264)
the αa1a2a3 must sum to one. Subtracting this constraint gives k1 independent coefficients.

Similarly in a polynomial

q(z1, z2, 1) =
∑

b1,b2,b3

βb1b2b3z
p1−b1
1 zp2−b22 , (7.296)

that satisfies

b1 + b2 + b3 = 1 + q2, 0 ≤ ai ≤ pi ≤ 1 + q2, i = 1, 2, 3,
∑

b1,b2,b3

βb1b2b3 = 1, (7.297)

there are a total of
k2 = [2(1 + q2)q1 − p2

1 − p2
2 − p2

3 + h]/2 (7.298)

independent coefficients. Hence the total number of independent coefficients in the rational function

Z(z1, z2, 1) =
p(z1, z2, 1)

q(z1, z2, 1)
(7.299)

is

k1 + k2 = (1 + q1)q2 + (1 + q2)q1 − p2
1 − p2

2 − p2
3 + h = h2 − p2

1 − p2
2 − p2

3 − q2
1 − q2

2 . (7.300)

Now how many parameters describe aZ(n) subspace collection, when the spaces U , E , J , P1, P2, andP3

have dimensions 1, q1, q2, p1, p2, and p3, with 1 + q1 + q2 = p1 +p2 +p3 = h? Let w1,w2,. . . ,wh be a basis
for H with w1 in U , w2,w3,. . . ,wq1+1 in E , and wq1+2, wq1+3. . . ,wh in J . Recall that it requires s(d − s)
parameters to describe the orientation of a subspace of dimension s in a space of dimension d. Therefore, it
requires

p1(h− p1) + (h− p2)p2 + (h− p3)p3 = h2 − p2
1 − p2

2 − p2
3 (7.301)

parameters to describe the orientation of the subspaces P1, P2, and P3 with respect to this basis. However
some of these subspace collections are equivalent, linked through transformations of the form (7.222). If
respect to this basis C is represented by a matrix with block form

C =

c 0 0

0 C1 0

0 0 C2

 , (7.302)

where c is a scalar, while C1 and C2 are q1×q1 and q2×q2 matrices, then it will leave the subspacesU , E andJ
unchanged. The transformation C = aI leaves all subspaces unchanged for any scalar a 6= 0, and so to factor
out such trivial transformations we should choose c = 1. The number of remaining independent parameters
in C is then q2

1 + q2
2 . Subtracting these from (7.301) we see that the number of parameters describing the

Z(n) subspace collection is
h2 − p2

1 − p2
2 − p2

3 − q2
1 − q2

2 = k1 + k2. (7.303)



7.18. Rational functions of two variables and Z(3) subspace collections 223

The precise agreement between the number of coefficients in the rational function and the number of param-
eters describing the Z(n) subspace collection is curious (since it holds for all q1, q2, p1, p2, and p3, with
1 + q1 + q2 = p1 + p2 + p3 = h). Despite this coincidence we now show that it is not possible to uniquely
recover a generic subspace collection (modulo the linear transformations (7.222)) from knowledge of the as-
sociated rational function Z(z1, z2, 1).

Let us consider a subspace collection with h = 5, q1 = q2 = 2, p1 = p2 = 1, p3 = 3 giving k1 + k2 = 6
according to the formula (7.300). Given u ∈ U we choose as our basis the vectors

v0 = u, v1 = Λ1u, v2 = Λ2u, v3 = Γ1Λ1u, v4 = Γ1Λ2u, (7.304)

with the closure relations

Λ1v3 = γ1v1, Λ2v3 = γ2v2, Λ1v4 = γ3v1, Λ2v4 = γ4v1,

Γ0v1 = δ1v0, Γ0v2 = δ2v0, (7.305)

expressed in terms of the 6 parameters γ1, γ2, γ3, γ4, δ1, and δ2 which describe the subspace collection. The
question is: can one uniquely recover these six parameters from Z(z1, z2, 1)? Although the following analysis
extends easily to the case of arbitrary γ1 and γ4 let us assume, for simplicity, that γ1 = γ4 = 0 and ask whether
one can recover the remaining four parameters. The field e + E must have the expansion

e + E = a0v0 + a1v3 + a2v4, (7.306)

and consequently, setting z3 = 1, we get

j + J = [I + (z1 − 1)Λ1 + (z2 − 1)Λ2](e + E)

= a0v0 + a1v3 + a2v4 + (z1 − 1)(a0 + a2γ3)v1 + (z2 − 1)(a0 + a1γ2)v2. (7.307)

Since Γ1(j + J) = 0 we arrive at the equations

0 = a1v3 + a2v4 + (z1 − 1)(a0 + a2γ3)v3 + (z2 − 1)(a0 + a1γ2)v4, (7.308)

implying
a1 + (z1 − 1)(a0 + a2γ3) = 0, a2 + (z2 − 1)(a0 + a1γ2) = 0. (7.309)

These equations have as a solution,

a0 = 1− (z1 − 1)(z2 − 1)γ2γ3,

a1 = γ3(z1 − 1)(z2 − 1)− (z1 − 1),

a2 = γ2(z1 − 1)(z2 − 1)− (z2 − 1). (7.310)

Since

Γ0(e + E) = a0v0, Γ0(j + J) = [a0 + (z1 − 1)(a0 + a2γ3)δ1 + (z2 − 1)(a0 + a1γ2)δ2]v0, (7.311)

we obtain

Z(z1, z2, 1) = 1 +
(z1 − 1)(a0 + a2γ3)δ1 + (z2 − 1)(a0 + a1γ2)δ2

a0

= 1 +
δ1(z1 − 1)− γ3δ1(z1 − 1)(z2 − 1) + δ2(z2 − 1)− γ2δ2(z1 − 1)(z2 − 1)

1− (z1 − 1)(z2 − 1)γ2γ3
.

(7.312)
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Given this function we can uniquely determine δ1 and δ2 from the coefficients of (z1 − 1) and (z2 − 1) in the
numerator. Also from the coefficients of (z1− 1)(z2− 1) in the numerator and denominator we can uniquely
determine

t1 = γ2γ3, t2 = γ3δ1 + γ2δ2, (7.313)

in terms of which there are two possible values of γ2, namely

γ2 =
t3 ±

√
t23 − 3t1δ1δ2
2δ1

. (7.314)

Thus we cannot uniquely recover the subspace collection parameters from Z(z1, z2, 1).
It remains an open question, raised at the end of Section 29.2 of Milton (2002), as to whether in gen-

eral one can uniquely recover the subspace collection parameters when, with respect to some inner product,
the subspaces U , E and J are mutually orthogonal, and the subspaces P1, P2 and P3 are mutually orthog-
onal. These orthogonality constraints overdetermine the system of equations needed to recover the subspace
collection parameters which provides some hope that we can recover them. It would be useful if one could
uniquely recover the subspace collection parameters (the weight and normalization matrices introduced in
Milton, 1987a, 1987b) from say the effective conductivity σ∗(σ1, σ2, σ3) of an isotropic composite of three
isotropic phases having conductivities σ1, σ2, and σ3 as then one could obtain the effective response tensor
for coupled field problems. We will see in Chapter 9 that the effective response tensor just depends on the
weight and normalization matrices for the uncoupled conductivity problem.

7.19 Visualizing the poles and zeros of functions associated with or-
thogonal Z(3) subspace collections when m = 1

For scalar functions Z(z1, z2, z3), associated with orthogonal Z(3) subspace collections, satisfying the ho-
mogeneity, Herglotz, and normalization properties, the trajectories of their poles and zeros in (z1, z2, z3)
space, with z1, z2, and z3 taking real values, have a beautiful visualization as trajectories on three interlinked
hexagons: To obtain this visualization we follow Appendix C in Nicorovici, McPhedran, and Milton (1993):
see also Figure 5 in that paper.

First note that if we set z3 = 1, then the poles and zeros of Z(z1, z2, 1) lie in one of the three quadrants:

• The quadrant z1 ≤ 0, z2 ≥ 0;

• The quadrant z2 ≤ 0, z1 ≥ 0;

• The quadrant z1 ≤ 0, z2 ≤ 0.

Of course we can visualize the pole and zero trajectories by plotting them in this plane, but this has the
disadvantage that the three variables z1, z2 and z3 are not treated in a symmetric way, and the disadvantage
that its hard to see what is happening when z1 and/or z2 is large, and it is hard to see what is happening near
the origin z1 = z2 = 0 since the trajectories can bunch up there. To get around this we map each of the
three quadrants to a hexagon. Given a quadrant, the point z1 = z2 = 0 gets blown up to form one edge of
the hexagon; the two edges of the quadrant where z1 or z2 is zero, but not the other, get mapped to two other
edges of the hexagon; the two “boundaries” of the quadrant where |z1| or |z2| is infinite but other is finite get
mapped to two more edges of the hexagon; finally z1 = z2 = ∞ gets mapped to the final sixth edge of the
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hexagon. We remark that just as a pole trajectory can cross from one quadrant to another, so too can it jump
from the boundary of one hexagon to the corresponding point on the boundary of another hexagon.

To be more precise, we introduce the three variables

t1 =
1

1 + |z2/z3|
, t2 =

1

1 + |z3/z1|
, t3 =

1

1 + |z1/z2|
. (7.315)

Clearly (t1, t2, t3) takes values in the unit cube. It is confined to a surface within the unit cube as the three
ratios |z2|/|z3|, |z3|/|z1| and |z1|/|z2| are not independent, but have product 1. The next step is to map these
three variables onto three variables s1, s2 and s3 lying in the plane s1 + s2 + s3 = 0 using the projection

s1 = 2t1 − t2 − t3, s2 = 2t2 − t3 − t1, s3 = 2t3 − t1 − t2. (7.316)

Finally, we map these down to the x–y plane:

x = s1, y = (s1 + 2s2)/
√

3. (7.317)

Some normalization is needed, so in the hexagon where z1 is negative and z2 and z3 are posi-
tive, we plot Z(z1, z2, z3)/

√
z2z3; in the hexagon where z2 is negative and z1 and z3 are positive, we

plot Z(z1, z2, z3)/
√
z1z3; and in the hexagon where z3 is negative and z1 and z2 are positive, we plot

Z(z1, z2, z3)/
√
z1z2.

Figure 7.8 uses this approach to visualize the pole trajectory of a function Z(z1, z2, z3) associated with a
Z(3)-subspace collection

H = U ⊕ E ⊕ J = P1 ⊕ P2 ⊕ P3, (7.318)

where in this exampleH is 12-dimensional; U is one-dimensional; P1 is 3-dimensional; P2 is 6-dimensional;
P3 is 3-dimensional. Note that as the subspace collection does not need pruning, the dimensions of P1, P2,
and P3 can be immediately read off from the figure by simply counting the number of pole paths on each
hexagon: figures (a), (b), and (c) have 3, 6 and 3 pole paths corresponding to the dimensions of P1, P2,
and P3, respectively. To understand this, first recognize that when z2 and z3 are fixed, and real and positive,
Z(z1, z2, z3) is a Herglotz function of z1 taking real positive values when z1 > 0. Thus all its poles must be
simple and located on the negative real z1-axis, i.e., on the hexagon (a). Also because the subspace is pruned
Λ1(U ⊕ J ) can be identified with P1 (Section 7.16), and hence the matrix C1 representing Λ1(Γ0 + Γ2)
has rank p1. Then as C1 and CT

1 C1 have equal rank (this well-known fact can easily be seen by showing
that they have the same null-space), and as the subspace collection is orthogonal, it follows that the matrix
B1 = CT

1 C1 representing (Γ0 + Γ2)Λ1(Γ0 + Γ2) has exactly rank p1. Similarly the matrix A1 representing
(Γ0 + Γ2)Λ1(Γ0 + Γ2) has exactly rank p1. Therefore the sum over a1 in the numerator in (7.255), goes
up to a1 = p1, while the sum in the denominator in (7.263), goes from 0 up to b1 = p1 or (when all the
coefficients βp1b2b3 are zero) to b1 = p1 − 1: it cannot go only up to b1 = p1 − 2, since as a function of z1,
Z(z1, z2, z3)/

√
z2z3 with fixed z2 > 0 and fixed z3 > 0 can only have a simple pole at z1 = ∞. When the

sum over b1 goes up to b1 = p1, there are clearly p poles of the function Z(z1, z2, z3)/
√
z2z3 on the hexagon

as z1 varies with fixed z2 > 0 and fixed z3 > 0. When the sum over b1 goes up to b1 = p1 − 1, there are still
p poles of the function Z(z1, z2, z3)/

√
z2z3 on the hexagon as z1 varies with fixed z2 > 0 and fixed z3 > 0

provided we count the pole at z1 =∞.
The dimension q2 of the subspace J can also generically be read off from the pole trajectories on the three

hexagons. Consider the edge joining two of the hexagons that corresponds to the values z2 = 0, and z3 = 1
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Figure 7.8: The pole trajectory of the function Z(z1, z2, z3) as visualized using the representation using
three interlinked hexagons. The hexagon in (a) corresponds to real values of (z1, z2, z3) where z2 and
z3 have the same sign, but z1 has the opposite sign. The hexagon in (b) corresponds to real values
of (z1, z2, z3) where z1 and z3 have the same sign, but z2 has the opposite sign. The hexagon in (c)
corresponds to real values of (z1, z2, z3) where z1 and z2 have the same sign, but z3 the opposite sign.
By superimposing all three pictures one obtains (d) where the pole trajectory is like that of a billard ball
bouncing around a hexagonal table, following curved paths. The zero trajectory is similiar, but for clarity
we chose not to include it. Note that the dimensions 3, 6 and 3 of the subspaces P1, P2, and P3 can be
immediately read off from the number of paths crossing the hexagons in (a), (b) and (c). These figures
were obtained by Oscar Bruno in 1988, while he was working with me at the Courant Institute.

with z1 < 0 varying. Then the only coefficients βb1b2b3 that can contribute to the denominator in (7.263) are
those with p2 = b2. The first constraint in (7.262) then implies

b1 + b3 = 1 + q2 − p2. (7.319)

So b1 can only range from 0 up to the maximum of p1 and 1 + q2 − p2 = p1 + p3 − q1. Note that according
to the inequality (7.240), q1 ≥ p3 − 1 so 1 + q2 − p2 could be as large as p1 + 1. If there are less than p1

pole trajectories crossing this edge joining the hexagons, the number of these crossing pole trajectories should
generically allow us to determine q2 and hence q1, assuming p1, p2 and p3 have been determined from the
number of pole trajectories on each hexagon. If there are exactly p1 pole trajectories crossing the edge then
q2 could be p3 or p3 + 1. To determine which it is (or as an additional check on the value of q2) we could look
at pole trajectories, or zero trajectories, crossing other edges where the hexagons meet.

This visualization may be useful in finding other topological features of the trajectories, which hopefully
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could be connected with topological features of the subspace collections.

7.20 Normalization operations on subspace collections
Rational functions of a single variable may be expanded in continued fractions, which incorporate succes-
sively higher and higher order terms in the series expansion of the function about a point. The analogous
procedure with subspace collections is achieved through normalization and reduction operations, subject to
some technical assumptions. The associated functions are then linked, and provided the technical assump-
tions hold at each level, these links provide continued fractions for multivariate functions Z(z1, z2, . . . , zn)
and Y(z1, z2, . . . , zn) incorporating matrices of increasingly high dimension at each level in the continued
fraction.

The normalization and reduction operations are discussed in this and the next section. For more insight, in
the case where the subspaces in the direct sums are orthogonal (see Milton 1987a, 1987b and Sections 19.2,
20.6 and 29.5 in Milton 2002).

Normalization reverses extension. Given a subspace collection

K = E ′ ⊕ J ′ = V ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.320)

define

H = P1 ⊕ P2 ⊕ · · · ⊕ Pn, E = E ′ ∩H, J = J ′ ∩H,
U = Π2Γ

′
1V = Π2(I− Γ′2)V = Π2Γ

′
2V, Ẽ = Γ′1V, J̃ = Γ′2V, (7.321)

where Γ′1 and Γ′2 are the projections onto E ′ and J ′, and Π2 is the projection ontoH.
We assume that the Y -problem has a unique solution when L = I for J1 ∈ V given E1 ∈ V . In other

words, we assume that the equations

E1 + E2 ∈ E ′, J1 + J2 ∈ J ′, J2 = E2, E1,J1 ∈ V, E2,J2 ∈ H,
E1 + E2 ∈ E ′, J1 + J2 ∈ J ′, J2 = E2, J1 ∈ V, E2,J2 ∈ H, (7.322)

imply J1 = J1. Subtracting these equations we see that

E ≡ E2 −E2 ∈ E ′, J ≡ J1 + J2 − J1 − J2 ∈ J ′, J2 − J2 = E. (7.323)

These imply
E ∈ H, E = J− v, where v = J1 − J1. (7.324)

The uniqueness assumption means that these equations imply v = 0 (and if v = 0 then necessarily E = J = 0
since E ′ and J ′ have no vector in common). The relation E = J− v with E ∈ E ′ ∩H implies

E = −Γ′1v, (7.325)

which will only have the trivial solution v = 0 if and only if

H ∩ Ẽ = {0} and V ∩ J ′ = {0}, (7.326)

where the latter guarantees that Γ′1v = 0 implies v = 0.
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We also assume that the Y -problem has a unique solution when L = I for E1 ∈ V given J1 ∈ V . By
similar analysis this is satisfied if and only if

H ∩ J̃ = {0} and V ∩ E ′ = {0}. (7.327)

We now establish that
W ≡ Ẽ ⊕ J̃ = V ⊕ U . (7.328)

First note that V and U have no vector in common since U ⊂ H, and similarly Ẽ and J̃ have no vector in
common since E ′ ∩ J ′ = {0}. ClearlyW contains V . To show it contains U notice that

U = Π2Γ
′
1V = (I−Π1)Γ′1V ⊂ Γ′1V ⊕Π1Γ

′
1V ⊂ Ẽ ⊕ V ⊂ W. (7.329)

Together these imply V ⊕ U ⊂ W . Finally we have

Ẽ = Γ′1V = (Π1 + Π2)Γ′1V ⊂ Π1Γ
′
1V ⊕Π2Γ

′
1V ⊂ V ⊕ U , (7.330)

and similarly J̃ ⊂ V ⊕ U . Together these implyW ⊂ V ⊕ U , establishing (7.328).
If V has dimension m then Ẽ must also have dimension m since otherwise Γ′1v = 0 for some nonzero

v ∈ V , implying v = Γ′2v which only has the solution v = 0 since V ∩ J ′ = {0}. Similarly J̃ must have
dimension m and (7.328) then implies U must have dimension m. The first condition in (7.326) implies

W = U ⊕ Ẽ , (7.331)

sinceU ⊂ H and Ẽ have no vector in common and arem-dimensional spaces contained in the 2m-dimensional
spaceW . Now any vector E′ ∈ E ′ has the unique decomposition

E′ = E′1 + P, E′1 ∈ V, P ∈ H, (7.332)

and according to (7.331) E′1 has the unique decomposition

E′1 = −e + Ẽ, e ∈ U , Ẽ ∈ Ẽ . (7.333)

So we have the decomposition
E′ = Ẽ + E, (7.334)

where
E = P− e = E′ − Ẽ ∈ E ′ ∩H = E . (7.335)

Also the first condition in (7.326) implies Ẽ and E ⊂ H have no vector in common, so the decomposition is
unique. Therefore we conclude that

E ′ = Ẽ ⊕ E , (7.336)

and similarly the first condition in (7.327) implies

J ′ = J̃ ⊕ J . (7.337)

These and (7.328) imply

K = V ⊕H = Ẽ ⊕ E ⊕ J̃ ⊕ J = V ⊕ U ⊕ E ⊕ J , (7.338)
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and since U , E and J are all contained inH we conclude that

H = U ⊕ E ⊕ J = P1 ⊕ P2 ⊕ · · · ⊕ Pn. (7.339)

Now a given E′1 ∈ V has the unique decomposition (7.333). This defines the nonsingular operator K :

V → U such that e = KE′1. (It is nonsingular because V and Ẽ ⊂ E ′ have no nonzero vector in common.)
Now given e, consider the solution to

e, j ∈ U , E ∈ E , J ∈ J , j + J = L(e + E), where L =

n∑
i=1

ziΛi, (7.340)

where Λi is the projection onto Pi, and from the definition of Z, j = Ze. Since the second condition in
(7.326) implies V and J̃ have no vector in common we have

W = V ⊕ J̃ , (7.341)

and consequently any j ∈ U has the decomposition

j = −J′1 + J̃, J′1 ∈ V, J̃ ∈ J̃ , (7.342)

which defines the nonsingular operator M : U → V such that J′1 = Mj. Defining

E′2 = e + E, J′2 = j + J, (7.343)

we have

E′1 + E′2 = E′1 + e + E = Ẽ + E ∈ E ′,
J′1 + J′2 = J′1 + j + J = J̃ + J ∈ J ′, (7.344)

and
J′1 = Mj = MZe = MZKE′1, (7.345)

which by definition of the associated Y -function implies

Y(z1, z2, . . . , zn) = MZ(z1, z2, . . . , zn)K. (7.346)

This is analogous to the relation (20.29) in Milton (2002) obtained in the case where the subspaces are mutually
orthogonal.

In particular by letting z1 = z2 = . . . = zn = 1 we obtain

Y(1, 1, . . . , 1) = MK. (7.347)

If v1, v2,. . .vm are a basis for V , and we choose Kv1, Kv2,. . .Kvm as our basis for U then with these bases
K is represented by the identity matrix K = I and (7.346) and (7.347) imply

Y(z1, z2, . . . , zn) = Y(1, 1, . . . , 1)Z(z1, z2, . . . , zn). (7.348)
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7.21 Reduction operations on subspace collections
Extension is one way to go from a Z(n) subspace collection to a Y (n) subspace collection. Another way is
through reduction, which has some features in common with normalization. Given aZ(n) subspace collection

H = U ⊕ E ⊕ J = P1 ⊕ P2 ⊕ · · · ⊕ Pn, (7.349)

let Γ0 be the projection onto U , and let Λj be the projection onto Pj . Define

K = E ⊕ J , P ′j = Pj ∩ K for j = 1, 2, . . . , n,

V = (I− Γ0)[Λ1U ⊕Λ2U ⊕ · · · ⊕ΛnU ] ⊂ K, P̃j = ΛjU . (7.350)

We now establish that
W ≡ P̃1 ⊕ P̃2 ⊕ · · · ⊕ P̃n = U ⊕ V. (7.351)

First note that V and U have no vector in common since V ⊂ K, and similarly the subspaces P̃j have no vector
in common since P̃j ⊂ Pj . ClearlyW contains U since the projections Λj sum to the identity. To show it
contains V note that

V ⊂ Λ1U ⊕Λ2U ⊕ · · · ⊕ΛnU + Γ0[Λ1U ⊕Λ2U ⊕ · · · ⊕ΛnU ] ⊂ W + U =W. (7.352)

Therefore we have that U ⊕ V ⊂ W . The converse inclusion thatW ⊂ U ⊕ V follows from the inclusion

P̃j = [Γ0 + (I− Γ0)]ΛjU ⊂ U ⊕ V, (7.353)

which establishes (7.351). Next, to establish that for all j,

Pj = P̃j ⊕ P ′j , (7.354)

we need to assume that for all j
P̃j ∩ K = {0}, (7.355)

and that
Λju = 0, u ∈ U (7.356)

only has the trivial solution u = 0, i.e.,

U ∩ (P1 ⊕ P2 ⊕ . . .⊕ Pj−1 ⊕ Pj+1 ⊕ . . .⊕ Pn) = {0}. (7.357)

These conditions imply that
U = Γ0ΛjU , (7.358)

and hence that
U ⊂ ΛjU ⊕ (I− Γ0)ΛjU , (7.359)

which in turn implies that
U ⊂ P̃j + V. (7.360)

Then any vector P ∈ Pj has the unique decomposition

P = u + K, with u ∈ U , K ∈ K, (7.361)
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and according to (7.360), u has the unique decomposition

u = v + P̃ with v ∈ V, P̃ ∈ P̃j , (7.362)

which is unique because V ⊂ K and P̃j have no nonzero vector in common. Therefore P has the unique
decomposition

P = P̃ + P′, (7.363)

where
P′ = v + K = P− P̃ ∈ Pj ∩ K = P ′j . (7.364)

This decomposition and the fact that (7.355) implies P̃j and P ′j ⊂ K have no vector in common establishes
(7.354).

So we deduce that

H = U ⊕ E ⊕ J = P̃1 ⊕ P̃2 ⊕ · · · ⊕ P̃n ⊕ P ′1 ⊕ P ′2 ⊕ · · · ⊕ P ′n
= U ⊕ V ⊕ P ′1 ⊕ P ′2 ⊕ · · · ⊕ P ′n, (7.365)

and since the P ′j , j = 1, 2, . . . , n are all contained in K it follows that

K = E ⊕ J = V ⊕ P ′1 ⊕ P ′2 ⊕ · · · ⊕ P ′n. (7.366)

Now suppose that given e ∈ U we can solve the equations

j + J1 = L(e + E1), J1 = −YE1, e, j ∈ U , E1,J1 ∈ V, (7.367)

where Y is the Y -operator associated with the subspace collection (7.366). From the Y -problem we have

E = E1 + E2 ∈ E , J = J1 + J2 ∈ J J2 = LE2, E2,J2 ∈ H′, (7.368)

where
H′ = P ′1 ⊕ P ′2 ⊕ · · · ⊕ P ′n. (7.369)

Since
j + J1 + J2 = L(e + E1 + E2), (7.370)

we see that these fields solve the Z-problem

e, j ∈ U , E ∈ E , J ∈ J , j + J = L(e + E), (7.371)

and by definition j = Ze. To solve (7.367) let Π1 be the projection onto V . Then (7.367) implies

−YE1 = Π1L(e + Π1E1), (7.372)

giving
E1 = −Π1(Y + Π1LΠ1)−1Π1Le, (7.373)

where the inverse is to be taken on the subspace V . It follows that

j + J1 = Le− LΠ1(Y + Π1LΠ1)−1Π1Le, (7.374)
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implying
Z = Γ0LΓ0 − Γ0LΠ1(Y + Π1LΠ1)−1Π1LΓ0. (7.375)

This formula is analogous to that given in (29.12) of Milton (2002).
To obtain a more explicit way of writing (7.375) let us suppose we are given a basis u1,u2, . . . ,um of

U . Since (7.356) only has the trivial solution u = 0 each space P̃j has dimension m. It then follows from
(7.351) that V has dimension m(n − 1). Also, for i = 1, 2, . . . , n − 1, (7.351) implies Λiuj has the unique
decomposition

Λiuj =
∑
k

wijkuk + vij , vij ∈ V, (7.376)

for some set of constants wijk. To show that the vectors vij , which numberm(n− 1), are independent, let us
suppose

0 =

n−1∑
i=1

m∑
j=1

cijvij =

n−1∑
i=1

m∑
j=1

cij(Λiuj −
m∑
k=1

wijkuk). (7.377)

By letting Λn act on this equation and taking into account that (7.356) only has the trivial solution u = 0 we
see that

n−1∑
i=1

m∑
j=1

m∑
k=1

cijwijkuk = 0. (7.378)

Then substituting this in (7.377) and letting Λi, i 6= n, act on (7.377) and again taking into account that
(7.356) only has the trivial solution u = 0 we obtain

m∑
j=1

cijuj = 0, (7.379)

which shows that all the cij must be zero. Therefore let us take the vectors vij as our basis for V .
The identities

Π1ΛiΓ0uj = vij , Γ0ΛiΓ0uj =
∑
k

wijkuk, (7.380)

which follow from (7.376) then gives the matrix representations for Π1ΛiΓ0 and Γ0ΛiΓ0 in these bases,
when i 6= m. Using the fact that Λn = I−∑i 6=n Λi we obtain

Γ0LΓ0 = znΓ0 +

n−1∑
i=1

(zi − zn)Γ0ΛiΓ0, Π1LΓ0 =

n−1∑
i=1

(zi − zn)Π1ΛiΓ0. (7.381)

Now for p 6= n (and i 6= n) (7.376) implies (no sum over p)

Λpvij =
∑
k

(δpiδkj − wijk)Λpuk

=
∑
k

(δpiδkj − wijk)(vpk +
∑
q

wpkquq). (7.382)
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Thus we deduce

Γ0ΛpΠ1vij =
∑
k

(δpiδkj − wijk)
∑
q

wpkquq,

Π1ΛpΠ1vij =
∑
k

(δpiδkj − wijk)vpk, (7.383)

which gives the matrix representation for the operators Γ0ΛpΠ1 and Π1ΛpΠ1 in these bases (p 6= n), in
terms of which we obtain the representation for the operators

Γ0LΠ1 =

n−1∑
p=1

(zp − zn)Γ0ΛpΠ1, Π1LΠ1 = znΠ1 +

n−1∑
p=1

(zp − zn)Π1ΛpΠ1. (7.384)

Thus all the matrices representing the operators entering (7.375), aside from Y, only depend on the parameters
wijk and these parameters can be obtained from the representation in the basis u1,u2, . . . ,um of Z when the
differences zi − zn, i = 1, 2, . . . , n − 1 are small. To first order in these differences, (7.375), (7.381), and
(7.384) imply

Zuj ≈ znuj +

n−1∑
i=1

(zi − zn)
∑
k

wijkuk. (7.385)

Thus knowing this expansion one can recover all the parameters wijk.

7.22 “Continued fraction expansions” of subspace collections
The idea to developing the continued fraction is that by a succession of reduction and normalization operations
one obtains a series of recursion relations

Z = Γ0LΓ0 − Γ0LΠ1(Y + Π1LΠ1)−1Π1LΓ0, (7.386)
Y = M(1)Z(1)K(1), (7.387)

Z(1) = Γ
(1)
0 L(1)Γ

(1)
0 − Γ

(1)
0 L(1)Π

(1)
1 (Y(1) + Π

(1)
1 L(1)Π

(1)
1 )−1Π

(1)
1 L(1)Γ

(1)
0 , (7.388)

Y(1) = M(2)Z(2)K(2), (7.389)

Z(2) = Γ
(2)
0 L(2)Γ

(2)
0 − Γ

(2)
0 L(2)Π

(2)
1 (Y(2) + Π

(2)
1 L(2)Π

(2)
1 )−1Π

(2)
1 L(2)Γ

(2)
0 , (7.390)

and so forth, until the dimension of the remaining space goes to zero, or until one (or more) of the assumptions
necessary to proceed with the normalization or reduction operation does not hold. By substituting (7.387) in
(7.386), then substituting (7.388) in the resulting expression, and subsequently substituting (7.389) in this
expression, and so on, one develops the continued fraction expansion for Z incorporating the variables z1, z2,
. . ., zn and, as one goes down the continued fraction, information contained in the series expansion (7.235)
at successively higher and higher levels of truncation. We do not address in this book whether one can go
ahead with the continued fraction expansion (and if so how) when the assumptions made to proceed with the
normalization or reduction operation do not hold. In the process of developing the continued fraction through
reduction and normalization operations, one could at those steps where one is dealing with a Y -problem make
any desired reference transformation as described in Section 7.12. In this way one incorporates information
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at the subspace collection level that corresponds at the function level to known values of the function, and
derivatives, at various points.

Such continued fraction expansions form the basis of the field equation recursion method for bounding the
effective moduli of composites (Milton and Golden 1985; Milton 1987a, 1987b, 1991; Clark and Milton 1994;
Clark 1997 and Chapter 29 of (Milton 2002) in the abstract theory of composites as described in Chapter 2
of this book: see also Section 9.10 and Chapter 10 of this book). The basic idea, at least when we have
an orthogonal subspace collection, is that crude estimates or bounds on the operator Z(j) or Y(j) at some
intermediate level j give through the above recursion relations good approximations or tight bounds on Z or
Y incorporating the parameters that enter the recursion relations at the different levels up to level j (obtained
from series expansions up to a given order of the solutions of the Z-problem or Y -problem).

Acknowledgments
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Substitution of subspace

collections with nonorthogonal
subspaces to accelerate Fast
Fourier Transform methods

applied to conducting
composites

Graeme W. Milton
Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Abstract

In this chapter we show the power of the algebra of subspace collections developed in the
previous chapter. Specifically we accelerate the Fast Fourier Transform schemes of Moulinec
and Suquet (1994, 1998) and Eyre and Milton (1999), for computing the fields and effective
tensor in a conducting periodic medium by substituting a subspace collection with nonorthog-
onal subspaces inside one with orthogonal subspaces. This can be done when the effective
conductivity as a function of the conductivity σ1 of the inclusion phase (with the matrix phase
conductivity set to 1) has its singularities confined to an interval [−β,−α] of the negative
real σ1 axis. Numerical results of Moulinec and Suquet show accelerated convergence for the
model example of a square array of squares at 25% volume fraction. For other problems we
show how Q∗C-convex functions can be used to restrict the region where singularities of the
effective tensor as a function of the component tensors might be found.

8.1 Introduction
Subspace collections with orthogonal subspaces obviously have a lot of relevance to physical problems. Here
we give an example to show that subspace collections with nonorthogonal subspaces are an important tool in
analysis, reaching beyond their connection with rational functions of several complex variables. This chapter
is mostly self-contained. While it uses nonorthogonal subspace collections, it is not necessary for the reader to
have read the previous chapter, Chapter 7. However, it is recommended for the reader to look at Chapters 1
and 2 first.
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1

1
1β α

σ

Re(    )σ

Im(    )

σ  = 1

Figure 8.1: We assume that in the complex σ1-plane, the function σ∗(σ1) has all its singularities on the
negative real σ1-axis, between σ1 = −α and σ1 = −β. Here the zig-zag line denotes a possible branch
cut.

The specific problem we consider is a two-component conducting medium with conductivities σ1 and σ2,
phase 1 being the inclusion phase. The dimension is d = 2 or d = 3. Without loss of generality we can
take σ2 = 1. Assume for simplicity that the composite has square (d = 2) or cubic (d = 3) symmetry so
that the effective conductivity tensor is isotropic, taking the form σ∗I. Bergman (1978) made the pioneering
observation that the function σ∗(σ1) is an analytic function of σ1 and has all its singularities on the negative
real axis. He made some assumptions which were not valid (Milton 1979). These assumptions could be cir-
cumvented by approximating the composite by a large resistor network (Milton 1981a). Subsequently Golden
and Papanicolaou (1983, 1985) gave a rigorous proof of the analytic properties. Here we make the additional
assumption (only true for some geometries) that the function σ∗(σ1) has all its singularities confined to an
interval [−β,−α] on the negative real axis, α > 0 and β > α (see Figure 8.1). This information results in
tighter bounds on the conductivity and complex conductivity, or equivalently the complex dielectric constant,
(Bruno 1991a; Sawicz and Golden 1995; Golden 1998), and these bounds may be inverted to yield informa-
tion about α and β from experimental measurements (Orum, Cherkaev, and Golden 2012). By contrast, here
our goal is to utilize the information to improve the speed of convergence of Fast Fourier Transform meth-
ods for computing the fields in composites and their associated effective tensors. These methods were first
introduced by Moulinec and Suquet (1994, 1998): see Moulinec and Silva (2014) for a recent review. One im-
portant application has been to viscoplastic polycrystals (Lebensohn 2001, Lee, Lebensohn, and Rollett 2011).
For materials with a linear response, previous significant advances in the acceleration of these schemes were
made by Eyre and Milton (1999) (see also the generalization in section 14.9 of Milton 2002, and in particular
equation (14.38)), and by Willot, Abdallah, and Pellegrini (2014) and Willot (2015). The singularities in the
interval [−β,−α] could be poles or could be a branch cut (if the inclusion has sharp corners, or if there is some
randomness in the geometry). Note it is not only the effective conductivity which has this analytic form but
also the electric field E(x, σ1) and current field J(x, σ1) at fixed x, and fixed applied field, with σ1 varying.
If we didn’t know anything about α and β there could potentially be singularities anywhere along the negative
real σ1 axis. Let’s first look at the case α = 0, β =∞.

The original Fast Fourier Transform scheme of Moulinec and Suquet (1994, 1998) is based on series
expansions, such as (2.35), which for conductivity takes the form

σ∗ = σ0I +

∞∑
j=0

Γ0[σ(x)− σ0I][Γ1(I− σ/σ0)]jΓ0, e = e0 +

∞∑
j=0

[Γ1(I− σ/σ0)]je0, (8.1)

for the effective conductivity σ∗, and electric field e(x), with e0 being the applied (average) electric field. [To
obtain (8.1) from (2.35) we use the fact that Γ0(σ0I)Γ1 = 0.] Their key and beautiful idea was that since the
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1
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Figure 8.2: If we want a series expansion which converges in the entire right half of the σ1-plane, when
a singularity is located at the point X, then we make a fractional linear transformation which takes the
right half of the σ1-plane to the unit disk in the z-plane, and find an series expansion in powers of z.
The scheme of Moulinec and Suquet (1994, 1998) provides such an expansion.

action of Γ1 is readily evaluated in Fourier space, while the action of (I− σ/σ0) is readily evaluated in real
space, both σ∗ and e(x) can be readily calculated from these series by going back and forth between real and
Fourier space, using Fast Fourier Transforms to do so.

In a two-phase medium with isotropic conductivities σ1 and σ2 = 1, and with the choice of σ0 = 1
2 (σ1 +

σ2) = 1
2 (σ1 + 1) used by Moulinec and Suquet, (I−σ/σ0) takes the value (1−σ1)/(σ1 + 1) in phase 1 and

the value −(1− σ1)/(σ1 + 1) in phase 2. So it is clear that this scheme gives an expansion of the form

σ∗/σ0 = 1 +

∞∑
n=1

an

(
σ1 − 1

σ1 + 1

)n
. (8.2)

The transformation z = (σ1− 1)/(σ1 + 1) maps the right half of the complex plane to the unit disk (see Fig-
ure 8.2). So withα = 0 the series will converge if |z|< 1, i.e., in the entire right half of the complex σ1−plane,
Re(σ1) > 0. (Recall that it is the distance from the origin to the nearest singularity in the z−plane which
determines the radius of convergence in the z−plane, and hence the region of convergence in the σ1−plane.)

With the accelerated scheme of Eyre and Milton (1999) (see also the generalization in section 14.9 of
Milton 2002, and in particular equation (14.38)), one has the expansion

σ∗/
√
σ1 = 1 +

∞∑
n=1

bn

(√
σ1 − 1√
σ1 + 1

)n
. (8.3)

The transformation z = (w−1)/(w+1) wherew =
√
σ1 maps the σ1 complex plane minus the slit along the

negative real axis to the unit disk |z|= 1 (see Figure 8.3). So with α = 0 the series will converge if |z|< 1,
i.e., in the entire complex plane minus the slit along the negative real axis. These arguments show that when
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Figure 8.3: If we want a series expansion which converges in the entire the σ1-plane minus the negative
real σ1-axis, then we first make a square root transformation which maps the cut complex σ1-plane to
the right half of the w-plane, followed by a fractional linear transformation which takes it to the unit disk
in the z-plane, and find an expansion in powers of z. The scheme of Eyre and Milton (1999) provides
such an expansion.

α = 0 the accelerated scheme should have a larger region of convergence, and by the same line of reasoning a
faster rate of convergence when both schemes converge. (Note, however, that if α > 0 and β <∞ the scheme
of Moulinec and Suquet could outperform that of Eyre and Milton for small and very large values of σ1, since
the scheme of Moulinec and Suquet should then converge for sufficiently small or sufficiently large negative
real values of σ1.)

If we know α and β (or bounds for them) then it makes sense to use a transformation which maps the
complex plane minus the slit [−β,−α] to the unit circle |z|= 1. Since the transformation

t =
(σ1 + α)(1 + β)

(σ1 + β)(1 + α)
= 1 +

(σ1 − 1)(β − α)

(σ1 + β)(1 + α)
(8.4)

maps the interval [−β,−α] to [−∞, 0] and takes σ1 = 1 to t = 1, it is clear that the transformation

z =

√
t− 1√
t+ 1

(with t given above) (8.5)

maps the complex σ1 plane minus the slit [−β,−α] to the unit disk |z|= 1 (see Figure 8.4). So we want to
get a Fast Fourier Transform (FFT) method associated with an expansion

σ∗√
[(σ1 + α)(1 + β)]/[(σ1 + β)(1 + α)]

= 1 +

∞∑
n=1

cn


√

(σ1+α)(1+β)
(σ1+β)(1+α) − 1√
(σ1+α)(1+β)
(σ1+β)(1+α) + 1

n

. (8.6)

It looks rather formidable but really it is just a matter of substituting

t =
(σ1 + α)(1 + β)

(σ1 + β)(1 + α)
(8.7)
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Figure 8.4: If we want a series expansion which converges in the entire the σ1-plane minus the cut on
σ1-axis between −β and −α then we first use a fractional linear transformation which maps this cut to
the entire negative real axis in the t-plane, followed by a square root transformation mapping the cut
complex t-plane to the right half of the w-plane, followed by a fractional linear transformation which
takes it to the unit disk in the z-plane, and find an expansion in powers of z. The scheme developed in
this chapter provides such an expansion.

in the Eyre and Milton (1999) scheme associated with

σ∗/
√
t = 1 +

∞∑
n=1

cn

(√
t− 1√
t+ 1

)n
. (8.8)

But of course one wants to do this substitution at the level of the underlying Hilbert space, not just in the
conductivity function.

8.2 Substitution at the level of the Hilbert space

Substitution at the level of the Hilbert space requires the substitution of subspace collections where the sub-
spaces do not satisfy the orthogonality property. At a discrete level it is easy to get an idea of how this
can be done. If we consider the composite as a resistor network, in phase 1 with resistors having resistance
R1 = δ/σ1, while in phase 2 with resistors having resistanceR2 = δ/σ2, so e.g., the composite is replaced by
a network (see Figure 8.5(a)). Then at this level we could replace each resistor R1 by the compound resistor
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Resistors R

unit cell

σ

σ

1

2

(a)

(b)

Resistors R

gets replaced by

R 1

R 2

R1

R
2

1

2

3
k

k
k

1

2

Figure 8.5: A composite containing two phases, as for example a periodic array of disks with a unit cell
as shown in (a), can be approximated by a discrete network of resistors having resistors R2 and R1.
At this discrete level we are free to replace each resistor having resistance R1 by the combination of
resistors in figure (b). This transformation at the Hilbert-space level, corresponds to a fractional linear
transformation in the σ1-plane.

(see Figure 8.5(b)) with k1, k2, k3 real constants. That is the resistance R1 = δ/σ1 gets replaced by

k1R2 +
1

1/(k2R1) + 1/(k3R2)
=

k1

σ2
+

1

σ1/k2 + σ2/k3

=
k1σ1/k2 + k1/k3 + 1

σ1/k2 + 1/k3
, (8.9)

when σ2 = 1, and so σ1 gets replaced by

(σ1/k2 + 1/k3)δ

k1σ1/k2 + k1/k3 + 1
, (8.10)

which is a fractional linear transformation of σ1. In other words, in phase 1 the number of fields is multiplied
by 3 (replacing one resistor by 3). Note that with real positive values of k1, k2 and k3 the transformation
(8.10) maps the nonnegative real σ1-axis onto an interval on the positive real axis, and the negative real σ1-
axis onto its complement, which cannot be the desired interval [−β,−α]. Essentially, instead of making a
transformation which has the effect of lengthening the branch cut as desired in the map at the top of Figure 8.4,
we have a transformation which presumably (in some suitably defined metric) shortens the branch cut. This
is why it is necessary to substitute nonorthogonal subspace collections, rather than orthogonal ones [see also
the discussion below (8.25)], since, as we will see, they only act to lengthen the branch cut.

How to do this in general in the continuum case is described in section 29.1 of Milton (2002), bottom of
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page 621 and page 622, for orthogonal subspace collections, and in the second half of Section 7.8 of this book,
without assuming orthogonality. That is a bit abstract so let us go through it for the case in question.

8.3 The original subspace collection
Our starting point is the Hilbert space H of fields P(x) (real or complex d−dimensional vector fields), that
are cell-periodic and square-integrable in the unit cell. We denote χ as the projection onto all fields which
are zero in phase 2, U as the space of constant vector fields, E as the space of gradients which derive from
periodic potentials (i.e., E ∈ E if∇×E = 0 and 〈E〉 = 0) and J as the space of divergence free fields with
zero average value (i.e., J ∈ J if ∇ · J = 0 and 〈J〉 = 0). In our Hilbert space the inner product is taken to
be

(P, P̃) =

∫
unit cell

P(x) · P̃(x), (8.11)

where the overline denotes complex conjugation. With respect to this inner product the 3 spaces U , E and J
are orthogonal. The projection onto E we denote by Γ1. In Fourier space

Γ1P̂(k) =

{
k⊗k
|k|2 P̂(k), k 6= 0,

0, k = 0.
(8.12)

The field equations are solved once we have found electric fields E(x) and current fields J(x) such that

J = [(σ1 − σ2)χ+ σ2]E, E ∈ U ⊕ E , J ∈ U ⊕ J . (8.13)

The effective tensor σ∗ is then defined via

Γ0J = σ∗Γ0E, (8.14)

where Γ0 is the projection onto U . We assume the composite is isotropic so that σ∗ is a scalar, although the
method is easily generalized to anisotropic materials where the effective conductivity is a second order tensor.

8.4 The vector subspace collection we substitute into the original sub-
space collection

Now consider a 3−dimensional subspace collectionH′ consisting of 3 component vectors P = [P1, P2, P3]T

with inner product

(P, P̃) =

3∑
i=1

P iP̃i, (8.15)

where the overline denotes complex conjugation. The projectionχ′ = p⊗p projects onto the one dimensional
space of fields proportional to the unit vector p where p = [p1, p2, p3]T and p1, p2, p3 are given constants
such that p2

1 + p2
2 + p2

3 = 1. The p’s could be complex but we do not mean |p1|2+|p2|2+|p3|2= 1. Thus χ′ is
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a projection but not an orthogonal projection when the p’s are complex, as then χ′ = p⊗ p is not Hermitian.
We take the following:

U ′ is the space of fields proportional to (1, 0, 0)T ,

E ′ is the space of fields proportional to (0, 1, 0)T ,

J ′ is the space of fields proportional to (0, 0, 1)T ,

P1 is the space of fields proportional to (p1, p2, p3)T ,

P2 is the space of fields (P1, P2, P3)T

such that p1P1 + p2P2 + p3P3 = 0. (8.16)

The field equations become

J′ = [(t− σ2)χ′ + σ2]E′, E′ ∈ U ′ ⊕ E ′, J′ ∈ U ′ ⊕ J ′, (8.17)

where the constant t will be chosen so the associated “effective modulus” is σ1. That is

Γ0J
′ = σ1Γ0E

′, (8.18)

where Γ0 is the projection onto U , so that
J ′1 = σ1E

′
1. (8.19)

Without loss of generality we can choose E′1 = 1, J ′1 = σ1 so the field equations becomeJ ′10
J ′3

 = (t− σ2)

 p2
1 p1p2 p1p3

p1p2 p2
2 p2p3

p1p3 p2p3 p2
3


︸ ︷︷ ︸

χ′

E′1E′2
0

+ σ2

E′1E′2
0

 . (8.20)

From the middle equation we get

(t− σ2)p1p2E
′
1 + [(t− σ2)p2

2 + σ2]E′2 = 0, (8.21)

which with E′1 = 1 gives

E′2 =
(σ2 − t)p1p2

(t− σ2)p2
2 + σ2

. (8.22)

So we have

σ1 = J ′1 = p2
1(t− σ2) + σ2 −

(σ2 − t)2p2
1p

2
2

(t− σ2)p2
2 + σ2

= σ2 +
p2

1σ2(t− σ2)

(t− σ2)p2
2 + σ2

= σ2 +
p2

1σ2

p2
2 + σ2/(t− σ2)

, (8.23)

which with σ2 = 1 is satisfied with

t = 1 +
σ1 − 1

p2
1 − p2

2(σ1 − 1)
= 1 +

(σ1 − 1)(β − α)

(σ1 + β)(1 + α)
, (8.24)
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where

α = −1− p2
1

p2
2 − 1

,

β = −1− p2
1

p2
2

. (8.25)

Note that −α (respectively −β) is obtained by substituting t = 0 (respectively t = ∞) in (8.24). Given real
β > α > 0 we need to choose p1 and p2 so that these equations are satisfied. This will necessitate complex
solutions for p1 and p2 since otherwise β will be negative. Note that with p1 and p2 being complex, χ′ is
no longer Hermitian, even though it is a (non self-adjoint) projection, and so we have a subspace collection
which is not orthogonal: P1 is not orthogonal to P2. Also from the field equations with E′1 = 1 we get

J ′3 = p3(t− σ2)(p1 + p2E
′
2), (8.26)

i.e.,

J ′3 =
p1p3σ2(t− σ2)

(t− σ2)p2
2 + σ2

. (8.27)

8.5 The subspace collection after the substitution
Now consider the Hilbert spaceH′′ consisting of all periodic fields of the form

P′′(x) =

 0

S(x)

T(x)

χ(x)

︸ ︷︷ ︸
∈P1⊗(E′⊕J ′)

+

Q(x)

0

0


︸ ︷︷ ︸
∈H⊗U ′

=

 Q(x)

χ(x)S(x)

χ(x)T(x)

 . (8.28)

Fields in U ′′ take the form

u′′(x) =

u0

0

0

 ∈ U ⊗ U ′. (8.29)

Fields in E ′′ take the form

E′′(x) =

 0

S(x)

0

χ(x)

︸ ︷︷ ︸
∈P1⊗E′

+

Ẽ(x)

0

0


︸ ︷︷ ︸
∈E⊗U ′

=

 Ẽ(x)

S(x)χ(x)

0

 , (8.30)

where Ẽ(x) ∈ E . Fields in J ′′ take the form

J′′(x) =

 0

0

T(x)

χ(x)

︸ ︷︷ ︸
∈P1⊗J ′

+

J̃(x)

0

0


︸ ︷︷ ︸
∈J⊗U ′

=

 J̃(x)

0

T(x)χ(x)

 , (8.31)
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where J̃(x) ∈ J . The space P ′1 consists of all vectors of the form

c

p1

p2

p3

 , (8.32)

and P ′′1 consists of all fields P(x) of the formp1C(x)

p2C(x)

p3C(x)

χ(x) ∈ P1 ⊗ P ′1. (8.33)

Also P ′2 consists of all vectors of the form

c

q1

q2

q3

 where p1q1 + p2q2 + p3q3 = 0, (8.34)

and P ′′2 consists of all fields P(x) of the formQ1(x)

Q2(x)

Q3(x)

χ(x) + (1− χ(x))

R(x)

0

0


︸ ︷︷ ︸

∈(P1⊗P′2+P2⊗U ′)

where p1Q1(x) + p2Q2(x) + p3Q3(x) = 0. (8.35)

The inner product onH′′ is defined to be

(P, P̃) =

∫
unit cell

[S(x) · S̃(x) + T(x) · T̃(x)]χ(x) + Q(x) · Q̃(x), (8.36)

where the overline denotes taking a complex conjugate. With this inner product, the subspaces U ′′, E ′′ and
J ′′ are mutually orthogonal. We define χ′′ = (p⊗ p)χ, i.e.,

χ′′


 0

S(x)

T(x)

χ(x) +

Q(x)

0

0

 =

 p2
1I p1p2I p1p3I

p1p2I p2
2I p2p3I

p1p3I p2p3I p2
3I

Q(x)

S(x)

T(x)

χ(x), (8.37)

where I is the d×d identity matrix which definesχ′′ even if p1, p2 and p3 are complex. Now the field equations
are

J′′ = [(t− σ2)χ′′ + σ2I]E′′, E′′ ∈ U ′′ ⊕ E ′′, J′′ ∈ U ′′ ⊕ J ′′. (8.38)

These are easy to solve given periodic solutions J(x) and E(x) to the equations in the Hilbert spaceH, i.e.,

J = [(σ1 − σ2)χ+ σ2]E, ∇ · J = 0, ∇×E = 0. (8.39)

We take (with E′1 = 1)

E′′ =

 E(x)

E′2E(x)χ(x)

0

 , J′′ =

 J(x)

0

J ′3J(x)/σ1

 . (8.40)
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Note that we have E′′ ∈ U ′′ ⊕ E ′′ and J′′ ∈ U ′′ ⊕ J ′′. Also, with σ2 = 1, we have

((t− σ2)χ′′ + σ2)E′′ = (p⊗ p(t− σ2) + σ2])

 1

E′2E(x)χ(x)

0


+

E(x)(1− χ(x))

0

0


=

J ′1E(x)

0

J ′3E(x)

χ(x) +

E(x)

0

0

 (1− χ(x))

=

 J(x)

0

J ′3E(x)

χ(x) + (1− χ(x))

J(x)

0

0

 = J′′. (8.41)

Finally if Γ′′0 is the projection onto U ′′ we have

Γ′′0E′′ =

〈E〉0

0

χ(x) +

〈E0
0

〉(1− χ(x)),

Γ′′0J′′ =

〈J〉0
0

χ(x) +

〈J〉0
0

 (1− χ(x)), (8.42)

and since 〈J〉 = σ∗〈E〉 we deduce that
Γ′′0J′′ = σ∗Γ

′′
0E′′. (8.43)

That is, σ∗ is still the effective tensor. Now the idea is to apply, either the basic Fast Fourier Transform scheme
of Moulinec and Suquet (1994, 1998) to the Hilbert spaceH′′ that is associated with the expansion

σ∗/[(t+ 1)/2] = 1 +

∞∑
n=1

dn

(
t− 1

t+ 1

)n
, (8.44)

or the accelerated Fast Fourier Transform method of Eyre and Milton (1999) as generalized in section 14.9 of
Milton (2002) to the Hilbert spaceH′′ that is associated with the expansion

σ∗/
√
t =

∑
n

cn

(√
t− 1√
t+ 1

)n
. (8.45)

The operator χ′′ is easily evaluated in real space. The operator Γ′′1 which projects onto E ′′ is easily
evaluated in Fourier space since

Γ′′1

 Q(x)

χ(x)S(x)

χ(x)T(x)

 =

 Γ1Q(x)

χ(x)S(x)

0

 , (8.46)
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where in Fourier space

Γ1Q̂(k) =

{
k⊗kQ̂(k)
|k|2 , k 6= 0,

0, k = 0.
(8.47)

Hence the accelerated Fast Fourier Transform method of Eyre and Milton can be directly applied in the Hilbert
spaceH′′.

8.6 Proof of acceleration
Let us suppose σ1 ∈ R is fixed such that σ1 > 1. The rate of convergence will be determined by the magnitude
of

|z|=
∣∣∣∣√t− 1√
t+ 1

∣∣∣∣ . (8.48)

Since t > 1, when σ1 > 1, the convergence will be quicker the smaller t is. Now as α increases,

t = 1 +
(σ1 − 1)(β − α)

(σ1 + β)(1 + α)
(8.49)

decreases monotonically from the value t = 1+((σ1−1)β)/((σ1 +β)) at α = 0, to the value 1 at α = β. So
the larger the value ofα, the faster the rate of convergence. Similarly as β decreases, t decreases monotonically
from the value t = 1 + (σ1 − 1)/(1 + α) at β = ∞ to the value of 1 at β = α. So the smaller the value
of β, the faster the rate of convergence. More generally when σ1 is complex, to see the rate of convergence
one should plot the contours |z|= c in the complex σ1−plane. It might be instructive to do this for particular
values of α and β, and compare the contours with α = 0, β =∞.

8.7 The numerical example of Moulinec and Suquet
This numerical example is due to Hervé Moulinec and Pierre Suquet (to be published) and compares in a model
example the speeds of convergence of results in the Hilbert spaces H and H′′ for the Fast Fourier Transform
scheme first proposed by Moulinec and Suquet (1994, 1998). Then the speeds of convergence of results are
compared in the Hilbert spacesH andH′′ for the accelerated scheme of Eyre and Milton (1999) [see also the
generalization in section 14.9 of Milton (2002)]. In both cases the Fast Fourier Transform schemes converge
substantially faster in the Hilbert spaceH′′.

It is to be emphasized that while these numerical results are only for the effective tensor, the real interest
in the new algorithm is for obtaining results for the fields inside the body: accelerated rates of convergence
for the effective conductivity alone could easily be obtained by using Padé approximants (Baker, Jr. and
Graves-Morris 1981) or (almost equivalently) the associated bounds which use series expansion coefficients
up to a given order (Milton 1981c; McPhedran and Milton 1981; Milton and McPhedran 1982: see also
Chapter 27 in Milton 2002 and Chapter 10 in this book, and references therein). Using the new method I
expect there will be a similar acceleration of the convergence rates for the fields. Indeed, bounds on the norm
of the difference between the actual field and the field obtained by truncating the series expansion show these
improved convergence rates. However this does not guarantee pointwise convergence, and in any case it needs
to be numerically explored. Padé approximants methods could also be used for the fields, but this approach
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has the disadvantage that one needs to simultaneously store a lot of information: not just the fields, but also
the fields that appear up to a given order in the perturbation expansion for a nearly homogeneous medium.

The model example is a regular array of squares of conductivity σ1 occupying a volume fraction of 25%
in a matrix of conductivity σ2 = 1, as illustrated in Figure 8.6.

Figure 8.6: A periodic array of squares at a volume fraction of 25%, as illustrated here, provides a
benchmark for testing the theory as, thanks to Obnosov (1999), there is an exact formula for its effective
conductivity, given in (8.50).

An exact formula for the effective conductivity of this array (and for the interior fields) was discovered by
Obnosov (1999),

σ∗ =
√

(1 + 3σ1)/(3 + σ1), (8.50)

and clearly has a branch cut between α = 1/3 and β = 3. [Interestingly, for the four-phase checkerboard
Mortola and Steffé (1985) conjectured a formula, that was later independently proved by Craster and Obnosov
(2001) and Milton (2001).] Taking a wider estimate for the branch cut (with α = 1/4 and β = 4), Moulinec
and Suquet used the algorithm described in this chapter and found that the acceleration provided by the new
method was generally substantially improved as shown in their Figure 8.7 and Figure 8.8.

8.8 Estimating the parameters α and β
Bruno (1991a) has derived rigorous lower bounds on α and upper bounds on β, for suspensions of separated
spheres in a medium. Actually we need only estimates on α and β. For instance if an estimate on α is slightly
too large, then the transformations will look like those depicted in Figure 8.9. The series will still converge
but only for |z|< c, where c will be close to 1 (but less than 1). However, the support of the measure will
be highly dependent on small details of the microstructure: a tiny sharp cusp on the surface of an otherwise
smooth inclusion will in general dramatically change the support of the measure: see Hetherington and Thorpe
(1992), page 378 of Milton (2002), and equation (15) of Helsing, McPhedran, and Milton (2011). As remarked
on page 378 of Milton (2002), this is related to the fact that these sharp corners behave as sinks of energy in the
mathematically equivalent dielectric problem with the conductivities σ1 and σ2 being replaced by electrical
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Figure 8.7: The results of Moulinec and Suquet (to be published) comparing the convergence of numerical
results to the formula (8.50) for the effective conductivity σ∗ when σ1 = 0 and σ2 = 1, for their basic
scheme (Moulinec and Suquet 1994, 1998), and for the basic scheme applied in the Hilbert space H′′.
Printed with permission of Hervé Moulinec and Pierre Suquet.

permittivities ε1 and ε2, where ε2 is real and positive, while ε1 is almost real and negative with a tiny positive
imaginary part. Related observations and analysis include those of Qiu and Luk’yanchuk (2008), Pitkonen
(2010), Estakhri and Alù (2013), and Bonnet-Ben Dhia, Chesnel, and Claeys (2013). Also there is a close
connection with the essential spectrum of the Neumann–Poincaré operator on planar domains with corners
(Helsing, Kang, and Lim 2016; Perfekt and Putinar 2016).

8.9 Bounds on the support of the measure using Q∗C-convex functions

For many other equations in periodic composite materials robust things can be said about the measure which
restrict its support. We assume we have a Hilbert space H of square integrable periodic fields P(x) with an
inner product

(P′,P) = 〈P′ ·P〉, (8.51)
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Figure 8.8: The results of Moulinec and Suquet (to be published) comparing the convergence of numerical
results to the formula (8.50) for the effective conductivity σ∗, when σ1 = 0 and σ2 = 1 for the accelerated
scheme of Eyre and Milton (1999) (see also the generalization in section 14.9 of Milton (2002)), and for
the accelerated scheme applied in the Hilbert space H′′. Printed with permission of Hervé Moulinec and
Pierre Suquet

where the angular brackets denote an average over the unit cell of periodicity. We also assume H has a
decomposition into three orthogonal subspaces

H = U ⊕ E ⊕ J . (8.52)

We are interested in the equations

J0 + J(x) = L(x)(E0 + E(x)), (8.53)

where
J0,E0 ∈ U , E ∈ E , J ∈ J , (8.54)

and where the local tensor field L(x) takes the form

L(x) = Q(R(x))

[
n∑
i=1

χi(x)Li

]
[Q(R(x))]T , (8.55)
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Figure 8.9: The new accelerated scheme should still work although not as effectively, even when we make
a small error in the estimation of α (and/or β). With this error a singularity at X, gets mapped to a
point slightly greater than zero in the t-plane, and then gets mapped to a point slightly inside the unit
disk in the z-plane. There is a consequent reduction in the radius of convergence, and an associated
decrease in the rate of convergence, for the series in powers of z.

in which Q(R) is the orthogonal matrix (satisfying QQT = I) associated with a rotation R acting on elements
in the tensor space, while R(x) is a field of rotation matrices giving the local orientation of each phase, and
χi(x) is the indicator function that is 1 in phase i and zero elsewhere.

First, following section 14.8 of Milton (2002) let us show that there are series expansions for the effective
tensor that converge even when the local tensor L(x) is not everywhere positive definite. To obtain the series
expansion we introduce a constant reference tensor L0 and an associated operator Γ: we say

E′ = ΓP if and only if E′ ∈ E and P− L0E
′ ∈ U ⊕ J . (8.56)

Explicitly, Γ is given by the operator
Γ = Γ1(Γ1L0Γ1)−1Γ1, (8.57)

where the inverse is to be taken on the subspace E . Introducing the polarization field

P = (L− L0)(E0 + E) = J0 + J− L0(E0 + E), (8.58)

we see it satisfies ΓP = −E, and hence we have the identity

[I + Γ(L− L0)](E0 + E) = E0 + E−E = E0, (8.59)
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which gives
J0 + J = L(E0 + E) = L[I + Γ(L− L0)]−1E0. (8.60)

Averaging both sides yields a formula for the effective tensor, and associated series expansion:

L∗ = 〈L[I + Γ(L− L0)]−1〉 =

∞∑
j=0

〈L[Γ(L0 − L)]j〉, (8.61)

where the angular brackets denote a volume average.
A sufficient condition for convergence is that the operator Γ(L0 − L) has norm less than 1. We take a

reference tensor of the form
L0 = σ0I + L′0, (8.62)

where the tensor L′0 is assumed to be bounded and self-adjoint, but need not be positive definite. We are
interested in seeing whether the expansion for the effective tensor converges when σ0 is very large. Expanding
the operator Γ in powers of 1/σ0 gives

Γ = Γ1(Γ1L0Γ1)−1Γ1 = Γ1/σ0 − Γ1L
′
0Γ1/σ

2
0 + R1, (8.63)

with a remainder term

R1 =

∞∑
j=2

Γ1(−1)j(L′0Γ1)j/σj+1
0 . (8.64)

When σ0 > ‖L′0‖ this remainder term has norm satisfying the bound

‖R1‖≤
∞∑
j=2

‖L′0‖j/σj+1
0 =

‖L′0/σ0‖2
σ0 − ‖L′0‖

. (8.65)

This gives us a bound on the norm of Γ(L0 − L):

‖Γ(L0 − L)‖ = ‖(Γ1/σ0 − Γ1L
′
0Γ1/σ

2
0 + R1)(σ0I + L′0 − L)‖

= ‖Γ1[I + (L′0 − L− L′0Γ1)/σ0] + R2‖
≤ ‖I + (L′0 − L− Γ1L

′
0Γ1)/σ0‖+‖R2‖, (8.66)

where
R2 ≡ R1(σ0I + L′0 − L)− Γ1L

′
0Γ1(L′0 − L)/σ2

0 . (8.67)

Now we can find a σ+ > ‖L′0‖ such that for σ0 > σ+
0 ,

‖(σ0I + L′0 − L)‖< 2σ0, σ0 − ‖L′0‖> σ0/2. (8.68)

Hence there exists a constant β1 > 0 (independent of σ0) such that

‖R2‖ ≤ ‖R1‖‖(σ0I + L′0 − L)‖+‖Γ1L
′
0Γ1(L′0 − L)‖/σ2

0

≤ 4‖L′0/σ0‖2+‖Γ1L
′
0Γ1(L′0 − L)‖/σ2

0 ≤ β1/σ
2
0 . (8.69)
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Now given any bounded operator A with adjoint A† and field P ∈ H with |P|= 1 we have

|(I−A/σ0)P|2 = (P, (I−A/σ0)†(I−A/σ0)P

= 1− (P, (A + A†)P)/σ0 + (P,A†AP)/σ2
0

≤ 1− (P, (A + A†)P)/σ0 + ‖A†A‖/σ2
0 , (8.70)

and from the definition of the norm of an operator, this implies

‖I−A/σ0)‖= 1 + ‖A†A‖/σ2
0 − min

P∈H
|P|=1

(P, (A + A†)P)/σ0. (8.71)

Setting A = L− L′0 + L′0Γ1 we see there exists a constant β2 > 0 such that for σ0 > σ+
0 ,

‖Γ(L0 − L)‖≤ 1 + β2/σ
2
0 − 2 min

P∈H
|P|=1

(P, (LS − L′0 + Γ1L
′
0Γ1)P)/σ0, (8.72)

where LS = (L + L†)/2. If the operator LS − L′0 + Γ1L
′
0Γ1 is coercive in the sense that there exists a

constant α′ > 0 such that
LS − L′0 + Γ1L

′
0Γ1 > α′I, (8.73)

then (8.72) implies
‖Γ(L0 − L)‖< 1 + β2/σ

2
0 − α′/σ0, (8.74)

and this will surely be less than 1 for sufficiently large σ0. Furthermore suppose the constant tensor L′0 is
positive semi-definite on the subspace E , i.e., the associated quadratic form

f(A) = A · L′0A (8.75)

is Q∗C-convex, meaning it satisfies
〈f(E)〉 ≥ 0, for all E ∈ E , (8.76)

where the angular brackets denote a volume average over the unit cell C of periodicity. Also suppose there
exists a positive constant α′ such that

Γ1L
′
0Γ1 ≥ 0, LS > L′0 + α′I. (8.77)

Then (8.73) will be satisfied. Now each term in the series expansion for L∗ will be a polynomial in the elements
of the matrices L1,L2,. . .,Ln and hence in the domain where the series expansion converges, the effective
tensor will be an analytic function of these matrix elements. Hence the support of the measure must lie outside
the region where LS > L′0.

Note that the definition (8.76) is slightly different to the meaning ofQ∗C-convexity given in Milton (2013b)
as here we allow for the space E to contain certain fields whose volume average is not zero (as happens when
we treat the Schrödinger equation, with sources and with the energy having an imaginary part: see sections
13.6 and 13.7). When the fields in E satisfy homogeneous linear differential constraints, the condition (8.76)
is easily reduced to an algebraic condition by taking Fourier transforms of (8.76). The projection onto the
space E is given by projections Γ1(k), that are local in Fourier space and (8.76) holds if an only if

Γ1(k)L′0Γ1(k) ≥ 0, (8.78)
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for all k, including k = 0 if E contains fields whose volume average is not zero, i.e., Γ1(0) 6= 0. As
shown in Milton (2013b) this is basically the same procedure as followed by Murat and Tartar (Tartar 1979a;
Murat and Tartar 1985; Tartar 1985) to obtain algebraic conditions for a quadratic function to be quasiconvex.
For quadratic functions, quasiconvexity and Q∗-convexity are equivalent when the fields satisfy differential
constraints involving derivatives of fixed order, but are not equivalent when the differential constraints have
derivatives of mixed orders, as in time-harmonic wave-equations.
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Abstract

We consider the response of a multicomponent body to n fields, such as electric fields, mag-
netic fields, temperature gradients, concentration gradients, etc., where each component,
which is possibly anisotropic, may cross couple the various fields with different fluxes, such as
electrical currents, electrical displacement currents, magnetic induction fields, energy fluxes,
particle fluxes, etc. We obtain the form of the perturbation expansions of the fields and
response tensor in powers of matrices which measure the difference between each component
tensor and a homogeneous reference tensor L0. For the case of a statistically homogeneous or
periodic composite the expansion coefficients can be expressed in terms of positive semidef-
inite normalization matrices alternating with positive semidefinite weight matrices, which at
each given level sum to the identity matrix. In an appropriate basis the projection operators
onto the relevant subspaces can be expressed in block tridiagonal form, where the blocks are
functions of these weight and normalization matrices. This leads to continued fraction ex-
pansions for the effective tensor, and by truncating the continued fraction at successive levels
one obtains a nested sequence of bounds on the effective tensor incorporating successively
more weight and normalization matrices. The weight matrices and normalization matrices
can be calculated from the series expansions of the fields which solve the conductivity prob-
lem alone, without any couplings to other fields, and then they can be used to obtain the
solution for the fields and effective tensor in coupled field problems in composites.

9.1 Introduction
This chapter is concerned with the response of coupled fields and fluxes in a three-dimensional body Ω to po-
tentials prescribed at the boundary of the body and with how this response depends on the material constants
of the body. The effective tensor of a statistically homogeneous or periodic composite, with coupling between

255
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the fields, is a special case which we will study in more depth. The set of fields ~E = ( ~E1, ~E2, ..., ~En) which
are each curl-free, may include electric fields, magnetic fields, temperature gradients, or concentration gra-
dients and the associated fluxes ~J = ( ~J1, ~J2, ..., ~Jn) may include electrical currents, electrical displacement
currents, magnetic induction fields, energy fluxes and particle fluxes. We assume there are no sources inside
the body, so each of these fluxes is divergence-free. Assuming a simply connected topology of the body, each
of the curl-free fields derive from a potential ~Ej = −~∇φj . At each point within the body or medium we
assume a linear constitutive relation ~J =

↔
L ~E between the fluxes and fields through a position dependent

symmetric positive-definite tensor
↔
L(~r) of material constants. The tensor may have off-diagonal couplings

which cause a single driving field, such as a temperature gradient, to induce fluxes of all types.
The body is assumed to be an aggregate of grains (possibly infinite in number) comprised of a finite number

M of components (phases) that have at least orthorhombic symmetry with the crystal orientation varying from
grain to grain, thus

↔
L(~r) is assumed to be piecewise constant. Let Ll,α, l = 1, 2, . . .M , α = 1, 2, 3 be the

n× n principal response matrices of the l-th component, defined more precisely in the next section.
We investigate the response of the set of fluxes, ~J(~r), measured at a given position ~r within the body, to the

potentials φ(~r) = [φ1(~r), ..., φn(~r)] prescribed at the boundary of the body. Without loss of generality (see
Milgrom (1990) for a discussion of this point) it is assumed that the prescribed potentials are all in proportion
to a fixed scalar function f(~r) defined at points ~r on the surface of the body, i.e., φj(~r) = φj0f(~r) for all
~r ∈ ∂Ω, and we consider how the set of fluxes ~J(~r) at ~r vary with the choice of the vector φ0 = (φ1

0, ..., φ
n
0 )

of proportionality constants: since this relation is linear it is governed by a response tensor ~L(~r) giving
~J(~r) = ~L(~r)φ0. This tensor ~L(~r) is the object of our analysis. Specifically we examine the dependence of
~L(~r) on the set of crystal moduli Ll,α (l = 1, 2, ...,M, α = 1, 2, 3) when each is close to a constant tensor
L0, i.e., when the material constants of the body are close to being homogeneous and isotropic. To simplify
notations these crystal moduli are relabeled as La (a = 1, 2, ..., p), avoiding repetitions in the original set of
crystal moduli due to crystal symmetries of isotropy or uniaxiality: thus, when there are no symmetries (other
than orthorhombic symmetry) a represents the pair (l, α) and p = 3M , but p could be less than 3M if some
of the phases are isotropic or uniaxial.

A formal expression is obtained for the coefficients appearing in the series expansion of ~L(~r) in powers of
the differences εa = La−L0 (a = 1, 2, .., p). We say formal because these coefficients are difficult to evaluate
and because their (nonlinear and nonlocal) dependence on the overall shape of the body, on the division of
the body into grains and on the orientation of the crystals in each grain is complicated. What is interesting
is the explicit form of the expansion. This is a non trivial issue since the set of matrices La (a = 1, 2, ..., p)
do not necessarily commute. The issue has been addressed in part by Milgrom (1990) from general analytic
considerations. Milgrom noted that the functional dependence of ~L(~r) on theLa must satisfy two constraints:

(i) Covariance, the property that for any real, nonsingular, n by n matrix W with transpose W T acting
only on the field indices, the response tensor ~L(~r) transforms toW~L(~r)W T when all of the crystal moduli
La are replaced by the moduliWLaW

T . Covariance follows from the observation that we are free to define
a new set of (curl-free) fields ~E ′ = (W T )−1 ~E and a new set of (divergence-free) fluxes ~J ′ = W ~J by taking
linear combinations of the old set of fields and fluxes while preserving at the same time the self-adjointness

of the tensor
↔
L(~r)′ = W

↔
L(~r)W T in the constitutive relation ~J ′ =

↔
L
′
~E ′. Clearly W~L(~r)W ′ is simply

the old response tensor ~L(~r) expressed in terms of the new fields.
(ii) Disjunction, the property that when the matrices La are block diagonal of the same form then so must

~L(~r) have a similar block diagonal form in the field indices, and furthermore the elements of ~L(~r) within
each block only depend on the elements of the La’s in the corresponding blocks. Disjunction follows from
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the observation that if a subset of fields is decoupled from another subset of fields then the effective response
tensor must reflect this decoupling.

These analytic considerations alone eliminate from consideration many candidates for the terms in the
series expansion, such as for example L−1

0 εa1εa2 , and leave terms such as εa1L
−1
0 εa2L

−1
0 εa3 (that in fact

do occur in the series expansion) as natural candidates.
The technique we employ in the present chapter is a simple generalization of an approach used in the

theory of composite materials to derive series expansions for the effective conductivity or elasticity tensor of
a nearly homogeneous multiphase material. A lot of the progress that has been made on series expansions
and associated bounds on effective tensors is summarized in the review articles of Willis (1981a) and Hashin
(1983) and the books of Cherkaev (2000), Milton (2002), Allaire (2002), Torquato (2002), Tartar (2009).
Brown, Jr. (1955), in a pioneering paper, obtained the series expansion of the effective conductivity σ∗ of
an isotropic composite of two isotropic components with nearly equal conductivities σ1 and σ2, and found
that the coefficient of (σ1 − σ2)n in this expansion depends on the n-point correlation function giving the
probability that a fixed configuration of n-points lands with all points in component 1 when placed randomly
in the composite. Subsequently many other series expansions were derived for the effective conductivity tensor
or elasticity tensor of nearly homogeneous composites: see for example, Herring (1960), Prager (1960), Beran
and Molyneux (1963), Beran (1968),Beran and McCoy (1970)), Fokin and Shermergor (1969), Dederichs and
Zeller (1973), Hori (1973), Zeller and Dederichs (1973), Gubernatis and Krumhansl (1975), Kröner (1977),
Willis (1981a), Milton and Phan-Thien (1982), Phan-Thien and Milton (1982), Sen and Torquato (1989),
Torquato (1997), Tartar (1989, 1990), and Bruno (1991b). Our analysis closely follows that of Willis (1981a)
and Phan–Thien and Milton (1982, 1983).

Our analysis gives, as a simple corollary, a series expansion for the effective tensor
↔
L∗ that governs the

constitutive relation between the local average of ~J and the local average of ~E in a statistically homoge-
neous or periodic composite material. (These averages are taken over a length scale much larger than the
microstructure, yet smaller than any macroscopic lengths associated with variations in the applied fields.)
This expansion is derived in Section 9.4 where the body is assumed to be filled with such a composite ma-
terial, with microstructure much smaller than the dimensions of the body. From the response tensor ~L(~r)
associated with linear potentials specified on the boundary, i.e., with f(~r) = −~r · ~v0 on ∂Ω, where ~v0 gives

the direction of the applied field, we directly obtain the effective tensor
↔
L∗ of the composite.

The coefficients in the series expansion of
↔
L∗ in powers of the εa (a = 1, 2, .., p) are useful for obtaining

bounds on
↔
L∗. In particular they likely contain sufficient information to determine the weight and normal-

ization matrices that were introduced by Milton (1987a, 1987b), following the introduction of scalar-valued
weights and normalization factors by Milton and Golden (1985). Thus these parameters are seen to have a
natural significance in the context of coupled field problems. In any case the weight matrices and normal-
ization matrices can be calculated from the series expansions of the fields. It is noteworthy that they can be
calculated from the series expansions of the fields which solve the conductivity problem alone, without any

couplings to other fields, and then they can be used to obtain the solution for the fields and effective tensor
↔
L∗

in coupled field problems.
With these geometric parameters we show how one can compute, for coupled field problems, the Wiener–

Beran and Hashin–Shtrikman type bounds of any order: these bounds, derived for the effective conductivity by
Milton (1981c) and Milton and McPhedran (1982) (see also McPhedran and Milton 1981) and extended here
to bounds on

↔
L∗, generalize the bounds of Wiener (1912), Hashin and Shtrikman (1962), Beran (1965), Willis

(1977), Phan-Thien and Milton (1982), and Sen and Torquato (1989). They do not, however, encompass the
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optimal two-dimensional, two-phase bounds of Cherkaev and Gibiansky (1992) and Clark and Milton (1995)
which couple effective tensors using additional information about the differential constraints on the fields, or
duality relations satisfied by the effective tensor as a function of the component moduli. Again many of the
existing bounds are summarized in the review articles of Willis (1981a) and Hashin (1983) and the books of
Cherkaev (2000), Milton (2002), Allaire (2002), Torquato (2002), Tartar (2009).

We also point out that in the case p = 2, as observed by Milgrom and Shtrikman (1989b; 1989a) following
related work by Straley (1981), that when ε1 and ε2 are symmetric one can simultaneously diagonalize them
using congruence transformations. Equivalently, one can define a new set of potentials and a new set of fluxes,
which are linear combinations of the old ones, so that the equations are decoupled [see also the developments
in Milgrom (1990, 1997) and Chen (1995, 1997), Chapter 6 of Milton (2002), and Section 1.5 of this book.]
Then, if we are considering the response of a composite, one can apply the bounds that are relevant in this
case, such as those derived by Prager (1969), Bergman (1976, 1978) and Milton (1981c) [that were numerically
tested by McPhedran and Milton (1981)] and by Cherkaev and Gibiansky (1992) and Clark and Milton (1995).
In a wider context many of these bounds are closely related to the bounds on Stieltjes functions derived by
Baker, Jr. (1969), in what he calls the fitting problem, and bounds on Herglotz functions that are associated
with Nevanlinna–Pick interpolation (Pick 1915; Nevanlinna 1919, 1929; Delsarte, Genin, and Kamp 1981;
Theorem 3.1 of Chapter 5 of Kreı̆n and Nudel’man 1974; Fedčina 1972; Delsarte, Genin, and Kamp 1979);
Chen and Koç 1994, 1995; Theorem 2.2 in Chapter VIII of Foiaş and Frazho 1990; Alpay 2001; Agler and
McCarthy 2002). When p = 2 and n is large, an alternative approach suggested by Day, Grant, Sievers,
and Thorpe (2000) is to construct approximations to the measure which enters the integral representation
formula for the response (Day and Thorpe 1999; Day, Grant, Sievers, and Thorpe 2000; Cherkaev 2001;
Zhang and Cherkaev 2009; Cherkaev and Bonifasi-Lista 2011) and then use this to predict the response when
n is increased. Generalizing the ideas of McPhedran, McKenzie, and Milton (1982), an alternative hybrid
approach is to use the fact that the bounds imply rational functions satisfying the required analytic constraints
pass through the exact data for a given value of n if the rational functions are of the appropriate degree.
Then, if there are errors in the measurements (with known error bars), one can generate a family of such
rational functions that are compatible with the data and in this way now only obtain predictions of the response
when n is increased, but also obtain an idea of the probable error associated with these predictions. It could
happen that there is no rational function compatible with the data. This could be a sign that the errors have
been underestimated, or that there is some physics involved which has not been captured by the underlying
equations.

This chapter is mostly self-contained, although it may be helpful for the reader to study Chapters 1 and 2
first.

9.2 Setting of the problem and equations for the fields

We consider the problem of linear response to n coupled fields derivable from potentials φk, k = 1, ..., n.
The problem is described, in detail, by Milgrom (1990), and we give a succinct description here. The body
consists of a space domain Ω within which the position-dependent response tensor is Lαiβk(~r), where i, k are
field indices and α, β are space indices. The αth component of the ith flux is given by the constitutive relation

J iα(~r) = −
n∑
k=1

3∑
β=1

Lαiβk(~r)∂βφ
k(~r), (9.1)
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or, suppressing the indices:
~J = −

↔
L ~∇φ. (9.2)

We shall be using boldface letters for quantities that are vectors or tensors in the field indices. Also, a→ above
a character indicates a vector in the space indices and a↔ above a character indicates a matrix in the space
indices. So, for example, ~J , ~E, and ~e are vectors in both space and field indices;

↔
L , and

↔
ε are second rank

tensors in both types of indices; L is a matrix in the field indices; φ and φ0 are vectors in the field indices; ~r
is a vector in the space indices; and

↔
Γ1 is a matrix in the space indices.

The equation
~∇ · ~J = 0, (9.3)

determines the fields φ within Ω, given the boundary conditions.
The response we consider is the field vector of n fluxes, ~J(~r), measured at a given position ~r within Ω,

and is taken to respond to the boundary conditions dictated on the surface, ∂Ω, of Ω. As explained in Milgrom
(1990), we may, without loss of generality, restrict ourselves to boundary conditions of the form

φ(~r) = φ0f(~r), ~r ∈ ∂Ω. (9.4)

We then define the response matrix ~L(~r) such that

~J(~r) = ~L(~r)φ0. (9.5)

We shall be interested in a piecewise-homogeneous system, so Ω is divided into a (possibly infinite) number
of domains, as in Fig. 1, each of which is filled with one of M (possibly anisotropic) components, with an
arbitrary orientation of its axes. We restrict ourselves to components that have, at least, an orthorhombic
symmetry. The response matrix, ~L(~r), depends, then, on the shape of Ω, on the choice of f(~r), on the
division of Ω into sub-domains, on the orientations of the different components within these homogeneous
sub-domains, and on the response properties of the individual components. In the principal axes of the lth
component we can write

Llαkβm = Ll,αkmδαβ , (9.6)

where there is no summation over α and the Ll,α (α = 1, 2, 3) are the principal response matrices of com-
ponent l, l = 1, 2, . . . ,M . Let p be the total number of such principal matrices characterizing all the com-
ponents. So, there is only one such matrix for an isotropic component, two for a component with uniaxial
symmetry, and three for a component with orthorhombic symmetry. We shall use a single index notation with
La, a = 1, ..., p instead of the doubly indexed Ll,α. (Depending on the symmetry, α here takes one, two, or
three values.)

In the isotropic and homogeneous case we have

La = L0, (9.7)

for all a. When there are departures from isotropy and homogeneity we write

La = L0 + εa, (9.8)

and seek to expand ~L(~r) in the elements εaik of the εa’s.
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To this end we first derive a formal expression for the driving field, ~E = −~∇φ produced within Ω by the
boundary conditions φ0. Let ~E0 be the driving field that is produced by these same boundary conditions in
the homogeneous, isotropic case. We can write

~E0(~r) = φ0~v0(~r), (9.9)

where ~v0 = −~∇ψ0, and ψ0 is the single-field solution of the Laplace equation, in Ω, with boundary condition
ψ(~r) = f(~r) on ∂Ω; thus ~∇ · ~E0 = 0. The difference field

~e ≡ ~E − ~E0 = −~∇ψ, (9.10)

is derivable from a potential ψ, that vanishes on ∂Ω. Now introduce

↔
ε (~r) =

↔
L(~r)−L0

↔
I , (9.11)

where we use
↔
I for the unit matrix in space indices;

↔
I for the identity in both space and field indices; and I

for the identity operator which when acting on a function leaves it invariant. Then the flux field,

~J(~r) =
↔
L(~r)~E(~r), (9.12)

can thus be written as
~J(~r) = [L0

↔
I +

↔
ε (~r)](~E0 + ~e)(~r). (9.13)

Taking the divergence of (9.13), and remembering that ~J and L0
~E0 are divergence-free, we obtain

L0
~∇ · ~e+ ~∇ · (↔ε ~E) = 0, (9.14)

or equivalently,
∆ψ = ~∇ · (L−1

0

↔
ε ~E). (9.15)

Define, now, the inverse Laplacian, ∆−1, as the nonlocal operator which, acting on a density function ρ(~r),
defined in Ω, gives the potential ϕ that solves the Poisson’s equation ∆ϕ = −ρ, and vanishes on the surface,
∂Ω. Then, from (9.15) and (9.10) we can write

~e = −
↔
Γ1L

−1
0

↔
ε ~E, (9.16)

where ↔
Γ1 ≡ ~∇∆−1~∇·, (9.17)

is nonlocal, with kernel
↔
Γ1(~r, ~r ′), and acts on a vector field ~u(~r ′) to give the vector field

~v(~r) =

∫
Ω

d~r ′
↔
Γ1(~r , ~r′)~u(~r ′), (9.18)

that has the same divergence as ~u, and is derivable from a potential that vanishes on ∂Ω. Clearly,
↔
Γ1 is a

projection operator:
↔
Γ1

↔
Γ1 =

↔
Γ1, (9.19)
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implying its kernel satisfies

↔
Γ1(~r, ~r ′) =

∫
Ω

d~r ′′
↔
Γ1(~r, ~r ′′)

↔
Γ1( ~r′′, ~r ′). (9.20)

In addition, because
↔
Γ1 gives zero when it acts on a uniform vector field and always produces a vector field

with zero integral over Ω, we have∫
Ω

d~r ′
↔
Γ1(~r, ~r ′) = 0,

∫
Ω

d~r
↔
Γ1(~r, ~r ′) = 0. (9.21)

The operator
↔
Γ1 is also self-adjoint, i.e.,

↔
Γ1(~r, ~r ′) = [

↔
Γ1(~r ′, ~r)]T , (9.22)

where T denotes the transpose. To see this, suppose one is given vector fields ~u(~r) and ~v(~r). Let ϕ(~r) and
ψ(~r) be potentials that vanish on the boundary ∂Ω such that

~u = ~∇ϕ+ ~∇×A, ~v = ~∇ψ + ~∇×B, (9.23)

for some vector potentials A(~r) and B(~r). Then the definition of
↔
Γ1 implies

↔
Γ1~u = ~∇ϕ and

↔
Γ1~v = ~∇ψ.

So we have ∫
Ω

~v · (
↔
Γ1~u) =

∫
Ω

~∇ψ · ~∇ϕ+

∫
Ω

(~∇×B) · ~∇ϕ. (9.24)

Using the divergence theorem, the last integral vanishes,∫
Ω

(~∇×B) · ~∇ϕ =

∫
Ω

~∇ · [ϕ(~∇×B)] =

∫
∂Ω

ϕn · (~∇×B) = 0, (9.25)

where n is the outwards normal to ∂Ω, and we have used the fact that ϕ = 0 on ∂Ω. Switching the roles of ~v
and ~u in (9.24) gives the same result, and so we obtain∫

Ω

~v · (
↔
Γ1~u) =

∫
Ω

~u · (
↔
Γ1~v), (9.26)

which means
↔
Γ1 is self-adjoint.

Adding ~E0 to both sides of (9.16), we can write

(I +
↔
Γ1L

−1
0

↔
ε )~E = ~E0, (9.27)

or
~E = (I +

↔
Γ1L

−1
0

↔
ε )−1 ~E0. (9.28)

Thus, from the definition of the response matrix ~L(~r), equation (9.5), from relation (9.9) between ~E0 andφ0,
and from relation (9.12) between ~J and ~E, we get

~L(~r) =

∫
d~r ′

↔
S (~r, ~r ′)~v0(~r ′), (9.29)
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where
↔
S (~r, ~r ′) is the kernel of a nonlocal operator

↔
S [acting on the field ~v0], given by

↔
S = (L0

↔
I +

↔
ε )(I +

↔
Γ1L

−1
0

↔
ε )−1. (9.30)

The vector field ~v0 only carries the information on the exact form of the boundary conditions [f(~r0)]; it is
↔
S (~r, ~r ′) that plays the role of the response tensor of the system.

9.3 The expansion of the response tensor

We now use (9.30) to develop a series expansion for the response tensor
↔
S (~r, ~r ′). Specializing to the piecewise

homogeneous case, we express
↔
ε (~r) in terms of the εa’s defined in equation (9.8). Defining the indicator

function, χl(~r), such that χl(~r) = 1 in a subregion occupied by component l, l = 1, 2, . . . ,M and χl(~r) = 0

otherwise, we can write for the αβ element of
↔
ε

εαβ(~r) =

M∑
l=1

3∑
η=1

χl(~r)Rαη(~r)εl,ηRTηβ(~r), (9.31)

where
εl,η = Ll,η −L0, (9.32)

and Ll,η are the principal response matrices of component l, R(~r) is the rotation matrix from the principal
axes to the orientation the component has at position ~r, and RT (~r) is its transpose (inverse).

Equation (9.31) can be cast in the form

εαβ(~r) =

p∑
a=1

Λaαβ(~r)εa, (9.33)

where the elements, Λaαβ(~r), of
↔
Λa are defined as follows: For an orthorhombic component, there are three

↔
Λa ’s, where a replaces the double index l, η, and

Λl,ηαβ(~r) = χl(~r)Rαη(~r)RTηβ(~r) (9.34)

(with no summation over η). When the component l is isotropic, it contributes only one
↔
Λa , with

Λaαβ(~r) = χl(~r)

3∑
η=1

Rαη(~r)RTηβ(~r) = χl(~r)δαβ . (9.35)

Similarly, for a uniaxial component there are two matrices
↔
Λa(~r). It is easy to ascertain that

↔
Λa(~r)

↔
Λb(~r) = δab

↔
Λa(~r), (9.36)

and we also have
p∑
a=1

↔
Λa(~r) =

↔
I . (9.37)
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Now, substituting (9.33) in expression (9.30) for
↔
S , and expanding, we get

↔
S = L0

↔
I +

∞∑
s=1

p∑
a1,...,as=1

(−1)s+1
↔
Ka1...as εa1L

−1
0 εa2L

−1
0 ...L−1

0 εas , (9.38)

where the reduced operator
↔
Ka1...as is given by

↔
Ka1...as= (I −

↔
Γ1)
↔
Λa1

↔
Γ1

↔
Λa2

↔
Γ1...

↔
Γ1

↔
Λas . (9.39)

Note that each operator
↔
Γ1 in the above relation acts on the whole expression to its right including the field

on which
↔
Ka1...as acts: it does not just act on the adjacent

↔
Λa(~r) factor. The reduced operators, which are

matrices in the space indices, are purely geometrical. They depend on the geometry of the region Ω, on its
division into homogeneous sub-regions, and on the orientation of the components within these sub-regions.
They do not depend on the form of the boundary condition f(~r0), which enter through ~v0(~r) (on which the
↔
K ’s act); they also do not depend on the response coefficients of the components, which enter through the
field-matrix terms in (9.38).

Using (9.29), the corresponding reduced, expansion coefficients of the response ~L(~r) are

~κa1...as(~r) = [
↔
Ka1...as ~v0](~r) =

∫
Ω

d~r ′
↔
Ka1...as (~r, ~r ′)~v0(~r ′), (9.40)

where
↔
Ka1...as (~r, ~r ′) is the kernel of the operator

↔
Ka1...as . Note that the reduced coefficients are not inde-

pendent: Summing over the last index gives

p∑
as=1

~κa1...as = 0, (9.41)

from (9.37), and the fact that
↔
Γ1 acting on a divergence-free vector field (such as ~v0) gives 0. Summing over

the first index we also have
p∑

a1=1

~κa1...as = 0, (9.42)

because (I −
↔
Γ1)
↔
Γ1 = 0. Summing over any, but the last, or first, index gives a reduced coefficient with one

less index:
p∑

ai=1

~κa1...as = ~κa1...ai−1ai+1...as . (9.43)

These follow directly from (9.39), and stem from the fact that we could arbitrarily redefine L0 by adding to it
a constant matrix, and subtract that matrix from the εa’s, without affecting

↔
S (~r, ~r ′). So there are really only

(p− 1)s independent s-th order coefficients, not ps.
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9.4 The expansion of the effective tensor of a composite
We now focus attention on an important subclass of inhomogeneous bodies: those filled with a statistically
homogeneous or periodic composite material with microstructure much smaller than the dimensions of the
body. It is well-known and can be rigorously proved (see for example Golden and Papanicolaou (1983)) that
if there exists an intermediate length scale λ much larger than the homogeneities yet much smaller than the
length scales associated with the dimensions of Ω and with variations in the applied potentials, then

↔
L(~r) can

be replaced by a constant effective tensor L∗ without disturbing the macroscopic response of the body. At

distances from the boundary ∂Ω, inside the body, sufficiently greater than λ this effective tensor
↔
L∗ governs

the relation between the fields

< ~J >Θ(~r)=
1

|Θ(~r)|

∫
Θ(~r)

d~r ′ ~J(~r ′), < ~E >Θ(~r)=
1

|Θ(~r)|

∫
Θ(~r)

d~r ′ ~E(~r ′), (9.44)

obtained by averaging ~J(~r ′) and ~E(~r ′) over a sphere Θ(~r) of volume |Θ(~r)|, centered at ~r, with radius λ,
through the constitutive relation

< ~J >Θ(~r)=
↔
L∗< ~E >Θ(~r) . (9.45)

Another tensor of interest is the microscopic response tensor
↔
L (~r ′, ~r) which governs the linear relation

between ~J(~r ′), for points ~r ′ in Θ(~r), and < ~E >Θ(~r):

~J(~r) =
↔
L (~r ′, ~r) < ~E >Θ(~r) . (9.46)

This tensor
↔
L (~r ′, ~r) is only well-defined if there is a sufficient separation of length scales so that homogeniza-

tion theory (see the many references in the introduction in Chapter 2 and in particular Bensoussan, Lions, and
Papanicolaou 1978 and Kozlov 1978) applies. Then

↔
L (~r ′, ~r) is independent of the choice of f(~r0) (subject

to it being smooth and only varying on the macroscopic scale), on the choice of φ0, and (assuming statistical
homogeneity) on the value of ~r. Then we may vary f(~r0) and φ0 to change < ~E >Θ(~r) and thus determine
↔
L (~r ′, ~r) =

↔
L (~r ′) through (9.46). For materials that are periodic inside Ω, with periodic cell much smaller

than the size of Ω,
↔
L (~r ′) can be obtained from the fields that solve the homogenization cell problem. i.e.,

with ~J(~r) and ~E(~r) having the same periodicity as the material, and the cell average of ~E(~r) having any value
we desire.

By assumption < ~E >Θ(~r) has a smooth dependence on ~r and so by taking the average of (9.46) over

points ~r ′ in the sphere Θ(~r) we can identify
↔
L∗ with the average of

↔
L (~r ′),

↔
L∗= <

↔
L>Θ(~r)=

1

|Θ(~r)|

∫
Θ(~r)

d~r ′
↔
L (~r ′). (9.47)

To determine
↔
L (~r) and hence

↔
L∗ it suffices to prescribe linear potentials on the boundary ∂Ω of Ω, i.e., to

suppose f(~r0) takes the form
f(~r0) = −~r0 · ~v0, (9.48)
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where ~v0 is a constant vector. Then the fields ~E0 and < ~E >Θ(~r) which solve the constitutive equations in a
homogeneous body are uniform,

~E0 =< ~E >Θ(~r)= ~v0φ0. (9.49)

Consequently for the purpose of determining both
↔
L (~r ′) and

↔
L∗ the averages < >Θ(~r) over each sphere

Θ(~r) can be replaced by averages < >Ω over the entire body Ω. Also to simplify subsequent formula let us
select our dimensions of length so that the body has unit volume,

|Ω|= 1. (9.50)

Then, averages over Ω can be equated with integrals over Ω. From (9.49) and the relations (9.5) and (9.46) of
~L(~r ′) and

↔
L (~r ′) we have

~L(~r) =
↔
L (~r)~v0. (9.51)

where we have relabeled ~r ′ as ~r to avoid confusion in the subsequent formulae. This, in conjunction with
(9.29) and (9.47), leads directly to the expressions

↔
L (~r) =

∫
Ω

d~r ′
↔
S (~r, ~r ′), (9.52)

↔
L∗=

∫
Ω

d~r

∫
Ω

d~r ′
↔
S (~r, ~r ′), (9.53)

for the microscopic response tensor
↔
L (~r) and the effective tensor

↔
L∗. Substitution of the series expansion

for
↔
S (~r, ~r ′) into these expressions gives the desired series expansions

↔
L (~r) = L0

↔
I +

∞∑
s=1

p∑
a1,...,as=1

(−1)s+1
↔
Aa1...as εa1L

−1
0 εa2L

−1
0 ...L−1

0 εas , (9.54)

↔
L∗= L0

↔
I +

∞∑
s=1

p∑
a1,...,as=1

(−1)s+1 ↔αa1...as εa1L
−1
0 εa2L

−1
0 ...L−1

0 εas , (9.55)

for
↔
L (~r) and

↔
L∗ in powers of the εa’s with coefficients

↔
Aa1...as (~r) =

∫
Ω

d~r ′
↔
Ka1...as (~r, ~r ′)

=

∫
Ω

d~r ′ [(I −
↔
Γ1)
↔
Λa1

↔
Γ1

↔
Λa2

↔
Γ1...

↔
Γ1

↔
Λas ](~r, ~r ′), (9.56)

↔
αa1...as=

∫
Ω

d~r
↔
Aa1...as (~r)

=

∫
Ω

d~r

∫
Ω

d~r ′ [
↔
Λa1

↔
Γ1

↔
Λa2

↔
Γ1...

↔
Γ1

↔
Λas ](~r, ~r ′), (9.57)
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where the prefactor of (I −
↔
Γ1) has been dropped from the last equation because

↔
Γ1 acting upon any field

produces a field with zero integral over Ω: see (9.21).
As a consequence of (9.19), (9.21) and (9.37) the coefficients

↔
αa1...as when s > 1 satisfy

p∑
a1=1

↔
αa1...as = 0, (9.58)

p∑
as=1

↔
αa1...as = 0, (9.59)

p∑
ai=1

↔
αa1...as =

↔
αa1...ai−1ai+1...as . (9.60)

In the special case s = 1 (9.37) implies
p∑
a=1

↔
αa=

↔
I . (9.61)

Due to these identities it suffices, for any choice of reference index q ∈ {1, 2, ...p}, to consider the subset of
coefficients

↔
αa1...as , s = 1, 2, .... generated as the indices ai range over the reduced set {1, 2, ..q−1, q+1, ...p}

skipping the reference index q. The remaining coefficients
↔
αa1...as where at least one index ai = q can then

be recovered using (9.58)-(9.61). In addition, recall from (9.26) that the operator
↔
Γ1 is self-adjoint (this is

also evident from (9.65) below). Also
↔
Λa is obviously self-adjoint. So (9.57) implies that the matrix

↔
αa1...as

is transformed to its transpose under reversal of the ordering of its subscripts:
↔
αasas−1...a2a1= (

↔
αa1a2...as−1as)T . (9.62)

There are further identities satisfied by the coefficients
↔
αa1...as . In particular, the first order coefficients

satisfy

Tr(
↔
αa) = Tr(

↔
α
lβ

) =

∫
Ω

d~r Tr(
↔
Λ
lβ) = mlfl, (9.63)

where fl denotes the volume fraction occupied by component l and ml takes values 1,2 or 3 according
to whether the component l has orthorhombic symmetry, uniaxial symmetry, or isotropic symmetry. The
last identity in (9.63) follows immediately for orthorhombic components by taking the trace in (9.34) (i.e.,
Tr[
↔
Λlβ(~r)] = χl(~r)), and for isotropic components by taking the trace in (9.35) (i.e., Tr[

↔
Λlβ(~r)] = 3χl(~r)).

The trace of the second order coefficient
↔
αab can also be easily evaluated when the components are

isotropic. To see this let us, for simplicity, suppose that the composite material is periodic with periodic-
ity h much smaller than the dimensions of Ω. The action of

↔
Γ1 on any h-periodic vector field ~u(~r ′) is local

in Fourier space and produces a vector field ~v(~r) given by (9.18) with Fourier components

~v(~k) =
↔
Γ1(~k)~u(~k), (9.64)

in which ~u(~k) denotes the Fourier component of ~u(~r) and where the matrix
↔
Γ1(~k) has elements

{Γ1}ij(~k) = kikj/|~k|2 ~k 6= 0,

= 0 ~k = 0. (9.65)
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Clearly (9.65) implies

Tr(
↔
Γ1(~k)) = 1 ~k 6= 0,

= 0 ~k = 0, (9.66)

and it follows that the operator
Γ(~r, ~r ′) ≡ Tr(

↔
Γ1(~r, ~r ′)) (9.67)

acts on any h-periodic scalar field u(~r) to produce the scalar field

v(~r) =

∫
Ω

d~r ′ Γ(~r, ~r ′ )u(~r) = u(~r) −
∫

Ω

d~r ′ u(~r ′). (9.68)

When the components are isotropic
↔
Λa(~r) = Λa(~r)

↔
I and we have

Tr(
↔
αab) =

∫
Ω

d~r

∫
d~r ′ [ΛaΓΛb](~r, ~r

′ )

=

∫
Ω

d~rΛa(~r)Λb(~r)−
∫

Ω

d~rΛa(~r)

∫
Ω

d~r ′Λb(~r
′)

= δabfa − fafb, (9.69)

where again fa and fb are the volume fractions of the components a and b.
In two-dimensional composites (9.69) is a simple corollary of one of an infinite set of identities satis-

fied by the coefficients
↔
αa1...as . These follow from the simple duality observation (see, for example, Keller

(1964), Dykhne (1970) and Mendelson (1975)) that a 90◦ rotation,
↔
R⊥ acting on a curl-free field produces a

divergence-free field and vice versa. Equivalently, from (9.65) we see immediately that
↔
R⊥
↔
Γ1(
↔
R⊥)T = I −

↔
Γ1 −

↔
Γ0, (9.70)

or alternatively,
↔
R⊥
↔
Γ1 = (I −

↔
Γ1 −

↔
Γ0)
↔
R⊥, (9.71)

where
↔
Γ0(~r, ~r ′) is the operator which simply acts to average the field:

↔
Γ0(~r, ~r ′) acting on a field ~u(~r ′)

produces the uniform field

~v(~r) =

∫
Ω

d~r ′
↔
Γ0(~r, ~r ′)~u(~r ′) =

∫
Ω

d~r ′ ~u(~r ′), (9.72)

and
↔
R⊥ is the operator which acts locally upon a field ~u(~r) rotating it by 90◦ to produce the field ~v(~r) with

elements

vα =

2∑
β=1

R⊥αβuβ , (9.73)

where R⊥αβ are in turn the elements of the matrix

R⊥ =

[
0 1

−1 0

]
, (9.74)
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for a 90◦ rotation. Accordingly we can use (9.70) to express
↔
R⊥
↔
αa1...as(

↔
R⊥)T as a linear combination of the

coefficients
↔
αa1...am with m ≤ s. For example, if the components are isotropic

↔
R⊥ commutes with

↔
Λa and

we have
↔
R⊥

↔
αa1a2 (

↔
R⊥)T =

∫
Ω

d~r

∫
Ω

d~r ′ [
↔
Λa1(I −

↔
Γ1 −

↔
Γ0)
↔
Λa2 ](~r, ~r ′)

= − ↔αa1a2 +δa1a2fa1
↔
I −fa1fa2

↔
I , (9.75)

↔
R⊥

↔
αa1a2a3 (

↔
R⊥)T =

∫
Ω

d~r

∫
Ω

d~r ′ [
↔
Λa1(I −

↔
Γ1 −

↔
Γ0)
↔
Λa2(I −

↔
Γ1 −

↔
Γ0)
↔
Λa3 ](~r, ~r ′)

=
↔
αa1a2a3 −δa1a2

↔
αa2a3 −

↔
αa1a2 δa2a3 + fa1

↔
αa2a3 +

↔
αa1a2 fa3

+δa1a2δa2a3fa1
↔
I −δa1a2fa2fa3

↔
I −fa1fa2δa2a3

↔
I +fa1fa2fa3

↔
I .

(9.76)

The identity (9.69) is easily seen to follow from (9.75) by taking the trace of that equation. We now return to
considering three dimensional composite materials.

When only one field is present, i.e., n = 1, then the knowledge of the series expansion of
↔
L∗ in powers of

the εa up to a given order s is insufficient to determine the coefficients
↔
αa1...as when p ≥ 3 and s ≥ 3. For

example, consider the problem of electrical conductivity,

~∇ · J(~r) = 0, ~∇× E(~r) = 0, J(~r) = σ(~r)E(~r), σ(~r) =

p∑
a=1

σa
↔
Λa , (9.77)

in a nearly homogeneous, nearly isotropic material with small values of the conductivity differences

εa = σa − σo. (9.78)

Since the scalar quantities σo and εa commute, (9.55) reduces to the well-known series expansion for the
effective conductivity

↔
σ ∗ = σo

↔
I +

∞∑
s=1

p∑
a1,...,as=1

(−1)s+1
↔
β a1...as εa1εa2 ...εas/(σo)

s−1, (9.79)

with coefficients
↔
β a1...as = [

↔
αa1...as ]sym ≡

1

s!

∑
permutations

↔
αp(a1...as), (9.80)

where the brackets [ ]sym denote a symmetrization over all s! permutations p(a1...as) of the field indices
a1...as, excluding the space indices. In view of (9.62) we have, for example,

↔
β a1=

↔
αa1 ,

↔
β a1a2=

1

2
[
↔
αa1a2 +(

↔
αa1a2)T ],

↔
β a1a2a3=

1

6
[
↔
αa1a2a3 +

↔
αa2a3a1 +

↔
αa3a1a2 +(

↔
αa1a2a3 +

↔
αa2a3a1 +

↔
αa3a1a2)T ].

(9.81)
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If the coefficients
↔
β a1...aj are known for all j ≤ m then it is clearly impossible to recover all the coefficients

↔
αa1...as for s ≤ m: one can only recover the linear combinations given by (9.80). However this does not
eliminate the possibility that the coefficients

↔
αa1...as could be recovered from knowledge of the entire infinite

set of coefficients
↔
β a1...aj . As we will see in Section 9.7, the value that

↔
αa1...as can take is nonlinearly

correlated with the coefficients
↔
β a1...aj with j ≤ m through a set of matrix inequalities and it is conceivable

that these matrix inequalities are sufficiently stringent to uniquely determine a given coefficient
↔
αa1...as as m

tends to infinity.

9.5 The weights and normalization matrices and a stratification of the
Hilbert space

Suppose the coefficients
↔
Aa1...as (~r) of the microscopic response tensor

↔
L (~r) are known as functions of ~r,

for all s up to a given order m, and for all combinations of indices ai taken from the set {1, 2, ..., p}. In light
of (9.57) one might think that this information would only be sufficient to determine the coefficients

↔
αa1...as

for s ≤ m. However this does not take into account the relations∫
Ω

d~r [
↔
Aaiai−1...a1 (~r)]T

↔
Aai+1ai+2...as (~r)

=

∫
Ω

d~r

∫
Ω

d~r ′ [
↔
Λa1

↔
Γ1...

↔
Λai(I −

↔
Γ1)
↔
Λai+1

↔
Γ1...

↔
Λas ](~r, ~r ′)

= δaiai+1

↔
αa1a2...ai−1ai+1...as −

↔
αa1...as , (9.82)

implied by (9.56), (9.19) and (9.36). These relations, which hold for all i ∈ {1, 2, ..., s − 1}, allow the
coefficients

↔
αa1...as to be determined for s ≤ 2m from knowledge of the functions

↔
Aa1...as(~r) for all s ≤ m.

Now note that (9.57) and (9.82) imply inequalities such as the positive semidefiniteness of the tensors
↔
αaa and

↔
αa −

↔
αaa , a = 1, 2...p. The question of what other inequalities apply to the coefficients

↔
αa1...as

has been analyzed in depth by Milton (1987a, 1987b). Briefly, and as proved later in Section 9.7, the set of
coefficients

↔
αa1...as for s ≤ 2m derives from, and in turn uniquely determine, a set of normalization matrices

↔
N j , j = 1, 2, ...m, and weight matrices

↔
W j

a, a = 1, 2, ...p, j = 0, 1, 2, ...m − 1 that are real and symmetric
and satisfy

↔
N
j ≥ 0,

↔
W

j
a ≥ 0,

p∑
a=1

↔
W

j
a =

↔
I
j , (9.83)

where
↔
I j denotes the k-dimensional identity matrix, where in a space of 3 dimensions, k = 3(p−1)j . These

matrices have elements N j
τ,µ, W j

a,τ,µ and
Ijτ,µ = δτµ, (9.84)

labeled by strings τ = a1a2...ajα and µ = b1b2...bjβ of integers ai or bi, i = 1, 2, ..j chosen from the set
{1, 2, ...q − 1, q + 1...p} (skipping the reference index q) terminated by a single space index α or β chosen
from the set {1, 2, 3}. Thus each matrix has dimension 3(p− 1)j dependent on j, for p > 2.
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Conversely, if a set of
↔
αa1...as derive from any sequence of 3(p−1)j-dimensional symmetric real matrices

↔
N j , j = 1, 2, .. and

↔
W j

a, a = 1, 2, ...p, j = 0, 1, 2, ... satisfying (9.83) then there always exists a set of
commuting projection operators,

↔
Λa , a = 1, 2, ..p, satisfying (9.36) and (9.37), and another noncommuting

projection operator
↔
Γ1, satisfying (9.19) such that

↔
αa1...as is given by (9.57): we will see in Section 9.7

that, with a suitable choice of basis, the operators
↔
Λa only depend on the weight matrices, while

↔
Γ1 in this

representation only depends on the normalization matrices. However not every sequence of normalization and
weight matrices corresponds to a composite: there are additional subtle restrictions on the operators

↔
Λa and

↔
Γ1 in a composite which lead to nontrivial restrictions on the coefficients

↔
αa1...as . In particular, as noticed

by Zhikov, Kozlov, and Oleinik (1994), when all the components are isotropic a theorem of Meyers (1963)

implies that, in the limit as the volume fraction fa of component a tends to zero,
↔
L∗ cannot depend on La

unless of course La has infinite or zero eigenvalues. In other words there exist inequalities which force any
coefficient

↔
αa1...as , with ai = a for some i ∈ {1, 2, ...s}, to approach zero as fa = Tr(

↔
αa) tends to zero.

It remains to link the expansion coefficients with the weight and normalization matrices and to derive
suitable representations for the operators

↔
Λa and

↔
Γ1. In the rest of the chapter, lower-case greek letters, other

than α or β will always be used to denote strings of indices, where each index except the last is an element
of the set {1, 2, ...q − 1, q + 1...p} and where the final space index takes values from the set {1, 2, 3}. The
length j of a string will refer to the number of indices in the string excluding the final space index. Also we
use commas to separate strings of indices that label the elements of a matrix. Finally, a↔ above a character
accompanied by a superscript j will indicate a 3(p− 1)j dimensional matrix in the string indices,with strings
of length j.

First consider the sequence of fields obtained in the following fashion. We begin with a set of three or
two uniform fields ~xα, (α = 1, 2, 3) each aligned with its corresponding coordinate axis. [The notation is
somewhat bad as ~xα should not be confused with a variable or spatial coordinate, but it follows the notation
given in appendix 1 of Milton (1987a).] Then we set

~pa1a2...akα(~r) =
↔
Λa1

↔
Γ1

↔
Λa2

↔
Γ1...

↔
Γ1

↔
Λak~xα, (9.85)

~ea1a2...akα(~r) =
↔
Γ1

↔
Λa1

↔
Γ1

↔
Λa2

↔
Γ1...

↔
Γ1

↔
Λak~xα. (9.86)

Note that the response coefficients
↔
Aa1...as (~r) derive from these fields: from (9.56) we have

↔
Aa1...as (~r)~xα = ~pa1...asα(~r)− ~ea1...asα(~r). (9.87)

Introducing the standard inner product,

(~u,~v) =

∫
Ω

d~r ~u(~r) · ~v(~r), (9.88)

between any two real fields ~u(~r) and ~v(~r), where the overline denotes complex conjugation, it is clear (see
also (9.82)) that the inner product between any pair of the above fields can be written in terms of the elements
of the coefficient matrix

↔
αa1...as : we have

(~eτ , ~eη) = ατ̄η, (9.89)

(~eτ , ~pη) = (~pτ , ~eη) = ατ̄η, (9.90)
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(~paτ , ~pbη) = δabατ̄aη, (9.91)

where τ and η represent strings of indices of lengths j and k respectively, and τ̄ is obtained from τ by reversing
the sequence of indices in the string.

The space spanned by these fields has a natural stratification into a sequence of orthogonal subspaces
X 0,Y1,X 1,Y2,X 2, ... The subspace X 0 is defined as the subspace spanned by the uniform fields ~xα, α =
1, 2, 3. Let F j denote the subspace spanned by the fields ~xα, ~pη(~r) and ~eη(~r) as η ranges over all strings of
length j. Also let Gj denote the closure of F j−1 under the action of the set of operators

↔
Λa a = 1, 2, ..p: this

is the space spanned by F j−1 and fields ~pτ as τ ranges over strings of length j. Note that F j in turn is the
closure of Gj under the action of

↔
Γ1. These subspaces satisfy the inclusion relations

X 0 = F0 ⊂ G1 ⊂ F1 ⊂ G2 ⊂ F2 ⊂ G3 · · · . (9.92)

Accordingly we define Yj , j = 1, 2, ... as the subspace of Gj which is the orthogonal complement of F j−1,
and X j , j = 1, 2, ... as the subspace of F j which is the orthogonal complement of Gj .

The weights and normalization matricesare obtained through the introduction of an orthonormal basis set
of fields, comprised of fields ~xη(~r), denoted as type x, and fields ~yη(~r), denoted as type y, generated by a
special version of Gram–Schmidt orthogonalization applied to the sequence of fields ~pτ (~r) and ~eτ (~r). These
basis fields ~xη(~r) and ~yη(~r) will be called fields of order j if the string η has length j. Any linear combination
of type x (or type y) basis fields of order j will also be called a type x (or type y) field of order j and we will
establish that these type x (or type y) fields of order j are precisely the fields in the subspace X j (or Yj).

9.6 Construction of the basis fields and weights and normalization fac-
tors

Those readers not interested in the details of the construction of the basis fields and weight and normalization
matrices can skip to Section 9.9. We follow the construction procedure outlined in Appendix 1 of Milton
(1987a). Recall that the uniform fields ~xα are already defined. Let us therefore suppose, for some j ≥ 1, that
all type x basis fields of order j − 1 have been introduced. The weight matrices

↔
W j−1

a are then defined via

W j−1
a,ω,ρ ≡ (~xω,

↔
Λa~xρ), (9.93)

where ω and ρ are strings of length j − 1. Next we introduce the first set of auxiliary fields

~aaω(~r) ≡
↔
Λa(~r)~xω(~r)−

∑
ζ

W j−1
a,ω,ζ~xζ(~r), (9.94)

which are defined in this way to ensure orthogonality to the previous set of type x fields of order j − 1. Also
from (9.37) it is evident that

p∑
a=1

~aaω(~r) = 0, (9.95)

and consequently it suffices to consider the subset of fields ~aaω(~r) as the index a ranges over the reduced set
{1, 2, .., q − 1, q + 1, ...p}. The inner products between the fields in this subset are given by

(~aaω,~abρ) = Y jaω,bρ, (9.96)
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where
Y jaω,bρ ≡ δabW j−1

a,ω,ρ −
∑
ζ

W j−1
a,ω,ζW

j−1
b,ζ,ρ, (9.97)

and the indices a and b belong to the reduced set (as does any other index in the strings ω and ρ apart from the
terminating index). We normalize these fields to obtain the desired family of type y basis fields of order j,

~ybρ ≡
∑
a6=q

∑
ω

Cjbρ,aω~aaω

=
∑
a6=q

∑
ω

Cjbρ,aω(
↔
Λa~xω −

∑
ζ

W j−1
a,ω,ζ~xζ), (9.98)

where ↔
C
j ≡ (

↔
Y
j)−1/2. (9.99)

Similarly, starting from these fields, let us introduce the commuting pair of matrices

U jτ,φ ≡ (~yτ ,
↔
Γ1~yφ), (9.100)

V jτ,φ ≡ (~yτ , (I −
↔
Γ1)~yφ) = δτφ − U jτ,φ, (9.101)

where the string indices τ and φ are now of length j. In terms of these matrices the normalization matrix is
defined via ↔

N
j ≡ (

↔
U
j)−1 −

↔
I
j , (9.102)

implying
↔
U
j = (

↔
I
j +

↔
N
j)−1,

↔
V
j = {(

↔
I
j + (

↔
N
j)−1}−1. (9.103)

Next we generate the second set of auxiliary fields

~bτ (~r) ≡
∫

Ω

d~r ′
↔
Γ1(~r, ~r ′)~yτ (~r ′) −

∑
ν

U jτ,ν~yν(~r), (9.104)

which are orthogonal to the fields ~yφ, and have inner products

(~bτ ,~bφ) =
∑
ν

U jτ,νV
j
ν,φ. (9.105)

Normalizing these fields then produces the next orthonormal set of type x basis fields of order j:

~xφ ≡
∑
τ

Dj
φ,τ
~bτ =

∑
τ

Dj
φ,τ (

↔
Γ1~yτ −

∑
ν

U jτ,ν~yν), (9.106)

where ↔
D
j ≡ (

↔
U
j
↔
V
j)−1/2 = (

↔
N
j)1/2 + (

↔
N
j)−1/2. (9.107)

By induction this completes the definition of the basis fields, and weight and normalization matrices.
From the definitions (9.93),(9.97), (9.100) and (9.101) it is clear that the matrices

↔
W j−1

a ,
↔
Y j ,

↔
U j and

↔
V j

are positive semidefinite. Furthermore from (9.103) and from the orthonormality of the sets of fields, ~xω
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and ~yτ it follows that the weights and normalization matrices satisfy (9.83). We avoid considering the rather
special limiting case where the matrices

↔
W j−1

a ,
↔
U j and

↔
V j have zero eigenvalues. In this event the matrices

↔
Y j and

↔
U j
↔
V j become singular and technical difficulties arise in the above construction procedure because

the inverses needed in (9.99) and (9.107) do not exist.
The set of normalization and weight matrices obtained in this way clearly depend on the choice of reference

component q. However the subspace spanned by type x (or type y) fields of order j remains invariant: it is only
the basis within each subspace that changes when the choice of reference component is changed. Consequently
the eigenvalues of the weight and normalization matrices do not depend on the choice of reference media.

Observe from (9.98) and (9.106) that for a 6= q

↔
Λa~xω =

∑
ζ

W j−1
a,ω,ζ~xζ +

∑
b 6=q

∑
ρ

M j
aω,bρ~ybρ, (9.108)

↔
Γ1~yτ =

∑
ν

U jτ,ν~yν +
∑
φ

Xj
τ,φ~xφ, (9.109)

where ↔
X
j ≡ (

↔
U
j
↔
V
j)1/2 = {(

↔
N
j)1/2 + (

↔
N
j)−1/2}−1. (9.110)

↔
M

j ≡ (
↔
Y
j)1/2 = (

↔
C
j)−1, (9.111)

and
↔
Y j in turn is given by (9.97).
Applying

↔
Λc, with c 6= q to both sides of this first equation and

↔
Γ1 to both sides of the second equation

gives ∑
b 6=q

∑
ρ

M j
aω,bρ

↔
Λc~ybρ =

∑
ζ

(δacδωζ −W j−1
a,ω,ζ)

↔
Λc~xζ , (9.112)

∑
φ

Xj
τ,φ

↔
Γ1~xφ =

∑
ν

V jτ,ν
↔
Γ1~yν . (9.113)

Substituting (9.108) and (9.109) back into these expressions produces after some algebraic manipulation,
↔
Λc~ybρ =

∑
a6=q

∑
ζ

Qjc,bρ,aζ~yaζ +
∑
ζ

M j
bρ,cζ~xζ , (9.114)

↔
Γ1~xν =

∑
φ

V jν,φ~xφ +
∑
φ

Xj
ν,φ~yφ, (9.115)

where
↔
Qjc is the matrix,

↔
Qjc ≡

↔
M

j
c(
↔
W

j−1
c )−1(

↔
M

j
c)
T , (9.116)

and
↔
M j

a, with transpose (
↔
M j

a)T , is the rectangular submatrix of the square matrix
↔
M j defined in (9.111) with

elements M j
aτ,λ labeled by the strings τ and λ.

So
↔
Λc acting upon any basis field produces a linear combination of two fields: one field of the same order

and type as the basis field and the other field of adjacent order and opposite type. By contrast
↔
Γ1 acting on

any basis field produces a field of the same order but mixed type.
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By construction the basis fields of a given order form an orthonormal set. To establish the orthonormality
of the entire basis set we still need to show that the basis fields of order j are orthogonal to the subspace
spanned by the fields of order at most j − 1. Note that this subspace can also be identified with the subspace
F j−1 spanned by the fields xα, ~pη(~r), and ~eη(~r) as η ranges over strings of length k ≤ j − 1. We argue
by induction and begin by assuming that the collection of fields ~xη , and ~yη of order at most j − 1 forms an
orthonormal basis of F j−1: this is clearly true when j = 1 because then F0 is the three dimensional space
spanned by the fields ~xα. In particular the assumption implies that within F j−1 basis fields of different types
or different orders are orthogonal. Since

↔
Λa is self-adjoint (9.94) implies that

(~aaω, ~xη) = (~xω,
↔
Λa~xη), (~aaω, ~yη) = (~xω,

↔
Λa~yη), (9.117)

where the string ω has length j − 1. The choice of auxiliary fields guarantees that the first inner product is
zero when the length k of the string η equals j−1. It is also zero when k < j−1 because then (9.108) implies
↔
Λa~xη ∈ Gj−1 where Gj−1 can now be identified with the space spanned by fields in F j−2 and type y fields
of order j − 1. Similarly the second inner product is zero because (9.114) implies

↔
Λa~yη ∈ Gj−1. Since these

inner products are zero we conclude that the auxiliary fields ~aaω are orthogonal to F j−1. The type y fields
of order j are linear combinations of these auxiliary fields and so must also be orthogonal to the space F j−1.
Analogous considerations show that the inner products

(~bτ , ~xη) = (~yτ ,
↔
Γ1~xη), (~bτ , ~yη) = (~yτ ,

↔
Γ1~yη), (9.118)

implied by (9.104) are zero when the string τ has length j. We deduce that the type x fields of order j are
also orthogonal to the space F j−1. This completes the proof of orthonormality of the basis. As a corollary, it
follows that X j and Yj represent respectively the type x fields and type y fields of order j.

9.7 Representation of the projection operators and recovery of weight
and normalization matrices from series expansion coefficients

Clearly (9.108) and (9.114) determine the action of
↔
Λa on the basis fields while (9.109) and (9.115) determine

the action of
↔
Γ1. It immediately follows that the projection operators

↔
Γ1 and

↔
Λa for a 6= q are represented in
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this basis by the block tridiagonal infinite matrices

↔
Λa =



↔
W 0

a

↔
M1

a

(
↔
M1

a)T
↔
Q1
a

0

0

↔
W 1

a

↔
M2

a

(
↔
M2

a)T
↔
Q2
a

. . .


,

↔
Γ1 =



0 0 0

0

↔
U1

↔
X1

↔
X1

↔
V 1

0

0 0

↔
U2

↔
X2

↔
X2

↔
V 2

. . .


.

(9.119)

The blocks in these matrices act upon fields of the order indicated by the block superscript, with the exception
of the rectangular blocks (

↔
M j

a)T which act on fields of order j − 1. The blocks going across a given row act
on fields alternating between type x and type y, beginning with type x. The tridiagonal form of the matrices
representing

↔
Γ1 and

↔
Λa reflects the fact that the procedure for constructing the basis fields is similar to the

procedure used in the Lanczos algorithm for tridiagonalization of symmetric matrices (see, for example, pages
414–419 of Strang 1986). The operator

↔
Λq = I −

∑
a6=q

↔
Λa (9.120)

also can be represented by the matrix in (9.119) with a = q provided we define
↔
M j

q via

↔
M

j
q ≡ −

∑
a6=q

↔
M

j
a, (9.121)

and
↔
Qjq via (9.116).

The matrix representing
↔
Λa1

↔
Γ1

↔
Λa2

↔
Γ1...

↔
Γ1

↔
Λas is generated by taking products of the matrices in (9.119).

Also for any operator
↔
B(~r, ~r ′) with elements Bαβ(~r, ~r ′) we have∫

Ω

d~r

∫
Ω

d~r ′ Bαβ(~r, ~r ′) = (~xα,
↔
B ~xβ). (9.122)

In particular then
↔
αa1...as is the first block which appears in the matrix representing

↔
Λa1

↔
Γ1

↔
Λa2

↔
Γ1...

↔
Γ1

↔
Λas .

In this way we obtain expressions, such as
↔
αa1=

↔
W

0
a1 , (9.123)

↔
αa1a2=

↔
M

1
a1

↔
U

1(
↔
M

1
a2)T , (9.124)
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↔
αa1a2a3=

↔
M

1
a1

↔
U

1
↔
Q1
a2

↔
U

1(
↔
M

1
a3)T +

↔
M

1
a1

↔
X

1
↔
W

1
a2

↔
X

1(
↔
M

1
a3)T , (9.125)

↔
αa1a2a3a4=

↔
M

1
a1

↔
U

1
↔
Q1
a2

↔
U

1
↔
Q1
a3

↔
U

1(
↔
M

1
a4)T +

↔
M

1
a1

↔
U

1
↔
Q1
a2

↔
X

1
↔
W

1
a3

↔
X

1(
↔
M

1
a4)T

+
↔
M

1
a1

↔
X

1
↔
W

1
a2

↔
X

1
↔
Q1
a3

↔
U

1(
↔
M

1
a4)T +

↔
M

1
a1

↔
X

1
↔
W

1
a2

↔
V

1
↔
W

1
a3

↔
X

1(
↔
M

1
a4)T

+
↔
M

1
a1

↔
X

1
↔
M

2
a2

↔
U

2(
↔
M

2
a3)T

↔
X

1(
↔
M

1
a4)T , (9.126)

for the
↔
αa1...as in terms of the normalization and weight matrices. Conversely, if the coefficients

↔
αa1...as

are known then (9.123) gives
↔
W 0

a1 , and (9.124),(9.125), and (9.126) can be solved successively for
↔
U1,

↔
W 1

a2 ,

and
↔
U2. These enter the equations linearly. Prior to solving each one of these equations it is necessary to

determine the remaining matrices,
↔
M1

a1 ,
↔
Q1
a1 ,
↔
X1,

↔
V 1 or

↔
M2

a2 that also enter the equation in question: these
are obtained from their definitions (9.111), (9.116), (9.110), and (9.101), which give them in terms of the
matrices

↔
W 0

a1 ,
↔
U1, or

↔
W 1

a2 , found from solving the previous equations.
In general the linear equation for the remaining unknown matrix

↔
U j or

↔
W j

a, encountered at respectively
the 2jth stage or (2j + 1)th stage, will be sandwiched between products of the matrices

↔
M i and

↔
Xi. These

linear equations have a solution if we assume, as before, that the positive semidefinite matrices
↔
M i and

↔
Xi

are nonsingular for all i ≤ j.
It can be checked through matrix multiplication that the set of matrices

↔
Γ1 and

↔
Λa defined via (9.119)

are projection operators satisfying (9.19), (9.36), and (9.37) for any choice of normalization and weight ma-
trices satisfying (9.83). Consequently any further restrictions on the set of possible normalization and weight
matrices must come from additional information about the operators

↔
Γ1 and

↔
Λa , such as the identity (9.70)

which holds for two-dimensional composites.
Note that we have only shown that the weights and normalization matrices can be recovered from the

coefficients
↔
αa1...as . A separate question, which we do not address, is whether these coefficients can be

recovered from the series expansion (9.55) in powers of the elements of the matrices εa, a = 1, 2, . . . , p.
Since the matrix εaL−1

0 does not generally commute with εbL−1
0 , when b 6= a it seems likely that one should

be able to recover the coefficients
↔
αa1...as if p was sufficiently large. But without a proof the most we can say

is what we said in the introduction: that the series probably contains sufficient information to determine the
weight and normalization matrices.

9.8 Simplification for two-dimensional, isotropic composites

It can be checked through matrix multiplication that the set of matrices
↔
Γ1 and

↔
Λa defined via (9.119) are

projection operators satisfying (9.19), (9.36), and (9.37) for any choice of normalization and weight matrices
satisfying (9.83). Consequently any further restrictions on the set of possible normalization and weight matri-
ces must come from additional information about the operators

↔
Γ1 and

↔
Λa , such as the identity (9.70) which

holds for two-dimensional composites.
In particular, if the composite is two-dimensional, statistically isotropic and has isotropic components

then (9.70) implies that each normalization matrix is simply the identity matrix. Indeed, the isotropy of the

composite implies
↔
L∗=

↔
I L

∗ for all choices of moduli La and consequently all the coefficients
↔
αa1...as are
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also proportional to
↔
I . It follows that the weights and normalization matrices are also proportional to

↔
I in

their space indices:

W j
c,a1...asα,b1...bsβ

= wjc,a1...as,b1...bsδαβ ,

N j
a1...asα,b1...bsβ

= nja1...as,b1...bsδαβ , (9.127)

and hence commute with
↔
R⊥. The isotropy of the components implies

↔
R⊥ also commutes with the operators

↔
Λa . We next need to establish that

↔
R⊥~xa1...asα = (−1)s

2∑
β=1

R⊥αβ~xa1...asβ , (9.128)

↔
R⊥~ya1...asα = (−1)s+1

2∑
β=1

R⊥αβ~ya1...asβ . (9.129)

To see this first observe that (9.71) implies that F j and Gj are each closed under the action of
↔
R⊥, and as a

consequence so are the spaces X j and Yj . Now we proceed by supposing there exists an j such that (9.128)
holds true for all s ≤ j − 1 and for all permutations of indices: this is clearly true when j = 0. Now for any
strings ρ and φ of length j − 1 ≥ 0, (9.98) and (9.106) imply

~ybρ −
∑
a6=q

∑
ω

Cjbρ,aω(
↔
Λa~xω) ∈ Fj−1, (9.130)

~xφ −
∑
τ

Dj
φ,τ (

↔
Γ1~yτ ) ∈ Gj , (9.131)

where ω has length j − 1. By our supposition we can use to (9.128) to compute the action of
↔
R⊥ on ~xω .

Applying
↔
R⊥ to (9.130) and using (9.127) and (9.71) brings one to the conclusion that

↔
R⊥~ya1...ajα + (−1)j

2∑
β=1

R⊥αβ~ya1...ajβ ∈ Fj−1, (9.132)

for all combinations of indices. But Yj is closed under the action of
↔
R⊥ and since Yj is orthogonal to F j−1

we infer that the field in (9.132) is zero, i.e., that (9.129) holds for s = m. Applying
↔
R⊥ to (9.131) and using

a similar argument establishes that (9.128) holds when s = m+ 1. By induction this completes the proof of
(9.128) and (9.129). In turn these imply via (9.70) that

U jτ,φ = (~yτ ,
↔
Γ1~yφ) = (~yτ , (

↔
R⊥)T

↔
Γ1

↔
R⊥~yφ) = (~yτ , (I −

↔
Γ1)~yφ) = δτφ − U jτ,φ.

(9.133)

From the definition (9.102) it follows that
↔
N
j =

↔
I
j , (9.134)
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and consequently the operator
↔
Γ1 is represented by the matrix

↔
Γ1 =

1

2



0 0 0

0

↔
I 1

↔
I 1

↔
I 1

↔
I 1

0

0 0

↔
I 2

↔
I 2

↔
I 2

↔
I 2

. . .


. (9.135)

Note also from (9.128) and (9.129) that
↔
R⊥ has the representation,

↔
R⊥ =



↔
R0
⊥

−
↔
R1
⊥

0

0

↔
R1
⊥

−
↔
R2
⊥

. . .


, (9.136)

where
↔
R
j
⊥ is the rotation matrix with elements

Rj⊥a1...asα,b1...bsβ = R⊥αβ

s∏
i=1

δaibi . (9.137)

When p = 2 and the composite is two-dimensional but possibly anisotropic, the set of all possible se-
quences of weight and normalization matrices has been completely characterized, and furthermore microge-
ometries have been identified which correspond to every such sequence. This was accomplished by Milton
(1986b) for composites of two isotropic phases and by Clark and Milton (1994) for a polycrystal built from
a single anisotropic crystal. In both cases the microgeometries that can simulate any sequence were found to

be a hierarchical laminate. These two-dimensional microstructures can mimic the entire behavior of
↔
L∗ as a

function of the component moduli while keeping the microstructure fixed.

9.9 Bounds and methods for bounding the effective tensor

Bounds on the effective tensor
↔
L∗ follow directly from the variational principles,

~E0·
↔
L∗ ~E0 = min

~e(~r)

∫
Ω

d~r (~E0 + ~e(~r)) ·
↔
L(~r)(~E0 + ~e(~r)), (9.138)

~J0 · (
↔
L∗)−1 ~J0 = min

~j(~r)

∫
Ω

d~r ( ~J0 +~j(~r)) · (
↔
L(~r))−1( ~J0 +~j(~r)), (9.139)
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where ~E0 and ~J0 are uniform fields, and the minimization extends over statistically homogeneous or periodic
fields ~e(~r) and~j(~r) satisfying

~∇× ~e(~r) = 0,

∫
Ω

d~r ~e(~r) = 0, (9.140)

~∇ ·~j(~r) = 0,

∫
Ω

d~r ~j(~r) = 0. (9.141)

Substitution of the trial fields ~e(~r) = 0 and~j(~r) = 0 gives the arithmetic and harmonic mean bounds,

[

p∑
a=1

↔
αa (La)−1]−1 ≤

↔
L∗j−1 ≤

p∑
a=1

↔
αa La. (9.142)

Better bounds result from a more judicious choice of trial fields. For example, to derive improved upper
bounds one can follow the approach of Beran (1965, 1966) and choose a trial field of the form

~e(~r) =

j∑
s=1

p∑
a1,..,as=1

3∑
α=1

ca1a2...asα~ea1a2...asα(~r), (9.143)

where the fields ~ea1a2...asα(~r) are given by (9.86), and then minimize (9.138) to find the best choice of the
coefficients ca1a2...asα, which are vectors in the field indices. The bound generated by this procedure when
expanded in a power series agrees with the terms in the series (9.55) for all s up to and including s = 2j+1, and
for this reason is called the Wiener–Beran type upper bound of order 2j+1: a bound is said to be of orderm if

the series expansion of the bound and the series expansion of
↔
L∗ agree for all s up to and including s = m. An

analogous choice of trial field~j(~r) generates the Wiener–Beran type lower bound of order 2j+ 1 through the
variational principle (9.139). Bounds of even order are generated by substituting an appropriate choice of trial
polarization field into the Hashin–Shtrikman variational principles (Hashin and Shtrikman 1962). yielding
Hashin–Shtrikman type bounds.

These bounds on
↔
L∗ are naturally expressed in terms of the normalization and weight matrices. For this

purpose it is useful to expand
↔
L∗ as a continued fraction rather than as a power series. A direct extension of

the analysis of Milton (1987a,1987b) gives a continued fraction expansion for the effective tensor

↔
L∗≡

↔
L∗0, (9.144)

generated by setting
L0 = Lq, (9.145)

and eliminating the tensors
↔
L∗j for j ≥ 1 from the recursion relations

↔
L∗j−1 =

p∑
a=1

↔
W

j−1
a La

−
∑
a,b6=q

εa
↔
M

j
a{
↔
I
jL0 +

∑
c6=q

↔
Qjcεc + (

↔
N
j)1/2

↔
L∗j(

↔
N
j)1/2}−1(

↔
M

j
b)
T εb,

(9.146)
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where, in accordance with our previous definitions,

↔
Qjc =

↔
M

j
c(
↔
W

j−1
c )−1(

↔
M

j
c)
T ,

↔
M

j = (
↔
Y
j)1/2, Y jaω,bρ = δabW

j−1
a,ω,ρ −

∑
ζ

W j−1
a,ω,ζW

j−1
b,ζ,ρ,

(9.147)

and
↔
M j

a, with transpose (
↔
M j

a)T , is the rectangular submatrix of the square matrix
↔
M j with elements M j

aτ,λ

labeled by the strings τ and λ. Note that
↔
L∗j has elements L∗jτkηm labeled by field indices k,m ∈ {1, 2..p}

and string indices τ = a1a2..ajα, µ = b1b2..bjβ with ai and bi ∈ {1, 2, ..q − 1, q + 1, ..p}, and α and
β ∈ {1, 2, 3}. Also note that

↔
W j

a,
↔
M j

a and
↔
N j act on the string indices, not on the field indices.

There are other equivalent ways of expressing
↔
L∗j−1 in terms of

↔
L∗j (Milton 1987a). For example (9.146)

can be replaced by its dual form

(
↔
L∗j−1)−1 =

p∑
a=1

↔
W

j−1
a (La)−1

−
∑
a,b6=q

ηa
↔
M

j
a{
↔
I
jL−1

0 +
∑
c6=q

↔
Qjcηc + (

↔
N
j)−1/2(

↔
L∗j)−1(

↔
N
j)−1/2}−1(

↔
M

j
b)
Tηb,

(9.148)

where
ηa ≡ (La)−1 −L−1

0 . (9.149)

Eliminating the matrices
↔
L∗j from this recursion relation generates an alternative continued fraction expansion

of
↔
L∗.
The tensors

↔
L∗j , j = 0, 1, 2, ... have an interpretation in the context of the solution ~J(~r) for any given

field ~E0 ∈ X j (the space X j now plays the role that was played by the uniform fields) to the equations

↔
Γ
j
1
~J = 0, ~J(~r) =

↔
L(~r)(~E0(~r) + ~e(~r)),

↔
Γ
j
1~e = ~e, (9.150)

where
↔
Γ
j
1 is the nonlocal operator,

↔
Γ
j
1 =

↔
Γ1 −

↔
Υ
j , (9.151)

and
↔
Υj (which commutes with

↔
Γ1) is the projection onto the space

Ej ≡ {~u(~r) ∈ X j ⊕ Yj |
↔
Γ1~u = ~u} (9.152)

of order j fields which are curl-free and have zero average value. In the representation (9.119)
↔
Γ
j
1 is obtained

from
↔
Γ1 by setting the blocks

↔
U j ,

↔
V j and

↔
Xj to zero. Note that

↔
Γ
j
1 is a projection and acts upon any field

to produce a curl-free field with zero average value. So in particular ~e(~r) (but not ~E0(~r)) is the gradient of a
potential.

A simple application of the Lax–Milgram theorem (see, for example, Section 5.8 of Gilbarg and Trudinger
1983) shows that these equations always have a unique solution for ~J(~r), for any choice of field ~E0 ∈ X j ,
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provided that the set of tensors
↔
Λa are positive definite and bounded. Let us define

↔
Γ
j
0 as the projection onto

the subspace X j and ~J0 as the component
~J0 =

↔
Γ
j
0J , (9.153)

of the field ~J(~r) which lies in the subspace X j . Since the relation between ~J0 and ~E0 is linear we can write

~J0 =
↔
L∗j ~E0. (9.154)

This linear relation serves to define
↔
L∗j : it is a linear map from the space X j to itself. When j = 0 these

equations reduce to the previous set (9.3), (9.10), and (9.12) and so we can make the identification (9.144)

between
↔
L∗ and

↔
L∗0.

From the matrix representation (9.119) of the operators
↔
Λa and

↔
Γ1 it is clear that

↔
Λa and

↔
Γ
j
1 do not couple

~E0 with fields in the space Gj . Thus the fields in Gj play no role in the solutions of the equations (9.150).
Consequently we can now eliminate from our basis those fields ~xτ , ~yτ ∈ Gj . In the remaining reduced basis
the operators

↔
Λa and

↔
Γ
j
1 have the representation

↔
Λa =



↔
W j

a

↔
M j+1

a

(
↔
M j+1

a )T
↔
Qj+1
a

0

0

↔
W j+1

a

↔
M j+2

a

(
↔
M j+2

a )T
↔
Qj+2
a

. . .


,

↔
Γ
j
1 =



0 0 0

0

↔
U j+1

↔
Xj+1

↔
Xj+1

↔
V j+1

0

0 0

↔
U j+2

↔
Xj+2

↔
Xj+2

↔
V j+2

. . .


.

(9.155)

The similarity with (9.119) makes it evident that whatever role the sequence
↔
W 0

a,
↔
N1,

↔
W 1

a,
↔
N2,

↔
W 2

a, ... of

weight and normalization matrices plays in determining
↔
L∗ is played in an identical way by the sequence

↔
W j

a,
↔
N j+1,

↔
W j+1

a ,
↔
N j+2,

↔
W j+2

a , ... in determining
↔
L∗j . This self-similarity is also evident from the continued

fraction expansions for
↔
L∗ and

↔
L∗j implied by (9.146).

If the entire set of normalization and weight matrices is known then these continued fractions expansions

allow the effective tensor
↔
L∗ to be computed to an arbitrarily high degree of accuracy. For example we could

truncate the continued fraction at some stage m by setting

↔
L∗m =

↔
I
mLq, (9.156)
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which is a natural choice, corresponding to replacing the set of weights
↔
Wm

a by the weights
↔
W

m
q =

↔
I
m,

↔
W

m
a = 0, ∀a 6= q, (9.157)

consistent with the constraints (9.83). Then the tensor
↔
L∗0 obtained from the recursion relations (9.146) is an

m-th order rational approximate to
↔
L∗, and it can be proved that this approximate converges to

↔
L∗ asm tends

to infinity, for any positive definite bounded set of moduli La, a = 1, .., p (Milton 1987b). The approximates
also converge when the moduli are complex, provided the tensors La are symmetric and bounded and such
that there exists a phase angle θ for which

Re(eiθLa) > 0, ∀a, (9.158)

where Re(A) denotes the real part of the quantity A. Such complex moduli have a physical interpretation.
When the fields ~J and ~E oscillate sinusoidally in time t with frequency ω then they can be expressed as the
real part of complex fields ~Jc(~r) and ~Ec(~r),

~J(~r, ω) = Re(eiwt ~Jc(~r)), ~E(~r, ω) = Re(eiwt ~Ec(~r)). (9.159)

Provided the wavelength of this oscillation is sufficiently large compared with the microstructure these com-
plex fields satisfy the quasistatic equations,

~∇ · ~Jc(~r) = 0, ~∇× ~Ec(~r) = 0, ~Jc(~r) =
↔
L(~r)~Ec(~r), (9.160)

with a complex tensor
↔
L(~r) given by

↔
L(~r) =

p∑
a=1

↔
ΛaLa, (9.161)

where the moduliLa are complex and frequency dependent. The thermodynamic requirement that dissipation
of power into entropy be positive ensures that (9.158) holds when θ = 0. Each rational approximate satisfies
the properties of covariance and disjunction, discussed in the introduction, and has the additional required
analytic property that

Re(eiθ
↔
L∗) > 0, (9.162)

for any set of tensors La satisfying (9.158).

Bounds on
↔
L∗ follow from elementary bounds on

↔
L∗j . In particular, the inequalities

0 ≤
↔
L∗j ≤ ∞

↔
I
j , (9.163)

or equivalently the inequalities

[

p∑
a=1

↔
W

j−1
a (La)−1]−1 ≤

↔
L∗j−1 ≤

p∑
a=1

↔
W

j−1
a La, (9.164)

when substituted in the recursion relations (9.146) or (9.149) produce the Wiener–Beran type bounds on
↔
L∗

of order 2j − 1, while the inequalities

L−
↔
I
j ≤

↔
L∗j ≤ L+

↔
I
j , (9.165)
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which hold for all tensors L− and L+ such that

L− ≤ La ≤ L+, 1 ≤ a ≤ p, (9.166)

when substituted in (9.146) or (9.149) produce the Hashin–Shtrikman type bounds on
↔
L∗ of order 2j. By

substitution we mean precisely that an upper bound on
↔
L∗ is obtained by setting

↔
L∗j =∞

↔
I j or

↔
L∗j = L+

and solving the recursion relations for
↔
L∗0 and that a lower bound on

↔
L∗ is obtained by setting

↔
L∗j = 0 or

↔
L∗j = L− and solving for

↔
L∗0.

9.10 Bounds using the field-equation recursion method
The inequalities (9.164) and (9.165) can be easily derived without reference to variational principles using
the field recursion method for bounding effective tensors. This approach utilizes the recursive structure of the
equations (9.146) and the inequalities (9.83) on the normalization and weight matrices. The first step in the
method is to conjecture a set of restrictions that might apply to

↔
L∗j irrespective of what values the weights and

normalization matrices take, subject only to the constraints (9.83)-or perhaps additional constraints if these are
known. This conjecture need not be very restrictive, and could be guided by the form of the recursion relations
(9.146). For example let us conjecture that

↔
L∗j is positive semidefinite. The next step is to first check that

the tensor
↔
L∗m given by (9.156) satisfies the conjecture, and indeed it does. Then the remaining task is to

assume the conjecture is true for some j and show this implies
↔
L∗j−1 also satisfies the conjecture, for any

choice of the weight matrices
↔
W j−1

a and normalization matrices
↔
N j satisfying (9.83): it obviously does since

from the recursion relations (9.146) and (9.148) it follows that (9.163) implies (9.164) which in turn implies
↔
L∗j−1 is positive semidefinite. By induction any rational approximate for

↔
L∗j generated by choosing m > j

and making the substitution (9.156) satisfies the conjecture, and since these approximates converge to
↔
L∗j as

m tends to infinity, we conclude that
↔
L∗j itself must be positive semidefinite. The conjecture is proved and it

clearly implies both (9.164) and (9.165). The recursion method has the advantage that it also works when the
moduli La are complex (Milton, 1987a; 1987b)

In the special case of a composite with p = 2 the strings of indices merely consist of a repeated string
of either 2′s or 1′s (according to whether q = 1 or q = 2) terminated by a space index. Let us drop this
redundant information and allow the elements of the weight and normalization matrices to be addressed only
by the space indices. Also when p = 2 the matrices

↔
W

j
1 and

↔
W

j
2 =

↔
I j −

↔
W

j
1 commute and so we have

↔
Y
j =

↔
W

j
1

↔
W

j
2,

↔
M

j = (
↔
W

j
1

↔
W

j
2)1/2,

↔
Qj1 =

↔
W

j
2,

↔
Qj2 =

↔
W

j
1. (9.167)

Without loss of generality we take q = 2, and correspondingly L0 = L2. Then the recursion relation (9.146)
simplifies to

↔
L∗j−1 =

↔
W

j−1
1 L1 +

↔
W

j−1
2 L2

− (L1 −L2)
↔
M

j{
↔
W

j−1
1 L2 +

↔
W

j−1
2 L1 + (

↔
N
j)1/2

↔
L∗j(

↔
N
j)1/2}−1

↔
M

j(L1 −L2),

(9.168)
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which for L1 6= L2 can be inverted to give
↔
L∗j in terms of

↔
L∗j−1:

↔
L∗j = (

↔
N
j)−1/2{−

↔
W

j−1
1 L2 −

↔
W

j−1
2 L1

+ (L1 −L2)
↔
M

j(
↔
W

j−1
1 L1 +

↔
W

j−1
2 L2 −

↔
L∗j−1)−1

↔
M

j(L1 −L2)}(
↔
N
j)−1/2.

(9.169)

Supposing that the components are isotropic phases occupying volume fractions f1 and f2, (9.63) implies

W 0
1,α,β = f1δαβ , W 0

2,α,β = f2δαβ , (9.170)

and consequently when j = 1 (9.169) takes the form

↔
L∗1 = (

↔
N

1)−1/2
↔
Y ∗(

↔
N

1)−1/2, (9.171)

where
↔
Y ∗, not to be confused with the matrix

↔
Y j , is given by

↔
Y ∗ = −f1

↔
I L2 − f2

↔
I L1 + f1f2(L1 −L2)(f1

↔
I L1 + f2

↔
I L2−

↔
L∗)−1(L1 −L2).

(9.172)

9.11 Bounds using the translation method

It turns out that bounds on
↔
L∗ derived via the translation method follow from elementary bounds on this ten-

sor
↔
Y ∗. This method was discovered independently by Murat and Tartar (1979b;1985;1985) and by Lurie

and Cherkaev (1982;1984) and applied to generate bounds that characterize for n = 1 the region in tensor

space filled by the range of values
↔
L∗ takes as the microstructure varies over all configurations while keeping

the moduli L1 and L2 and the volume fraction f1 fixed. Subsequently it was noted that the corresponding
region filled by the possible values of

↔
Y ∗ did not depend on the choice of volume fraction f1 (Milton 1986a).

Cherkaev and Gibiansky (1992) extended the characterization to n = 2, assuming a two-dimensional geome-
try. Subsequently Clark and Milton (1995) obtained the characterization for arbitrary n, using fractional linear
transformations which preserve the analytic properties as functions of the component moduli.

To explain the translation method let us focus on bounding
↔
L∗ from below. Then one needs to find a

suitable translation tensor Tαiβk, where i, k are field indices and α, β are space indices, satisfying

↔
I La ≥

↔
T , a = 1, 2, (9.173)

and with the additional property that ∫
Ω

d~r ~∇ψ·
↔
T ~∇ψ ≥ 0, (9.174)

for all periodic potentials ψ with elements ψk(~r), k = 1, 2, ..n. Any positive semidefinite tensor satisfies this
last constraint. However the converse is not true, and in fact the interesting applications to bounds come from
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translations
↔
T which are not positive semidefinite. The key idea in the method is to consider a comparison

composite with its moduli translated from
↔
L(~r) to the moduli

↔
L′(~r) ≡

↔
L(~r)−

↔
T , (9.175)

which are positive semidefinite as a consequence of (9.173). From (9.174) and from the variational definition

(9.138) applied to the effective tensor
↔
L′∗ of the comparison composite we have, for all uniform fields ~E0,

~E0·
↔
L′∗ ~E0 = min

ψ(~r)
{
∫

Ω

d~r (~E0 − ~∇ψ(~r)) · (
↔
L′(~r))(~E0 − ~∇ψ(~r))}

= min
ψ(~r)
{
∫

Ω

d~r (~E0 − ~∇ψ(~r)) · (
↔
L(~r))(~E0 − ~∇ψ(~r))

−
∫

Ω

d~r (~∇ψ(~r)) · (
↔
T )(~∇ψ(~r)) − ~E0·

↔
T ~E0}

≤ min
ψ(~r)
{
∫

Ω

d~r (~E0 − ~∇ψ(~r)) · (
↔
L(~r))(~E0 − ~∇ψ(~r))} − ~E0·

↔
T ~E0

= ~E0 · (
↔
L∗ −

↔
T )~E0, (9.176)

which is equivalent to the tensor inequality
↔
L′∗ ≤

↔
L∗ −

↔
T . (9.177)

Substituting this in the harmonic mean bounds on
↔
L∗,

(
↔
L′∗)−1 ≤

∫
Ω

d~r (
↔
L′(~r))−1, (9.178)

yields the translation bounds,

(
↔
L∗ −

↔
T )−1 ≤

∫
Ω

d~r (
↔
L(~r)−

↔
T )−1, (9.179)

which for composites of two isotropic materials reduces to

(
↔
L∗ −

↔
T )−1 ≤ f1(

↔
I L1−

↔
T )−1 + f2(

↔
I L2−

↔
T )−1. (9.180)

Cherkaev and Gibiansky (1992) noticed through algebraic manipulation, that these bounds when expressed
in terms of

↔
Y ∗ simplify to

↔
Y ∗+

↔
T ≥ 0. (9.181)

In their proof they assumed thatL1 andL2 commute. Later this assumption was found unnecessary and more-
over a direct and simple proof of (9.181) was found from a variational expression for

↔
Y ∗ (Milton 1991). An

interesting feature of the translation method is that the sharpest bounds are usually obtained from translations
↔
T with couplings between the fields, even when L1 and L2, and hence

↔
L∗, have no such couplings.
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When p > 2 the transformation (9.146) cannot simply be inverted because the matrices
↔
M j

a are rectangular
and have no unique inverse. Also it is clear that the tensor

↔
L∗j is larger than the tensor

↔
L∗j−1 and so contains

more information. However if more than one field was present, i.e., if n ≥ 2, and if
↔
L∗ was known as a

function of the La, then in principle one could expand
↔
L∗ in a power series, possibly extract the coefficients

↔
αa1...as and subsequently find the weights and normalization matrices. By this means one could recover both
↔
L∗j and ↔

Y ∗j ≡ (
↔
N
j)−1/2

↔
L∗j(

↔
N
j)−1/2 (9.182)

as a function of the La through the continued fraction formula for
↔
L∗j implied by (9.146). Naturally we

expect that there exists a more direct way of recovering the function
↔
Y ∗j(L1,L2, ..,Lp) from the function

↔
L∗j−1(L1,L2, ..,Lp). One intriguing question is whether this direct recovery process, whatever it is, works
when n = 1. If it does then the sequence of matrices

↔
N j and

↔
W j

a could be recovered by expanding each func-

tion
↔
Y ∗j−1(L1,L2, ..,Lp) to first order, and consequently

↔
L∗ could be calculated even when more than one

field is present. In other words, knowledge of the conductivity function
↔
σ ∗(σ1, σ2, ...σp) without couplings

would be sufficient to uniquely determine the effective tensor
↔
L∗ with couplings present.
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Abstract
In this chapter we give a rigorous derivation of the field equation recursion method in the
abstract theory of composites to two-component composites with isotropic phases. This
method is of great interest since it has proven to be a powerful tool in developing sharp
bounds for the effective tensor of a composite material. The reason is that the effective
tensor L∗ can be interpreted in the general framework of the abstract theory of composites
as the Z-operator on a certain orthogonal Z(2) subspace collection. The base case of the
recursion starts with an orthogonal Z(2) subspace collection on a Hilbert space H, the Z-
problem, and the associated Y -problem. We provide some new conditions for the solvability
of both the Z-problem and the associated Y -problem. We also give explicit representations of
the associated Z-operator and Y -operator and study their analytical properties. An iteration
method is then developed from a hierarchy of subspace collections and their associated
operators which leads to a continued fraction representation of the initial effective tensor L∗.

Key words: field recursion method, abstract theory of composites, effective tensors, subspace collections,
Z-operators, Y -operators, analytic properties
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10.1 Introduction

In this chapter we give a rigorous derivation of the field equation recursion method (Milton and Golden 1985;
Milton 1987a, 1987b, 1991; Clark and Milton 1994; Clark 1997 and Chapter 29 of Milton 2002 in the abstract
theory of composites as described in Chapter 2 of this book). The field equation recursion method utilizes
information obtained from series expansions to derive bounds on the effective response. The series expansion
information is encoded in a series of positive semidefinite weight and normalization matrices. The response
could be that of a composite material, resistor network, spring network, or as shown in Chapter 3, that of
a multicomponent body with inclusions having a size comparable to that of the body. More generally, it is
applicable to any problem that can be phrased, in the abstract theory of composites, as a Y -problem or Z-
problem, involving subspace collections with orthogonal subspaces: see Chapter 2. Thus it is applicable
to the many equations discussed in Chapter 1, where the key identity is used to establish orthogonality of
subspaces see Section 1.19 of Chapter 1, and Chapter 3. In particular, as follows from Section 3.12 in
Chapter 3, it is applicable to the electromagnetism in multiphase bodies, and thus provides an alternative to
bounds based on variational principles or on the analyticity, established in Chapter 3 and more rigorously
in Chapter 4, of the Dirichlet-to-Neumann map as functions of the frequency and component moduli. As
shown in Chapter 4, the bounds can be used in an inverse way to give information on the interior structure
inside the body.

For composite materials the n-th order series expansion terms, in the expansion of the effective moduli
and fields in powers of the contrast between the materials, can in theory be derived from information derived
from n-point correlation functions. These incorporate, for example in the case of two-component composites,
the information contained in the probability that a polyhedron lands with all vertices in phase 1 when dropped
randomly in the composite. The series expansions were first derived by Brown, Jr. (1955) for two phase
conducting composites and were subsequently extended by others (Herring 1960; Prager 1960; Beran and
Molyneux 1963; Beran 1968; Beran and McCoy 1970; Fokin and Shermergor 1969; Dederichs and Zeller
1973; Hori 1973; Zeller and Dederichs 1973; Gubernatis and Krumhansl 1975; Kröner 1977; Willis 1981a;
Milton and Phan-Thien 1982; Phan-Thien and Milton 1982; Sen and Torquato 1989; Torquato 1997; Tartar
1989, 1990; and Bruno 1991b). See also the book of Torquato (2002), Chapters 14 and 15 in (Milton 2002),
and Chapter 9 in this book, where series expansions are derived for coupled field problems. In practice these
multipoint correlation functions are difficult to obtain: only three-point correlations can be directly obtained
from cross-sectional photographs of three-dimensional materials, since in general four points have one point
lying outside the plane containing the other 3 points. A far more practical way of obtaining the series expansion
information, when the geometry is known is to use Fast Fourier Transform methods (Moulinec and Suquet
1994, 1998; Eyre and Milton (1999); Willot, Abdallah, and Pellegrini (2014); and Chapter 8: when the
composite is not periodic one can take a cubic representative volume element of it, and periodically extend it.
For the response of bodies, rather than composites, as discussed in Chapter 3, the computation of the series
expansion is more difficult, as computation of the action of the nonlocal operators Γ1 and Γ2 requires one to
know the Green’s function associated with the body, with appropriate boundary conditions, and is not simply
calculated through Fourier transforms.

For two-component composites the bounds calculated from the field expansion recursion method can al-
ternatively be obtained from variational principles (Milton and McPhedran 1982), or via the analytic method
(Bergman 1978; Milton 1981c; Bergman 1993). The rapid convergence of the bounds to the actual effec-
tive conductivity as successively more series expansion coefficients are incorporated in the bounds has been
shown in numerical studies (McPhedran and Milton 1981; Milton and McPhedran 1982). In a wider context
these bounds mostly correspond to bounds on Stieltjes functions, and are related to Padé approximants (Gragg
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1968; Baker, Jr. 1969; Field 1976; Baker, Jr. and Graves-Morris 1981). The real power of the method lies in
its application to multiphase composites, where it allows one to obtain bounds on complex effective moduli
that have not been obtained by any other method (see Milton 1987b and section 29.6 of Milton 2002). In
fact many of the bounds are sharp in the context of the abstract theory of composites: there is a subspace
collection with an associated response function that saturates the bounds. For real composite materials the
differential constraints on the fields typically impose further restrictions on the subspace collections which
make many bounds nonoptimal in this context. For example, for two-dimensional isotropic composites of
two isotropic conducting phases, the differential constraints imply that the normalization matrices are simply
identity matrices (and using this fact the bounds can be improved) while for other problems (even three dimen-
sional conductivity, with two isotropic phases) the complete set of constraints on the normalization matrices
and weight matrices is unknown.

The differential constraints are incorporated in the translation method for obtaining bounds (Tartar 1979b,
particularly theorem 8; Murat and Tartar 1985; Tartar 1985; Lurie and Cherkaev 1982, 1984 - see also the
books of the books of Allaire 2002; Cherkaev 2000; Milton 2002; Tartar 2009; and Torquato 2002 and ref-
erences therein), which however usually has the disadvantage that there are so many “translations” to choose
from that it is hard to know which ones will produce the best bounds. The field equation recursion method has
the advantage of being applicable to any problem that can be formulated in the abstract theory of composites,
and the advantage that it produces bounds in a systematic way.

We have in mind effective tensors L∗ = L∗(L1, . . . ,Ln) with tensors Lj as variables, but for simplicity we
will just consider in this chapter the case n = 2 in which the 2-variables are just scalars. Then in the abstract
setting an effective tensor is just the Z-operator associated to a Z-problem on a Z(n) subspace collection (see
Chapter 29 in Milton 2002 and Chapters 2 and 7 of this book) and provides a solution to theZ-problem. The
field recursion method is a way to systematically develop, via fractional linear transformations at each level
of the recursion, the continued fraction expansions of the effective tensor L∗, i.e., the initial Z-operator in the
recursion. This method is powerful for developing sharp bounds on the effective tensor analogous to the sharp
bounds of Stieltjes functions via its continued fraction representation using Padé approximants (Gragg 1968;
Baker, Jr. 1969; Field 1976; Baker, Jr. and Graves-Morris 1981). We caution, however, that the approach
using fractional linear transformations is similar in many ways to the Schur (1917a,1917b) algorithm (see
also section 1.1 in Agler and McCarthy 2002) for successively reducing in the number of interpolation points
in the Nevanlinna–Pick interpolation problem. This algorithm has the disadvantage that computational or
experimental errors can lead to problems even for a modest number of iterations (Section 1.1 in Agler and
McCarthy 2002; Foiaş, Jolly, and Li 2002).

The rest of this chapter is organized as follows. In section 10.2 we introduce, in the Hilbert space setting
for the abstract theory of composites, the effective tensor L∗(L1, L2) and its properties as a function of the
composite phases L1 and L2. This tensor is defined as the Z-operator associated to an orthogonal Z(2)
subspace collection in a Hilbert space H. Next, in section 10.3.1 we generate the Y∗(L1, L2) tensor on
the associated orthogonal Y (2) subspace collection and develop its functional properties as well as prove
the important linear fractional transformations that connect L∗ and Y∗ together. We then introduce a new
effective tensor L∗

(1)(L1, L2) on a new orthogonal Z(2) subspace collection in a Hilbert spaceH(1) which is
a subspace of the initial Hilbert spaceH. The base case of the recursion is then concluded by showing that these
two tensors Y∗ and L∗

(1) are congruent (i.e., there exists an invertible operator K such that Y∗ = KL∗
(1)K†).

Finally, in section 10.3.2 we prove via induction (under additional assumptions) that we can repeat this process.
In other words, we can define an effective tensor L∗

(i)(L1, L2) on some Z(2) subspace collection in a Hilbert
space H(i) which is a subspace of H(i−1). This method provides a continued fraction representation of the
effective tensor L∗ in terms of the L∗

(i) and Y∗
(i). Thus, if one can provide bounds at each level of this
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representation then one can obtain very tight bounds on L∗, which is one of the most important applications
of this field recursion method (Milton 1987b; see also Chapter 9 of this book).

A major achievement in this chapter is the use of the theory of Fredholm operators which allows us to
significantly reduce, at each level of the induction, the necessary assumptions required to define the operators
L∗

(i) and Y∗
(i). And although our approach here is abstract, which simplifies mathematically many aspects

of the field equation recursion method, we want to keep in mind that its development is motivated by its
applications in the theory of composites. As such, we use throughout this chapter the quintessential example
of the effective conductivity tensor for composite materials in quasistatic electromagnetism [see, for instance,
Milton and Golden 1985; Milton 1991; Clark and Milton 1994; Clark and Milton 1995; Clark 1997; Milton
2002] in order to illustrate the theory.

This chapter assumes the reader is familiar with Chapters 1 and 2. Chapter 9 is closely related to the
subject matter of the chapter, although need not be read beforehand. Like Chapter 4 it is written in a rigorous
mathematical style and care has been taken to explain most technical definitions to ensure it is accessible to
non-mathematicians.

Before we proceed, let us introduce some notation and definitions:

• We denote by B(H) the Banach space of all bounded linear operators on a Hilbert spaceH and endow
this space with the operator norm.

• If T ∈ B(H), we denote respectively by Ran T, Ker T and T† its range, kernel (i.e., nullspace) and
adjoint operator.

• If T ∈ B(H), Re T and Im T stand for the bounded operators

Re T =
T + T†

2
and Im T =

T−T†

2i
.

• An operator T ∈ B(H) is said to be positive definite (i.e., T > 0) if

∀u ∈ H \ {0}, (u,Tu) > 0, (10.1)

and negative definite if −T is positive definite. If the inequality “>” in (10.1) is instead replaced by
“≥”, then one says that T is positive semidefinite.

• An operator T ∈ B(H) is said to be coercive (or uniformly positive) if

∃α > 0 | ∀u ∈ H, (u,Tu) ≥ α (u,u),

and in that case we write T ≥ αI. An operator is said uniformly negative if −T is coercive.

• We denote by E⊥ the orthogonal complement of a subspace E ofH,

• clS stands for the topological closure of a set S in a Hilbert space H in the metric topology generated
by the inner product norm.

Definition 28. (multivariate analyticity) Let U be an open set of Cn and F a complex Banach space. A
function f : U → F is said to be analytic if it is differentiable on U . If we denote by Z = (z1, · · · , zn) the
points of U , then by Hartogs’ theorem (see Theorem 36.8 in chapter VIII, section 36, p. 271 of Mujica 1986),
f is analytic in U if and only if it is a differentiable function in each variable zi separately.



10.1. Introduction 291

Definition 29. Let T ∈ B(H), we say that the operator T is Fredholm if Ran T is a closed subspace of H
and if Ker T and Ker T† are finite dimensional spaces. In that case, the index ind T of T is defined by

ind T = dim Ker T− dim Ker T†.

Remark 30. Using the well-known identity cl Ran T = (Ker T†)⊥, it follows that a Fredholm operator of
index 0 is invertible if and only if Ker T = 0.

We will use the following propositions:

Proposition 31. An operator T ∈ B(H) is a Fredholm operator of index 0 if and only if can be written as
T = A + K with A an invertible operator and K a finite-rank operator, i.e., dim Ran K <∞.

The proof of this result can be found in chapter XV, section 15.2, p. 350, Corollary 2.4 in Gohberg,
Goldberg, and Kaashoek 2003.

Proposition 32. SupposeH = H1⊕H2 is an orthogonal decomposition of a Hilbert spaceH with dimH1 <
∞. Let T ∈ B(H) be written, with respect to this decomposition, as a 2× 2 block operator matrix form

T =

[
T11 T12

T21 T22

]
. (10.2)

If T is a Fredholm operator of index n then T22 ∈ B(H2) is a Fredholm operator of index n. In particular,
if T is invertible then T22 has index 0.

Proof. Suppose that T is a Fredholm operator of index n then since dimH1 <∞, the operator[
T11 T12

T21 0

]
(10.3)

is a finite-rank operator in B(H) which implies by the Proposition 31 that[
0 0

0 T22

]
= T−

[
T11 T12

T21 0

]
(10.4)

is a Fredholm operator in B(H) of index n. Thus,

H1 ⊕Ker T22, H1 ⊕Ker T†22, (10.5)

are finite-dimensional, Ran T22 is closed, and

n = dim(H1 ⊕Ker T22)− dim(H1 ⊕Ker T†22) = dim(Ker T22)− dim(Ker T†22).

Therefore, T22 is a Fredholm operator of index n. In particular, if T is invertible then it is a Fredholm operator
of index 0 and so is T22. This completes the proof.
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10.2 Formulation of the problem for two-component composites
The setting from Chapter 2 is a Hilbert spaceHwhich has an inner product (P1,P2) defined for all P1,P2 ∈
H having the usual properties that

(P1,P2) = (P2,P1), (P1,P1) > 0 for all P1 6= 0, (10.6)

with the convention, for this chapter and Chapter 4 only, that it is linear in the second component and antilinear
in the first (which is opposite to that used in the rest of the book). This Hilbert space is assumed to have the
decomposition

H = U ⊕ E ⊕ J = P1 ⊕ P2, (10.7)

where the subspacesU , E , andJ are mutually orthogonal with respect to this inner product as are the subspaces
P1, P2. Moreover, we assume U is a finite-dimensional subspace and that P1 and P2 are nonzero subspaces.
Under these assumptions, the decomposition in (10.7) is called an orthogonal Z(2) subspace collection (see
Chapter 7).

We denote by Γ0, Γ1 and Γ2 the orthogonal projections on U , E , and J , respectively, and denote by Λ1

and Λ2 the orthogonal projections onto P1 and P2, respectively. We want to emphasize that we don’t assume
that the operators Λa and Γi commute. In this abstract setting, the Hilbert spaceH can be infinite-dimensional
and as such it may not be clear that the subspaces introduced above must all be closed subspaces so that their
corresponding orthogonal projections on each subspace exist. These facts though follow immediately from
the following classical proposition which we prove here so that this chapter is self-contained.

Proposition 33. LetH be a Hilbert space with inner product (10.6). IfM1 andM2 are subspaces ofHwhich
are mutually orthogonal and H =M1 ⊕M2 thenM1 andM2 are closed sets in the norm topology on H
and, for i, j = 1, 2 with i 6= j, the projection Qi : H → H ontoMi alongMj , which is uniquely defined by
QiP = Pi if P = P1 + P2 for some vectors P1 ∈M1 and P2 ∈M2, is an orthogonal projection.

Proof. SupposeM1 andM2 are subspaces ofH which are mutually orthogonal andH =M1 ⊕M2. Then
every P ∈ H can be written as P = P1 + P2 for some unique P1 ∈ M1, P2 ∈ M2 and there exists
unique linear operators Qi : H → H defined by QiP = Pi, i = 1, 2. In particular, this implies that
they are projections, i.e., Q2

i = Qi, i = 1, 2, with the property that they sum to the identity operator, i.e.,
Q1 + Q2 = IH. It now follows from the fact that the spacesM1,M2 are mutually orthogonal that for any
P ∈ H with P = P1 + P2 for some P1 ∈ M1, P2 ∈ M2 we have ||QiP||= ||Pi||≤ ||P1||+||P2||= ||P||
and ||QiPi||= ||Pi|| for i = 1, 2. Thus, since H = M1 ⊕ M1, this implies that in the operator norm
||Qi||= 1 or Qi = 0 and hence Qi ∈ B(H) for i = 1, 2. Thus, since B(H) is the space of all continuous
linear operator fromH intoH in the norm topology onH then this implies Q−1

i ({0}) =Mi is a closed set.
Finally, since the spacesM1 andM2 are mutually orthogonal then for any Pi,Ri ∈ Mi, i = 1, 2 we have
(Qi(P1 + P2),R1 + R2) = (Pi,Ri) = (P1 + P2,Qi(R1 + R2)) which implies that Q†i = Qi, i.e., the
projection operator Qi is self-adjoint, that is, it is an orthogonal projection. This completes the proof.

We now define the bounded linear operator-valued function onH by

L = L(L1, L2) = L1Λ1 + L2Λ2. (10.8)

It is a function of the complex variables L1, L2, and L : C2 → B(H) is an analytic B(H)-valued function in
the sense of the Definition 28.
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Remark 34. Defining this functional framework for the conductivity equation of a two-component periodic
composite defined by a unit cell D, which is an open simply connected set with a Lipschitz continuous bound-
ary, and composed of isotropic materials characterized by their complex conductivity σ1 and σ2 leads to:

• H = L2(D) = [L2(D)]d the space of square-integrable, d-dimensional, vector-field-valued functions
on the unit cells D endowed with the inner product

(E,E
′
) =

1

|D|

∫
D

E>E′ dx, ∀E,E′ ∈Md,1(C),

where |D| denotes the volume of D,

• U is the d-dimensional space defined by

U = {U ∈ H | U ≡ C, for some C ∈Md,1(C)} ,

• E =
{
E ∈ H | curl E = 0 in D and

∫
D E dx = 0 (zero average condition)

}
,

• J =
{
J ∈ H | div J = 0 in D and

∫
D J dx = 0

}
.

For a proof of the orthogonal decomposition L2(D) = U ⊕ E ⊕ J , we refer to Chapter 12 of Milton (2002).
Although the definition (10.8) of the operator L may seem abstract, one sees it is natural in the theory of
composites (see Milton 2002) where L is the conductivity tensor

L(σ1, σ2) = σ1χ1I + σ2χ2I . (10.9)

In this context, χi is the indicator function of the domain occupied by phase i and the scalars L1 and L2

in (10.8) are respectively the complex conductivities σ1 and σ2. Thus, Λ1 = χ1I and Λ2 = χ2I represent
respectively the projections onto the spaces P1 and P2 of L2(D) fields which are nonzero only inside phase
1 or 2. Finally, it should be emphasized that the restriction of L on the subspace U ⊕ E represents the
constitutive law of the composite which links an electric field in U ⊕ E to a current density in U ⊕ J .

Following Chapter 7, associated to this Z(2) subspace collection (10.7) is a linear operator-valued func-
tion L∗(L1, L2) (i.e., the associated Z-operator) acting on the subspace U . To obtain this function we begin
by solving the following problem: for a given e ∈ U , find a unique triplet of vectors j ∈ U , E ∈ E , and J ∈ J
that satisfy

j + J = L(e + E), (10.10)

also known as the Z-problem (see Chapter 7). The associated operator L∗, by definition, governs the linear
relation

j = L∗e. (10.11)

To obtain a representation of L∗ using L, we follow the approach of Chapter 12 of Milton (2002) which
consists of expressing L as a 3× 3 block operator matrix

L =

L00 L01 L02

L10 L11 L12

L20 L21 L22

 (10.12)



294 10. A rigorous approach to the field recursion method

with respect to the decompositionH = U ⊕ E ⊕J . Solving the Z-problem (10.10) for a given e ∈ U is then
equivalent to proving that the system 

L00e + L01E = j,

L10e + L11E = 0,

L20e + L21E = J,

(10.13)

admits a unique solution (j,E,J) ∈ U × E × J . Under the assumption that the block operator L11 (which
represent the restriction of the operator Γ1LΓ1 on the subspace E) is invertible, the solution of the system
(10.13) is unique and given by 

j = (L00 − L01L
−1
11 L10) e,

E = −L−1
11 L10 e,

J = L20 e + L21 E,

(10.14)

which defines the Z-operator L∗ via a Schur complement by:

L∗ = (L00 − L01L
−1
11 L10) = Γ0LΓ0 − Γ0LΓ1(Γ1LΓ1)−1Γ1LΓ0, (10.15)

where the second equality in the last relation has to be restricted to the subspace U ofH.
Another representation formula of the operator L∗:

L∗ = Γ0[(Γ0 + Γ2)L−1(Γ0 + Γ2)]−1Γ0, (10.16)

is proved in Section 12.8 of Milton (2002), equation (12.59) (see also Section 7.4, equation (7.60) of this
book) under the assumption that the inverse of (Γ0 +Γ2)L−1(Γ0 +Γ2) exists on the subspace U ⊕J (which
requires in particular that L is invertible onH).

Remark 35. For instance, if Im L ≥ αI or Re L ≥ αI for some α > 0 then the inverse of Γ1LΓ1 on E and
the inverse of (Γ0 + Γ2)L−1(Γ0 + Γ2) on U ⊕J exists and thus the Z− problem (10.10) is well-defined and
both representation formulas (10.15) and (10.16 ) of L∗ hold.

Our next proposition shows that these two representations of L∗ are both well-defined together or neither
is when L−1 exists.

Proposition 36. If L(L1, L2) is invertible then the operator A := Γ1L(L1, L2)Γ1 : E → E is a Fredholm
operator of index n if and only if the operator B := (Γ0 + Γ2)L(L1, L2)−1(Γ0 + Γ2) : U ⊕J → U ⊕J is
a Fredholm operator of index n. Furthermore, the operator A is invertible if and only if B is invertible, and
in that case we have

A−1 = Γ1L(L1, L2)−1Γ1 − Γ1L(L1, L2)−1(Γ0 + Γ2)B−1(Γ0 + Γ2)L(L1, L2)−1Γ1, (10.17)
B−1 = (Γ0 + Γ2)L(L1, L2)(Γ0 + Γ2)− (Γ0 + Γ2)L(L1, L2)Γ1A

−1Γ1L(L1, L2)(Γ0 + Γ2). (10.18)

Proof. Suppose L(L1, L2) is invertible. Then with respect to the orthogonal decomposition of the Hilbert
space H = E ⊕ (U ⊕ J ), with the corresponding orthogonal projections Γ1 and Γ0 + Γ2, the operator
L(L1, L2) and its inverse L(L1, L2)−1 can be written as the 2× 2 block operator matrices

L(L1, L2) =

[
A A12

A21 A22

]
, L(L1, L2)−1 =

[
B11 B12

B21 B

]
. (10.19)
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This means that A and B are matricially coupled operators and therefore the proof of this proposition now
follows immediately from Corollary 4.3, pp. 46–47, section III.4 of Gohberg, Goldberg, and Kaashoek 1990.

Remark 37. The invertibility condition of L(L1, L2) is straightforward to check. Indeed, we have

L(L1, L2) is invertible if and only if L1 6= 0 and L2 6= 0.

Moreover, the operator L(L1, L2)−1 is given by the following formula:

L(L1, L2)−1 =
1

L1
Λ1 +

1

L2
Λ2.

Nevertheless, we emphasize that the invertibility of L on H does not imply in general the invertibility of
Γ1LΓ1 on the subspace E .

It follows from the formulas (10.15) or (10.16) that the analytic B(U)-valued function L∗(L1, L2) (see
Definition 28) satisfies the following homogeneity, normalization, and Herglotz properties:

The homogeneity property:

L∗(L1, L2) =
1

c
L∗(cL1, cL2), (10.20)

for all choices of constants c 6= 0.
The normalization property:

L∗(1, 1) = IH. (10.21)

The Herglotz property:

Im L∗(L1, L2) > 0, when Im(L1) > 0 and Im(L2) > 0. (10.22)

The Herglotz property of L∗ may not be obvious and so we provide two proofs. The first one depends on the
representation formula (10.16) of L∗. The second one is independent of the representation formulas (10.15) or
(10.16) (which may not exist) and just assumes that L∗ is well-defined by theZ-problem (10.10). Nevertheless,
as it was mentioned in Remark 35, this coercivity assumption has the convenience to be a sufficient condition
of the well-posedness of theZ-problem and to justify the existence of the both representation formulas (10.15)
and (10.16) of L∗.

Proof. By the definition (10.8) of the operator L, it is straightforward that the conditions Im(L1) > 0 and
Im(L2) > 0 imply that Im(L) ≥ βI with β = min(Im(L1), Im(L2)) > 0. Thus, by the Lax–Milgram
theorem one deduces immediately that L is invertible onH and by virtue of the identities:

Im(T−1) = −(T−1)† Im(T)T−1, Im(M†AM) = M† Im(A)M, (10.23)

which hold for every invertible operator T of B(H) and every A,M ∈ B(H), we get immediately that
Im(Γ0 + Γ2)L−1(Γ0 + Γ2) is a uniformly negative operator on the subspace U ⊕ J and thus (by the Lax–
Milgram theorem) (Γ0 + Γ2)L−1(Γ0 + Γ2) is invertible on U ⊕ J and hence the operator L∗ is well-
defined by (10.16) if Im(L1) > 0 and Im(L2) > 0. Moreover, by using again (10.23), one concludes that
Im L∗ = Im Γ0[(Γ0+Γ2)L−1(Γ0+Γ2)]−1Γ0 is coercive onU (in particular this implies that L∗ is invertible).
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The second version of this proof is based on the definition (10.10) and (10.11) of the Z-problem, and
follows the treatment given at the end of Section 2.6 (see also the end of Section 12.10 in Milton 2002).
Assume that the L∗(L1, L2) is well-defined by the Z-problem. Let e ∈ U then there exists a E ∈ E , J ∈ J ,
and j ∈ U such that L∗(L1, L2)(e + E) = j + J. Hence we obtain

((e + E), Im L(e + E)) = Im (e + E,L(e + E))

= Im(e + E, j + J)

= Im(e,L∗e)

= (e, Im L∗e). (10.24)

Thus, the positive definiteness of Im L(L1, L2) under this hypothesis Im(L1) > 0 and Im(L2) > 0 implies
immediately the coercivity of Im[L∗(L1, L2)] as U is finite-dimensional, in particular, it also implies that
L∗(L1, L2) is invertible.

10.3 Field equation recursion method for two-component composites

10.3.1 The base case
In the field equation recursion method, the first step is to generate, from the orthogonal Z(2) subspace collec-
tion (10.7), an orthogonal Y (2) subspace collection (see Chapter 9) namely, the Hilbert space

K = E ⊕ J = V ⊕ P(1)
1 ⊕ P(1)

2 , (10.25)

where K is the orthogonal complement of U inH, i.e.,

K = H	 U . (10.26)

Then one generates another orthogonal Z(2) subspace collection, namely, the Hilbert space

H(1) = U (1) ⊕ E(1) ⊕ J (1) = P(1)
1 ⊕ P(1)

2 , (10.27)

with a suitable choice of the spaces, satisfying the inclusion relations

E(1) ⊆ E , J (1) ⊆ J , P(1)
1 ⊆ P1, P(1)

2 ⊆ P2. (10.28)

We have already defined K = E ⊕ J , so our goal is to define the spaces P(1)
1 , P(1)

2 , V , E(1)
1 , E(1)

2 , J (1)
1 ,

J (1)
2 ,H(1), and U (1). The spaces P(1)

1 and P(1)
2 are defined as

P(1)
1 = P1 ∩ K, P(1)

2 = P2 ∩ K. (10.29)

V is the orthogonal complement ofH(1) = P(1)
1 ⊕ P(1)

2 in K, i.e.,

V = K 	H(1), (10.30)

the spaces E(1) and J (1) are defined as

E(1) = E ∩ H(1), J (1) = J ∩H(1), (10.31)
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and finally U (1) is defined as the orthogonal complement of E(1) ⊕ J (1) in the spaceH(1), i.e.,

U (1) = H(1) 	 [E(1) ⊕ J (1)]. (10.32)

The following projections Γ1, Γ2, Π1, Π2, Λ
(1)
1 , and Λ

(1)
2 play a key role and are respectively defined as

the orthogonal projections onto E , J , V ,H(1), P(1)
1 , and P(1)

2 .

Remark 38. By the subspace inclusion (10.28) we have

L = L1Λ1 + L2Λ2 = L1Λ
(1)
1 + L2Λ

(1)
2 onH(1) = P(1)

1 ⊕ P(1)
2 (10.33)

L = L2Λ
(1)
2 on P(1)

2 , L = L2Λ
(1)
1 on P(1)

1 . (10.34)

Remark 39. The interpretation of the functional spaces which appear in the two subspace collections Y (2)
and Z(2) in (10.25) and (10.27) in the case of the conductivity equation for a two-component composite are:

• P(1)
i = Pi ∩ K for i = 1, 2 is the subspace of L2(D) of all fields whose support is included in the

phase i and have zero average in the unit cell D,

• H(1) = P(1)
1 ⊕ P(1)

2 is the subspace of L2(D) of all fields which have zero average in each phase,

• V is the subspace of L2(D) of all fields which are constant in each phase and have zero average in the
unit cell D,

• E(1) =
{
E ∈ H(1) | curl E = 0 in D

}
, J (1) =

{
J ∈ H(1) | div J = 0 in D

}
.

The definition (10.32) of the space U (1) is more complicated to interpret, we will see in the Corollary 46 that
it can also be defined as

U (1) = (Γ1V ⊕ Γ2V)	 V,
in other words, as the orthogonal complement of V in Γ1V ⊕ Γ2V .

The Y -operator of the associated Y -problem in the Y (2) subspace collection (10.25) will be the Y -
tensor function Y∗(L1, L2) and the effective tensor function of the Z(2)-subspace collection (10.27) will
be L∗

(1)(L1, L2), i.e., the Z-operator of the associated Z-problem in the Z(2) subspace collection (10.27).
The purpose of this subsection is to define these two operators and prove that they are congruent operators.

Following Section 7.2, associated to this Y (2) subspace collection (10.25) is the Y -tensor function (i.e.,
the associated Y -operator) which is a linear operator-valued function Y∗(L1, L2) acting on the space V . To
obtain this function we begin by solving the following problem: for a given E1 ∈ V , find a unique vector pair:
E ∈ E , J ∈ J that satisfy

J2 = LE2, E2 = Π2E, J2 = Π2J, E1 = Π1E, (10.35)

also known as the Y -problem for the Y (2) subspace collection (10.25) (see Chapter 7). The associated
operator Y∗, by definition, governs the linear relation

J1 = −Y∗E1, (10.36)
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where J1 = Π1J. The formula for the operator Y∗, as given in equation (19.29) of Milton (2002) [see also
Section 7.4, equation (7.68), of this book] is

Y∗ = Π1Γ2(Γ2Π2L
−1Π2Γ2)−1Γ2Π1, (10.37)

where the inverse (Γ2Π2L
−1Π2Γ2)−1, if it exists, is to be taken on the subspace J . For instance, if Im L ≥

αI or Re L ≥ αI for some α > 0 and Assumption 41 below is satisfied, then the inverse of Γ2Π2L
−1Π2Γ2

exists on J .

Remark 40. It follows from Remark 38 that

Π2LΠ2 = Π2L = LΠ2 on K. (10.38)

which implies that if L−1 exists then

Π2L
−1Π2 = Π2L

−1 = L−1Π2 on K. (10.39)

Assumption 41. We will assume that

Γ2Π2Γ2 ≥ βΓ2 for some β > 0. (10.40)

Proposition 42. A necessary and sufficient condition for Assumption 41 to be true is

V ∩ J = {0}. (10.41)

Proof. For any P ∈ V ∩ J we have Γ2P = P and Π2P = 0 so that Γ2Π2Γ2P = 0. This proves that a
necessary condition for Assumption 41 to be true is V∩J = {0}. We will now prove that it is also a sufficient
condition. The key observations are that IK = Γ1 + Γ2 = Π1 + Π2 which implies

0 ≤ Γ2Π2Γ2 = Γ2(IK −Π1)Γ2 = Γ2 − Γ2Π1Γ2, (10.42)

and Π1 is a finite-rank operator since its range is V which is a finite-dimensional subspace by Proposition 45.
This implies that

0 ≤ Γ2Π2Γ2|J= IJ − Γ2Π1Γ2|J , (10.43)

where Γ2Π1Γ2|J is a finite-rank operator on J , the range of Γ2. This implies by Proposition 31 that
Γ2Π2Γ2|J is an index 0 Fredholm operator on J . Thus, either Γ2Π2Γ2|JP = 0, P ∈ J has a nontrivial
solution or Γ2Π2Γ2|J is invertible on J . But Γ2Π2Γ2|JP = 0, P ∈ J holds if and only if P ∈ V ∩ J .
This implies Γ2Π2Γ2|J is invertible if and only if V ∩ J = {0}. This proves that Γ2Π2Γ2 > 0 on J
if and only if V ∩ J = {0}. We now want to prove that we actually have the stronger result, namely, if
V ∩ J = {0} then Assumption 41 is true. This follows from immediately from the fact Γ2Π2Γ2|J is a
positive semidefinite self-adjoint bounded operator (its norm is bounded by 1) which is invertible. Hence,
the spectrum σ(Γ2Π2Γ2|J ) of Γ2Π2Γ2|J is contained in the closure of its numerical range which is a real
convex compact set:

[α, β] = cl {(Γ2Π2Γ2 u,u) | u ∈ J , ‖u‖= 1},
and this interval [α, β] ⊆ [0, 1] has its endpoints α and β belonging to σ(Γ2Π2Γ2|J ). Thus, as the operator
Γ2Π2Γ2|J is invertible, α must be positive and therefore we get by the definition of the numerical range that
Γ2Π2Γ2|J≥ α IJ .
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Corollary 43. Define the operator-valued function F(L1, L2) : J → J on C2 by

F(L1, L2) := Γ2Π2L(L1, L2)−1Π2Γ2.

If V ∩ J = {0} then Ker[F(L1, L2)] = Ker[F(L1, L2)†] = {0} and the following three statements are
equivalent:

(i) Y∗(L1, L2) is well-defined by the formula (10.37);
(ii) Ran[F(L1, L2)] = J ;
(iii) F(L1, L2) is a Fredholm operator of index 0.

Proof. Suppose V ∩ J = {0}. We will now show that Ker[F(L1, L2)] = {0}. Let J ∈ Ker[F(L1, L2)].
Then J ∈ J and 0 = F(L1, L2)J = Γ2Π2L(L1, L2)−1Π2J implying that 0 = Π2Γ2Π2L(L1, L2)−1Π2J.
But Γ2Π2Γ2 is invertible on J (as we showed in the proof of Proposition 42) and Π2 commutes with
L(L1, L2) and hence with L(L1, L2)−1 implying 0 = Π2L(L1, L2)−1Π2J = L(L1, L2)−1Π2J. There-
fore, we conclude that Π2J = 0 which implies J ∈ V ∩ J = {0} and hence Ker[F(L1, L2)] = {0}. As
F(L1, L2)† = F(L1, L2), this implies Ker[F(L1, L2)†] = {0}. The proof of the rest of the statement now
follows immediately from these facts and the fact that since J is a Hilbert space then Ker[F(L1, L2)†]⊥ =
cl{Ran[F(L1, L2)]}.

Using this corollary we can now give, in the next proposition, a condition on L that implies Y∗ is well-
defined by the formula (10.36).

Proposition 44. If (L1, L2) ∈ C2 is such that L(L1, L2) is invertible and the operator G(L1, L2) := (Γ0 +
Γ2)L(L1, L2)−1(Γ0 + Γ2) : U ⊕ J → U ⊕ J is also invertible then the operator F(L1, L2) : J → J
(defined in Corollary 43) is a Fredholm operator of index 0. Moreover, if V ∩ J = {0} then F(L1, L2) is
invertible and Y∗(L1, L2) is well-defined by formula (10.37).

Proof. Suppose that (L1, L2) ∈ C2 such that L(L1, L2) is invertible and the operator G(L1, L2) : U ⊕J →
U ⊕ J defined above is also invertible. Then with respect to the orthogonal decomposition of the Hilbert
space U ⊕ J , with the corresponding orthogonal projections Γ0 and Γ2, we can write this bounded linear
operator in the 2× 2 block matrix form

G(L1, L2) =

[
G11 G12

G21 G22

]
, (10.44)

where G22 : J → J is the operator

G22 = Γ2G(L1, L2)Γ2 = Γ2L(L1, L2)−1Γ2. (10.45)

It follows immediately from Proposition 32 that G22 is a Fredholm operator of index 0. Using the relation
(10.39) and the decomposition Γ2 = Π1Γ2+Π2Γ2, we can link G22 and F(L1, L2) by the following relation:

F(L1, L2) = Γ2Π2L(L1, L2)−1Π2Γ2 (10.46)
= G22 − Γ2L(L1, L2)−1Π1Γ2. (10.47)

Thus, as Ran Π1 = V is a finite-dimensional space (see Corollary 46), by the invariance of the Fredholm
index under perturbation by a compact operator (see Theorem 4.1, p. 355, section 15.4 of Gohberg, Goldberg,
and Kaashoek 2003), we obtain that F(L1, L2) is a Fredholm operator of index 0. The rest of the statements
of this proposition now follow immediately from these facts and Corollary 43. This completes the proof.
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We will now show that just as L∗ satisfies the homogeneity and Herglotz property so too does Y∗ under
the Assumption 41, that is, we prove the following:

The homogeneity property:

Y∗(L1, L2) =
1

c
Y∗(cL1, cL2) (10.48)

is satisfied for all choices of constants c 6= 0.
The Herglotz property:

Im Y∗(L1, L2) > 0, when Im(L1) > 0 and Im(L2) > 0. (10.49)

Proof. We will prove these two properties under Assumption 41. First, the homogeneity property follows
immediately from formula (10.37) and the homogeneity property of L∗. Next, the Herglotz property of Y∗
will be proven in the same as for L∗ by using formula (10.37) and the identities (10.23). [Alternatively, the
Herglotz property of Y∗ follows directly from (2.82) in the same way as the Herglotz property of L∗ follows
from (2.68) or (10.24).] First, we obtain that under the Herglotz conditions Im(L1) > 0 and Im(L2) > 0, that
Im(L−1) is uniformly negative. Then by Assumption 41, it follows that the operator Im(Γ2Π2L

−1Π2Γ2)
is uniformly negative on J and that Im(Γ2(Γ2Π2L

−1Π2Γ2)−1Γ2) is coercive on J . From these facts we
conclude that

Im(Π1Γ2(Γ2Π2L
−1Π2Γ2)−1Γ2Π1) > 0 on V .

The relationship between L∗ and Y∗, proven in Section 19.1 of Milton (2002) and for two-component
composites and in the abstract setting in Section 7.21, is given by

L∗ = Γ0LΓ0 − Γ0LΠ1[Π1LΠ1 + Y∗]
−1Π1LΓ0. (10.50)

Proof. For every e ∈ U which has a solution to the Z-problem, there exists j ∈ U , E ∈ E , and J ∈ J such
that

j + J = L(e + E), L∗e = j, (10.51)

the latter by definition of L∗. It follows from Remark 40 that E1 = Π1E ∈ V is a solution to the Y -problem
(10.35), i.e.,

J2 = LE2, E2 = Π2E, J2 = Π2J, E1 = Π1E, (10.52)

and, by definition we have

J1 = −Y∗E1, J1 = Π1J. (10.53)

Thus we can write

j + J1 + J2 = L(e + E1 + E2). (10.54)

We will now prove from these facts that the relationship (10.50) holds. First, we solve for E1 in terms of e
from the identity

−Y∗E1 = J1 = Π1L(e + E1) = Π1L(e + Π1E1) (10.55)



10.3. Field equation recursion method for two-component composites 301

and we find that

E1 = −Π1(Π1LΠ1 + Y∗)
−1Π1Le, (10.56)

where the inverse is taken on the subspace V . It then follows that

j + J1 = L(e + E1) = Le + LE1 = Le− LΠ1(Π1LΠ1 + Y∗)
−1Π1Le. (10.57)

Hence we have

L∗e = j = Γ0(j + J1) = [Γ0LΓ0 − Γ0LΠ1(Π1LΠ1 + Y∗)
−1Π1LΓ0]e. (10.58)

Therefore, it follows that the relationship (10.50) is true if L∗, Y∗, and (Π1LΠ1 + Y∗)
−1 are well-defined

operators (which is true, for instance, when Im(L1) > 0, Im(L2) > 0, and Assumption 41 holds).

Now consider the Hilbert space H(1), i.e., the orthogonal Z(2) subspace collection (10.27). First, we
emphasize here that the operator L commutes with the orthogonal projection Π2 whose range is H(1) and
hence by Remark 38 it follows that

L = Π2LΠ2 = L1Λ
(1)
1 + L2Λ

(1)
2 onH(1), (10.59)

where now Λ
(1)
1 and Λ

(1)
2 onH(1) are the orthogonal projections onto P(1)

1 and P(1)
2 , respectively. Now asso-

ciated with the operator L onH(1) and this orthogonal Z(2) subspace collection is the linear operator-valued
function L∗

(1)(L1, L2) (i.e., the associated Z-operator) acting on the subspace U (1) which is the solution of
the corresponding Z-problem in this new Z(2) subspace collection. The results in section 10.2 now apply to
this operator L∗

(1)(L1, L2) which, just like L∗, satisfies the homogeneity, Herglotz, and normalization prop-
erties [i.e., the normalization property in this case is L∗

(1)(1, 1) = IU(1) ]. In particular, L∗
(1) admits the two

following representation formulas (when they are well-defined) similar to the formulas and (10.15) (10.16)
but now on the orthogonal Z(2) subspace collection (10.27):

L∗
(1) = Γ

(1)
0 LΓ

(1)
0 − Γ

(1)
0 LΓ

(1)
1 (Γ

(1)
1 LΓ

(1)
1 )−1Γ

(1)
1 LΓ

(1)
0 (10.60)

and

L∗
(1) = Γ

(1)
0 [(Γ

(1)
0 + Γ

(1)
2 )L−1(Γ

(1)
0 + Γ

(1)
2 )]−1Γ

(1)
0 , (10.61)

where Γ
(1)
0 ,Γ

(1)
1 and Γ

(2)
2 are respectively the orthogonal projections onto U (1), E(1), J (1), which are related

to the orthogonal projection Π2 onto H(1) by Π2 = Γ
(1)
0 + Γ

(2)
1 + Γ

(2)
2 . Then, can one link the operators

Y∗ associated with V and L∗
(1) associated with U (1)? The answer is yes. The first step in the proof is to

show that these two operators act on finite-dimensional spaces of the same dimension, in other words that
dimU (1) = dim(V). This is a consequence of the following proposition and corollary.

Proposition 45. Let L be a Hilbert space with two orthogonal projections Q1, Q2 which satisfy Q1 +Q2 =
IL. Assume that L has an orthogonal decomposition

L =M⊕N . (10.62)
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Define the subspaces N1,N2 by

N1 = (Q1L ∩N )⊕ (Q2L ∩N ), N2 = N 	N1, (10.63)

where the latter denotes the orthogonal complement of N1 in N . Then we have

M⊕N2 = Q1M⊕Q2M. (10.64)

In particular, ifM is finite-dimensional then N2 is finite-dimensional with

dim(N2) = dim(Q1M) + dim(Q2M)− dim(M) ≤ dim(M). (10.65)

Moreover, dim(N2) = dim(M) if and only if Q1L ∩M = Q2L ∩M = {0}.
Proof. First, N1 ⊆ (Q1M⊕Q2M)⊥ holds since Q1,Q2 are invariant on N1 andM is orthogonal to N
which contains N1. This impliesM ⊆ Q1M⊕Q2M ⊆ (Q1M⊕Q2M)⊥⊥ ⊆ N⊥1 = M⊕N2. Let
P ∈ M⊕N2 	 (Q1M⊕Q2M). Then P ∈ (Q1M⊕Q2M)⊥ ⊆ M⊥ = N1 ⊕N2 implying P ∈ N2.
But by invariance of Q1,Q2 on Q1M⊕Q2M we must also have Q1P,Q2P ∈ (Q1M⊕Q2M)⊥ ⊆ N
and thus Q1P,Q2P ∈ N1. This implies P = Q1P + Q2P ∈ N1 ∩ N2 = {0} and hence P = 0.
Therefore,M⊕N2 	 (Q1M⊕Q2M) = {0} implying the relation (10.64): M⊕N2 = Q1M⊕Q2M,
as desired. Now assume thatM is a finite-dimensional space, then the relation (10.65) follows immediately
from the decomposition (10.64). Next, the equality dim(N2) = dim(M) is equivalent to dim(Q1M) =
dim(Q2M) = dim(M) and, by the rank theorem, it is equivalent to the injectivity of the restriction of Q1

and Q2 onM. Using the fact Q1 and Q2 are two projections which satisfy Q1 + Q2 = IL, one can easily
show that this injectivity condition is equivalent to Q1L ∩ M = Q2L ∩ M = {0}. This completes the
proof.

Corollary 46. The spaces V and U (1) are finite-dimensional and orthogonal to U and V , respectively. Fur-
thermore, we have

U ⊕ V = Λ1U ⊕Λ2U , (10.66)

V ⊕ U (1) = Γ1V ⊕ Γ2V, (10.67)

and

dim(V) = dim(Λ1U) + dim(Λ2U)− dim(U) ≤ dim(U), (10.68)

dim(U (1)) = dim(Γ1V) + dim(Γ2V)− dim(V) ≤ dim(V). (10.69)

Moreover, the following two statements are true:
(i) dim(V) = dim(U) if and only if P1 ∩ U = P2 ∩ U = {0};
(ii) dim(U (1)) = dim(V) if and only if E ∩ V = J ∩ V = {0}.

Proof. These results follow immediately from Proposition 45. Indeed, in the Hilbert space H we have the
orthogonal decomposition H = U ⊕ K and two orthogonal projections Λ1,Λ2 satisfying Λ1 + Λ2 = IH.
The spaces L,M,N ,N1,N2 in the above proposition are H,U ,K,H(1) = P(1)

1 ⊕ P(1)
2 ,V , respectively,

since Λ1H = P1,Λ2H = P2. Similarly, on the Hilbert space K we have K = V ⊕ H(1) and there are
two orthogonal projections Γ1,Γ2 satisfying Γ1 + Γ2 = IK. The spaces L,M,N ,N1,N2 in the above
proposition are K,V,H(1),H(1) 	 U (1),U (1), respectively, since Γ1K = E ,Γ2K = J . The corollary now
follows from these identifications by Proposition 45. This completes the proof.
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Remark 47. In the case of the conductivity equation for a two-component composite, the conditionsP1∩U =
P2 ∩ U = {0} always hold. This is a direct consequence of the definition of the spaces P1,P2 and U (see
Remarks 34 and 39) and we deduce that dimV = dimU = d. Concerning the conditions V ∩ J = {0} and
V ∩ E = {0}, they are nearly always satisfied. Indeed, it depends on the geometry shape of the interfaces
between the two phases. Suppose that the two phases of the composite are Lipschitz domains. A current density
J ∈ V ∩ J is (by definition of V) a constant Ci in each phase. Moreover, it belongs to Hdiv (D) = {U ∈
L2(D) | div U ∈ L2(D)}. Thus at each interface point between the two phases, the normal component of J
has to be continuous (see chapter I of Monk 2003):

[J · n] = (C2 −C1) · n = 0,

where n denotes the unit normal vector (oriented for instance from phase 1 to phase 2). Thus, if the set of unit
normal of all interface points contains d linear independent vectors, then J = C2 = C1 in D and the zero
average condition on J then implies J = 0. In the same way, if an electrical field E ∈ V ∩ E , it has to be
a constant Ci in each phase and it belongs to Hcurl (D) = {U ∈ L2(D) | curl U ∈ L2(D)} which implies
that its tangential component is continuous (see chapter I of Monk 2003). This leads to

[E ∧ n] = (C2 −C1) ∧ n = 0,

at each interface point between the two phases. Thus again, if the set of unit normal of all interface points
contains d linear independent vectors, then E = C2 = C1 in D and the zero average condition on E implies
that E = 0. Nevertheless, one can construct easily for d ≥ 2 counterexamples (with for example linear
interfaces) where V ∩ J 6= {0} or V ∩ E 6= {0}.

For instance, consider the example from Milton 2002, pp. 407–408, section 19.4 of a laminate of two
phases laminated in direction n: Let f1, f2 denote the volume fraction occupied by phase i = 1, 2, then the
piecewise constant average value zero fields

E = [f2χ1 − f1χ2]n, J = [f2χ1 − f1χ2]v, with n · v = 0, (10.70)

are curl-free and divergence-free, respectively, and therefore lie inV∩E 6= {0} andV∩J 6= {0}, respectively.

Now, that we know under some assumptions that dimV = dimU (1), the second step is to construct an
invertible linear map K : U (1) → V to show that the operators Y∗ and L∗

(1) are K congruent, in other words
that:

Y∗(L1, L2) = KL∗
(1)(L1, L2)K†.

This is the purpose of the following theorem.

Theorem 48. If P1 ∩ U = P2 ∩ U = {0} and E ∩ V = J ∩ V = {0} then Assumption 41 holds, dimU =

dimV = dimU (1), and assuming the operators Y∗ = Y∗(L1, L2), L∗
(1) = L∗

(1)(L1, L2) operators in
(10.37) and (10.60), respectively, are well-defined (which is the case, for instance, if L is coercive) we have

Y∗(L1, L2) = KL∗
(1)(L1, L2)K†, (10.71)

where K : U (1) → V is the invertible operator defined by

K = −(Π1Γ1Π1)−1Π1Γ1Π2, (10.72)

with the inverse of Π1Γ1Π1 taken on V .
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Proof. Suppose that P1 ∩ U = P2 ∩ U = {0}, E ∩ V = J ∩ V = {0}. It then follows that by Proposition
41 since J ∩ V = {0} we know that Assumption 41 holds, by Corollary 46 since P1 ∩ U = P2 ∩ U = {0}
we know that dimU = dimV and since E ∩ V = J ∩ V = {0} we know that dimV = dimU (1). Also,
since J ∩ V = {0} and V is finite-dimensional then Π1Γ1Π1 is invertible on V and hence the operator
K : U (1) → V given by (10.72) is well-defined. We will now prove it is invertible. To do this we introduce
the operator K′ : U (1) → V defined by

K′ = −(Π1Γ2Π1)−1Π1Γ2Π2, (10.73)

with the inverse of Π1Γ2Π1 taken on V , which exists since by assumption E ∩ V = {0} and V is finite-
dimensional. We will now prove that K is invertible by showing that K† = −(K′)−1. This follows now from
the fact that dimV = dimU (1) <∞ and on V ,

K′K† = (Π1Γ2Π1)−1Π1Γ2Π2Π2Γ1Π1(Π1Γ1Π1)−1

= (Π1Γ2Π1)−1Π1Γ2(IK −Π1)Γ1Π1(Π1Γ1Π1)−1

= −(Π1Γ2Π1)−1Π1Γ2Π1Γ1Π1(Π1Γ1Π1)−1 = −Π1Γ1Π1(Π1Γ1Π1)−1 = −IV .

Now suppose the operators Y∗ = Y∗(L1, L2), L∗
(1) = L∗

(1)(L1, L2) in (10.37) and (10.61), respectively,
are well-defined. We will prove the identity (10.71). For any E1 ∈ V we have J1 := −Y∗E1 ∈ V and
we know that there exists a solution to the Y -problem, i.e., there exists an E′ ∈ E and J′ ∈ J such that
Π1E

′ = E1, Π1J
′ = J1 and J2 = LE2 where J2 := Π2J

′ and E2 := Π2E
′. Moreover, we remark that

E2 = Π2E
′ ∈ Π2(E) ⊆ Π2(E1 ⊕ U1 ⊕ V) = E1 ⊕ U1,

and in the same way that J2 ∈ J1 ⊕ U1.
But for this E

(1)
0 := Γ

(1)
0 E′ we can construct a solution to the Z-problem on the Z(2) subspace collection

H(1) = U (1) ⊕ E(1) ⊕ J (1) = P(1)
1 ⊕ P(1)

2 , namely given E
(1)
0 ∈ U (1) we see that the fields

J
(1)
0 := Γ

(1)
0 J′ ∈ U (1), E := E2 −E

(1)
0 ∈ E(1), J := J2 − J

(1)
0 ∈ J (1)

are such that J
(1)
0 + J = J2 = L(E2) = L(E

(1)
0 + E). But the Z-operator associated with the Z-problem on

this Z(2) subspace collectionH(1) is L∗
(1) and hence

J
(1)
0 = L∗

(1)E
(1)
0 . (10.74)

We will now prove that J1 = KJ
(1)
0 and E1 = K′E

(1)
0 . First, since J2 − J

(1)
0 = J ∈ J (1) ⊆ J , we have

0 = Γ1(J2 − J
(1)
0 ) = Γ1J2 − Γ1J

(1)
0 (10.75)

which leads to

Π1Γ1J2 = Π1Γ1Π2J
(1)
0 . (10.76)

Then, using the relation J2 = J′ − J1 with J′ ∈ J and J1 ∈ V , we get

Π1Γ1Π1J1 = −Π1Γ1Π2J
(1)
0 , (10.77)
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and it leads to

J1 = KJ
(1)
0 . (10.78)

Similarly, since E2 −E
(1)
0 = E ∈ E(1) ⊆ E then we have

0 = Γ2(E2 −E
(1)
0 ) = Γ2E2 − Γ2E

(1)
0 , (10.79)

and we get that

Π1Γ2Π1E1 = −Π1Γ2Π2E
(1)
0 , (10.80)

which leads to

E1 = K′E
(1)
0 . (10.81)

It follows from these facts that

−Y∗E1 = J1 = KJ
(1)
0 = KL∗

(1)E
(1)
0 = KL∗

(1)(K′)−1E(1) = −KL∗
(1)K†E1.

As this is true for every E1 ∈ V it implies the relation

Y∗ = KL∗
(1)K†, (10.82)

as desired. This completes the proof.

We want now to give necessary conditions under which the operators L∗
(1) is well-defined. This question

is not as clear as for Y∗ (see Proposition 44) since the well-posedness of the effective tensors L∗
(1) (as for the

effective L∗ for the base case) is directly linked to the properties of the operators L in the subspace decompo-
sitionH(1) = U (1)⊕E(1)⊕J (1) and therefore is highly dependent on the physical problem and the structure
of the composite.

For instance, the representation formulas (10.60) and (10.61) of L∗
(1) are respectively defined under the

existence of the inverse Γ
(1)
1 LΓ

(1)
1 on E(i) and of the inverse of (Γ

(1)
0 +Γ

(1)
2 )L−1(Γ

(1)
0 +Γ

(1)
2 ) on U (1)⊕J (1).

We saw indeed that the existence of these both inverses is equivalent as soon as L is invertible on H(1) (see
Proposition 36). By the Remarks 37 and 38, the invertibility of L on H(1) follows from the invertibility of L
on H which is equivalent to L1 6= 0 and L2 6= 0. Moreover, if L is coercive (see Remark 35) which is the
case for example under the Herglotz hypothesis (10.49) then L∗

(1) is well-defined by both formulas (10.60)
and (10.61). But what can we say if we don’t suppose this strong coercivity assumption?

As the field equation recursion method is an induction method, we want to establish here some criterion of
well-posedness for L∗

(1) that it inherits from the well-posedness of L∗ in the base case. For this purpose, the
representation formula (10.60) is more suitable since the space E(1) is constructed as a subspace of E (which
is not the case of the formula (10.61) since U (1) ⊕ J (1) is not included in U ⊕ J ).

Proposition 49. LetW(1) be the subspace of E defined by

W(1) = E 	 E(1), (10.83)
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in other words, the orthogonal complements of E(1) in E . ThenW(1) is a finite-dimensional space and L11

(the restriction of the operator Γ1LΓ1 on E) can be represented as a 2× 2 block operator matrix

L11 =

[
A B

C L
(1)
11

]
, (10.84)

with respect to the orthogonal decomposition (10.83), where L
(1)
11 is the restriction of Γ

(1)
1 LΓ

(1)
1 on E(1).

Furthermore, if L11 is invertible then L
(1)
11 is a index 0 Fredholm operator and the invertibility of L

(1)
11 is

equivalent to the injectivity condition: Ker L
(1)
11 = {0}. Hence, if the representation formula (10.15) holds

for L∗ and Ker L
(1)
11 = {0} then L∗

(1) is well-defined by the formula (10.60).

Proof. We have simply to prove here thatW(1) is a finite-dimensional space since all the other conclusions
follow immediately from Proposition 32. From the relations (10.25), (10.27) and (10.28), we have that

K = E ⊕ J = V ⊕ U (1) ⊕ E(1) ⊕ J (1) with E(1) ⊆ E and J (1) ⊆ J .
Therefore, E = E(1) ⊕ W(1) ⊆ E(1) ⊕ V ⊕ U (1) and, since V and U (1) are finite dimensional spaces by
Corollary 46, this implies thatW(1) is finite dimensional.

10.3.2 The induction step
We now introduce a hierarchy of subspaces

K(i−1) = E(i−1) ⊕ J (i−1) = V(i−1) ⊕ P(i)
1 ⊕ P

(i)
2 , (10.85)

H(i) = U (i) ⊕ E(i) ⊕ J (i) = P(i)
1 ⊕ P

(i)
2 , (10.86)

for i = 1, 2, 3, . . . , where

P(i)
1 = P1 ∩ K(i−1), P(i)

2 = P2 ∩ K(i−1), V(i−1) = K(i−1) 	 (P(i)
1 ⊕ P

(i)
2 ), (10.87)

E(i) = E ∩ H(i), J (i) = J ∩H(i), U (i) = H(i) 	 (E(i) ⊕ J (i)). (10.88)

For all positive integers i, we denote by Π
(i)
1 and Π

(i)
2 the orthogonal projections on V(i−1) and H(i) =

P(i)
1 ⊕ P(i)

2 associated with the orthogonal Y (2) subspace collection (10.85) and by Γ
(i)
0 , Γ

(i)
1 , Γ

(i)
2 , Λ

(i)
1

and Λ
(i)
2 the orthogonal projections on U (i), E(i), J (i), P(i)

1 and P(i)
2 associated with the orthogonal Z(2)

subspace collection (10.86).
The following theorem defines and gives the properties of the Z- and Y -operators at each level i of the

induction argument. We take here as convention that in the indexing of the spaces and operators, the index
0 refers to the base case developed in sections 10.2 and 10.3. Also, we denote by L

(i)
11 the restriction of the

operator Γ
(i)
1 LΓ

(i)
1 on E(i).

Theorem 50. Assume that the operators L on H(0) and L
(0)
11 on E(0) are invertible and let i ∈ N. If, for

each k = 1, ...., i, we have Ker L
(k)
11 = {0} then for all k = 0, ...., i, the Z-operator L∗

(k) : U (k) → U (k) is
well-defined by both representation formulas:

L∗
(k) = Γ

(k)
0 LΓ

(k)
0 − Γ

(k)
0 LΓ

(k)
1 (Γ

(k)
1 LΓ

(k)
1 )−1Γ

(k)
1 LΓ

(k)
0 ] (10.89)

= Γ
(k)
0 [(Γ

(k)
0 + Γ

(k)
2 )L−1(Γ

(k)
0 + Γ

(k)
2 )]−1Γ

(k)
0 , (10.90)
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and L∗
(k) satisfies the homogeneity, normalization, and Herglotz properties. Furthermore, if V(k) ∩ J (k) =

{0} for each k = 0, ...., i, then the Y -operator Y∗
(k) : V(k) → V(k) is also well-defined by

Y∗
(k) = Π

(k)
1 Γ

(k)
2 (Γ

(k)
2 Π

(k)
2 L−1Π

(k)
2 Γ

(k)
2 )−1Γ

(k)
2 Π

(k)
1 , (10.91)

and Y∗
(k) satisfies both the homogeneity and Herglotz properties. Moreover, if we also suppose that

V(k) ∩ E(k) = 0 and P(k)
1 ∩ U (k) = P(k)

2 ∩ U (k) = {0}, for all k = 0, ..., i− 1

then for all k = 0, ..., i− 1 we have

dimU (0) = dimU (k) = dimV(k) = dimU (i), (10.92)

and there exists an invertible operator K(k) : U (k+1) → V(k) defined by

K(k) = −(Π
(k)
1 Γ

(k)
1 Π

(k)
1 )−1Π

(k)
1 Γ

(k)
1 Π

(k)
2 , (10.93)

such that Y∗
(k) and L∗

(k+1) are linked by the following relation:

Y∗
(k) = K(k)L∗

(k+1) (K(k))†. (10.94)

Proof. Suppose the operators L on H(0) and L
(0)
11 on E(0) are invertible and fix an integer i ∈ N. First, by

Proposition 36, in the case k = 0 theZ-operator L∗
(0) : U (0) → U (0) is well-defined by both formulas (10.89)

and (10.90) and hence satisfies the homogeneity, normalization, and Herglotz properties.
Next, suppose that for each k = 1, ...., i, we have Ker L

(k)
11 = {0}. Hence, as L

(0)
11 is invertible, we deduce

by induction by using the Proposition 49 that all the operators L
(1)
11 , . . . ,L

(i)
11 are invertible and that the Z-

operator L∗
(k) : U (k) → U (k) is well-defined by formula (10.89). Then, as L is assumed invertible onH, we

have L1 6= 0 and L2 6= 0 (see Remark 37) and this implies that L is invertible on H(k) too (see Remark 38).
Hence, it follows from Proposition 36 that the Z-operator L∗

(k) is also well-defined by the formula (10.90)
and thus satisfies the homogeneity, normalization, and Herglotz properties.

Suppose now that in addition, V(k) ∩ J (k) = {0} for each k = 0, ...., i. Then it follows immediately
from Proposition 44 that the Y -operator Y∗

(k) : V(k) → V(k) is also well-defined by the formula (10.91) and
hence satisfies both the homogeneity and Herglotz properties for all k = 0, ...., i.

Finally, suppose that in addition,

V(k) ∩ E(k) = 0 and P(k)
1 ∩ U (k) = P(k)

2 ∩ U (k) = {0}, for all k = 0, ..., i− 1.

Then the rest of the proof of this theorem now follows immediately from Theorem 48. This completes the
proof.
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11 Projection Functional
Theory for finding excited

states

Graeme W. Milton
Department of Mathematics, University of Utah, Salt Lake City UT 84112, USA

Abstract

Density functional theory enormously simplifies the calculation of the electron density in
the ground state of a system. Here we extend the ideas of density functional theory to
excited states of a system. One starts by integrating the square of the Schrodinger equation,
which gives a functional to minimize which is quadratic in the potential. Splitting up the
minimization in partial minimizations leads to a “density functional type theory” involving a
functional of 3 functions, that each project out information contained in the full-wavefunction:
hence the name projectional functional theory. Finding or approximating this functional
will still be a challenge, especially since one function is essentially the electron-pair density
function, and it is not yet known which such functions are legal in the sense that they derive
from a completely antisymmetric wavefunction.

11.1 Introduction
Density functional theory (DFT) enables one to calculate the electron density associated with a ground state
of an N electron system, while avoiding the direct calculation of the electron wavefunction ψ which is a
complex-valued function of 3N -spatial dimensions and the spin configuration which takes 2N values: 3 spa-
tial dimensions for each of theN -electrons whose positions may be correlated, and two values for each electron
spin. Due to the large dimensionality involved, direct calculation of the wavefunction quickly becomes hope-
less when a large number of electrons are involved, even using current computers. Modern density functional
theory began with the pioneering papers of Hohenberg and Kohn (1964) and Kohn and Sham (1965). It got
off to a slow start, but interest in it has exploded since 1990, with now over 16,000 publications per year on the
topics of “density functional or DFT”: see the excellent recent historical reviews of Jones (2015) and Zangwill
(2014), and the multitude of references therein. Walter Kohn in 1998 shared the Nobel prize in chemistry “for
his development of the density-functional theory”, and an article in Nature lists it as “easily the most heavily
cited concept in the physical sciences”, with articles by Becke (1993) and Lee, Yang, and Parr (1988) being
listed as two of the top ten most cited articles (with about 60,000 citations each according to Google Scholar
in 2015). They quote Becke as saying “But the applications are endless. At a fundamental level, DFT can
be used to describe all of chemistry, biochemistry, biology, nanosystems and materials. Everything in out
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310 11. Projection Functional Theory for finding excited states

terrestrial world depends on the motions depends on the motions of electrons-therefore, DFT literally under-
lies everything.” Density Functional Theory has been applied with success to periodic systems (Kresse and
Furthmüller 1996; Ismail-Beigi and Arias 2000; Segall, Lindan, Probert, Pickard, Hasnip, Clark, and Payne
2002; Gonze, Beuken, Caracas, Detraux, Fuchs, Rignanese, Sindic, Verstraete, Zerah, Jollet, Torrent, Roy,
Mikami, Ghosez, Raty, and Allan 2002) and to non-periodic systems, using finite elements (Suryanarayana,
Gavini, Blesgen, Bhattacharya, and Ortiz 2010).

Here we are interested in generalizing density functional theory to the case of finding the excited states
(eigenfunctions having associated energies above the ground state energy) of the time-harmonic multielectron
Schrödinger equation for the wave-function ψ(x),

Eψ(x) = −∇ ·A∇ψ(x) + V (x)ψ(x), (11.1)

where the energy E (not to be confused with the field E(x)) must be in the spectrum of the operator for a
nonzero solution for ψ(x) to exist, V (x) is the potential, and in the simplest approximation A = h̄2I/(2m),
but which may take other forms to take into account the reduced mass of the electron, or mass polarization
terms due to the motion of the atomic nuclei. Here,m is the mass of the electron, h̄ is Planck’s constant divided
by 2. We have used the notation of Parr and Weitao (1994), where, assuming we are in three spatial dimensions
with N electrons, x represents the multidimensional vector x = (x1,x2, . . . ,xN ) where the xi = (ri, si),
and ri is a three dimensional vector associated with the position of electron i and si is associated with its spin,
taking values +1/2 or −1/2. We use

∇ = (∇1,∇2, . . . ,∇N ), where ∇j =

(
∂

∂r
(j)
1

,
∂

∂r
(j)
2

,
∂

∂r
(j)
3

)
. (11.2)

The wavefunction ψ(x) is antisymmetric with respect to interchange of any pair of xj and xk, while V (x) is
assumed to be symmetric with respect to such interchanges.

Our analysis applies to isolated systems confined within a body Ω, or to periodic systems with Ω taken as
the unit cell of periodicity of the wavefunction. Note that if the material we wish to simulate is periodic, with a
unit cell Ω0 of the potential, then we should take Ω to contain many copies of Ω0 and not just one: for example
if Ω0 was a cube of side length `, then we could take Ω to be a cube of side lengthm`wherem is large. This is
to allow the wavevector k = (k1,k2, . . . ,kN ) which enters the Bloch periodicity conditions at the boundary
of the cell ΩN0 in the 3N dimensional space to take a reasonably large number of discrete values. In the
example where Ω0 is a cube and m is even the components kip of kp can take the m values kip = 2πj/(m`),
j = 1−m/2, 2−m/2, . . ., m/2. Note, however, that a Bloch solution on ΩN0 will not in general satisfy the
required antisymmetry requirements of the wavefunction, so one will have to antisymmetrize it to obtain an
acceptable wavefunction: this will no longer be quasiperiodic on the cell ΩN0 , but it will be periodic on the cell
ΩN . (I thank Richard James for pointing out the need to do something like this). It may be sufficient to take
Ω0 as the cell of periodicity of the wavefunction if the cell contains a molecule whose associated wavefunction
is localized near the center of the cell.

Following the procedure of the Chapter 1 one can rewrite the equation as(
q(x)

∇ · q(x)

)
︸ ︷︷ ︸

J(x)

=

(−A 0

0 E − V (x)

)
︸ ︷︷ ︸

L(x)

(∇ψ(x)

ψ(x)

)
︸ ︷︷ ︸

E(x)

, (11.3)

where q(x) is some current.
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Density functional theory only involves a functional of

ρ(x1) =
1

|Ω|N−1

∫
ΩN−1

ψ(x1, . . . ,xN )ψ(x1, . . . ,xN )dx2 dx3 . . . dxN . (11.4)

which is the electron density. Here Ω could be the region to which the wavefunction is confined, or it could
be a unit cell of periodicity.

By contrast, our theory in the simplest case where the wavefunction and energy are real involves a func-
tional F0(S, T, P2, E) of the energy E and three functions:

P2(x1,x2) =
1

|Ω|N−2

∫
ΩN−2

ψ(x1, . . . ,xN )ψ(x1, . . . ,xN )dx3 . . . dxN ,

S(x1) =
1

|ΩN−1|

∫
ΩN−1

ψ(x1,x2, . . . ,xN )∇ · q(x1,x2, . . . ,xN )︸ ︷︷ ︸
−A∇ψ

dx2 . . . dxN ,

T (x1) =
1

|ΩN−1|

∫
ΩN−1

ψ(x1,x2, . . . ,xN )Vee(x)ψ(x1,x2, . . . ,xN )dx2 . . . dxN , (11.5)

where ψ(x1, . . . ,xN ) is the (real-valued) wavefunction and the potential Vee(x), with x = (x1,x2, . . . ,xN ),
is the interaction between electrons and other electrons:

Vee(x) =

N∑
i<j

U(xi,xj), (11.6)

in which
U(xi,xj) =

e2

|ri − rj |
(11.7)

is the electron–electron repulsion, and e is the electron charge. Each of these three functions projects out
information contained in the three functions

ψ(x1, . . . ,xN )ψ(x1, . . . ,xN ),

ψ(x1,x2, . . . ,xN )∇ · q(x1,x2, . . . ,xN ),

ψ(x1,x2, . . . ,xN )Vee(x)ψ(x1,x2, . . . ,xN ), (11.8)

hence the name “Projection functional theory”.
We emphasize that it might require a considerable amount of work to determine appropriate forms for the

functional F0(S, T, P2, E), given that it involves not just one but three functions including P2(x1,x2) which
involves a function of two co-ordinates, x1 and x2. For nonperiodic systems a lot of attention has been paid
to both the electron-pair density

ρ2(x1,x2) =
N(N − 1)

2

∫
· · ·
∫
ψ(x1,x2, . . . ,xN )ψ(x1,x2, . . . ,xN )dx3 . . . dxN , (11.9)

(where an integration over x1 means integrating ri over R3 and summing over si) which is obviously closely
related to P2(x1,x2) when the wavefunction is real, as we have assumed, and also the associated second-order
reduced density matrix

γ2(x′1,x
′
2; x1,x2) =

N(N − 1)

2

∫
· · ·
∫
ψ(x1,x2, . . . ,xN )ψ(x′1,x

′
2, . . . ,xN )dx3 . . . dxN . (11.10)
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(The electron-pair density can be regarded as the “diagonal component” γ2(x′1,x
′
2; x1,x2) of the second-

order reduced density matrix.) It is not even known which electron-pair densities, or second-order reduced
density matrices, are legitimate in the sense that they can be generated from some antisymmetric wavefunction
ψ(x1, . . . ,xN ): this is the famous N -representability problem (Coleman 1981; Erdahl and Smith, Jr. 1987;
Parr and Weitao 1994; Davidson 1995; Harrison 2003). A necessary step in the minimization is knowing the
set of functions S, T , P2, and E over which the minimization should be performed. This need not be the set
of all legitimate function combinations, but just those legitimate functions for which F0(S, T, P2, E) is not
too large — but of course identifying these functions may not be easy either.

This chapter is mostly self-contained, and it is only necessary for the reader to have studied Section 1.7.

11.2 A review of density functional theory for the ground state
Let us review the standard density functional theory using the approach of Levy (1979). If one is interested
in finding the electronic ground state, with energy E0, for a multielectron system (with no source terms) one
minimizes the Rayleigh quotient

E0 = min
ψ

ψ=0 on ∂ΩN

〈ψψ〉=1

〈∇ψ ·A∇ψ + ψV (x)ψ〉, (11.11)

where the angular brackets denote an average as the spatial coordinates r range over ΩN and as the spin
configuration s = (s1, s2, . . . , sN ) varies over all 2N possibilities. Now V (x) has the decomposition

V (x) = Vne(x) + Vee(x), (11.12)

where x = (x1,x2, . . .xi,xj , . . . ,xN ). The potential V (x) is completely symmetric with respect to swap-
ping any pair of co-ordinates xi,xj . The term Vne is the interaction between the M nuclei and N electrons
given by

Vne(x) =

N∑
i=1

M∑
j=1

V (j)
ne (xi), [recall xi = (ri, si) where ri ∈ R3], (11.13)

with

V (j)
ne (xi) =

−Zje2

|ri −Rj |
, (11.14)

where Zje is the charge on the nucleus positioned at Rj and ri is the position of electron i having spin si. The
term Vee given by (11.6) and (11.7) is the interaction between electrons and other electrons. Vee is universal
(independent of the position of the nuclei) while Vne is not. Note that Vee(x) and Vne(x) are completely
symmetric but V (j)

ne (xi) is not.
Now from the antisymmetry properties of ψ(x1, . . . ,xN ) we can successively swap variables of integra-

tion and deduce that

〈ψ(x1, . . . ,xN )V (j)
ne (xi)ψ(x1, . . . ,xN )〉 = 〈ψ(x1, . . . ,xN )V (j)

ne (x1)ψ(x1, . . . ,xN )〉

=
1

|Ω|

∫
Ω

V (j)
ne (x1)ρ(x1)dx1, (11.15)
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where
ρ(x1) =

1

|Ω|N−1

∫
ΩN−1

ψ(x1, . . . ,xN )ψ(x1, . . . ,xN )dx2 dx3 . . . dxN (11.16)

is the electron density.
Then the minimization in (11.11) can be split into two minimizations. The first is the calculation of

F (ρ∗) = min
ψ

ψ=0 on ∂ΩN

ρ(x1)=ρ∗(x1)

〈∇ψ ·A∇ψ + ψVee(x)ψ〉, (11.17)

which is a universal functional, the density functional, that is independent of the positions of the nuclei. If the
system is periodic then the constraint that ψ = 0 on ∂ΩN should be replaced with periodic boundary condi-
tions. The evaluation of this functional is not easy but one may use numerical experiments, approximations,
and guesswork to estimate its form. With the density functional in hand one only needs to do the remaining
minimization,

E0 = min
ρ∗

〈ρ∗〉=1

F (ρ∗) + 〈
N∑
i,j

V (j)
ne (x1)ρ∗(x1)〉

 , (11.18)

which greatly simplifies the calculation as the problem is reduced to minimization of a function in a 3-
dimensional space, rather than the minimization over the 3N dimensional space we started with. In this last
expression the angular brackets are now just an average as r1 ranges over Ω and as s1 takes the two possible
values +1/2 and −1/2.

Of course the difficulty is knowing what form of the density functional F (ρ∗) to take, and there is an
enormous body of work directed to determining a suitable form, that agrees well with numerical results and
experimental data.

11.3 Expanding the terms in a variational principle for excited states
Let us define

p(x) = ∇ ·A∇ψ(x) + (E − V (x))ψ(x). (11.19)

If the potential V (x) is real and the energy E is real and the spectrum is discrete, then at points E on the
spectrum, both the real and imaginary parts of the wavefunction satisfy the Schrödinger equation, and so
p(x) = 0. Hence, let us assume the wavefunction ψ is real. We have the obvious variational principle that
when

W (ψ) = 〈[p(x)]2〉, where p(x) = ∇ ·A∇ψ(x) + (E − V (x))ψ(x), (11.20)

is minimized over ψ, with 〈ψ2〉 = 1, where the angular brackets denote an average over r as it ranges over ΩN

and over s as it ranges over all 2N configurations. The minimum is zero and occurs at p(x) = 0, provided E
is on the discrete spectrum.

The quantity W (ψ) to be minimized, given by (11.20), has the equivalent form

W (ψ) = 〈
(−∇ · q

ψ

)
·
(

1 E − V (x)

E − V (x) (E − V (x))2

)(−∇ · q
ψ

)
〉,

(11.21)
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in which q = −A∇ψ. Now we follow the ideas inherent in the standard density functional theory. From
the antisymmetry properties of ψ(x1, . . . ,xN ) and∇ ·q(x1, . . . ,xN ) we can successively swap variables of
integration and deduce that

〈ψ(x1, . . . ,xN )V (j)
ne (xi)∇ · q(x1, . . . ,xN )〉 = 〈ψ(x1, . . . ,xN )V (j)

ne (x1)∇ · q(x1, . . . ,xN )〉

=
1

|Ω|

∫
Ω

V (j)
ne (x1)S(x1)dx1, (11.22)

where

S(x1) =
1

|ΩN−1|

∫
ΩN−1

ψ(x1,x2, . . . ,xN )∇ · q(x1,x2, . . . ,xN )︸ ︷︷ ︸
−A∇ψ

dx2 . . . dxN . (11.23)

Also the term which is quadratic in the potentials can be expanded:

(E − V (x))2 = (E − Vne(x)− Vee(x))2 = E2 + (Vne(x))2 + (Vee(x))2

−2EVne(x)− 2EVee(x) + 2Vne(x)Vee(x). (11.24)

Let’s look at the contribution from each of these. We have for i 6= `:

〈ψ(x1, . . . ,xN )V (k)
ne (xi)V

(j)
ne (x`)ψ(x1, . . . ,xN )〉

= 〈ψ(x1, . . . ,xN )V (k)
ne (x1)V (j)

ne (x2)ψ(x1, . . . ,xN )〉

=
1

|Ω|2
∫

Ω2

V (k)
ne (x1)V (j)

ne (x2)P2(x1,x2)dx1dx2, (11.25)

where
P2(x1,x2) =

1

|Ω|N−2

∫
ΩN−2

ψ(x1, . . . ,xN )ψ(x1, . . . ,xN )dx3 . . . dxN . (11.26)

For ` = i we have

〈ψ(x1, . . . ,xN )V (k)
ne (xi)V

(j)
ne (xi)ψ(x1, . . . ,xN )〉

= 〈ψ(x1, . . . ,xN )V (k)
ne (x1)V (j)

ne (x1)ψ(x1, . . . ,xN )〉
= 〈V (k)

ne (x1)V (j)
ne (x1)P1(x1)〉, (11.27)

where
P1(x1) =

∫
Ω

P2(x1,x2)dx2. (11.28)

Also we have

〈ψ(x1, . . . ,xN )V (j)
ne (xi)ψ(x1, . . . ,xN )〉 = 〈ψ(x1, . . . ,xN )V (j)

ne (x1)ψ(x1, . . . ,xN )〉

=
1

|Ω|

∫
Ω

V (j)
ne (x1)P1(x1)dx1. (11.29)

Similarly, because Vee(x), with x = (x1,x2, . . .xi,xj , . . . ,xN ), is symmetric with respect to interchange
of any pair xi and xk we have

〈ψ(x1, . . . ,xN )V (j)
ne (xi)Vee(x)ψ(x1, . . . ,xN )〉

= 〈ψ(x1, . . . ,xN )V (j)
ne (x1)Vee(x)ψ(x1, . . . ,xN )〉

=
1

|Ω|

∫
Ω

V (i)
ne (x1)T (x1)dx1, (11.30)
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where

T (x1) =
1

|ΩN−1|

∫
ΩN−1

ψ(x1,x2, . . . ,xN )Vee(x)ψ(x1,x2, . . . ,xN )dx2 . . . dxN . (11.31)

Now we have

〈ψ(E − V (x))∇ · q〉 = 〈∇ · q(E − V (x))ψ〉

= 〈ψ

E − N∑
i,j

V (j)
ne (xi)− Vee(x)

∇ · q〉
= E〈ψ∇ · q〉 −

N∑
i

〈V (j)
ne (x)S(x)〉N

−〈ψVee(x)∇ · q〉, (11.32)

and

〈ψ[E − V (x)]2ψ〉 = E2〈ψ2〉 − 2E〈ψ(Vne(x) + Vee(x))ψ〉
+〈ψ(Vne(x))2ψ〉+ 〈ψ(Vee(x))2ψ〉
+2〈ψVne(x)Vee(x)ψ〉. (11.33)

Here one can make the identifications

〈ψVne(x)ψ〉 = 〈ψ
N∑
i,j

V (j)
ne (xi)ψ〉

=

N∑
j=1

〈V (j)
ne (x1)P1(x1)〉N, (11.34)

and

〈ψ(Vne(x))2ψ〉 = 〈ψ
N∑
k,i

V (k)
ne (xi)

N∑
`,j

V (j)
ne (x`)ψ〉

=

N∑
k,i

N∑
j,`

〈ψV (k)
ne (xi)V

(j)
ne (x`)ψ〉

=

N∑
k,i

N∑
j,`

N(N − 1)〈V (k)
ne (x1)V (j)

ne (x2)P2(x1,x2)〉

+

N∑
k=1

N∑
j=1

N〈V (k)
ne (x1)V (j)

ne (x1)P1(x1)〉, (11.35)
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and

〈ψVne(x)Vee(x)ψ〉 = 〈ψ
N∑
i,j

V (j)
ne (xi)Vee(x)ψ〉

=

N∑
j=1

〈V (j)
ne (x1)T (x1)〉N, (11.36)

and

〈ψ(E − V )ψ〉 = 〈ψ(E −
N∑
i,j

V (j)
ne (xi)− Vee(x))ψ〉

= E〈ψ2〉 −
N∑
j=1

〈V (j)
ne (x1)P1(x1)〉N − 〈ψVee(x)ψ〉. (11.37)

11.4 Using the variational principle to derive Projection Functional
Theory

Now noting that P1 derives from P2, we can write W as a sum

W = W1(ψ,E) +W2(S, T, P2, E) (11.38)

of a first term W1(ψ,E) which is universal, not dependent on the positions of the nuclei, and a remaining
term W2(S, T, P2, E) which is dependent on the position of the nuclei. If the projection functionals S(x1),
T (x1), and P2(x1,x2) are known (and again these do not depend on the nuclei positions) the evaluation of
W2(S, T, P2, E, T0) only requires an integration over two variables x1 and x2.

Specifically we have

W1(ψ,E) = 〈(∇ · q)(∇ · q)〉 − 2E〈ψ∇ · q〉
+2〈ψVee(x)∇ · q〉+ E2〈ψ2〉
−2E〈ψVee(x)ψ〉+ 〈ψ(Vee(x))2ψ〉, (11.39)

and

W2(S, T, P2, E) = 2

N∑
j=1

〈V (j)
ne (x1)S(x1)〉 − 2E

N∑
j=1

〈V (j)
ne (x1)P1(x)〉

+2

N∑
k=1

N∑
j=1

〈V (k)
ne (x1)V (j)

ne (x2)P2(x1,x2)〉

+2

N∑
k=1

N∑
j=1

N〈V (k)
ne (x1)V (j)

ne (x1)P1(x1)〉

+2

N∑
j=1

〈V (j)
ne (x1)T (x1)〉N, (11.40)
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in which q = −A∇ψ. We split the minimization into two parts, the first being

min
ψ

〈ψ2〉=1

W1(ψ) ≡ F0(S∗, T∗, P2∗, E), (11.41)

where the minimum is over all functions ψ with the required antisymmetry, satisfying the constraints

S(x1) = S∗(x1),

T (x1)) = T∗(x1),

P2(x1,x2) = P2∗(x1,x2), (11.42)

where S∗(x1), T∗(x1) and P2∗(x1,x2) are arbitrary given functionals. It could be that there are no antisym-
metric wavefunctions ψ(x) satisfying these constraints, in which case we set F0(S∗, T∗, P2∗) = ∞. This is
a multidimensional problem that has to be solved (or the solution approximated), but it is independent of the
positions of the nuclei. Finally, the positions on the nuclei enter in the final minimization

W = min
S∗,T∗,P2∗

[F0(S∗, T∗, P2∗, E) +W2(S∗, T∗, P2∗, E)], (11.43)

which is a minimization over the projective functions S∗, T∗, P2∗. It is a nonlinear minimization, but one that
only involves functionals of at most six co-ordinates, namely those of x1 and x2.
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12 The desymmetrization
method for solving the
Schrödinger equation

Graeme W. Milton
Department of Mathematics, University of Utah, Salt Lake City UT 84112, USA

Abstract

Here we present a new method for solving the multielectron Schrödinger equation in periodic
media with source terms. The key point is to write the equation in a form where the matrix
entering the constitutive law is desymmetrized, i.e., only depends on the first two, x1 and x2,
of the N particle coordinates x1, x2,. . ., xN . Then it is proposed to solve the equation by
Fast Fourier Transform methods. Due to the desymmetrization the Fast Fourier Transforms
need only be done on the first two coordinates x1 and x2. A disadvantage of the method is
that one has to store and update the complete wavefunction in Fourier space.

12.1 Introduction
Density functional theory relies on the fact that in the variational principle for the ground state of aN -electron
system one can desymmetrize the potential V (x1,x2, . . . ,xN ) (where each xi = (ri, si) represents a combi-
nation of a spatial coordinate ri and a spin coordinate si) and replace it by a potential which just depends on x1

and x2 due to the antisymmetry property of the wavefunction. For periodic media, Fast Fourier Transforms
have become an essential tool in modern density functional theory computations (Kresse and Furthmüller
1996; Ismail-Beigi and Arias 2000; Segall, Lindan, Probert, Pickard, Hasnip, Clark, and Payne 2002; Gonze,
Beuken, Caracas, Detraux, Fuchs, Rignanese, Sindic, Verstraete, Zerah, Jollet, Torrent, Roy, Mikami, Ghosez,
Raty, and Allan 2002). Here we show that a similar desymmetrization can be made in the constitutive law
for the Schrödinger’s equation, and thus is applicable to excited states as well as ground states. When desym-
metrized, the tensor which enters the constitutive law only depends on 6 coordinates, namely the elements of
two vectors x1,x2, rather than the entire 3N coordinates that enter the usual three-dimensional Schrödinger
equation. With periodic boundary conditions the desymmetrized equation can be solved using the Fast Fourier
Transform methods that were developed for composites by Moulinec and Suquet (1994, 1998) and Eyre and
Milton (1999) (see also the generalization in Section 14.9 of Milton 2002, in particular equation (14.38), and
see also Moulinec and Silva 2014 for a recent review). The desymmetrized nature of the constitutive law al-
lows one to do the Fourier transform steps only on x1 and x2, rather than on all co-ordinates x1,x2, . . . ,xN .
At each stage of the iteration one still needs to update the Fourier transform of the full electron wavefunction
ψ(x1,x2, . . . ,xN ) and thus it is expected that this method will be applicable only when there are relatively
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320 12. The desymmetrization method for solving the Schrödinger equation

few electrons. One primarily works in Fourier space. An additional advantage is that the antisymmetrization
step is considerably easier as the function to be antisymmetrized is already partially antisymmetrized.

We emphasize that if the material we wish to simulate is periodic, with a unit cell Ω0 in three-dimensional
space, then we should take the period cell Ω of the wavefunction to contain many copies of Ω0 and not just
one: for example if Ω0 was a cube of side length `, then we could take Ω to be a cube of side length m`
where m is large. As mentioned in the introduction of the previous chapter this is to allow the wavevector
k = (k1,k2, . . . ,kN ) which enters the Bloch periodicity conditions at the boundary of the cell ΩN0 in the
3N dimensional space to take a reasonably large number of discrete values. While the solution we seek
will not correspond to a Bloch solution (which generally does not have the required antisymmetry) it should
correspond to an antisymmetrization of it and will not be quasiperiodic on the cell ΩN0 , but will be periodic
on the cell ΩN . Again, it may be sufficient to take Ω0 as the cell of periodicity of the wavefunction if the cell
contains a molecule whose associated wavefunction is localized near the center of the cell.

We are investigating the multielectron Schrödinger equation with a source term, which as follows from
(1.92) and Section 1.19 of Chapter 1, can be expressed in the form,

 q(x)

∇ · q(x)

∇ · v(x) + S0

 =

−A 0 0

0 E − V (x) h(x)

0 h(x) d(x)

∇ψψ
θ0

 . (12.1)

where we have added the source term h(x). If we are looking for an eigensolution, then we need to take E
almost real and close to an eigenvalue and the precise form of the forcing term h(x) is almost irrelevant except
that it is chosen to prevent the null-solution and its amplitude gives the normalization of the eigensolution.
(We should avoid those special h(x) which do not excite the relevant eigensolution, such as happens when
h(x) and the eigensolution have opposing symmetries that prevent excitation).

In this formulation, the wavefunction ψ(x), the driving source term h(x), and the divergence ∇ · q(x)
are antisymmetric with respect to interchange of any pair of xi and x`, with i 6= `, in x = (x1,x2, . . . ,xN ),
while the potential V (x),∇ · v(x), and d(x) are assumed to be symmetric with respect to such interchanges.
When E′′ is positive, the solution to the equation (12.1) will be unique for a specified choice of θ0, and
thus the wavefunction ψ(x) will have the desired symmetries, provided V (x) and d(x) are symmetric under
electron interchange and h(x) is antisymmetric. The multidimensional nature of this problem makes it very
challenging to solve if there are a large number N of electrons. Here we show how some simplifications can
be made to facilitate its solution.

A major assumption we make in our proofs of convergence, and associated estimates of the rate of con-
vergence is that the potential V (x) is bounded. Neither the electron–electron repulsion potential, nor the
electron–nuclei attraction potential satisfy this boundedness. It is still conceivable that the iterative solution
converges with these unbounded potentials, however it may be best to truncate the potentials to assure conver-
gence.

This chapter is essentially self-contained although the reader is advised to look at Chapters 1 and 2
beforehand. Readers interested in this chapter may also be interested in Chapters 8 and 11.
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12.2 The desymmetrized form of the Schrödinger equation
Let us consider the following Hilbert spaceH consisting of ΩN -periodic fields

P(x) =

P1(x)

p2(x)

p3(x)

 , (12.2)

that are such that ∫
· · ·
∫

P(x) ·P(x) dx1dx2 . . . dxN (12.3)

is finite where the integral over dxi, where xi = (ri, si) means an integral of the 3-dimensional vector ri
over the unit cell Ω and a sum over the spin variable si. Here P1(x) = P1(x1, . . . ,xN ) is a 3N dimensional
vector where N is the number of particles considered, but it does not have any special symmetries under the
interchange of x` = (r`, s`), and xj = (rj , sj). The functions p2(x), p3(x) are scalars, again with no special
symmetries. Define the projection

Λ

P1(x)

p2(x)

p3(x)

 =

ΛA(P1(x))

Λa(p2(x))

Λs(p3(x))

 . (12.4)

which acts to appropriately symmetrize the fields. Here the operator ΛA projects any 3N -dimensional vector
field P1(x1, . . . ,xN ) onto the space of 3N -dimensional vector fields with 3-dimensional component fields
Bm(x1, . . . ,xN ), m = 1,2,. . ., N , such that under interchange of j and k:

Bj(x1, . . . ,xj , . . . ,xk, . . . ,xN ) = −Bk(x1, . . . ,xk, . . . ,xj , . . . ,xN ),

Bm(x1, . . . ,xj , . . . ,xk, . . . ,xN ) = −Bm(x1, . . . ,xk, . . . ,xj , . . . ,xN ), (12.5)

if m 6= j and m 6= k, e.g., for a 3 electron system where P1(x1,x2,x3) has three-dimensional component
vector fields P11(x1,x2,x3), P12(x1,x2,x3), and P13(x1,x2,x3) we have

ΛA

P11(x1,x2,x3)

P12(x1,x2,x3)

P13(x1,x2,x3)

 =



P11(x1,x2,x3)−P11(x1,x3,x2)−P12(x2,x1,x3)

+P12(x3,x1,x2)−P13(x3,x2,x1) + P13(x2,x3,x1)

P12(x1,x2,x3)−P12(x3,x2,x1)−P11(x2,x1,x3)

+P11(x2,x3,x1)−P13(x1,x3,x2) + P13(x3,x1,x2)

P13(x1,x2,x3)−P13(x2,x1,x3)−P11(x3,x2,x1)

+P11(x3,x1,x2)−P12(x1,x3,x2) + P12(x2,x3,x1)


. (12.6)

This projection has been chosen so the 3N -dimensional vector field P1(x) = ∇ψ(x), with component
fields P1j(x) = ∇jψ(x) where ∇j is the gradient with respect to rj , satisfies ΛA(∇ψ) = ∇ψ when
the wavefunction ψ is antisymmetric with respect to interchange of any pair of xi and x`, with i 6= `, in
x = (x1,x2, . . . ,xN ). The operator Λs projects onto completely symmetric fields and Λa projects onto
completely antisymmetric fields, e.g., for a 3 electron system:

Λs(p3(x1,x2,x3)) =
1

6

[
p3(x1,x2,x3) + p3(x2,x1,x3) + p3(x2,x3,x1)

+p3(x3,x2,x1) + p3(x3,x1,x2) + p3(x1,x3,x2)
]
, (12.7)
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and

Λa(p2(x1,x2,x3)) =
1

6

[
p2(x1,x2,x3)− p2(x2,x1,x3) + p2(x2,x3,x1)

−p2(x3,x2,x1) + p2(x3,x1,x2)− p2(x1,x3,x2)
]
, (12.8)

with obvious generalizations in the case of more electrons. The operator Λ projections onto some space Hs
which has an orthogonal complementHr, with a projection Λr onto it:

Λr = I−Λ, ΛrΛ = 0. (12.9)

Let U consist of fields representable in the form

U(x) =

 0

0

θ0(s)

 , (12.10)

for some choice of function θ0(s) only depending on the spin variable s = (s1, s2, . . . , sN ).
Define E to consist of those ΩN periodic fields inH of the form

E(x) =

∇ψ(x)

ψ(x)

0

 , (12.11)

as ψ(x) varies over all fields with the usual antisymmetries of wavefunctions, i.e.,

ΛE = E. (12.12)

(We emphasize that the field E should not be confused with the energy E). Define J to consist of those ΩN

periodic fields J(x) inH of the form

ΛJ(x) =

 q(x)

∇ · q(x)

∇ · v(x)

 . (12.13)

for some periodic fields q(x) and v(x). The relevance of this analysis is the following. Suppose we are given
an “applied field”

E0 =

0

0

1

 ∈ U , (12.14)

which clearly satisfies ΛE0 = E0. By solving

J0(s) + J(x) = L(x)(E0(s) + E(x)), E0,J0 ∈ U , J ∈ J , E ∈ E , (12.15)

we automatically have a solution to the problem

ΛE = E,

ΛJ0(s) + ΛJ = (ΛL(x)Λ)(E(x) + E0), (12.16)



12.2. The desymmetrized form of the Schrödinger equation 323

i.e.,  q(x)

∇ · q(x)

S0(s) +∇ · v(x)

 = ΛL(x)Λ

(∇ψ(x)

ψ(x)

)
, (12.17)

where S0(s) is the last component of the field J0(s). This is the Schrödinger equation with a source term if
ΛL(x)Λ has the form of the matrix entering (12.1). In a sense, this represents an extension of the density
functional theory ideas to the Hilbert space setting. For example suppose

L(x) =

−A 0 0

0 E − a(x) g(x)

0 g(x) d(x)

 , (12.18)

where g(x) and d(x) have no special symmetries. Here we assume

a(x) =

M∑
j=1

NV (j)
ne (x1) +

N(N − 1)

2
U(x1,x2), (12.19)

where
V (j)

ne (x1) =
−Zje2

|r1 −Rj |
(12.20)

[in which x1 = (r1, s1)] represents the electrostatic interaction of electron 1 at r1 having spin s1 and charge
e with the nucleus at Rj , having charge Zje, M is the number of nuclei and

U(x1,x2) =
e2

|r1 − r2|
, (12.21)

[in which x1 = (r1, s1) and x1 = (r1, s1)] represents the electron–electron repulsion of an electron at r1

with spin s1 and an electron at r2 with spin s2. Then we have

ΛLΛ =

−A 0 0

0 E − V (x) Λag(x)Λs
0 Λsg(x)Λa Λsd(x)Λs

 , (12.22)

where

Vne(x) =

N∑
i=1

M∑
j=1

V (j)
ne (xi) =

N∑
i=1

M∑
j=1

−Zje2

|r1 −Rj |
, (12.23)

and

Vee(x) =

N∑
i<j

e2

|xi − xj |
(12.24)

are the total potentials of interaction of all electrons with the nuclei (Vne(x)) and with other electrons (Vee(x)).
Now in Fourier space the projection onto U is from (12.10)

Γ̂0(K) =


0 for k 6= 0,0 0 0

0 0 0

0 0 1

 for k = 0.
(12.25)
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Here K = (K1,K2, . . . ,KN ), and each Ki = (ki, si) consists of a three-dimensional Fourier space vector
ki and a spin si. (In quantum mechanics ki has the interpretation of the momentum of electron i, aside
from a proportionality constant.) We also sometimes write K = (k, s) where k = (k1,k2, . . . ,kN ) is the
3N -dimensional Fourier vector and s = (s1, s2, . . . , sN ) is the spin configuration.

The fields in the space E in Fourier space look like

Ê(K) =

ikψ̂(K)

ψ̂(K)

0

 for k 6= 0, Ê(K) =

 0

〈ψ((r, s))〉r
0

 for k = 0, (12.26)

where 〈ψ〉r denotes a volume average of ψ(x) = ψ((r, s)) as r ranges over ΩN keeping the spin configuration
s = (s1, s2, . . . , sN ) fixed. Here we have expressed x as the pair (r, s), where r = (r1, r2, . . . , rN ) denotes
the spatial coordinates. In Fourier space the wavefunction ψ̂ is now an antisymmetric function of K. That is
ψ̂(K) changes sign if we swap K` = (k`, s`) and Ki = (ki, si). Note that the antisymmetry of ψ(K) ensures
that the average over spin coordinates of 〈ψ((r, s))〉r is zero. The projection operator onto E is expressed in
Fourier space as:

Γ̂1 =
Λ

k2 + 1

 kkT ik 0

−ikT 1 0

0 0 0

Λ for all k including k = 0. (12.27)

Here Λ is understood to act on the fields to the right including the k’s in the above expression, and we abbre-
viate |k|2= k2. Next look at

Γ̂2 = I− Γ̂0 − Γ̂1. (12.28)

If we define Ĵ1(K)

Ĵ2(K)

Ĵ3(K)

 = Γ̂2

P̂1(K)

p̂2(K)

p̂3(K)

 , (12.29)

where there are no special symmetries on P̂1(K), p̂2(K), and p̂3(K), then for k 6= 0,

Λ

Ĵ1(K)

Ĵ2(K)

Ĵ3(K)

 = (Λ−ΛΓ̂1)

P̂1(K)

p̂2(K)

p̂3(K)


=

ΛA(P̂1(K))

Λa(p̂2(K))

Λs(p̂3(K))

−
 kkT

k2+1ΛA(P̂1(K)) + ik
k2+1Λap̂2(K)

−ikT

k2+1 ΛA(P̂1(K)) + 1
k2+1Λap̂2(K)

0


=

 q̂(K)

ik · q̂(K)

iK · v(K)

 , (12.30)

where v(K) is not unique, but chosen so that

ik · v(K) = Λs(p̂3(K)), (12.31)
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and

q̂(K) =

(
I− kkT

k2 + 1

)
ΛA(P̂1(K))− ik

k2 + 1
Λa(p̂2(K)),

ik · q̂(k) = i

(
kT − k2kT

k2 + 1

)
ΛA(P̂1(K)) +

k2

k2 + 1
Λa(p̂2(K))

=
ikT

k2 + 1
ΛA(P̂1(K)) + Λa(p̂2(K))− 1

k2 + 1
Λa(p̂2(K)). (12.32)

Also for k = 0 we haveĴ1(K)

Ĵ2(K)

Ĵ3(K)

 =

P̂1((0, s))

p̂2((0, s))

p̂3((0, s))

−
 0

0

p̂3((0, s))

−
 0

Λa[p̂2((0, s))]

0

 =

 P̂1((0, s))

(1− Λa)p̂2((0, s))

0

 (12.33)

and this implies

Λ

Ĵ1(K)

Ĵ2(K)

Ĵ3(K)

 =

ΛAP̂1((0, s))

0

0

 , (12.34)

when k = 0. So it is clear from (12.33) that if Γ2 is the projection ontoJ , then in Fourier space this projection
is

Γ̂2(K) =


I− Γ̂1(k) for k 6= 0,I 0 0

0 (1− Λa) 0

0 0 0

 for k = 0.
(12.35)

Thus Γ0 + Γ1 + Γ2 = 0 and each projects onto orthogonal subspaces.

12.3 Simplifying the equation using a suitable reference medium
To condense formulas, let’s relabel J0(s) + J(x) and E0(s) + E(x) as J(x) and E(x) respectively. We want
to solve

J(x) = L(x)E(x), (12.36)

where J ∈ U ⊕ J , E ∈ U ⊕ E and

L(x) =

−A 0 0

0 a(x1,x2) g(x1,x2)

0 g(x1,x2) d(x1,x2)

 . (12.37)

We assume g(x1,x2) is antisymmetric in x1,x2 and a(x1,x2), d(x1,x2) are symmetric in x1,x2 with no
dependencies on x3, . . . ,xN . We further assume a, d are real while g could be complex.

It is common in the theory of composites to aid the analysis to introduce a constant comparison medium,
or reference medium;see, for example, Sections 9.6, 12.3, 12.4, 13.5, in Milton (2002). The Fast Fourier
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Transform methods for computing fields in composites are based on series expansions about the reference
medium. Let us take a reference medium

L0 =

−A 0 0

0 −t1 0

0 0 −t2

 , (12.38)

where A is positive definite and t1 and t2 are constants. We will take t1 to be complex.
Introduce the operator Γ whose Fourier components for all k, including k = 0, are

Γ̂(K) = Γ1(K)[Γ1(K)L0Γ1(K)]−1Γ1(K). (12.39)

Here the inverse is taken on the space E onto which Γ1(K) projects. Then we have

Γ̂(K) =
−1

kTAk + t1

 kkT ik 0

−ikT 1 0

0 0 0

Λ. (12.40)

Now define the polarization field

P(x) = (L− L0)E(x) = J(x)− L0E(x). (12.41)

From the definition of Γ,
ΓP = ΓJ + Γ0E−E = Γ0E−E, (12.42)

since J = (Γ0 + Γ2)J and Γ1Γ0 = Γ1Γ2 = 0. This implies that

P = −(L− L0)ΓP + (L− L0)Γ0E. (12.43)

Since

δL ≡ L− L0 =

0 0 0

0 a+ t1 g

0 g d+ t2

 , (12.44)

it is clear that P necessarily takes the form

P =

 0

p2(x)

p3(x)

 , (12.45)

and the Fourier transforms of P and (L− L0)ΓP must take the same form. So

(L− L0)ΓP =

(
0

(L̃− L0)Γ̃Λ̃P̃

)
, (12.46)

where in Fourier space the action of Γ̃ on a field can be computed by multiplication of that field by

̂̃
Γ(K) =

−1

kTAk + t1

(
1 0

0 0

)
, (12.47)
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while in real space, the action of δ̃L ≡ L̃− L0 on a field can be computed by multiplication of that field by

δ̃L ≡ L̃− L0 =

(
a(x1,x2) + t1 g(x1,x2)

g(x1,x2) d(x1,x2) + t2

)
, (12.48)

and the action of Λ̃ in either Fourier or real space is given by

Λ̃P̃ =

(
Λap2

Λsp3

)
. (12.49)

Let p2(x) = (t1 −∇ ·A∇)φ(x), then in Fourier space p̂2(K) = (t1 + kTAk)φ̂(K). So we have

(L− L0)ΓP = −

 0

(a(x1,x2) + t1)Λaφ

g(x1,x2)Λaφ

 , (12.50)

and the equations become 0

(t1 −∇ ·A∇)φ(x)

p3(x)

 =

 0

(t1 + a(x1,x2))Λa(φ)

g(x)Λaφ

+

 0

g(x)

d+ t2

 θ0, (12.51)

assuming Γ0E = (0, 0, θ0)T . Note that for the identity Λap̂2 = (t1 +kTAk)Λaφ to hold, we need to assume
that kTAk is completely symmetric with respect to interchange of ki and kj . Assuming this, since p3(x) is
not subject to any differential constraints, we are left with

(t1 −∇ ·A∇)φ(x) = (t1 + a(x1,x2))Λaφ+ g(x)θ0, (12.52)

where φ(x) and g(x) are not required to satisfy any symmetry properties.

12.4 Solving for the fields using Fast Fourier Transforms
We look for solutions with L(x) = L0 + εδL, and expand in powers of ε. Following Moulinec and Suquet
(1994, 1998), see also Section 14.11 of Milton (2002), one has the approximants

Em =

m∑
j=0

εj(−ΓδL)jE0, δL = (L− L0) when ε = 1, (12.53)

for the field E, which satisfies
Em+1 = E0 − εΓδLEm. (12.54)

So we take

E0 =

 0

0

θ0

 . (12.55)
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In Fourier space Γ̂(K) is given by (12.40) and δL is given by (12.44).

It suffices to look at Ẽm = ΘEm where Θ is the projection

Θ =

0 0 0

0 1 0

0 0 1

 . (12.56)

Since δL = ΘδLΘ, on multiplying (12.54) on the left by Θ we have

Ẽm+1 = Ẽ0 − εΓ̃Λ̃δ̃LẼm, Ẽ0 =

(
0

θ0

)
, (12.57)

where in Fourier space the action of Λ̃ on a field can be easily computed by multiplying it by ̂̃Γ(K) given by
(12.47). Note that because of the structure of ̂̃Γ(K), and the fact that it commutes with Λ̃, Ẽm necessarily
has a Fourier transform of the form

̂̃
Em(K) =

(
ψ̂m(K)

0

)
, (12.58)

where ψ̂m(K) can be identified with am-th order approximation to the Fourier transform of the wavefunction
ψ(x). The function ψ̂m(K) is completely antisymmetric in the sense that it changes sign if we swap Kj =
(kj , sj) with K` = (k`, s`) (where kj and k` are the 3-dimensional Fourier vectors, while sj and s` are the
associated spins).

Now using Fast Fourier Transforms, we compute

FδLF−1 ̂̃Em(K) ≡
(
p̃2(K)

p̃3(K)

)
, (12.59)

where F−1 is an inverse Fourier transform F−1 on the variables k1 and k2 only, leaving k3, . . . ,kN un-
changed, while F is a Fourier transform on the variables r1 and r2 only, leaving k3, . . . ,kN unchanged.
There is no need to compute p̃3(K) since it gets annihilated in the next step, which is the computation of

̂̃
Γ(K)

(
p̃2(K)

p̃3(K)

)
=

(
−Q̂(K)

0

)
, (12.60)

where Q̂(K) = p̃2(K)/(kTAk + t1) is antisymmetric with respect to swapping K1,K2 and antisymmetric
with respect to swapping K3, . . . ,KN . (Note that ̂̃Γ(K) has been defined so its computation, unlike the
computation of Γ̂(K), does not involve any symmetrization.)
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Finally because of the symmetry properties of Q̂(K) we have

ΛaQ̂(K1,K2; K3, . . . ,KN ) =
2

N(N − 1)

[
Q̂(K1,K2; K3, . . . ,KN )

+

N∑
i=3

(−1)i+1Q̂(K2,Ki; K1,K3,K4, . . . ,Ki−1,Ki+1, . . . ,KN )

−
N∑
i=3

(−1)i+1Q̂(K1,Ki; K2,K3,K4, . . . ,Ki−1,Ki+1, . . . ,KN )

+

N∑
i=3

N∑
`=i+1

(−1)i+`+1Q̂
(
Ki,K`; K1,K2, . . .

. . . ,Ki−1,Ki+1 . . . ,K`−1,K`+1, . . . ,KN

)]
, (12.61)

and so we obtain the next iterate for the field

̂̃
Em+1(K) =

(
ΛaQ̂(K)

0

)
≡
(
ψ̂m+1(K)

0

)
. (12.62)

12.5 Convergence of the series
Let Ξ denote the projection

Ξ =

(
1 0

0 0

)
. (12.63)

Then clearly Ξ
̂̃
Γ(K) =

̂̃
Γ(K) =

̂̃
Γ(K)Ξ, and hence Ξ

̂̃
Γ(K) =

̂̃
Γ(K) =

̂̃
Γ(K)Ξ. Now we have

Ẽ1 = Ẽ0 − εΓ̃Λ̃δ̃LẼ0,

Ẽ2 = Ẽ0 − εΓ̃Λ̃δ̃LẼ0 + ε2Γ̃Λ̃δ̃LΓ̃Λ̃δ̃LẼ0,

= Ẽ0 − εΓ̃Λ̃δ̃LẼ0 + ε2(Γ̃Λ̃Ξδ̃LΞ)Γ̃Λ̃δ̃LẼ0,

Ẽ3 = · · · − ε3Γ̃Λ̃δ̃LΓ̃Λ̃δ̃LΓ̃Λ̃δ̃LẼ0,

= · · · − ε3(Γ̃Λ̃Ξδ̃LΞ)2Γ̃Λ̃δ̃LẼ0. (12.64)

To say something about the convergence of this series, we need to introduce a norm on the space of relevant
fields. For fields

P(x) =

(
p2(x)

p3(x)

)
, P′(x) =

(
p′2(x)

p′3(x)

)
, (12.65)

where p2(x), p3(x), p′2(x), and p′3(x) are ΩN -periodic in each of the variables rj , j = 1, 2, . . . , N , define
the inner product

(P,P′) = 〈P ·P′〉 = 〈p2(x)p′2(x) + p3(x)p′3(x)〉, (12.66)
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in which 〈·〉 denotes the volume and spin average,

〈g(x)〉 =
1

2N |Ω|N
∑
s

∫
ΩN

g(x1,x2, . . . ,xN )dr1dr2, . . . drN , (12.67)

|Ω| being the volume of the unit cell Ω, and the sum is over all 2N spin configurations s = (s1, s2, . . . , sN )
as each sj takes values +1/2 or −1/2. Then it is natural to define the norm |P| of a field P and the norm
‖A‖ of a linear operator A via

|P|= (P,P)1/2. (12.68)

We consider the Hilbert spaceH of fields P of the form (12.65) having finite norm, with inner product (12.66).
OnH, the norm ‖A‖ of a linear operator A is naturally defined to be

‖A‖= sup
P∈H
|P|=1

|AP|. (12.69)

From this definition of the norm of an operator it easily follows that for any linear operators A and B, ‖AB‖≤
‖A‖‖B‖ and ‖A + B‖≤ ‖A‖+‖B‖. From the completeness of a Hilbert space, the series (12.64) will
converge if

ε‖Γ̃Λ̃Ξδ̃LΞ‖< 1, (12.70)

which guarantees that Ẽj , j = 1, 2, . . ., is a Cauchy sequence.
Now let’s suppose t1 is purely imaginary, i.e., t1 = −ic for some c ∈ R. We have

‖Γ̃Λ̃Ξδ̃LΞ‖≤ ‖Γ̃‖‖Λ̃‖‖Ξδ̃LΞ‖, (12.71)

and ‖Λ̃‖= 1 since Λ̃ is a projection (projecting onto the subspace of fields with the desired symmetries),

‖̂̃Γ(k)‖ ≤ 1

c
,

‖Ξδ̃LΞ‖ ≤ max
x1,x2

|a(x1,x2)− ic|. (12.72)

Hence the series (12.64) will converge if

rε ≡ εmax
x1,x2

∣∣∣∣a(x1,x2)

c
− i
∣∣∣∣ < 1. (12.73)

For fixed ε it will converge when c is sufficiently large if a(x1,x2) is bounded, and the value of rε deter-
mines an upper bound on the rate of convergence. If ε = 1 it will converge provided a(x1,x2) ≤ β and
Im(a(x1,x2)) ≥ δ for all x1,x2, for some β > 0 and δ > 0. This is ensured if the energy E has a small
positive imaginary part. We should choose c to be the value for which the minimum

r1 = min
c

max
x1,x2

∣∣∣∣a(x1,x2)

c
− i
∣∣∣∣ (12.74)

is attained. There are other ways of utilizing the series expansion information too, such as the use of Padé
approximants.
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12.6 An alternate series expansion with typically faster convergence
Here we use the accelerated scheme of Eyre and Milton (1999) as generalized in Section 14.9 of Milton (2002).
From equation (12.43) we have

P̃ = −δ̃LΓ̃Λ̃P̃ + δ̃LẼ0, (12.75)

i.e.,

P̃ = [I + δ̃LΓ̃Λ̃]−1δ̃LẼ0

= [I + δ̃LM + δ̃L(Γ̃Λ̃−M)]−1δ̃LẼ0

= [I−KΥ]−1KẼ0
0, (12.76)

where
K = [I + δ̃LM]−1δ̃L, Υ = M− Γ̃Λ̃. (12.77)

Expanding [I−KΥ]−1 in powers of KΥ gives the expansion

P̃ =

∞∑
j=0

K(ΥK)jẼ0. (12.78)

Let’s take

M = αΞ =

(
α 0

0 0

)
. (12.79)

From the definition of K:
[I + δ̃LM]K = δ̃L. (12.80)

Multiplying on the left and right by Ξ we find

[Ξ + αΞδ̃LΞ]ΞKΞ = Ξδ̃LΞ, (12.81)

i.e.,
ΞKΞ =

a+ t1
1 + α(a+ t1)

Ξ. (12.82)

Also, in Fourier space we have

Υ =

[
α+

1

kTAk + t1

]
ΛaΞ, (12.83)

where Λa is understood to act component-wise. Hence we have

ΞP̃ =

∞∑
j=0

(ΞKΞΥ)jΞKẼ0 (12.84)

and this will converge if
‖ΞKΞΥ‖< 1. (12.85)

We have
‖ΞKΞΥ‖≤ ‖ΞKΞ‖‖Υ‖. (12.86)
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We can choose t1 and α to minimize this product of norms. Suppose t1 is purely imaginary, i.e., t1 = −ic for
some c ∈ R, and α = − 1

2t1
. Then we have

‖Υ‖ =
1

2c
,

ΞKΞ =
a+ t1
1
2 − a

2t1

=
2(a+ t1)t1
t1 − a

, (12.87)

and so
‖Υ‖ΞKΞ =

a+ t1
t1 − a

t1
|t1|

=
a− ic
a+ ic

i, (12.88)

and

‖Υ‖‖ΞKΞ‖≤ max
x1,x2

∣∣∣∣a(x1,x2)− ic
a(x1,x2) + ic

∣∣∣∣ . (12.89)

Convergence occurs if
|a(x1,x2)− ic|< κ|a(x1,x2) + ic|, (12.90)

for all x1,x2, and for some constant κ ≤ 1. Roughly speaking, convergence occurs when the imaginary part
of a(x1,x2) is positive. We should choose c to be the value which minimizes

r2 = min
c

max
x1,x2

∣∣∣∣a(x1,x2)− ic
a(x1,x2) + ic

∣∣∣∣ . (12.91)

Note that ∣∣∣∣a(x1,x2)− ic
a(x1,x2) + ic

∣∣∣∣ =
|a(x1,x2)/c− i|
|a(x1,x2)/c+ i| , (12.92)

and if a(x1,x2) has nonnegative imaginary part

|a(x1,x2)/c+ i|> 1. (12.93)

Hence r2 < r1. Thus we expect that generally the convergence using this alternative series expansion would
be much faster than the original one, though this is not guaranteed as r1 and r2 only give bounds on the
rate of convergence, and may not properly reflect the actual convergence rate. This new numerical scheme
corresponds to that which Eyre and Milton (1999) developed for conducting composites.

12.7 Further improvements to enhance the rate of convergence
More generally in a periodic material

min
k

kTAk = c0, (12.94)

is a nonzero positive constant. So the bound on the norm of Υ is

fΥ(α, t1) = max
c real
c≥c0

∣∣∣∣α+
1

c+ t1

∣∣∣∣ , (12.95)
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where α and t1 could be complex. We then have

‖Υ‖≤ fΥ(α, t1). (12.96)

The bound on the norm of ΞKΞ, as implied by (12.82), is

fK(α, t1) = max
x1,x2

∣∣∣∣ a(x1,x2) + t1
1 + α(a(x1,x2) + t1)

∣∣∣∣ , (12.97)

and so
‖ΞKΞ‖≤ fK(α, t1). (12.98)

Finally a good choice of the complex numbers α and t1 should be those that attain the infimum (or close to it)
in

inf
α

inf
t1
fΥ(α, t1)fK(α, t1). (12.99)

Finally having converged to some ΞP̃ =

(
p̃2

0

)
we have

p̃2 = (a(x1,x2) + t1)ψ + g(x1,x2), i.e., ψ =
p̃2 − g(x1,x2)

a(x1,x2) + t1
. (12.100)

The expression above does not make the antisymmetry of ψ apparent, so a better approach may be to note that
from (12.42), ΓP = Γ0E−E and the fact that P(x) takes the form (12.45), we get in Fourier space

−Λap̃2(K)

kTAk + t1
= −ψ(K), (12.101)

and then we can transform ψ(K) back to real space.
Finally if we define the approximants

P̃m =

m∑
j=0

K(ΥK)jẼ0, (12.102)

we have
P̃m+1 = KẼ0 + KΥP̃m, P̃0 = KẼ0. (12.103)

Hence for m ≥ 0,
ΞP̃m+1 = ΞKẼ0 + ΞKΞΥΞP̃m, (12.104)

where ΞKΞ is given by (12.81) and only depends on x1,x2. We work primarily in Fourier space, so to
evaluate ΞKΞΥΞP̃m we take

FΞKΞF−1ΥΞP̃m, (12.105)

where F−1 is the Fourier transform with respect to the variables k1 and k2 only while F is the Fourier
transform with respect to the variables r1, r2 only. Also note we need only keep track of ΞP̃m, rather than
the full field P̃m.

We also remark that our choice of starting field need not be KẼ0 but instead it is probably better to choose
an approximation which one believes will be closer to the actual field. Additionally, it may be the case that
the acceleration technique developed in Chapter 8 is applicable and leads to an improvement in the rate of
convergence.
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12.8 Proof of the antisymmetrizing action of the projection Λa

Here we give the proof that Λa defined by (12.61) defines a projection onto fully antisymmetric functions
given that Q̂(K1,K2; K3, . . . ,KN ) is antisymmetric in K1,K2, and in K3, . . . ,KN .

The first observation is that it is antisymmetric with respect to interchange of K1,K2. To check for
antisymmetry with respect to K3,K4, note that the only terms where these enter the first pair are

Q̂(K2,K3; K1,K4,K5, . . .)− Q̂(K2,K4; K1,K3,K5, . . .)

−Q̂(K1,K3; K2,K4,K5, . . .) + Q̂(K1,K4; K2,K3,K5, . . .)

+Q̂(K3,K4; K1,K2,K5, . . . ,KN )

+

N∑
`=5

(−1)`Q̂(K3,K`; K1,K2,K4, . . . ,K`−1,K`+1, . . . ,KN )

−
N∑
`=5

(−1)`Q̂(K4,K`; K1,K2,K3,K5, . . . ,K`−1,K`+1, . . . ,KN ), (12.106)

and this is clearly antisymmetric with respect to interchange of K3 and K4. Also note because of the anti-
symmetry of Q̂ with respect to K3, . . . ,KN , this immediately implies the function on the right of (12.61) is
antisymmetric with respect to any Kj and K` for j 6= `, j, ` ≥ 4.

To check for antisymmetry with respect to K1,K3, note that the only terms where K1 and K3 enter the
first pair are

Q̂(K1,K2; K3,K4, . . . ,KN ) + Q̂(K2,K3; K1,K4, . . . ,KN )

−Q̂(K1,K3; K2,K4, . . . ,KN )

−
N∑
i=4

(−1)i+1Q̂(K1,Ki; K2,K3, . . . ,Ki−1,Ki+1, . . . ,KN )

+

N∑
`=4

(−1)`Q̂(K3,K`; K1,K2, . . . ,K`−1,K`+1, . . . ,KN ), (12.107)

and this is clearly antisymmetric with respect to interchange of K1 and K3. Hence the expression is invariant
with respect to interchange of either K1 or K2 with any of K3, . . . ,K4.

Finally suppose Q̂ was already fully antisymmetric. To go from

Q̂(K2,Ki; K1,K3,K4, . . . ,Ki−1,Ki+1, . . . ,KN ) (12.108)

to
Q̂(K1,K2; K3,K4,K4, . . . ,KN ), (12.109)

we first go to
Q̂(K1,K2; Ki,K3,K4, . . . ,Ki−1,Ki+1, . . . ,KN ), (12.110)

which requires 2 swaps, then a further i− 3 swaps to get to the desired ordering. So

Q̂(K2,Ki; K1,K3,K4, . . . ,Ki−1,Ki+1, . . . ,KN ) = (−1)i−1Q̂(K1,K2; K3, . . . ,KN ). (12.111)
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To go from
Q̂(K1,Ki; K2,K3, . . . ,KN ) (12.112)

to
Q̂(K1,K2; K3,K3, . . . ,Ki−1,Ki,Ki+1, . . . ,KN ), (12.113)

we first go to
Q̂(K1,K2; Ki,K3,K4, . . . ,KN ), (12.114)

with one swap. Then it requires a further i− 3 swaps to reach the desired ordering. So

Q̂(K1,Ki; K2,K3, . . . ,Ki−1,Ki+1, . . . ,KN ) = (−1)i−2Q̂(K1,K2; K3, . . . ,KN ). (12.115)

To go from
Q̂(Ki,K`; K1,K2, . . . ,Ki−1,Ki+1,K`−1,K`+1, . . . ,KN ) (12.116)

to
Q̂(K1,K2; K3, . . . ,KN ), (12.117)

we first go to

Q̂(K1,K2; Ki,K`,K3,K4, . . . ,Ki−1,Ki+1, . . . ,K`−1,K`+1, . . . ,KN ), (12.118)

which takes 2 swaps, then to

Q̂(K1,K2; Ki,K3, . . . ,Ki−1,Ki+1, . . . ,K`−1,K`,K`+1, . . . ,KN ), (12.119)

which takes `− 4 swaps, and finally another i− 3 swaps to get the correct ordering. So

Q̂(Ki,K`; K1,K2, . . . ,Ki−1,Ki+1, . . . ,K`−1,K`+1, . . . ,KN ) = (−1)i+`−5Q̂(K1,K2; K3, . . . ,KN ).
(12.120)

The upshot is that every term in the sum equals Q̂(K1,K2; K3, . . . ,KN ) as the minus signs cancel out. The
number of terms in the sum is

1 + (N − 2) + (N − 2) +
(N − 2)(N − 3)

2
=
N2

2
+ 2N − 5N

2
=
N(N − 1)

2
. (12.121)

So the right hand side of (12.61) is simply

Q̂(K1,K2; K3, . . . ,KN ). (12.122)

This establishes that Λa projects onto completely antisymmetric functions.
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Abstract

Minimization variational principles for the time-harmonic acoustic equation in a body con-
taining lossy materials have been obtained by Milton, Seppecher, and Bouchitté (2009) and
Milton and Willis (2010), generalizing the quasistatic minimization variational principles of
Cherkaev and Gibiansky (1994). As the time-harmonic acoustic equation is fundamentally
the same as the multielectron time-harmonic Schrödinger equation, these variational princi-
ples naturally extend to the multielectron Schrödinger equation. We allow for sources, and
find that due to the form of the Schrödinger equation the minimization variational principles
simplify. They involve minimizing a functional of the real part of the wavefunction, subject
to appropriate boundary conditions. We also find a variety of quadratic functions of the
wavefunction, and of the associated current fields, that are Q∗C-convex. These may prove to
be important in deriving bounds, and for accelerating Fast Fourier Transform methods for
calculating the wavefunction.

13.1 Introduction
In this chapter we obtain variational principles for the time-harmonic multielectron Schrödinger equation with
a source term h(x)θ0,

Eψ(x) = −∇ ·A∇ψ(x) + V (x)ψ(x)− h(x)θ0, (13.1)

when the energy E is complex, where θ0 scales the magnitude of the source term. Physically, an energy with
positive imaginary partE′′, and real partE′ corresponds to a wavefunction which increases exponentially with
time, since the wavefunction has a time-dependence e−iEt/h̄ = eE

′′t/h̄e−iE
′t/h̄. Here V (x) is the potential,

x = (x1,x2, . . . ,xN ) where each xi = (ri, si) represents a combination of a spatial coordinate ri and a spin
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coordinate si, and in the simplest approximation A = h̄2I/(2m), where m is the mass of the electron, but
which may take other forms to take into account the reduced mass of the electron, or mass polarization terms
due to the motion of the atomic nuclei. We find it helpful to introduce the real-valued source term h(x)θ0 ∈ R
which may be used to excite the electrons. Here we use

∇ = (∇1,∇2, . . . ,∇N ), where ∇j =

(
∂

∂r
(j)
1

,
∂

∂r
(j)
2

,
∂

∂r
(j)
3

)
, (13.2)

whereN is the number of electrons. The source term h(x) ∈ R, like the wavefunction ψ(x), is antisymmetric
with respect to interchange of any pair of xi and xk, while V (x) is assumed to be symmetric with respect to
such interchanges.

Throughout this chapter we let a′ and a′′ denote the real and imaginary parts of a quantity a = a′ + ia′′.
We assume the energy E has a positive imaginary part denoted E′′. The source term h(x) excites the system,
while E′′ damps the response. When E′′ is small and one is near a resonance (eigenvalue) associated with E′
then the response ψ, should grow in proportion to the eigenfunction as E′′ → 0.

Minimization variational principles have been obtained for the time-harmonic acoustic equation (Mil-
ton, Seppecher, and Bouchitté 2009; Milton and Willis 2010) based on extensions of variational principles
Cherkaev and Gibiansky (1994) obtained for quasistatics. The key to this generalization was the recognition
that the acoustic equations could be written in the canonical form (3.7). The acoustic minimization variational
principles have been used by Richins and Dobson (2012) to obtain numerical minimization schemes based
on simple iterative descent methods with preconditioning. Since the time-harmonic Schrödinger equation is
virtually identical to the time-harmonic acoustic equation with a constant density those variational principles
immediately also apply to the Schrödinger equation. However some simplification can be made due to the
structure of the matrix entering the constitutive law of the Schrödinger equation.

Our analysis applies to isolated systems confined within a body Ω, or to periodic systems with Ω taken
as the unit cell of periodicity. Note that if the material we wish to simulate is periodic, with a unit cell Ω0,
then we should take Ω to contain many copies of Ω0 and not just one: for example if Ω0 was a cube of side
length `, then we could take Ω to be a cube of side length m` where m is large. Again, as emphasized in the
previous two chapters, this is to allow the wavevector k = (k1,k2, . . . ,kN ) which enters the Bloch periodicity
conditions at the boundary of the cell ΩN0 in the 3N dimensional space to take a reasonably large number of
discrete values. Again, while the solution we seek will not correspond to a Bloch solution (which generally
does not have the required antisymmetry if k itself does not have this symmetry) it should correspond to an
antisymmetrization of it and will not be quasiperiodic on the cell ΩN0 , but will be periodic on the cellC = ΩN .

We also find Q∗C-convex translations that could be useful in accelerating numerical methods for solving
the Schrödinger equation in periodic systems (see Section 8.9). AQ∗C-convex function is one which is convex
on the space of C-periodic fields E (or J ) appropriate to the problem at hand, which is slightly different to
the meaning of Q∗C-convexity given by Milton (2013b)). Q∗C-convexity is a natural generalization of quasi-
convexity to wave equations, or more generally to equations where the differential constraints on the fields
involve derivatives of different orders.

Quasiconvexity was introduced by Morrey (1952) for establishing a necessary condition for a functional
to be lower semicontinuous in the calculus of variations (briefly a functional I(u) is lower semicontinuous if
for every sequence of functions uε(x) converging as ε → 0 in an appropriate topology to a function u0(x),
the limit infimum of I(uε) is greater than or equal to I(u0))-i.e, fluctuations are penalized. As shown by Ball
(1977) quasiconvexity of the energy W (x,∇u(x)) rather than convexity seems to be the natural framework
for establishing a theory of nonlinear elasticity, in which one can show the existence of minimizers and the
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same time have the desired invariance properties of the energy under rotation of coordinates. Quasiconvexity
is also important in the theory of shape memory materials, where a breakdown of quasiconvexity is associated
with the appearance of microstructure such as twinning (Ball and James 1987, 1992). For a good introduction
to quasiconvexity see the book of Dacorogna (2007). The problem is that it is very difficult to determine if a
function is quasiconvex unless it is quadratic or polyconvex (Ball 1977).

Following the pivotal contributions of Murat and Tartar (Tartar 1979b, particularly theorem 8; Murat and
Tartar 1985; Tartar 1985) and Lurie and Cherkaev (1982, 1984), quadratic quasiconvex functions have played
an important role, through the translation method (also called the method of compensated compactness), in
bounding effective tensors of composite materials and for giving clues for finding microstructures which attain
them: see the books of Allaire (2002), Cherkaev (2000), Milton (2002), Tartar (2009), and Torquato (2002) and
references therein. They have also played an important role in bounding the response of bodies, or inversely
in bounding the volume occupied by an inclusion phase (Kang, Kim, and Milton 2012; Kang, Milton, and
Wang 2014; Milton and Nguyen 2012; Kang, Milton, and Wang 2014; Kang and Milton 2013; Kang, Kim,
Lee, Li, and Milton 2014, Thaler and Milton 2015). It is expected that the Q∗C-convex functions here may
also have a role in bounding the volume occupied by an inclusion phase for the acoustic equation (which, in
the case the density is constant, is mathematically identical to the single electron Schrödinger equations in the
time-harmonic case).

This chapter is mostly self-contained, although the reader is advised to begin by studying Chapters 1
and 2. Those readers interested in this chapter may also like to look at Chapters 3, 5, 8, 11, and 12.

13.2 The basic variational theorem: a direct proof
Following the procedure of Chapter 1, the Schrödinger equation with a source term can be rewritten as q(x)

∇ · q(x)

∇ · r(x)


︸ ︷︷ ︸

J(x)

=

−A 0 0

0 E − V (x) h(x)

0 h(x) d(x)


︸ ︷︷ ︸

L(x)

∇ψψ
θ0


︸ ︷︷ ︸

E(x)

, (13.3)

where q(x) is some current, and d(x) like V (x) is assumed to be symmetric with respect to electron inter-
changes (swapping xi and x`). Again, the energy E is not to be confused with the field E(x). We assume A
is a real, constant, and positive-definite matrix.

Let W (ψ′, p) be the following functional:

W (ψ′, p) =
∑
s

∫
ΩN

[p(x)]2 + (E′′)2[ψ′(x)]2 + 2θ0p(x)h(x)︸ ︷︷ ︸
I(p,ψ′)

dr (13.4)

where the sum is over all 2N spin configurations s = (s1, s2, . . . , sN ) as each sj takes values +1/2 or−1/2.
Further define W (ψ′) to be W (ψ′, p) with the constraint that

p(x) = p(x, ψ′) = ∇ ·A∇ψ′ + (E′ − V (x))ψ′, (13.5)

The claim is the variational principle that in any body Ω with appropriate boundary conditions on ψ′ on ∂ΩN ,
that whenW (ψ′) is minimized over ψ′(x), the minimum occurs when ψ′ is the real part of the wave function
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ψ which satisfies the Schrödinger equation

0 = ∇ ·A∇ψ + (E − V (x))ψ + h(x)θ0, (13.6)

where the source term h(x), the potential V (x), and θ0 are real withE and ψ complex. We emphasize that we
are minimizing over all functions ψ′(x) satisfying the appropriate boundary conditions including functions
ψ′(x) that are not antisymmetric under interchange of any pair xi and xk. Of course the boundary conditions
must be chosen so the minimizer is antisymmetric under interchange of any pair xi and xk.

From the real and imaginary parts of the Schrödinger equation we obtain

0 = ∇ ·A∇ψ′ + (E′ − V (x))ψ′ + h(x)θ0 − E′′ψ′′,
0 = ∇ ·A∇ψ′′ + (E′ − V )ψ′′ + E′′ψ′. (13.7)

First note that I(p, ψ′) in (13.4) is a positive definite quadratic form in p(x) and ψ′(x), and so a minimum
should exist when we further constrain p(x) and ψ′(x) to satisfy the linear relation (13.5).

Now, taking variations in (13.5) gives

δp = ∇ ·A∇δψ′ + (E′ − V (x))δψ′. (13.8)

Then, using this, the variation of (13.4) equates to

δW =
∑
s

∫
ΩN

2p(x)δp+ 2(E′′)2(ψ′)δψ′ + 2θ0h(x)δp

=
∑
s

∫
ΩN

2 (p(x) + h(x)θ0)︸ ︷︷ ︸
t(x)

δp+ 2(E′′)2(ψ′)δψ′

=
∑
s

∫
ΩN

2t(x)[∇ ·A∇δψ′ + (E′ − V (x))δψ′] + 2(E′′)2ψ′δψ′. (13.9)

Looking at the first term we get∑
s

∫
ΩN

2t(x)[∇ ·A∇δψ′] =
∑
s

∫
ΩN

−2 (∇t(x)) ·A∇δψ′︸ ︷︷ ︸
[A∇t(x)]·∇δψ′

+
∑
s

∫
∂ΩN

2n · [t(x)A∇δψ′]

=
∑
s

∫
ΩN

2[∇ ·A∇t(x)] · δψ′ +
∑
s

∫
∂ΩN

2n · [t(x)A∇δψ′]

−
∑
s

∫
∂ΩN

2n · [A∇t(x)]δψ′. (13.10)

Here n is the 3N -dimensional vector that is the outwards normal to ΩN . We will see that the variational
principle will hold if the boundary conditions are such that the sum of the last two boundary integrals in
(13.10) is zero. In particular, the boundary terms will be zero if δψ′ = 0 on ∂ΩN and n · A∇δψ′ = 0 on
∂ΩN where n is normal to the boundary.

Excluding these boundary terms, the variation in W is

δW =
∑
s

∫
ΩN

2[∇ ·A∇t(x) + (E′ − V (x))t(x) + (E′′)2ψ′]δψ′, (13.11)
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so at the minimum
0 = ∇ ·A∇t(x) + (E′ − V (x))t(x) + (E′′)2ψ′, (13.12)

where
t(x) = h(x)θ0 +∇ ·A∇ψ′ + (E′ − V (x))ψ′. (13.13)

Let’s check that this equation is satisfied when the Schrödinger equation is satisfied. Substituting (13.7)
in the expression for t(x) we see that

t(x) = E′′ψ′′(x). (13.14)

Substituting this into (13.12) we get

0 = E′′∇ ·A∇ψ′′ + (E′ − V (x))E′′ψ′′ + (E′′)2ψ′, (13.15)

that is
0 = ∇ ·A∇ψ′′ + (E′ − V (x))ψ′′ + E′′ψ′, (13.16)

which is exactly the second equation in (13.7).
To have a variational principle we also need to choose boundary conditions so that the surface terms in

(13.10) vanish. This is the case if the conditions δψ′ = 0 on ∂ΩN and n · ∇δψ′ = 0 are satisfied, as ensured
if we fix

ψ′ = ψ′0,

n · q′ = −n · (A∇ψ′) = f ′0 on ∂ΩN . (13.17)

Naturally ψ′0(x) and f ′0(x) must have appropriate symmetries if the minimizing ψ′(x) is to be antisymmetric
under interchange of xj and x` for all xj 6= x`. Thus ψ′0(x) and f ′0(x) should be chosen so they too are
antisymmetric under interchange of xj and x` for all j 6= `. Suppose that with such a choice of boundary
conditions the minimizer is not antisymmetric under interchange of xj and x` for some j 6= `. Then if we
make this interchange we obtain another function which is also a minimizer. But the convexity of I(p, ψ′)
in both p and ψ′ implies this minimizer is unique. So we arrive at a contradiction and we conclude that the
minimizer does satisfy the desired antisymmetries.

Another choice which ensures that the boundary terms in (13.10) vanish, for example, would be to take

ψ′ = 0, t = hθ0 +∇ ·A∇ψ′ + (E′ − V )ψ′ = 0 on ∂ΩN , (13.18)

which, due to (13.14), corresponds at the minimum to ψ = ψ′ + iψ′′ = 0 as would be appropriate if the
boundary ∂Ω was impermeable to electrons (corresponding to an infinite potential there). Alternatively, we
could assume our fields are periodic with period cell ΩN and use periodic boundary conditions on ∂ΩN .

13.3 Variational principles with other boundary conditions
Other boundary conditions, such as specifying nonzero values of ψ = ψ′ + iψ′′ on ∂ΩN can be used by
following the treatment by Milton and Willis (2010). To the functional W (ψ′) we add the functional

W0(ψ′) =
∑
s

∫
ΩN

−2c0


∇ψ′′0
ψ′′0
q′′0
∇ · q′′0

 ·

−q′

−∇ · q′
∇ψ′
ψ′

 , (13.19)
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where c0 is a real constant, and we minimize over ψ′ the total functionalW (ψ′)+W0(ψ′) with q′ = −A∇ψ′:
hereψ′′0 and q′′0 are arbitrary fields which we are free to choose. Due to the differential constraints on the fields,
the key identity holds and W0(ψ′) can be expressed entirely in terms of surface terms:

W0(ψ′) =
∑
s

∫
∂ΩN

2c0n · (q′ψ′′0 − q′′0ψ
′). (13.20)

Hence if ψ′ is a solution to the Schrödinger equation, satisfying (13.7), and we vary ψ′ by δψ′ then to first
order in the variations the only variation inW +W0 comes from the variation in (13.20) and from the surface
terms in (13.10):

δ(W +W0) = 2
∑
s

∫
∂ΩN

n · {[t(x)A∇δψ′]− [A∇t(x)]δψ′ + c0[ψ′′0 A∇δψ′] + c0q
′′
0δψ

′}. (13.21)

When doing the minimization we can choose any boundary conditions that ensure this surface contribution is
zero. For instance we could choose

δψ′ = 0, c0 = −E′′, t(x) = E′′ψ′′0 , (13.22)

which corresponds to fixing both the real and imaginary parts of ψ at the boundary ∂ΩN . Another natural
choice would be to take

c0 = −E′′, n ·A∇t(x) = −E′′n · q′′0 , n ·A∇δψ′ = 0, (13.23)

which corresponds to fixing the real and imaginary parts of n · q(x) at ∂ΩN .

13.4 Original derivation of the variational principle
The variational principle that (13.4) is minimized, when p(x) is given by (13.5), seems to pop out of nowhere.
For completeness we feel it is instructive to provide the derivation by which (13.4) was first obtained. The
derivation is rather circuitous, and so this section can easily be skipped by the reader.

The starting point is the variational principles that have been obtained for the time-harmonic acoustic
equation (Milton, Seppecher, and Bouchitté 2009) based on extensions of variational principles that Cherkaev
and Gibiansky (1994) obtained for quasistatics. In this derivation of the new variational principles, we assume
the fields are all periodic with period cell ΩN , and we let the angular brackets denote an average of r =
(r1, r2, . . . , rN ) over ΩN and s = (s1, s2, . . . , sN ) over all 2N spin configurations as each si takes values
+1/2 or −1/2. In this section, unlike what was done in the previous chapter and unlike what will be done in
the subsequent sections of this chapter, we restrict our space U of “applied fields” to fields expressible in the
form

U(x) =

 0

0

θ0

 , (13.24)

where θ0 is a constant independent of the spin configuration s. [Fields of the form (13.60) where the average
of θ0(s) over spin configurations s is zero, are added to the space J so as not to affect the solution, as was
done similarly in 3.6.] This has the advantage that when the dual problem is considered, J0(x) ∈ U is also
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independent of x, and in particular independent of s. In the analysis below this corresponds to taking S′0
independent of s. It has the disadvantage that the projection operators onto U and J are then no longer local
in Fourier space but require spin averages when k = 0. This is the reason we define U and J differently in
the previous chapter, and in subsequent sections of this chapter. In this section no Fourier analysis is required,
so it is not a problem.

We assume d(x) has a positive imaginary part d′′(x). Note that we can rewrite the equation (13.3) as

J̃(x) = L̃(x)E(x), (13.25)

with
J̃(x) = e−iθJ(x), L̃(x) = e−iθL(x), (13.26)

and by choosing θ appropriately we can ensure L̃(x) has a strictly positive definite imaginary part. So without
loss of generality let us drop the tildes and assume L(x) has strictly positive definite imaginary part:

L(x) = L′(x) + iL′′(x), (13.27)

where L′′(x) is self adjoint and positive semidefinite and L′(x) is self adjoint. Similarly let

J(x) = J′(x) + iJ′′(x), E(x) = E′(x) + iE′′(x). (13.28)

Following Cherkaev and Gibiansky (1994) and Milton, Seppecher, and Bouchitté (2009) we can rewrite
the constitutive equation as (

Im E

Im J

)
= L

(−Re J

Re E

)
, (13.29)

with

L(x) =

(
(L′′)−1 (L′′)−1L′

L′(L′′)−1 L′′ + L′(L′′)−1L′

)
. (13.30)

See, e.g., Section 11.6 of Milton (2002).
Now L(x) separates into a 3N × 3N block, involving the constant matrix −A, and a 2× 2 block B:

L(x) = e−iθ
(−A 0

0 B(x)

)
, (13.31)

with

B(x) =

(
a(x) h(x)

h(x) d(x)

)
. (13.32)

Since we assume h(x) ∈ R we have h(x) = h(x). So we obtain

L(x) =


(A′′)−1 0 (−A′′)−1A′ 0

0 (B′′)−1 0 (B′′)−1B′

−A′(A′′)−1 0 A′′ + A′(A′′)−1A′ 0

0 B′(B′′)−1 0 B′′ + B′(B′)−1B′

 , (13.33)
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where

−e−iθA = −A′ + iA′′, A′′ > 0,

e−iθB = B′ + iB′′, (13.34)

with A,A′,A′′,B′ and B′′ being all Hermitian. However, note B is not Hermitian because E has a positive
imaginary part (i.e., E = E′ + iE′′ with E′′ > 0) and d(x) = d′(x) + id′′(x) has an imaginary part
d′′(x) > 0.

We have

A′ = cos(θ)A, A′′ = sin(θ)A,

B′ = cos(θ)

(
E′ − V (x) h(x)

h(x) d′(x)

)
+ sin(θ)

(
E′′ 0

0 d′′(x)

)
,

B′′ = sin(θ)

(
E′ − V (x) h(x)

h(x) d′(x)

)
+ cos(θ)

(
E′′ 0

0 d′′(x)

)
. (13.35)

This gives

L(x) =


A−1 csc(θ) 0 −I cot(θ) 0

0 (B′′)−1 0 (B′′)−1B′

−I cot(θ) 0 A csc(θ) 0

0 B′(B′′)−1 0 B′′ + B′(B′′)−1B′

 , (13.36)

and so the variational principle reads

min
q′,S′,ψ′

〈


−q′(x)

−∇ · q′(x)

−S′(x)

∇ψ′
ψ′

θ′0


· L(x)



−q′(x)

−∇ · q′(x)

S′(x)

∇ψ′
ψ′

θ′0


〉
, (13.37)

where the angular brackets denote an average of r over the unit cell of periodicity ΩN and over all 2N spin
configurations s, and the minimum is over all potentials q′(x) and ψ′(x), and scalar fields S′(x) such that
〈S′(x)〉 = S′0. Note the vectors on the left and right of L(x) are real.

Alternatively the variational principle can be written as

min
q′,S′,ψ′

〈
q′(x) ·A−1q′(x) csc(θ) + q′(x) · ∇ψ′ cot(θ)

+(∇ψ′) · q′(x) cot(θ) + (∇ψ′) ·A(∇ψ′) csc(θ)

+

(∇ · q′
S′(x)

)
· (B′′)−1

(∇ · q′
S′(x)

)
+

(∇ · q′
S′(x)

)
· (B′′)−1B′

(
ψ′

θ′0

)
+

(
ψ′

θ′0

)
·B′(B′′)−1

( ∇q′

S′(x)

)
+

(
ψ′

θ′0

)
· (B′′ + B′(B′′)−1B′)

(
ψ′

θ′0

)〉
. (13.38)
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In order that the term involving A does not blow up as θ → 0 we should choose

q′(x) = −A∇ψ′. (13.39)

Then we see that

q′(x) ·A−1q′(x) csc(θ) + q′(x) · ∇ψ′ cot(θ)

+(∇ψ′) · q′(x) cot(θ) + (∇ψ′) ·A(∇ψ′) csc(θ)

= 2

(
1− cos(θ)

sin(θ)

)
∇ψ′ ·A∇ψ′, (13.40)

which goes to zero as θ → 0. After choosing q′(x) = −A∇ψ′, let’s now take the limit θ → 0 in the
variational principle. It becomes

min
ψ′

S′

〈S′〉=S′0
θ′0 fixed

〈
−∇ · q′(x)

−S′(x)

ψ′

θ′0

 · LB(x)


−∇ · q′(x)

−S′(x)

ψ′

θ′0


〉
, (13.41)

where q′(x) = −A∇ψ′, θ′0 is fixed, and

LB(x) =

(
(B′′)−1 (B′′)−1B′

B′(B′′)−1 B′′ + B′(B′′)−1B′

)
, (13.42)

where now (as we have taken the limit θ → 0)

B′ =

(
E′ − V (x) h(x)

h(x) d′(x)

)
,

B′′ =

(
E′′ 0

0 d′′(x)

)
. (13.43)
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Now we have

(B′′)−1 =

(
1/E′′ 0

0 1/d′′

)
,

(B′′)−1B′ =

(
[E′ − V (x)]/E′′ h(x)/E′′

h(x)/d′′ d′(x)/d′′

)
,

B′(B′′)−1 =

(
[E′ − V (x)]/E′′ h(x)/d′′

h(x)/E′′ d′(x)/d′′

)
,

B′′ + B′(B′′)−1B′ =

(
E′′ + (E′−V )2

E′′ + hh
d′′

(E′−V )h
E′′ + h(x)d′(x)

d′′

h(E′−V )
E′′ + d′(x)h(x)

d′′ d′′ + hh
E′′ + (d′(x))2

d′′

)
,(∇ · q′(x)

S′(x)

)
· (B′′)−1

(∇ · q′(x)

S′(x)

)
=

(∇ · q′(x))2

E′′
+

(S′(x))2

d′′
,(∇ · q′(x)

S′(x)

)
· (B′′)−1B′

(
ψ′

θ′0

)
= (∇ · q′(x))

(
(E′ − V (x))ψ′ + h(x)θ′0

E′′

)
+
S′(x)h(x)ψ′ + S′(x)d′(x)θ′0

d′′
,(

ψ′

θ′0

)
·B′(B′′)−1

(∇ · q(x)

S′

)
= (∇ · q′(x))

(
(E′ − V (x))ψ + h(x)θ′0

E′′

)
+
S′(x)h(x)ψ′ + S′(x)d′(x)θ′0

d′′
. (13.44)

Collecting the terms in S′(x) and minimizing over S′(x), we need to minimize

〈S
′(x)2 − S′(x)w(x)

d′′
〉, (13.45)

subject to 〈S′〉 = S′0 and where
w(x) = 2h(x)ψ′(x) + 2d′(x)θ′0. (13.46)

We solve this by introducing a Lagrange multiplier λ and minimizing

〈S′(x)2 − S′(x)(w(x)− λ)〉 (13.47)

over all ΩN periodic S′(x) without the constraint that 〈S′〉 = S′0. The solution satisfies

S′(x) =
w(x)− λ

2
, (13.48)

and we choose λ = 〈w〉 − 2S′0 to ensure 〈S′〉 = S′0. So the minimum is at

S′(x) = S′0 −
〈w〉 − w(x)

2
,

S′(x)2 =

(
S′0 −

〈w〉
2

)2

+
w(x)2

4
+ w(x)

(
S′0 −

〈w〉
2

)2

,

−S′(x)w(x) = −
(
S′0 −

〈w〉
2

)
w(x)− w(x)2

2
. (13.49)
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The minimum value of 〈(S′)2 − S′w〉/d′′ is[(
S′0 −

〈w〉
2

)2

− 〈w
2〉

4

]
1

d′′
, (13.50)

with w(x) = 2(h(x)ψ′(x) + d′(x)θ′0).
So the contribution from the S′ terms is

− 1

4d′′
[
〈(2h(x)ψ′ + 2d′θ′0)2〉 − 〈2h(x)ψ′ + 2d′θ′0 − 2S′0〉2

]
=
−1

d′′

[
〈(hψ′ + d′θ′0)

2〉 − 〈h(x)ψ′ + d′θ′0 − S′0〉2
]
. (13.51)

Finally we have(
ψ′

θ′0

)
· (B′′ + B′(B′′)−1B′)

(
ψ′

θ′0

)
= (ψ′)2

(
E′′ +

(E′ − V )2

E′′
+
hh

d′′

)
+ψ′θ′0

(
E′ − V
E′′

+
d′(x)

d′′

)
2h

+(θ′0)2

(
d′′ +

hh

E′′
+

(d′(x))2

d′′

)
, (13.52)

where the last term is a constant we can ignore. So the total quantity to be minimized is

〈
(−∇ · q′

ψ′

)
·
(

1
E′′

E′−V (x)
E′′

E′−V (x)
E′′ E′′ + (E′−V )2

E′′

)(−∇ · q′
ψ′

)
〉

+θ′0〈
(−∇ · q′

ψ′

)
·
(

2h/E′′

2h(E′ − V )/E′′

)
〉

+
1

d′′
〈hψ′ + d′θ′0 − S′0〉2, (13.53)

over ψ′, with∇·q′ = −∇·A∇ψ and where we have neglected the terms in (θ′0)2 which can be thrown away
(since they are constant).

Multiplying by E′′ the quantity to be minimized is

W = 〈
(−∇ · q′

ψ′

)
·
(

1 E′ − V (x)

E′ − V (x) (E′′)2 + (E′ − V (x))2

)(−∇ · q′
ψ′

)
〉

+2θ′0〈
(−∇ · q′

ψ′

)
·
(

h

(E′ − V )h

)
〉

+
E′′

d′′
〈hψ′ + d′θ′0 − S′0〉2, (13.54)

with∇ · q′ = −∇ ·A∇ψ′. We can choose d′′ extremely large so this last term vanishes.
Introduce

p(x) = −∇ · q′ + (E′ − V (x))ψ′, (13.55)
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then we have
[p(x)]2 = (∇ · q′)2 + (E′ − V (x))2(ψ′)2 − 2(E′ − V (x))ψ′∇ · q′, (13.56)

and
p(x)h = −(∇ · q′)h+ (E′ − V )ψ′h. (13.57)

So the quantity to be minimized is

〈[p(x)]2 + (E′′)2(ψ′)2 + 2θ′0p(x)h(x)〉, (13.58)

over ψ′ where
p(x) = ∇ ·A∇ψ′ + (E′ − V (x))ψ′. (13.59)

This is the variational principle stated in (13.4) and (13.5) for the case where we have periodic boundary
conditions on the fields in ΩN .

13.5 The basic subspaces associated with the Schrödinger equation
with sources in a periodic medium

Here we consider the Schrödinger equation (13.3) with a source term h(x) in a periodic medium. We let U
be the space of all fields representable in the form

U(x) =

 0

0

θ0(s)

 , (13.60)

for some choice of the function θ0(s). Here θ0(s) is independent of r but can depend on the spin configuration
s = (s1, s2, . . . , sN ).

By the uniqueness of the solutions the wavefunction ψ(x) will necessarily satisfy the required antisym-
metry properties if θ0(s) and hence the “applied field” U(x) is symmetric under interchange of any pair of
spins sj and s`. Then since θ0 appears in the Schrödinger equation multiplied by h(x), which we are free to
multiply by a symmetric function of s, it suffices to take an “applied field” U with θ0 = 1. We do not require
that θ0(s) in (13.60) satisfy these symmetry properties.

We let E be the space of ΩN -periodic fields, that are square integrable in the unit cell ΩN , of the form

E =

∇ψψ
0

 , (13.61)

where ψ is ΩN -periodic. It is not required that ψ(x) satisfy the antisymmetry properties appropriate to an
electron wavefunction. We let J be the space of ΩN -periodic fields, that are square integrable in the unit cell
ΩN , of the form

J =

 q

∇ · q
S(x)

 , (13.62)
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where q is ΩN -periodic and S(x) is ΩN -periodic, with zero average value 〈S(x)〉r = 0 where the average is
over the spatial coordinates r and not over the spin coordinates s. Again, it is not required that q(x) satisfy
any symmetry properties.

We introduce the inner product

(P,Q) =
∑
s

∫
ΩN

p1(x)

p2(x)

p3(x)

 ·
q1(x)

q2(x)

q3(x)

 =
∑
s

∫
ΩN

p1(x) · q1(x) + p2(x)q2(x) + p3(x)q3(x), (13.63)

where p1,q1 are 3N -dimensional vectors and p2, p3, q2, q3 are scalars, while the overline denotes complex
conjugation. With respect to this inner product the spaces E and J are both clearly orthogonal to U . Also the
spaces E and J are orthogonal:

(J,E) =
∑
s

∫
ΩN

q · ∇ψ(x) + ψ(x)∇ · q =
∑
s

∫
ΩN

∇ · (qψ(x)) = 0, (13.64)

since qψ(x) is ΩN -periodic.
Now in Fourier space the fields in E have the form

Ê(K) =

ikψ̂ψ̂
0

 for k 6= 0, Ê((0, s)) =

 0

〈ψ(x)〉r
0

 , (13.65)

where K = (k, s), in which k = (k1,k2, . . . ,kN ) are the Fourier variables and s = (s1, s2, . . . , sN ) is the
spin configuration, and 〈·〉r denotes a volume average of r over ΩN keeping s fixed. The projection onto these
fields is given in Fourier space as

Γ1((k, s)) =
1

k2 + 1

 kkT ik 0

−ikT 1 0

0 0 0

 , (13.66)

for all k including k = 0. Here we abbreviate |k|2= k2. The fields in the space J have, from (13.62), Fourier
components of the form

Ĵ(K) =

 q̂

ik · q̂
Ŝ

 fork 6= 0, Ĵ((0, s)) =

〈q〉r0

0

 . (13.67)

The projection onto J in Fourier space is

Γ2((k, s)) =
1

k2 + 1

(k2 + 1)I− kkT −ik 0

ikT k2 0

0 0 k2 + 1

 for k 6= 0

Γ2((0, s)) =

1 0 0

0 0 0

0 0 0

 . (13.68)
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The projection onto U is

Γ0((k, s)) =

0 0 0

0 0 0

0 0 0

 for k 6= 0, Γ0((0, s)) =

0 0 0

0 0 0

0 0 1

 . (13.69)

As expected one has Γ0 + Γ1 + Γ2 = I. Our Hilbert space consists of fields of the form

P =

p1(x)

p2(x)

p3(x)

 , (13.70)

where p1(x) is a 3N -dimensional vector field taking complex values, while p2(x) and p3(x) are scalar fields.

13.6 Q∗C-convex functions associated with the subspace E
A translation on E is a self adjoint matrix T (not necessarily positive definite) such that∑

s

∫
ΩN

E(x) ·TE(x) ≥ 0, (13.71)

for all C-periodic fields E ∈ E , with C = ΩN . In Fourier space this becomes

Ê((k, s)) ·TÊ((k, s)) ≥ 0, (13.72)

for all spin configurations s = (s1, s2, . . . , sN ) and all vectors k in the reciprocal lattice (including k = 0)
and Ê((k, s)) of the form

Ê((k, s)) =

ikψ̂((k, s))

ψ̂((k, s))

0

 for all k 6= 0, Ê((0, s)) =

 0

ψ0(s)

0

 . (13.73)

The translation T has the form

T =

T11 t12 t13

t
T
12 t22 t23

t
T
13 t23 t33

 , (13.74)

where T11 is a 3N ×3N self adjoint matrix, t12, t13 are 3N -dimensional vectors and t22, t23, t33 are scalars.
The Q∗C-convexity condition reads as

(
−ikT 1

)(T11 t12

t
T
12 t22

)(
ik

1

)
≥ 0, (13.75)

or
k ·T11k + 2(Im t12) · k + t22 ≥ 0, (13.76)
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for all real k 6= 0 vectors in the reciprocal lattice, with the additional constraint that

t22 ≥ 0, (13.77)

to ensure that (13.72) is satisfied when k = 0. Note there are no restrictions on Re(t12), t13, t23, and t33 so
they can be anything.

Since the vectors in the reciprocal lattice with k 6= 0 have a minimum value of |k| the matrix entering
(13.75) need not be positive definite. As an example, suppose for simplicity the vectors in the reciprocal lattice
consisted of vectors k = (k1, k2, . . . , k3N ) where all the ki are integers. Suppose too, for simplicity, we were
looking for T’s with T11 = I and t22 = 0. Then (13.76) is satisfied if we choose |Im t12|< 1/2.

13.7 Q∗C-convex functions associated with the subspace J
A translation on J is a self adjoint matrix (not necessarily positive definite) such that∑

s

∫
ΩN

J(x) ·TJ(x) ≥ 0, (13.78)

for all C-periodic J ∈ J , with C = ΩN . In Fourier space this becomes

Ĵ(k) ·TĴ(k) ≥ 0, (13.79)

for all k in the reciprocal lattice with Ĵ(k) of the form

Ĵ(k) =

 q̂

ik · q
Ŝ

 , for all k 6= 0, Ĵ(0) =

q0

0

0

 . (13.80)

Assume T has the form

T =

T11 t12 t13

t
T
12 t22 t23

t
T
13 t23 t33

 , (13.81)

where as before T11 is a 3N × 3N self adjoint matrix, t12, t13 are 3N -dimensional vectors and t22, t23, t33

are scalars. The condition for Q∗C-convexity becomes first that

T11 ≥ 0, (13.82)

to ensure (13.79) holds when k = 0, and second that

q̂ ·T11q̂ + i(q̂ · t12)(k · q) + (q̂ · t13)Ŝ − i(k · q̂)(t
T
12q̂) + t22(k · q̂)(k · q)

−i(k · q̂)t23Ŝ + Ŝt
T
13q̂ + Ŝt23ik · q̂ + Ŝt33Ŝ ≥ 0, (13.83)

or (
q̂ Ŝ

)
Mk

(
q̂

Ŝ

)
≥ 0, (13.84)
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holds for all q̂, Ŝ and for all k 6= 0 in the reciprocal lattice, where

Mk =

(
T11 − ikt

T
12 + it12k

T + t22kkT t13 − it23k

t
T
13 + it23k

T t33

)
. (13.85)

Thus we require that Mk be positive definite for all k in the reciprocal lattice, k 6= 0. In the case where (for
simplicity) T is diagonal and T11 = t11I, then the Q∗C-convexity conditions read

t11 ≥ 0, t33 ≥ 0, t11I + t22kkT ≥ 0, (13.86)

for all k 6= 0 in the reciprocal lattice. This implies

t11 ≥ 0, t22 ≥ 0, and t33 ≥ 0. (13.87)

So T is positive semi-definite which is not so interesting.
Let’s assume T11 = t11I and note that Mk is positive semidefinite if and only if for any invertible matrix

Q the matrix
Q
T
MkQ = M′

k (13.88)
is positive semidefinite. In particular we may choose

Q =

(
R 0

0 1

)
, (13.89)

where R is a 3N × 3N real rotation matrix with RTR = I and

R


α

0
...
0

 = k, (13.90)

where α = |k| is a real scalar. Letting

RT (t12) = t′12 and RT (t13) = t′13, (13.91)

we then have
R(t

′
12) = t12, and R(t

′
13) = t13. (13.92)

This rotation preserves the length of the vectors t12, t13. Then the matrix M′
k takes the form

M′
k =

(
M′

k11 M′
k12

(M
′
k12)T M ′k22

)
, (13.93)

where

M′
k11 =

(
t11 − iα{t′12}1 + iα{t′12}1 + t22α

2 −iα{t′12}T2
iα{t′12}2 t11I

)
,

M′
k12 =

({t′13}1 − iαt23

{t′13}2

)
,

M ′k22 = t33. (13.94)
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Here {t′12}2 and {t′13}2 are (3N−1)-dimensional vectors which could be complex, I is the (3N−1)×(3N−1)
identity matrix and all other quantities are scalar. Note that {t′12}1 denotes the first component of the vector
t′12 while {t′12}2 denotes the remaining 3N − 1 components of t′12 (respectively for {t′13}1, {t′13}2).

We want the matrix M′
k to be positive semidefinite for all rotations R, where

t′12 = RT t12, t′13 = RT t13, (13.95)

and for all α such that α = |k| for some k 6= 0 in the reciprocal lattice. In particular, suppose t12 (and hence
t′12) is real, t13 = t′13 = 0. Then the form of the matrix M′

k reduces to

M′
k =

t11 + t22α
2 −iα{t′12}T2 −iαt23

iα{t′12}2 t11I 0

iαt23 0 t33

 . (13.96)

This must be positive semidefinite in particular for large α, henceα−1 0 0

0 I 0

0 0 1

M′
k

α−1 0 0

0 I 0

0 0 1

 ≥ 0 (13.97)

must be positive semidefinite in the limit of large α:

M∞
R =

 t22 −i{t′12}T2 −it23

i{t′12}2 t11I 0

it23 0 t33

 ≥ 0. (13.98)

Conversely if this is satisfied, then t11 ≥ 0 and hence

M′
k =

t11 0 0

0 0 0

0 0 0

+

α 0 0

0 I 0

0 0 1

M∞
R

α 0 0

0 I 0

0 0 1

 ≥ 0. (13.99)

Finally we can choose a basis where

{t′12}2 =


β

0
...
0

 , (13.100)

in which β = |{t′12}2|≤ |t12|. Then to ensure Q∗C-convexity we may choose the parameters tij such that t12

is real, t13 = t′13 = 0 and  t22 −i|t12| −it23

i|t12| t11 0

it23 0 t33

 ≥ 0. (13.101)
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14 Green’s functions for
self-adjoint and
non-self-adjoint

operators
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Abstract

Starting with a solution to the equation Lu = f , and a solution to the equation L†u′ = f ′,
we add and subtract them to obtain an equation MU = F, where F involves f and f ′, U
involves u and u′, and M is self adjoint and involves L and L†. From the Green’s function
of this new problem, with a self-adjoint operator, we can recover the Green’s function for
the original equation. Of course the boundary conditions should be such that M is not
just formally self-adjoint, but a proper self-adjoint operator. Technicalities arise if L and
L† don’t have the same domain. We also briefly review the theory of Green’s functions in
homogeneous infinite media.

14.1 Introduction
Consider the equation Lu = f . When L is self-adjoint, this is usually solved with eigenvalues and eigenfunc-
tions and these can be obtained from the resolvent (L − λI)−1 which is an analytic function of λ and only
has singularities when λ is real. When L is not self-adjoint one can of course look for eigenvalues and eigen-
functions of L, but these are generally complex, and this becomes problematical when L is a non-self-adjoint
operator and not a finite-dimensional matrix.

For non-self-adjoint operators if one is interested in the Green’s function one can combine the equation
Lu = f with the adjoint equation L†u′ = f ′ where † denotes adjoint, and then to rewrite the equation as an
equation involving a self-adjoint operator. I learned of the essence of this trick when I visited Andrej Cherkaev
and Leonid Gibiansky in Russia in 1987. They were concerned with equations where the tensor entering the
constitutive equation was symmetric but complex, and their goal was not finding Green’s functions, but rather
to derive minimization variational principles for such problems. It was not until 1994 when their work was
published (Cherkaev and Gibiansky 1994). In the meantime I realized their approach could be extended to
any equation where the tensor entering the constitutive law is not self-adjoint (see Milton 1990), and later
Fannjiang and Papanicolaou (1994) and Norris (1997) developed the idea further but still in the context of

355
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variational principles, not Green’s functions. The transformation has been successfully used to bound effec-
tive complex dielectric tensors of composites (Milton 1990), the effective complex bulk and shear moduli of
composites (Gibiansky and Milton 1993; Gibiansky and Lakes 1993; Milton and Berryman 1997; Gibiansky,
Milton, and Berryman 1999), and the effective moduli for magnetotransport in strong magnetic fields (Briane
and Milton 2011). It has also led to minimization principles for acoustics, elastodynamics, and electromag-
netism in inhomogeneous bodies containing lossy media (Milton, Seppecher, and Bouchitté 2009; Milton and
Willis 2010) used by Richins and Dobson (2012).

As was pointed out to me independently by Jim Keener, of the University of Utah, and Mihai Putinar, of
the University of Santa Barbara, after this chapter was written, a related idea is simply to write the equation
and adjoint equation in block form, (

0 L†

L 0

)(
u

u′

)
=

(
f ′

f

)
, (14.1)

where the operator on the left is clearly self-adjoint, and so in this form one can directly try to use the spectral
theory of self-adjoint operators to obtain the Green’s function. According to Mihai Putinar this is common
knowledge among experts in spectral theory, but I was unable to find an exact reference in the literature. The
procedure I use here is more complicated, and it is not clear if there is any advantage to using it rather than
(14.1) but the success of the transformations of Cherkaev and Gibiansky suggest that there could be some
advantage.

It is to be emphasized that we are not developing spectral theory for non-self-adjoint operators. Spec-
tral theory allows one to easily take powers of an operator, or indeed take any polynomial expression of it.
For dissipative operators, which (modulo multiplication by a complex number) have a positive semi-definite
imaginary part, Gohberg and Kreı̆n (1969) show that one can embed the Hilbert space on which L acts in
a larger Hilbert space and find a Hermitian operator H such that f(H)x = f(L)x for all x in the Hilbert
space where L acts. The spectral theory for H then allows one to compute f(H)x. The Cayley transform
L′ = (I − L)(I + L)−1 maps dissipative operators to contractive ones, with operator norm less than 1,
and there is an analogous result for contractive operators: the Bela Sz.-Nagy dilation theorem (Sz.-Nagy and
Foiaş 1970) embeds the Hilbert space on which L′ acts in a larger Hilbert space and finds a unitary operator
U (satisfying U†U = UU† = I) such that f(U)x = f(L′)x for all x in the Hilbert space where L′ acts.
However, as pointed out to me by Kirill Cherednichenko of Bath University, there is no easy way of passing
between the results of Gohberg and Kreı̆n (1969) and Sz.-Nagy and Foiaş (1970).

This chapter is mostly self-contained, although the reader is advised to begin by studying Chapters 1
and 2, and Section 5.2.

14.2 Green’s functions in homogeneous media
The Green’s function V (x) for the Poisson’s equation satisfies

∇2V (x) = δ(x), (14.2)

where δ(x) is the delta function and in dimension three the solution is well known to be V (x) = −1/(4π|x|).
Given any solution V (x) to ∇2V (x) = f(x), i.e.,

∇ · j(x) = f(x), j(x) = ∇V (x), (14.3)



14.2. Green’s functions in homogeneous media 357

we can make an affine change of coordinates from x to x′ = Ax, and using the chain rule of differentiation
we have

∂V

∂xi
=

∂x′k
∂xi

∂V

∂x′k
= Aki

∂V

∂x′k
,

∂ji
∂xi

=
∂x′k
∂xi

∂ji
∂x′k

= Aki
∂ji
∂x′k

. (14.4)

This implies
∇V (x) = AT∇′V (A−1x′), f(A−1x′) = f(x) = ∇ · j = ∇′ · (Aj), (14.5)

where
∇′ =

(
∂

∂x′1
,
∂

∂x′2
,
∂

∂x′3

)
. (14.6)

Letting V ′(x′) = V (A−1x′) = V (x), where V (x) = −1/(4π|x|) solves (14.2) we get

∇′ ·AAT∇′V ′(x′) = δ(A−1x′) = δ(x′) det(A), (14.7)

where the last identity follows from the scaling property of the delta function. Dropping the primes, and
defining σ = AAT we see that Green’s function V0(x) for the conductivity equation in a constant anisotropic
medium with conductivity σ, which satisfies

∇ · σ∇V0(x) = δ(x), (14.8)

is given by

V0(x) =
−1

4π
√

(detσ)x · σ−1x
. (14.9)

For anisotropic elasticity, or more generally for equations of the form

∂

∂xi
Liαjβ

∂uβ(x)

∂xj
+ fα(x) = 0, (14.10)

where L is a constant tensor with elements Liαjβ there is no simple formula for the Green’s function in an
infinite three-dimensional medium, unless L has some special symmetries. For elasticity Fredholm (1900)
transformed the three second order differential equations to one sixth order equation which he solved. An
alternative approach (Lifšic and Rozencveı̆g 1947; Synge 2012) is to take f(x) = vδ(x), where δ(x) is the
delta function, and v a constant vector, and Fourier transform both sides of (14.10) to get

Qαβ ûβ(k) = vα, (14.11)

where
Qαβ(k) = Liαjβkikj (14.12)

is called the acoustic tensor in elasticity, and

û(k) =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2

∫ ∞
−∞

dx3e
−ik·xu(x) (14.13)
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is the Fourier transform of u(x) (the Fourier transform of the delta function being 1). Solving (14.11) for
û(k) and applying the inverse Fourier transform gives

u(x) =
1

8π3

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2

∫ ∞
−∞

dk3Q
−1(k)veik·x. (14.14)

Using the fact that Q−1(k) is homogeneous in degree -2 in k, this reduces (Synge 2012) to

u(x) =
1

8π2|x|

∫
Q−1(n)v dθ(n), (14.15)

where the integral is around the unit circle that is the intersection of the unit sphere n = 1 with the plane
x · n = 0. For elasticity Lifšic and Rozencveı̆g (1947) expressed the integral in (14.15) in terms of the poles
of Q−1(n). For materials with transverse isotropy Kröner (1953) gave an explicit expression for the Green’s
function given by Fredholm (1900), which Willis (1965) showed could also be obtained from the formula
of Synge (2012). For more general elastic materials, an expression for the elastic Green’s function which is
explicit when the poles are known (even in the degenerate case where some of the poles coincide) was obtained
by Ting and Lee (1997).

Another method, which is also applicable to wave equations in infinite homogeneous media, where one
wishes to find the Green’s function u(x) in an infinite medium associated with a constant differential operator
L, i.e.,

Lu(x) = δ(x)v, (14.16)

was introduced by Burridge (1967), Willis and Acton (1976) and Willis (1980, 1981a, 1982): see also Norris
(1994) and Milton and Willis (2010). The idea is to use the plane-wave decomposition of the three-dimensional
delta function (see page 680 of Gel’fand and Shilov 1964),

δ(x) = − 1

8π2

∫
|ξ|=1

δ′′(ξ · x) dS. (14.17)

This plane-wave decomposition can be obtained by starting from the easily checked identity

2π|x|=
∫
|ξ|=1

|ξ · x| dS, (14.18)

applying ∇2 twice to both sides, and using the fact that ∇2(1/|x|) = −4πδ(x).
Then instead of using a source term f(x) = δ(x)v, one starts with a source term f(x) = δ(ξ · x)v,

and looks for a plane wave solution u(x) = U(ξ · x), which when plugged in the equation LU = f gives
an ordinary differential equation to solve for U (or a one-dimensional integral equation if there are nonlocal
terms in L). Finally by twice differentiating the solution with respect to y = ξ · x one gets the response to a
source f(x) = δ′′(ξ ·x)v, and by integrating the solution over the sphere |ξ|= 1 and using (14.17) one arrives
at the Green’s function. An essentially equivalent approach is to use Radon transforms (Wang and Achenbach
1993,1995; Buroni and Sáez 2010).

If we are interested in the Green’s function in a homogeneous body, rather than in an infinite medium, we
may of course take the solution for the Green’s function in an infinite medium and find its boundary values.
Then we should add to this a solution (usually numerical) of the equations with no sources inside the body,
and appropriate boundary conditions so the total field meets the desired (homogeneous) boundary conditions
for the finite body Green’s function.
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14.3 Symmetrizing the equation

We consider the equation Lu = f together with its adjoint equation L†u′ = f ′ where † denotes the adjoint.
We may write

L = (Ls + La), L† = (Ls −La),

u = (us + ua), u′ = (us − ua),

f = (fs + fa), f ′ = (fs − fa), (14.19)

where

Ls = (L + L†)/2, La = (L−L†)/2,
us = (u + u′)/2, ua = (u− u′)/2,

fs = (f + f ′)/2, fa = (f − f ′)/2. (14.20)

in which we have assumed the operators L and L† have the same domain. So the equations become

(Ls + La)(us + ua)︸ ︷︷ ︸ = fs + fa,

Lsus + Lsua + Laus + Laua

(Ls −La)(us − ua)︸ ︷︷ ︸ = fs − fa.

Lsus −Laus + Lsua + Laua

(14.21)

Adding these equations we get:
Lsus + Laua = fs. (14.22)

Subtracting these equations we get:
Lsua + Laus = fa. (14.23)

Then the equations 14.21 can be written as(
Ls La

−La −Ls

)
︸ ︷︷ ︸

M

(
us
ua

)
︸ ︷︷ ︸

U

=

(
fs
−fa

)
︸ ︷︷ ︸

F

. (14.24)

The operator M is now self-adjoint and the regular spectral theory applies, although there is no simple relation
between the spectrum of M and that of the original operator L. (However see the last section in this chapter).
If we are only interested in solutions for the original problem, then we could take f ′ = 0, in which case
fa = fs = f/2 so that

F(x) =

(−f(x)/2

f(x)/2

)
. (14.25)



360 14. Green’s functions for self-adjoint and non-self-adjoint operators

14.4 Eigenfunctions, eigenvalues, and symmetry of the measure
Let’s look at the eigenfunctions. Suppose the spectrum of the operator M is discrete and we have found an
eigenfunction at λ = λ0: (

Ls La

−La −Ls

)(
us
ua

)
= λ0

(
us
ua

)
, (14.26)

i.e.,

Lsus + Laua = λ0us,

−Laus −Lsua = λ0ua. (14.27)

Switching these and changing signs gives:

Lsua + Laus = −λ0ua,

−Laua −Lsus = −λ0us, (14.28)

i.e., (
Ls La

−La −Ls

)(
ua
us

)
= −λ0

(
ua
us

)
. (14.29)

So we have also found an associated eigenvector at λ = −λ0.
Now the resolvent has an integral representation formula:

(M− λI)−1 =

∫ ∞
−∞

dµ(λ′)

λ′ − λ dλ
′, (14.30)

where µ(λ′) is a nonnegative operator-valued measure. If the spectrum is discrete at λ0 and there is no
degeneracy, then near λ0,

dµ(λ′) =

(
usu

†
s usu

†
a

uau
†
s uau

†
a

)
δ(λ′ − λ0), (14.31)

where we have not assumed the eigenfunction has been normalized, and near −λ0

dµ(λ′) =

(
uau

†
a uau

†
s

usu
†
a usu

†
s

)
δ(λ′ + λ0). (14.32)

More generally, let’s for simplicity assume that the spectrum is absolutely continuous,

dµ(λ′) =

(
A(λ) B(λ)

B†(λ) C(λ)

)
dλ′, (14.33)

where A(λ) and C(λ) are Hermitian and the above matrix is a positive semi-definite operator. Then the
spectral measure will have the symmetry property:

dµ(−λ′) =

(
C(λ) B†(λ)

B(λ) A(λ)

)
. (14.34)
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To say something about the eigenvalue λ0 lets assume the operator Ls is coercive in the sense that there
exists a real constant α > 0 such that

(p,Lsp) ≥ α(p,p), (14.35)

for all p in the Hilbert space. Then from (14.27) it is clear that

(us,Lsus) + (us,Laua) = λ0(us,us),

(ua,Laus) + (ua,Lsua) = −λ0(ua,ua). (14.36)

From the first equation it is clear that (us,Laua) is real since all other terms in the expression are real. This,
and the fact that L†a = −La implies

(us,Laua) = (Laua,us) = (ua,L†aus) = −(ua,Laus). (14.37)

So adding the two expressions in (14.36), and using the coercivity gives

λ0[(us,us)− (ua,ua)] ≥ α[(us,us) + (ua,ua)], (14.38)

or equivalently
(λ0 − α)(us,us) ≥ (α+ λ0)(ua,ua). (14.39)

If λ0 ≥ 0 we see that the right side is positive, and so from the left we conclude that λ0 > α. Alternatively,
if λ0 ≤ 0 we see that the left side is negative, and so from the right we conclude that λ0 < −α. In summary
we have that

|λ0|> α, (14.40)

and so the spectrum of the operator M is bounded away from zero, and the resolvent (M−λI)−1 is nonsingular
at λ = 0, which when applied to the Dirac delta function source term δ(x−x0)v gives us the Green’s function.

14.5 Boundary conditions
If we are solving equations within a body Ω rather than looking for say periodic solutions, then associated
with the operator is its boundary conditions. If we want to ensure the operator is self-adjoint (which we need
for spectral theory), and not just formally self-adjoint, then we need to consider the boundary conditions of
the operator equation.

To fix ideas lets look at the equation

J(x) = L(x)E(x) + F(x), (14.41)

with differential constraints on the fields J(x) and E(x) which imply

J ∈ U ⊕ J , E ∈ U ⊕ E , (14.42)

which we wish to solve subject to homogeneous boundary conditions which are expressed as constraints on
the fields Γ0E = E0 and/or Γ0J = J0, where Γ0 is the projection onto U (these are our ”applied fields”).
Consider also the adjoint problem:

J′(x) = L†(x)E′(x) + F′(x), (14.43)
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with homogeneous boundary conditions involving Γ0E
′ = E′0 and/or Γ0J = J0. Let

L = Ls + La, L† = Ls − La,

E = Es + Ea, E′ = Es −Ea,

J = Js + Ja, J′ = Js − Ja,

F = Fs + Fa, F′ = Fs − Fa,

E0 = E0s + E0a, E′0 = E0s −E0a,

J0 = J0s + J0a, J′0 = J0s − J0a. (14.44)

Then we have

Js + Ja = (Ls + La)(Es + Ea) + Fs + Fa,

Js − Ja = (Ls − La)(Es −Ea) + Fs − Fa, (14.45)

and adding and subtracting gives

2Js = 2LsEs + 2LaEa + 2Fs,

−2Ja = −2LsEa − 2LaEs − 2Fa. (14.46)

We write this as the formally self-adjoint linear system(
Js
−Ja

)
︸ ︷︷ ︸

J(x)

=

(
Ls La
−La −Ls

)
︸ ︷︷ ︸

L(x)

(
Es

Ea

)
︸ ︷︷ ︸
E(x)

+

(
Fs
−Fa

)
, (14.47)

where the fields satisfy the differential constraints

Js, Ja ∈ J , Es, Ea ∈ E , (14.48)

and are subject to homogeneous boundary conditions involving

Γ0Es = E0s, Γ0Ea = E0a, Γ0Js = J0s, Γ0Ja = J0a. (14.49)

Now L(x) is formally self-adjoint. To see whether it is self-adjoint with boundary conditions, look at(
Ẽ(x),L(x)E(x)

)
=
(
Ẽ(x), J(x)

)
=
(
Γ0Ẽ,Γ0J

)
=
(
Ẽ0, J0

)
= J0s · Ẽ0s − J0a · Ẽ0a, (14.50)

where

J0s = Γ0Js = Γ0[(J + J′)/2] = (J0 + J′0)/2,

J0a = Γ0Ja = Γ0[(J− J′)/2] = (J0 − J′0)/2,

Ẽ0s = Γ0Ẽs = Γ0[(Ẽ + Ẽ′)/2] = (Ẽ0 + Ẽ′0)/2,

Ẽ0a = Γ0Ẽa = Γ0[(Ẽ− Ẽ′)/2] = (Ẽ0 − Ẽ′0)/2. (14.51)
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And so we have(
Ẽ0, J0

)
=

1

4
[(Ẽ0 + Ẽ′0) · (J0 + J′0)− (J0 − J′0) · (Ẽ0 − Ẽ′0)]

=
1

4
[J0 · (Ẽ0 + Ẽ′0 − Ẽ0 + Ẽ′0) + J′0 · (Ẽ′0 + Ẽ0 + Ẽ0 − Ẽ′0)]

=
1

2
[J0 · Ẽ′0 + J′0 · Ẽ0]. (14.52)

Similarly it follows that (
L(x)Ẽ(x),E(x)

)
=
(
J̃0,E0

)
=

1

2
[J̃0 ·E′0 + J̃′0 ·E0]. (14.53)

So the operator will be self-adjoint if

1

2
(J0 · Ẽ′0 + J′0 · Ẽ0) =

1

2
(J̃0 ·E′0 + J̃′0 ·E0). (14.54)

This will be satisfied, for example, if we impose the constraints that J0 = J′0 = J̃0 = J̃′0 = 0, or alternatively
the constraint E0 = E′0 = Ẽ0 = Ẽ′0 = 0, but as we will see in our next section, other boundary conditions
are possible too.

14.6 A class of examples
As a more concrete example, suppose we have the equation

J(x) = L(x)E(x) + F(x), (14.55)

with E(x) and J(x) subject to the differential constraints

E(x) =

(∇u

u

)
, J(x) =

(
G(x)

∇ ·G(x)

)
, (14.56)

where u is an m−component vector, G is a d×m matrix valued field. These fields satisfy the key identity∫
Ω

E(x) · J(x) =

∫
Ω

(∇u) : G(x) + u · ∇ ·G(x)︸ ︷︷ ︸
∇·Q with Q=G(x)u(x)

=

∫
∂Ω

n ·G(x)u(x)︸ ︷︷ ︸
Q(x)

. (14.57)

For simplicity we choose a comparison or reference medium having tensor Z0 = I. Then the space U0 consists
of fields such that

E(x) = J(x) in Ω, (14.58)

that is

G(x) = ∇u, ∇ ·G(x) = u

=⇒ ∇ ·G(x) = ∇2u = u. (14.59)
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Suppose some boundary condition u = u0 is prescribed. Consider

min
u

u=u0 on ∂Ω

∫
Ω

E(x) ·E(x)︸ ︷︷ ︸
(∇u)2+u2

. (14.60)

Provided u0 is sufficiently regular the minimum exists, is unique and at the minimum, from the Euler–Lagrange
equation, the minimizer satisfies ∇2u = u. So for any sufficiently regular boundary condition u = u0 there
exists a unique field E0(x) ∈ U which corresponds to it. Similarly if we consider

min
G(x)

n·G(x)=t(x) on ∂Ω

∫
Ω

J(x) · J(x),︸ ︷︷ ︸
G(x):G(x)+[∇·G(x)]·[∇·G(x)]

, (14.61)

then if t(x) is sufficiently regular the minimum exists, is unique and from the Euler–Lagrange equations the
minimizer satisfies

G(x) = ∇(∇ ·G(x)). (14.62)

That is, if we define u(x) to be ∇ ·G(x), then from 14.62 we have G(x) = ∇u(x), and from the definition
of u(x)

u(x) = ∇ ·G(x) = ∇2u(x). (14.63)

So for any boundary condition n ·G(x) = t(x) there exists a unique field J0(x) ∈ U which corresponds to
it. The condition 14.54 for the self-adjoint operator L(x) to be self-adjoint in this class of examples reduces
to ∫

∂Ω

t0 · ũ′0 + t′0 · ũ0 =

∫
∂Ω

t̃0 · u′0 + t̃′0 · u0, (14.64)

where we have used the key identity to transform volume integrals into surface integrals, and we have defined
t = n ·G with n being the outward normal to the surface. The operator will be self-adjoint if, for example,
t0 = t̃0 = t′0 = t̃′0 = 0 which corresponds to Neumann boundary conditions, or if u0 = ũ0 = u′0 = ũ′0 = 0
which corresponds to Dirichlet boundary conditions, or if t0 = βu0, t̃0 = βũ0, t

′
0 = −βu′0, t̃

′
0 = −βũ′0

which corresponds to Robin boundary conditions.

14.7 A specific example
On July 30th, 2015, after emailing my notes to Jim Keener at the University of Utah, he asked about how one
would apply it to a one-dimensional problem with the operator

Lu = a
du

dx
+
d2u

dx2
, (14.65)

with boundary constraints

au+
du

dx
= 0 at x = 0 and x = 1. (14.66)

where the given function a = a(x) depends on x. He mentioned on August 25th, 2015 that these boundary
conditions correspond to a flux, or current au + du

dx which is zero at the boundary. So it makes sense to
introduce the current

j(x) = au+
du

dx
, (14.67)
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and to rewrite the equation Lu = f as(
j
dj
dx

)
︸ ︷︷ ︸
J(x)

=

(
1 a

0 da
dx

)
︸ ︷︷ ︸

L(x)

(
du
dx

u

)
︸ ︷︷ ︸
E(x)

+

(
0

f

)
︸︷︷︸
F(x)

. (14.68)

Taking a reference medium with tensor L0 = I, we define U as the space of fields on [0, 1] which solve
the homogeneous problem (

j0
dj0
dx

)
=

(
1 0

0 1

)(
du0

dx

u0

)
, (14.69)

i.e.,

d2u0

dx2
= u0 =⇒ u0 = k1e

x + k2e
−x =

dj0
dx
,

du0

dx
= k1e

x − k2e
−x = j0, (14.70)

i.e., U is spanned by the fields

ex
(

1

1

)
, and e−x

(−1

1

)
. (14.71)

Let E be the space of fields spanned by

E(x) =

(
du
dx

u

)
with u(0) = u(1) = 0, (14.72)

as u varies. Let J be the space of fields spanned by

J(x) =

(
j
dj
dx

)
with j(0) = j(1) = 0, (14.73)

as j varies. Note that E ,J and U are all orthogonal spaces with respect to the inner product(
p1

p2

)
·
(
q1

q2

)
=

∫ 1

0

p1(x)q1(x) + p2(x)q2(x)dx, (14.74)

as can be seen from the identities ∫ 1

0

E(x) · J(x) =

∫ 1

0

d

dx
(uj) = 0,∫ 1

0

E(x) ·
(
j0
dj0
dx

)
=

∫ 1

0

d

dx
(uj0) = 0,∫ 1

0

(
du0

dx

u0

)
· J(x)dx =

∫ 1

0

d

dx
(u0j) = 0. (14.75)
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We solve the equation 14.68 subject to the boundary condition j(x) = 0 at x = 0 and x = 1. The equation
(14.47), to which we can apply spectral analysis, takes the form

js
djs
dx

−ja
−djadx


︸ ︷︷ ︸

J(x)

=


1 a/2 0 a/2

a/2 da
dx −a/2 0

0 −a/2 −1 −a/2
a/2 0 −a/2 − dadx


︸ ︷︷ ︸

L(x)


dus

dx

us
dua

dx

ua


︸ ︷︷ ︸

E(x)

+


0

f/2

0

−f/2

 . (14.76)

14.8 Recovering the eigenvalues and eigenvectors of the original equa-
tion

Here we follow Section 18 of Milton (1990) to obtain an equation for the eigenvalues and eigenvectors of
the original operator L and its adjoint L†. As is evident from the characteristic equation, recall that if λ
is an eigenvalue of L then its complex conjugate λ is an eigenvalue of L†. Let u and u′ be corresponding
eigenvectors so that

(Ls + La)u = λu, (Ls −La)u′ = λu′. (14.77)

Replacing f by λu and f ′ by λu′ we see that (14.24) implies(
Ls La

−La −Ls

)(
u + u′

u− u′

)
=

(
λu + λu′

−λu + λu′

)
. (14.78)

Assuming the operator L is bounded and that Ls is coercive, this can be rewritten, using the transformation
of Cherkaev and Gibiansky (1994) and Milton (1990) as

K
(

u + u′

−λu + λu′

)
=

(
λu + λu′

u′ − u

)
, (14.79)

where K is the operator

K =

(
Ls −LaL−1

s La LaL−1
s

−L−1
s La L−1

s

)
, (14.80)

which is positive definite, and for this reason the transformation toK has proved important for deriving bounds,
via variational principles Note that the rule for the fields in going from (14.78) to (14.79) is to leave the “top”
component of the fields, i.e., u + u′ and λu + λu′ in the same positions, while switching positions of the
bottom components u − u′ and −λu + λu, and changing the sign of the component on the bottom right of
the second constitutive law from u− u′ to u′ − u.

At this point it is interesting to investigate the eigenvalues and eigenvectors of K. These satisfy

K
(

v

w

)
= η

(
v

w

)
, (14.81)

where η is the eigenvalue. Transforming back gives(
Ls La

−La −Ls

)(
v

−ηw

)
=

(
ηv

w

)
, (14.82)
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or equivalently
Lsv − ηLaw = ηv, ηLsw −Lav = w. (14.83)

Defining
v′ = ηw, w′ = ηv, η′ = 1/η, (14.84)

these equations become
η′Lsw

′ −Lav
′ = w′, Lsv

′ − η′Law
′ = η′v′. (14.85)

These equations are exactly of the same form as (14.83) but with primes on the fields. Hence we directly have
that (14.81) is satisfied with v, w and η replaced by v′, w′, and η′, giving

K
(

w

v

)
=

1

η

(
w

v

)
. (14.86)

So the eigenvalues of K come in reciprocal pairs.
Now following Section 18 of Milton (1990), let us introduce the family of operators A(α)

A(α) =

(
I I

−αI αI

)
, (14.87)

which have inverses

[A(α)]−1 =
1

2 Reα

(
αI −I

αI I

)
=

1

2 Reα

(
αI αI

−I I

)†
. (14.88)

Using these relations (14.79) becomes

2 Reλ[A(λ)†]−1

(
u

u′

)
= KA(λ)

(
u

u′

)
. (14.89)

So if we let B(α) denote the Hermitian operator

B(α) =
1

2 Reα
A(α)†KA(α), (14.90)

then (14.89) implies

B(λ)

(
u

u′

)
=

(
u

u′

)
. (14.91)

Note that B(α) is positive or negative definite according to whether Reα > 0 or Reα < 0 and hence can
only have an eigenvalue of 1 if Reα > 0. As discussed in Section 18 of Milton (1990) one can vary α in
the right half plane until it has eigenvalue 1. Then α and the eigenvector of B(α) give the eigenvalue λ and
eigenvectors u and u′ of L and its adjoint. Some numerical examples of this are shown in Figure 14.1.

Note the converse is true too. By reversing the steps in the argument one sees that if for some α with
Reα > 0, the operator B(α) has eigenvalue 1 then α is an eigenvalue of L and the corresponding eigenvector
associated with B(α) gives the eigenvectors of L and its adjoint.
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Figure 14.1: Contours, obtained by Patrick Bardsley, showing the eigenvalues just below 1 and just above
1 of the Hermitian matrix B(α) as α is varied in the right hand side of the complex α plane. The contours
encircle the eigenvalues of the matrix L which are marked by asterisks, and at these points B(α) has
eigenvalue 1. From left to right L is taken to be a 3× 3 matrix, and then a 4× 4 matrix with all real, 2
complex, and 4 complex eigenvalues.
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Bückmann, T., N. Stenger, M. Kadic, J. Kaschke, A. Frölich, T. Kennerknecht, C. Eberl, M. Thiel, and M. Wegener 2012,
May 22. Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Advanced
Materials 24(20):2710–2714. ISSN-L 0935-9648. doi:10.1002/adma.201200584 {52, 374}
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Kröner, E. 1977, April. Bounds for the effective elastic moduli of disordered materials. Journal of the Mechanics and
Physics of Solids 25(2):137–155. ISSN-L 0022-5096. doi:10.1016/0022-5096(77)90009-6 {193, 257, 288,
386}

Kummert, A. 1989. Synthesis of two-dimensional lossless m-ports with prescribed scattering matrix. Circuits, Systems,
and Signal Processing: CSSP 8(1):97–119. ISSN-L 0278-081X. {68, 151, 386}

Lakes, R. S. 1987, February 27. Foam structures with a negative Poisson’s ratio. Science 235(4792):1038–1040. ISSN-L
0036-8075. doi:10.1126/science.235.4792.1038 {50, 386}

Lakes, R. S. 1996, January. Cellular solid structures with unbounded thermal expansion. Journal of Materials Science
Letters 15(6):475–477. ISSN-L 0261-8028. doi:10.1007/BF00275406 {50, 386}

Lakes, R. S. and W. J. Drugan 2002. Dramatically stiffer elastic composite materials due to a negative stiffness phase?
Journal of the Mechanics and Physics of Solids 50(5):979–1009. ISSN-L 0022-5096. doi:10.1016/
S0022-5096(01)00116-8 {150, 386}

Lakes, R. S. and J. Quackenbush 1996. Viscoelastic behaviour in indium tin alloys over a wide range of frequency and
time. Philosophical Magazine Letters 74(4):227–232. ISSN-L 0950-0839. doi:10.1080/095008396180155
{156, 386}

Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskiı̆ 1984. Electrodynamics of Continuous Media (Second ed.), Volume 8
of Landau and Lifshitz Course of Theoretical Physics. Oxford, UK: Elsevier Butterworth-Heinemann. xiii + 460
pp. ISBN 0-7506-2634-8. ISBN-13 978-0-7506-2634-7. {53, 118, 386}

Landauer, R. 1978. Electrical conductivity in inhomogeneous media. In J. C. Garland and D. B. Tanner (eds.), Electrical
Transport and Optical Properties of Inhomogeneous Media, Volume 40 of AIP Conference Proceedings, pp. 2–43 (of
416). Woodbury, New York: American Institute of Physics. ISBN 0-88318-139-8. ISBN-13 978-0-88318-139-3.
{47, 386}

Larsen, A. A., B. Laksafoss, J. S. Jensen, and O. Sigmund 2009, February. Topological material layout in plates for
vibration suppression and wave propagation control. Structural and Multidisciplinary Optimization 37(6):585–594.
ISSN-L 1615-147X. doi:10.1007/s00158-008-0257-0 {31, 386}

Lautrup, B. 2005. Physics of Continuous Matter: Exotic and Everyday Phenonema in the Macroscopic World, pp. 118–
119 (of xiv + 608). Bristol, UK and Philadelphia, PA, USA: Institute of Physics. ISBN 0-7503-0752-8. ISBN-13
978-0-7503-0752-9. {29, 386}

Lawden, D. F. 1982. An Introduction to Tensor Calculus, Relativity and Cosmology (Third ed.). New York / London /
Sydney, Australia: John Wiley and Sons. xiii + 205 pp. ISBN 0-471-10096-X. ISBN-13 978-0-471-10096-6. {6,
386}

Lebensohn, R. A. 2001, August 16. N -site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform. Acta
Materialia 49(14):2723–2737. ISSN-L 1359-6454. doi:10.1016/S1359-6454(01)00172-0 {236, 386}

Lee, C., W. Yang, and R. G. Parr 1988, January 15. Development of the Colle–Salvetti correlation-energy formula into
a functional of the electron density. Physical Review B: Condensed Matter and Materials Physics 37(2):785–789.
ISSN-L 1098-0121. doi:10.1103/PhysRevB.37.785 {309, 386}

Lee, S.-B., R. A. Lebensohn, and A. D. Rollett 2011, May. Modeling the viscoplastic micromechanical response of
two-phase materials using Fast Fourier Transforms. International Journal of Plasticity 27(5):707–727. ISSN-L
0749-6419. doi:10.1016/j.ijplas.2010.09.002 {236, 386}

Levy, M. 1979, December 15. Universal variational functionals of electron densities, first-order density matrices, and
natural spin-orbitals and solution of the ν-representability problem. Proceedings of the National Academy of Sci-
ences of the United States of America 76(12):6062–6065. ISSN-L 0027-8424. doi:10.1073/pnas.76.12.6062
{312, 386}



Bibliography 387
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Murat, F. 1978. Compacité par compensation. (French) [Compactness through compensation]. Annali della Scuola
normale superiore di Pisa, Classe di scienze. Serie IV 5(3):489–507. ISSN-L 0391-173X. URL http:
//www.numdam.org/item?id=ASNSP_1978_4_5_3_489_0 {11, 14, 17, 392}
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Nevanlinna, R. 1929. Über beschränkte analytische Funktionen. (German) [On limited analytic functions]. Annales
Academiae Scientiarum Fennicae, Series A 32(7):75. {68, 136, 151, 258, 393}

Nguetseng, G. 1989. A general convergence result for a functional related to the theory of homogenization. SIAM Journal
on Mathematical Analysis 20(3):608–623. ISSN-L 0036-1410. doi:10.1137/0520043 {49, 393}

Nicorovici, N. A., R. C. McPhedran, and G. W. Milton 1993, September 8. Transport properties of a three-phase composite
material: The square array of coated cylinders. Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences 442(1916):599–620. ISSN-L 0080-4630. doi:10.1098/rspa.1993.0124 {224, 393}

Noether, E. 1918. Invariante Variationsprobleme. (German) [Invariant variational problems]. Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse:235–257. ISSN-L 0369-6650.
{14, 393}

Norris, A. N. 1992, February 1. On the correspondence between poroelasticity and thermoelasticity. Journal of Applied
Physics 71(3):1138–1141. ISSN-L 0021-8979. doi:10.1063/1.351278 {9, 393}

Norris, A. N. 1994. Dynamic Green’s functions in anisotropic piezoelectric, thermoelastic and poroelastic solids. Pro-
ceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 447(1929):175–188. ISSN-
L 0080-4630. doi:10.1098/rspa.1994.0134 {29, 33, 35, 358, 393}

Norris, A. N. and A. L. Shuvalov 2011, September. Elastic cloaking theory. Wave Motion 48(6):525–538. ISSN-L
0165-2125. doi:10.1016/j.wavemoti.2011.03.002 {29, 393}

Norris, J. R. 1997, November. Long time behavior of heat flow: Global estimates and exact asymptotics. Archive for
Rational Mechanics and Analysis 140(2):161–195. ISSN-L 0003-9527. doi:10.1007/s002050050063 {126,
355, 393}

Nowacki, W. 1986. Thermoelasticity (Second ed.). New York: Pergamon. xi + 566 pp. Translated from the Polish by
Henryk Zorski. ISBN 0-08-024767-9. ISBN-13 978-0-08-024767-0. {8, 393}

Obnosov, Y. V. 1999. Periodic heterogeneous structures: New explicit solutions and effective characteristics of refraction
of an imposed field. SIAM Journal on Applied Mathematics 59(4):1267–1287. ISSN-L 0036-1399. doi:10.
1137/S0036139997314770 {247, 393}
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lems in Mathematical Physics: Proceedings of The Lapland Conference on Inverse Problems Held at Saariselkä,
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This book changes the landscape of may problems in science, ranging from reformulating Schrödinger’s equation
(of importance to Chemistry, Physics, and Materials Science) leading to new algorithms for solving multi-electron
systems, casting in a new light inverse problems, where one seeks to determine what is inside a body from boundary
measurements, that could lead to new methods of imaging, generalizing conservation laws to boundary field equalities
and inequalities, deriving integral representation formulae for the response of bodies, bounding the transient response
of composites, and even introducing a new type of function, called a superfunction, where the basic object is a subspace
collection, plus many other groundbreaking ideas.
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