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Preface

The first book I wrote, The Theory of Composites (Milton (2002)), took me almost 14 years to complete.
By contrast this book mainly took just 4 months (and another 4 months polishing) which is indicative of the
concentrated effort it took, and motivation I had. I should emphasize that it is not just my work, and that this
is a volume edited by me, rather than a monograph. Pivotally important contributions have been made by my
coauthors on various chapters: Maxence Cassier, Ornella Mattei, Moti Milgrom, and Aaron Welters. They are
all wonderful collaborators. I am also very grateful to Hervé Moulinec and Pierre Suquet: they helped clean
up the formulation in Chapter 8 of a method for accelerating Fast Fourier Transform schemes for computing
the moduli and fields in composites, and did the numerical computations which showed that the scheme works
in practice.

I said the book took 4 months to write, but that is not completely true as some chapters have been in the
works for a while. In particular, the work with Moti Milgrom dates back over 23 years to our collaborations
at the Courant Institute when I was an associate professor there. We had essentially finished that work, but
for some reason never published it. As the subject matter fits closely with parts of this book, it seemed very
appropriate to include it as Chapter 9. I had been thinking for many years off and on since 1987 about the
subject matter of Chapter 7, on the algebraic properties of subspace collections. I published a draft of it in
April of 2015 on arXiv (arXiv:1504.08061 [math.AG]). At that time I was missing the important ingredient
of how to “multiply” subspace collections, which only became apparent to me at the end of July 2015 in
conversations with Mihai Putinar and Aaron Welters during a visit to KAIST in Korea. The new approach
to accelerating Fast Fourier Transform schemes by substituting a subspace collection with non-orthogonal
subspaces in one with orthogonal subspaces was started at the end of 2013, with Hervé Moulinec and Pierre
Suquet being involved in early 2014, and is presented in Chapter 8. Ornella Mattei came and visited me for
six months in Spring of 2015, and we worked on a method for bounding the transient response of bodies,
presented in Chapter 6. This work forms part of her Ph.D. thesis (Mattei 2016). Subsequently, I realized that
the Dirichlet-to-Neumann map, governing the response of bodies, should share the same analytic properties as
effective tensors of composites. This led to some new methods discussed in Chapter 5 for the inverse problem
of finding inclusions in a body from measurements of the response of the body to transient fields. An in depth
and rigorous study of the analytic properties of the Dirichlet-to-Neumann map for electromagnetism was also
initiated with Maxence Cassier and Aaron Welters earlier this past summer, and led to Chapter 4. In an
intense collaboration they also placed the field equation recursion method on a rigorous basis for composites
of two isotropic components, and this resulted in Chapter 10. The field equation recursion method uses the
structure of subspace collections to obtain a continued fraction expansion for the effective tensor from which
bounds on the effective tensor can be derived.

The material of the book varies among a very wide range of scientific topics that are connected to the
theory of composites, or to which some aspects of the theory of composites can be applied.

In Chapter 1 we review many of the linear equations of physics, and write them in a canonical form
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appropriate to the theory of composites. Additionally we show how conservation laws, which have played
a key role throughout the history of science, can be generalized to equalities which we call “boundary field
equalities” and inequalities which we call “boundary field inequalities”. These require some assumptions about
the materials inside the body. The fields in the canonical form of the equations satisfy differential constraints,
linked by a constitutive law involving a matrix Z(x) of material parameters that is Hermitian or the Hermitian
part of iZ(x) is positive semi-definite. When written in the appropriate form, the scalar product of fields on
the left and right of the constitutive law can be expressed as the divergence of some “supercurrent” Q(x). As
a result of this we have the “key identity” that the integral of this scalar product can be expressed in terms
of boundary fields. We remark that the canonical form of the equations we introduce here is similar in many
respects to that of Strang (1986) [see also Strang (1988), and Chapter 2 of Strang (2007)] where he proposes
(see his figures 1.8, 2.2, 3.8, 3.9, 3.12, 3.16 and pages 126, 156) the form

e=b—Ax, y=Ce, ATy=7f, 0.1

where y = Cle is the constitutive law, x are the potentials, b and f are sources, and in a discretization of the
equations A with transpose A7 are matrices which represent the differential operators. In this discretization
e, b, x and f are all represented by vectors. Then if b = 0 and f is non-zero except on the boundary nodes,
we have

y-e=—y-Av=—(AT)y .z =—f =z 0.2)

This is equivalent to the key identity since the last term only involves terms at the boundary. Here we show
that this format, appropriately generalized, applies to many of the linear equations of physics. The “boundary
field equalities and inequalities” we derive in Sections 1.4 and 1.5 provide equalities and inequalities that the
fields on the boundary of a body (possibly a body in “space-time’””) must satisfy given information about the
partial differential equations governing the fields inside the body, and so provide generalizations of the concept
of conservation laws. This information need not be complete: for example, in a body containing multiple
materials, we can still get equalities and inequalities without knowing the orientation or the distribution of
materials inside the body.

Chapter 2 reviews the abstract theory of composites, both for the effective tensor and for the associated
“Y -tensor”.

Chapter 3 shows that the problem of finding the Dirichlet-to-Neumann map, for acoustics, elastody-
namics, or electromagnetism in an inhomogeneous body can be reformulated as the problem of finding the
effective tensor (operator) associated with an abstract problem in the theory of composites. As a result of this,
the Dirichlet-to-Neumann map is an operator-valued analytic function, and in fact Herglotz function, of the
moduli of the tensors of the component materials, and many tools for bounding effective tensors extend to
bounding the Dirichlet-to-Neumann map.

Chapter 4, with Maxence Cassier and Aaron Welters, studies in depth the analyticity properties of the
Dirichlet-to-Neumann map for electromagnetism, first for a layered medium then for quite general bodies of
N-isotropic phases, as functions of the 2/V variables we; and wy;, j = 1,2 where w is the frequency and
€; and p; are the electrical permittivity and magnetic permeability of the phases. It is established that the
map is an operator-valued Herglotz function of these 2/N complex variables. The results are extended to the
case when the phases are anisotropic, in which case the analyticity is as a function of the elements of each
permittivity tensor and each permeability tensor, multiplied by the frequency. Also the Herglotz properties
of the Dirichlet-to-Neumann map, as a function of frequency are established for bodies where the moduli
we(x,w) and wu(x,w) are not piecewise constant but instead vary with position, and at each point x are
Herglotz functions of the frequency w.
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Chapter 5 explores bounds on the Dirichlet-to-Neumann map and the associated inverse problem of what
can be said about the distribution of materials inside a body from surface measurements, using the connection
between Dirichlet-to-Neumann maps and effective tensors in composites. Various approaches are developed:
the first, which may not be very useful, is to apply the simplest bounds on effective tensors to bound the associ-
ated Dirichlet-to-Neumann map. Improvements can be obtained by using the “translation method”, which then
couples the response at different frequencies or with different applied fields. For two-phase composites more
can be said by looking for complex frequencies where the body is homogeneous (or has a homogeneous shear
modulus in the case of elasticity). Then measurements of the transient response of the body, can be extrapo-
lated back (using analyticity and representation formulas for the response) to obtain the Dirichlet-to-Neumann
map (or bounds on this map) near or at these special frequencies. Since the body is nearly homogeneous, or
has constant shear modulus, it is much easier to say something about the internal geometry from these results.
Lastly for quasistatic electromagnetism in two-phase bodies we propose using matrix-valued Pick interpo-
lation to interpolate the Dirichlet-to-Neumann map at a set of frequencies to obtain information about the
geometry. It is not clear how successful and robust any of these methods will be, especially in the presence of
measurement errors: this awaits numerical tests.

Chapter 6, with Ornella Mattei, uses representation formulas for the effective tensor of a composite as
a function of the component moduli to derive bounds on the transient response of bodies. This is done in
the context of antiplane elasticity, although the results apply immediately to the mathematically equivalent
problem of two-dimensional conductivity, and can be easily extended to three-dimensional conductivity. Sig-
nificantly, we found the volume fractions of the phases could almost be exactly determined from measurements
of the transient response at certain times. This gives some hope that the method could be applied, as suggested
in Chapter 5, to provide useful information about the geometry inside a two-phase body from its transient
response. The work in this chapter formed part of the Ph.D. thesis of Ornella (Mattei 2016).

Chapter 7 develops the algebra of finite-dimensional subspace collections, like those appearing in the
abstract theory of composites and in the theory of Y -tensors when all subspaces are finite-dimensional vector
spaces. By relaxing the requirement that the subspaces are orthogonal we find that the associated effective
modulus can be any homogeneous degree 1 function of the component moduli satisfying the normalization
property that it takes the value 1 when the component moduli are all 1. There is a rich algebraic structure
associated with subspace collections: operations of addition, subtraction, multiplication, division and substi-
tution can all be defined. In many cases these are similar to the operations one can do on electrical networks.
It is not clear where these ideas will lead, but certainly they represent a new mathematical direction.

In Chapter 8 we show this algebra has important uses: in particular by substituting a collection with non-
orthogonal subspaces in one with orthogonal subspaces we can accelerate Fast Fourier transform methods for
computing the effective tensor and fields in periodic conducting composites, as demonstrated by the numerical
results of Moulinec and Suquet.

Chapter 9, with Moti Milgrom, looks at the response of multiphase bodies and composites to a set of dif-
ferent fields, which may be electric fields, magnetic fields, temperature gradients, or concentration gradients,
which interact in the components due to coupling terms in the constitutive laws. Particular attention is focused
on the form the perturbation expansion takes in nearly homogeneous media. In composites the perturbation
expansion coefficients allow one to recover the weight and normalization matrices which enter representation
formulae for the relevant projection operators, and which enter bounds on the effective response tensor.

Chapter 10, with Maxence Cassier and Aaron Welters, develops a rigorous basis, using Fredholm theory,
for the field equation recursion method for composites of two isotropic phases. The method is associated with
orthogonal subspace collections, and uses a stratification of the Hilbert space, and an inductive procedure,
to link together a sequence of associated effective tensors. Eliminating the intermediate effective tensors
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from these relations results in a continued fraction expansion for the effective tensor of the original subspace
collection. Appropriate truncations of this expansion lead to a sequence of nested bounds on the effective
tensor that get tighter and tighter as the level of truncation is increased and correspondingly more and more
series expansion coefficients are incorporated in the bounds. This is similar to the way truncations of continued
fraction expansions of Herglotz or Stieltjes functions lead to bounds, but the advantage of the field equation
recursion method is that it generalizes to multicomponent and polycrystalline composites.

Chapters 11, 12, and 13 follow a different tack, and could be useful in quantum chemistry in computations
of the wavefunction in multielectron systems. How useful is open to question, and needs to be explored
numerically, but they do present novel approaches which could be refined and adapted in ways not anticipated
here.

Chapter 11 presents a simple idea. When the integral of the square of Schrddinger’s equation (with
sources) is minimized over all (real) trial wavefunctions, with norm 1, the minimum is zero and only achieved
when Schrodinger’s equation is satisfied. By expanding out the square of Schrddinger’s equation, and doing
partial minimizations one arrives at a “density functional theory” for excited states, which I call Projection
functional theory. Instead of just minimizing over the density it requires minimizing over three functions, each
of which projects out information contained in the full wavefunction. It will still be very challenging to say
something about what combinations of the three functions are realizable (meaning being associated with an
electron wavefunction satisfying the required symmetries) and to determine what is an appropriate functional.

In Chapter 12, we begin with the form of Schrodinger’s equation given in the first chapter, of fluxes and
their derivatives connected by a matrix, through a constitutive law, to the wavefunction and its gradient. Then
using the symmetry properties of the wavefunction we desymmetrize this equation: the potential entering the
constitutive law needs not have the usual symmetries, but can be just a function of the coordinates x; and x5 of
two-electrons, and the fields on the left of the constitutive law need only be fluxes when they are symmetrized.
This desymmetrized form should accelerate Fast Fourier transform methods for solving the equation: when
going to real space from Fourier space and then back to Fourier space one need only do Fourier transforms
on the variables x; and x2. One does however need to keep track of the full wavefunction in Fourier space,
which may make it prohibitive for systems with a large number of electrons.

Chapter 13 contains some miscellania: a minimizing variational principle for Schrodinger’s equation
when the energy is complex, and Q*-convex quadratic forms for Schrodinger’s equation. The latter might be
useful for accelerating Fast Fourier transform methods, as discussed in Chapter 8.

Finally, Chapter 14 is mainly concerned with Green’s functions for non-self-adjoint operators. Following
the ideas of Cherkaev and Gibiansky (1994) and Milton (1990) we start with the equation Lu = f, and look
at it together with the equation £7u’ = £/, where £ is the adjoint of £. By adding and subtracting equations
we see (when L has the same domain as LT), that one obtains an equation MU = F, where F involves f and
f’, U involves u and u’, and M is self adjoint and involves £ and L'. Thus one obtains an equation to solve
with a self-adjoint operator M and one can use resolvents to obtain the Green function. We also give a brief
review of results for Green’s functions in infinite homogeneous media.

The chapters in the book need not be read sequentially. Some chapters may be skipped, or not, according
to the reader’s interests. The chapters with coauthors (Chapter 4, with Maxence Cassier and Aaron Welters,
on analyticity of the Dirichlet-to-Neumann map for electromagnetism; Chapter 6, with Ornella Mattei, on
bounds for the transient response of viscoelastic composites; Chapter 8, with Moti Milgrom, on the response
of systems with coupled fields; and Chapter 10, with Maxence Cassier and Aaron Welters, on a rigorous
approach to the field equation method) are essentially self-contained and can be read independently of the
rest of the text. Most readers will want to read Chapter 1, as it sets the framework in the context of a wide
variety of problems, and Chapter 2 as it reviews the abstract theory of composites. Those readers primarily
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interested in the Schrodinger equation may then just wish to jump to Chapters 11, 12, and 13. Alternatively,
those readers primarily interested in inverse problems may wish to focus on Chapters 3, 4, 5, and 6. Readers
who are interested in numerical methods may be most interested in Chapters 8, 11, and 12. Chapters 6, 8, 9,
and 10 are recommended for those readers whose interests lie mainly in the standard theory of composites. In
general, we have tried to keep the book accessible to physicists, chemists, and engineers, but they should not
be afraid to skip material they find too technical. Pure mathematicians may be most interested in Chapters 7
and 8.

We remark on some non-standard notations used in the book. Given a body €2 with boundary 92 we will
frequently need the volume and surface integrals

/ f(x) dx, f(x)dS. (0.3)
Q Ele)

To shorten notation and avoid repetition we will often leave off the dx and dS these being assumed when one
knows the integral is over the body €2 or the surface dS. Also, in keeping with the notation in Milton (2002)
which is the opposite of what is standard, when we write B = Vuand q = V- A where A and B are matrices
and u and q are vectors, we mean in terms of components that

8Uj 814” 8A,»j

N 81'1'7 8x2 ’

i.e., V and V. are associated with the first index: a matrix field which is the gradient of a potential has
columns which are gradients of the potential components, and a matrix field which is divergence-free has
columns which are divergence free. In (0.4) and throughout the book (unless otherwise stated) we use the
Einstein summation convention that one sums over repeated indices.

As is inevitable in a book that is edited by me, rather than entirely authored by me, there are some in-
consistencies. For example, in Chapter 4 the notations E, D, H and B are used to denote the electric field,
electric displacement field, magnetic field, and magnetic induction entering Maxwell’s equations, while in
the rest of the book they are denoted by e, d, h and b. Also in that chapter the inner product between fields
in the Hilbert space is defined to be linear in the first field entering the inner product, and antilinear in the
second field (common in mathematics) while in the rest of the book it is the opposite: the inner product is
defined to be antilinear in the first field entering the inner product, and linear in the second field (common
in physics and engineering). Also sometimes the same symbol is used to denote different quantities, thus o
could be either the conductivity or the stress [in Milton (2002) this ambiguity was avoided by using 7 for the
stress, but o is the more standard notation]. This should not cause confusion, taking into account the context
in which these symbols are used. Mostly we use (a1, az, as) for the components of a three-dimensional vector
a, but sometimes we use (@, ay, a.) which is more common in physics and engineering. Similarly, mostly
we use (a1, az) for the components of a two-dimensional vector a, but sometimes we use (a, a,), and the
components of a second order two-dimensional symmetric tensor M may be denoted by My, Moo, and M4
orby My, My, and M, or even by M, M,, and M, where the last notation is used for brevity. We use a
double dot “:” to denote a double contraction of indices: thus A : B means A;;B;;. By contrast a single dot
“.” could mean the scalar product between two vectors, or some scalar-valued product between the fields on
the left and right of the constitutive law, and its explicit definition depends on the problem under consideration
as we will see in Chapter 1.

This book owes a lot to many people. Foremost to my husband, John Patton, who supported me in count-
less ways while I was writing this, in particular making great dinners, orchestrating the book publishing, and



for his understanding when I had to concentrate on writing the book in my office. Patrick Bardsley is thanked
for his help with typing the initial draft of the manuscript from my notes — that saved me an enormous amount
of time. I am also grateful for him for spotting a number of errors, and his help with some numerical compu-
tations. The book would not have been possible without the tireless and absolutely amazing efforts of Nelson
Beebe who devoted a considerable amount of time and energy to assembling the various chapters together into
the desired format, and for carefully checking the bibliography, putting it into a uniform format, and adding
“doi” and “ISSN” information to almost every reference, and making other countless corrections. Thanks go
to him too for providing reference to two interesting historical reviews of Density Functional Theory (Zang-
will 2014; Jones 2015) as well as other papers too. He has always been a fountain of knowledge keeping me
abreast of scientific news articles related to my research, and other interesting topics. I also appreciated the
help of Fernando Guevara Vasquez and Hyeonbae Kang for providing useful references in Inverse Problems
in response to my queries. I'm very grateful to Mihai Putinar, for bringing my attention to the vast literature
connected with Nevanlinna—Pick interpolation, and for providing important references in the spectral theory
of non-self-adjoint operators. Similarly I am grateful to Kirill Cherednichenko for clarifying the work that
had been done on self-adjoint extensions of non-self-adjoint operators. I sent a very rough draft of manuscript
to friends, and am grateful to Ping Sheng, Martin Wegener, and John Willis for their feedback. I thank Ross
McPhedran for his suggestions for the book title. Particularly helpful were Elena Cherkaev, Hyeonbae Kang,
Paul Martin, Ornella Mattei, and Aaron Welters in spotting (with eagle eyes) various typos and corrections
to be made, and just as helpful were the valuable comments of Richard Craster, Michael Fisher, Fernando
Guevara Vasquez, Davit Harutyunyan, Alexander Movchan, and Pierre Seppecher: amazingly, Davit Har-
utyunyan and Alexander Movchan gave many useful comments on every chapter. It was most welcome that
Richard Craster and Michael Fisher suggested that I discuss conservation laws, which led me to recognize their
generalization: the boundary field equalities and inequalities introduced in Sections 1.4 and 1.5. Besides well-
known boundary field inequalities, such as the fact that the net flow of electrical energy into a passive body is
non-negative, there are many others such as those given in Section 2 of Harutyunyan and Milton (2015b). I
am additionally grateful to Paul Martin for feedback which lead to a restructuring of the first two chapters of
the book, and to Richard James and Vikram Gavani for helpful remarks on the Projectional Functional Theory
for the multielectron Schrodinger equation (Chapter 11).

I also want to thank some people in the administration of the University of Utah who were supportive of
this endeavour: notably President David Pershing, Associate Vice President for faculty Amy Wildermuth, and
the Associate Chairman of our mathematics department, Nicolas Korevaar. Also I am grateful for the support
of my friends and colleagues, Andrej Cherkaev, Elena Cherkaev, Yekaterina Epshteyn, Fernando Guevara—
Vasquez, and especially Alessandra Angelucci, Paul Bressloff, Annette MacIntyre, and Robert MacLeod.
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Canonical forms for many of the
linear equations of physics and
key identities

Graeme W. Milton

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Abstract

We manipulate many of the linear equations of physics into a canonical form, where the fields
on the left and right side of the constitutive law satisfy differential constraints which ensure
the key identity that their scalar product can be expressed as a divergence, and therefore
integrated over a body and expressed in terms of boundary fields. Additionally the matrix
Z(x) in the constitutive law is either Hermitian or the Hermitian part of ¢Z(x) is positive
semidefinite. Using the fact that the differential constraints are preserved under complex
conjugation of the fields, we obtain associated key identities which lead to conservation laws,
and boundary field inequalities that generalize conservation laws. We show that there can be
boundary field equalities that are not implied by conservation laws. Following the argument
given in Section 2 of Harutyunyan and Milton (2015b), other boundary field inequalities can
be generated using Q¢;-convex functions, which are a generalization of quasiconvex functions.
For equations in the time domain the constitutive law may be replaced by a convolution with
respect to time, in which case the Fourier transform of the integral kernel should be such
that at fixed real frequency the Hermitian part of i times this Fourier transform is positive,
or negative, semidefinite, according to whether the frequency is positive or negative. With a
regularizing imaginary part added to the matrix in the constitutive law, and with source terms
added, we show how solutions in periodic media can be formulated as an abstract problem
in the theory of composites.

1.1 Introduction

Here we show that many of the linear equations of physics can be written in unifying framework, namely the
basic framework appropriate to the theory of composite materials, and in Section 1.4 we show how conser-
vation laws can be generalized to “boundary field inequalities” that provide rigorous inequalities on the fields
at the boundary of a body. In the unifying framework, an appropriately defined scalar product of the fields
on the left and right hand sides of the constitutive law can be written as the divergence of some appropriately
defined supercurrent leading to the key identity that the integral of this scalar product can be expressed in
terms of boundary values of the fields. As mentioned in the preface, the canonical form of the equations we

1



2 1. Canonical forms for linear physics equations and key identities

introduce here is similar in many respects to that of Strang (1986) [see also Strang (1988), and Chapter 2 of
Strang (2007)] where he proposes (see his figures 1.8, 2.2, 3.8, 3.9, 3.12, 3.16 and pages 126, 156) the form

e=b—Az, y=Ce, Aly=f, (1.1)

where y = Cle is the constitutive law, x are the potentials, b and f are sources, and in a discretization of the
equations A with transpose A7 are matrices which represent the differential operators. [The transpose of a
matrix A has elements {AT};; = {A};;.] In this discretization e, b, x and f are all represented by vectors.
Then if b = 0 and f is non-zero except on the boundary nodes, we have

y-e=—y-Av=—(AT)y -z =—f x. (1.2)

This is equivalent to the key identity since the last term only involves terms at the boundary.

It is the purpose of this chapter to obtain the associated canonical forms of various equations, the key
identities, and to initiate the subject of “boundary field equalities and inequalities”. The advantage of this is
that then we can apply some of the machinery that has been developed in the theory of composites to bear on
a much wider class of problems. Presumably too, as kindly pointed out to me by Paul Martin, results in these
other areas could have an impact on the theory of composites. My expertise is in the theory of composites so
it is easier for me to see how tools in the theory of composites can have wider applications, rather than the
reverse.

We mention that there has already been a successful cross-pollination of ideas between the theory of
composites and some other areas of science and engineering. One is in topology optimization, where one
adjusts the geometry of a body to optimize some combination of factors, such as weight, stiffness against some
set of applied loads at the boundary, compliance against some other set of applied loads, or flux of heat through
specified portions of the boundary in response to prescribed temperatures at the boundary, for example. Often
a geometry which performs well has microstructure in some places, indicating that one should reformulate
the problem where one allows not just pure materials in the design, but also composites with microstructure
much smaller than the body, and possibly with microstructure on many length scales (Tartar 1975, 1987;
Armand, Lurie, and Cherkaev 1984; Kohn and Strang 1986; Kohn 1992; Allaire, Bonnetier, Francfort, and
Jouve 1997; Cherkaev 2000; Allaire 2002; Bendsge and Sigmund 2004; Tartar (2009)). This then leads to the
very difficult question of trying to estimate the combination of properties (effective tensors) that a composite
built from given materials can exhibit. See the books of Nemat-Nasser and Hori (1999), Cherkaev (2000),
Milton (2002), Allaire (2002), Torquato (2002), Tartar (2009) for a survey of the many results in this area.

Another area where there has been successful cross-pollination has been in non-linear elasticity and re-
lated areas, and in particular in the theory of shape memory materials (see, for example, Coleman and Noll
1959; Khachaturyan 1966, 1983; Roytburd 1967, 1968, 1978, 1993; Ball 1977, 1996; Ball and Murat 1984;
Ball and James 1987; 1992; James and Kinderlehrer 1989; Miiller 1987, 1998; Bhattacharya 1993; Bhat-
tacharya, Firoozye, James, and Kohn 1994; Bhattacharya and Kohn 1997; Kohn 1991; Luskin 1996; and also
Chapter 31 of Milton 2002). It is interesting that convexity of the energy, or free energy, which underpins
much of thermodynamics (see, for example, Wightman 1979) is not appropriate to non-linear elasticity. In
a gas-fluid system it is easy to see how the convexity arises: as illustrated in Figure 1.1(a), if the energy W
is not a convex function of the density p, the system phase separates into say regions of gas having a low
density and regions of fluid having high density, thus having a lower energy than a homogeneous substance
of the same overall density. There are no “jump” conditions that the density has to satisfy across an interface.
The geometry of this macroscopic gas-fluid mixture can be fairly arbitrary. Surface tension can play a role,
but in the large volume limit its effect is usually fairly inconsequential except for the nucleation of phases. In



1.1. Introduction 3

nonlinear elasticity the energy depends on the deformation. One supposes that a point in the body which is
originally at x in the undeformed state gets moved to the point X (x). In hyperelasticity theory the local strain
energy density W is just a function W (F') of the deformation gradient F = VX(x). The following argument
shows that W (F) is not a convex function of F (Hill 1957; Coleman and Noll 1959, page 110). Convexity of
W (F) would imply

W(F1)+ (1 —c)W(F2) > W(cF1 + (1 — ¢)Fs), (1.3)

for all square matrices F; and F (of the required dimension) and for all weights ¢ € [0, 1]. [The value of
W along the line joining F'; and F5 must be below the tie-line joining W (F;) and W (F5).] For simplicity,
suppose one is in two dimensions. Then the trivial deformation X (x) = x must have the same energy as the
deformation X (x) = —x that corresponds to a 180° rotation of the material. Taking the weighted average
of the corresponding deformation gradients, F; = VX(x) = I and Fo = VX(x) = —I, with weights ¢
and 1 — ¢, where ¢ € [0, 1], gives VX(x) = (2¢ — 1)I + ¢ which corresponds to a deformation where
X(x) = (2¢—1)x — x¢ in which x is constant. So when c is close to 1/2 the material is greatly compressed
which costs a tremendous amount of energy. (When ¢ = 1/2 everything gets compressed to the point xg, but
surely elasticity theory will not apply then.....neutron stars and black holes will be formed before that point.)
So clearly (1.3) will be violated as the right hand side can be much larger than the left hand side: W (F') cannot
be a convex function of F.

What replaces convexity is quasiconvexity, which is the requirement that for some region €2, with volume
o,

W(F(x))dx > W((F)) where (F) !

=— [ F(x)dx, (1.4)
0 o Jo "

for all functions F(x) that are gradients F(x) = VX(x) of functions X (x) that satisfy affine boundary con-
ditions, i.e., for some matrix F, X(x) = x- F for all x on the boundary 92 of €2, where F can be identified
with (F'). If we remove the requirement that F'(x) is a gradient then (1.4) is Jensen’s inequality which holds if
and only if W (F') is convex. It turns out that if (1.4) is satisfied for one region €2, then it is also satisfied for any
other choice of §2: quasiconvexity is independent of the shape of €. Alternatively, and equivalently, one could
take {2 as a cube, and instead of affine boundary conditions require that X (x) —x-Fy satisfy periodic boundary
conditions where again F can be identified with (F). If the local elastic energy is not quasiconvex, “phase
separation” again occurs as shown in Figure 1.1(b), but now the microstructure of the phases is restricted to
elastic energy minimizing configurations. This time the continuity of X (x) across interfaces implies there are
jump conditions: the jump in F(x) across any smooth interface must be a rank-one matrix, more precisely
a matrix of the form n ® a = na’ where n is the normal to the interface. In particular, by considering
the possibility that the material “phase separates” into a stratified material with layers perpendicular to a unit
vector n of two phases where F(x) takes the value F; in phase 1 and F5 in phase 2 we see that a necessary
condition for quasiconvexity is rank-one convexity, meaning that (1.3) holds for all F'; and F5 such that the
jump F; —F is a rank-one matrix of the form n®a. In three-dimensions Sverak (1992) proved rank-one con-
vexity is not a sufficient condition for quasiconvexity (he showed there are microstructures with lower energy
than stratified ones, i.e., layered ones, or than ones with lamination on different length scales possibly with
different directions of lamination), while in two-dimensions the question is presently still open. As an example
of cross-pollination, Sverak’s example led to an example (see Section 31.9 in Milton 2002) of a composite
with effective properties that could not be mimicked by a hierarchical laminate of seven given materials. A
material with a local elastic energy that is not quasiconvex could phase separate into other elastic energy min-
imizing microstructures (composites). Strictly speaking one should refer to a sequence of energy minimizing
microstructures since (ignoring surface energies) the infimum of the energy might only be approached and
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not be achieved by any specific microstructure. Surface energies do play an important role in the selection of
energy minimizing microstructures (Kohn and Miiller 1992). If there are many possible energy minimizing
microstructures available, then this is a way of minimizing hysteresis (Song, Chen, Dabade, Shield, and James
2013) and associated fatigue (Chluba, Ge, Lima de Miranda, Strobel, Kienle, Quandt, and Wuttig 2015) when
one cycles through phase transformations. One could argue that the elastic energy minimizing microstructures
are not thermodynamically stable: that over long time scales it would be energetically preferable for cracks
to develop along interfaces, thus removing the restriction that X (x) is continuous across interfaces. While
this is true, one may have to wait an extremely long time, and elasticity theory typically works well for the
intermediate times during which one wants answers. Another thing one should always remember is that from
a physical perspective it is never energy that is minimized in any closed system (since energy is conserved),
rather it is entropy (a measure of disorder) which is maximized. Thermodynamics allows one to mathemati-
cally reformulate entropy maximization principles as energy or free energy minimization principles (see, for
example, Callen 1960a, in particular figures 5.1 and 5.2).

w \4 , w
;\Phase 1
A --»~— Martensite S Phase 2
,"I Liquid Microstructures \RRREECE R \
Two—phase region Austenite Microstructures
Gas
(@) p (b) F © E

Figure 1.1: Three closely related problems, where convexification or quasiconvexification is important.
For fluids, as in (a), thermodynamics tells us that the energy density W should be a convex function of
the density p. Roughly speaking, a nonconvex portion, such as the dashed line in (a), should be replaced
by a tie-line representing a mixture of gas and liquid. For elastic materials, as in (b), the elastic energy
W should be a quasiconvex function of the deformation gradient F = VX. If it contains a portion (the
dashed line in figure (b)) which causes it to be nonquasiconvex, then it needs to be quasiconvexified.
Portions where the original (microscopic) energy function differs from its quasiconvexification, correspond
to microstructures. In the example shown, which is meant to be representative of the energy function of
shape memory materials, these microstructures could be a mixture of Austenite and Martensite (whose
crystal structures have different symmetries). Similarly in (c), suppose one is looking for two-phase
microstructures which mininimize a sum W of energies and complementary energies, with some constant
energy added to phase 2 to penalize it, thus acting as a Lagrange multiplier for the volume fraction. This
then corresponds to quasiconvexifying an energy function which is the minimum of two quadratic “wells”.
The portions where the minimum of the two quadratic wells differs from its quasiconvexification again
correspond to microstructures. These figures are schematic in that F and E really live in multidimensional
spaces.

There is also a strong connection between the quasiconvexification of energies W (F'), or more generally
functions W (E) over fields E(x) subject to differential constraints, and the problem of bounding the set of all
possible effective tensors of composites containing a given number of phases (perhaps in prescribed volume
fractions). As follows from the work of Kohn (1991), Francfort and Milton (1994), Milton (1994), and Milton
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and Cherkaev (1995) [see also Cherkaev and Gibiansky (1992,1993) who introduced the idea of bounding the
set of possible effective tensors through sums of energies and complementary energies, and see Chapters 30
and 31 of Milton (2002)] bounding the set of all possible effective tensors can be reformulated as a problem
of quasiconvexification of an appropriate function W(E). The key idea (Kohn 1991) is to use variational
principles, expressing a sum of energies and complementary energies as a minimization over trial fields E(x)
satisfying appropriate differential constraints with a prescribed average value (E) = Eg, and rather than taking
the minimum over trial fields first and then minimizing over all microstructures, one does the optimization
over microstructures first (moving the phases to where they minimize the sum of energies and complementary
energies for a fixed choice of the trial field E(x), which is a trivial problem) and then one minimizes over
E(x) satisfying the differential constraints, with (E) = E (which is the quasiconvexification of a function
which itself is a minimum of quadratic wells—one for each phase). This is illustrated in Figure 1.1(c).

1.2 Some linear static and quasistatic equations of physics

Consider the various static, or stationary, linear equations of physics which are relevant to calculating the
effective moduli of composites. (By stationary we mean that the fields do not change with time, even though
they describe a dynamic process such as the flow of electrons, heat, particles, or water). One set of basic
equations are those for D.C. electrical conductivity. Let V(x) be the electrical potential, e(x) the electric
field, j(x) the electrical current, and o (x) the matrix-valued local conductivity (which is a second order
tensor). Then the conductivity equations take the form:

j(x) = o(x)e(x), V-j=0, e=-VVW (1.5)

The first equation is the constitutive equation. It links together the fields (in this case the current and electric
fields) and contains all the information about the material properties (in this case through the conductivity
tensor). The remaining two equations are the differential constraints. Strictly speaking they are differential
equations, but they do constrain the functions j(x) and e(x). These differential constraints do not depend on
the material under consideration (though o (x) could be zero in a region of the material that is dielectric, and
consequently e(x) and V' (x) may be undefined there unless one takes limits).

The same equations arise in many different physical problems: dielectrics, magnetism, thermal conduc-
tion, diffusion, flow in porous media, and antiplane elasticity. In each of these contexts the vector fields j(x)
and e(x) and the tensor o (x) entering the constitutive relation have the interpretations given in Table 1.1
which is reproduced from page 19 of Milton (2002), which in turn is adapted from one of Batchelor (1974).
For example, in dielectric materials the electric displacement field d(x), electric field e(x) and electrical
potential V'(x) satisfy

d(x) = e(x)e(x), V-d=0, e=-VV, (1.6)
where the dielectric tensor £(x) is in general matrix-valued (unless the medium is isotropic or has cubic
symmetry).

Notice that
jre=—-j-VV=V-Q, where Q(x) =—-V(x)j(x), (1.7)

which allows one to integrate the electrical power absorbed over a region and express it in terms of the flux of
power into that region, giving the key identity

/Q jre= /a 0 V(i) (1.8)
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Table 1.1: Equivalences with the conductivity problem.

Problem j e o
Electrical Electrical Electric Electrical
conduction current j field e conductivity o
Dielectrics Displacement Electric Electric
field d field e permittivity
Magnetism Magnetic Magnetic Magnetic
induction b field h permeability p
Thermal Heat Temperature Thermal
conduction current q gradient —VT conductivity Kk
Diffusion Particle Concentration Diffusivity D
current gradient —V¢
Flow in Weighted fluid Pressure Fluid
porous media velocity 7, v gradient VP permeability k
Antiplane Stress Vector Vertical Displacement Shear
elasticity (713, T23) gradient Vug matrix p

where n is the outwards normal to the surface 0.

Another important equation is that for linear elasticity. Before discussing it, let us briefly review the
meaning of tensors, for simplicity using Cartesian coordinates. [Those readers familiar with tensors can skip
this paragraph, while those readers wanting a more complete introduction to tensors should see, for example,
Lawden (1982), Chapter 1 of Jog (2002) or Chapter 21 of Riley, Hobson, and Bence (2002)]. The simplest
tensor is a scalar which remains unchanged under rotation (such as the temperature or pressure). The next
simplest is a vector v which has Cartesian elements v; that under a rotation R transform to a new vector v’
with elements

1}; = Rijvj, (19)

where the matrix with elements R;; represents the rotation (satisfying R;; R; = 0,1 where the d;;, are el-
ements of the identity tensor taking the value 1 if ¢ = j and zero otherwise). Here, and subsequently, we
assume the rotation is a proper rotation, with determinant 1, thus excluding reflections: otherwise the vector
may have an additional sign flip under reflections, depending on whether the vector is a pseudovector (axial
vector ) or not. Note that a 360° degree rotation leaves a vector invariant.

From vectors it is natural to move to second-order tensors and the easiest example of one is a linear map
from vectors to vectors, like the conductivity or dielectric tensor. A second-order tensor A has Cartesian
elements which are represented by a matrix A;;. Under the rotation R, A transforms to A’ with elements

Al = RigRjm Ak, (1.10)

implying A’ = RART. A second-order tensor needs not be associated with a map from vectors to vectors,
so long as its elements satisfy these transformation rules — an example is the tensor of thermal expansion c.
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The general rule is that an n-th order tensor A has Cartesian elements Agpeqe t... each indexed by n numbers
a,b,c,d,e, f,...taking values from 1 to d in a d-dimensional space, and under rotation transforms to .4’ with
elements

A:xﬁ'ytieqﬁm = RaaRﬁbR’yCR§dREeR¢f . Aabcdef~-- . (1 1 1)

This definition is a little misleading in that it fails to convey the fact that tensors are geometric objects, not
a collection of elements which are merely used to represent the geometric object. But the definition does
correctly convey the fact that tensors of different orders have different properties under rotation. A third-order
tensor could represent a mapping from first to second-order tensors, or from second to first-order tensors, or
needs not be associated with any map at all. By an abuse of notation we will also call a tensor, a matrix of
tensors that may enter the constitutive law and couple fields together, even when the tensors in the matrix
have different orders. This classification leaves out things (which we don’t consider in this book) that behave
under rotation in strange ways like the spin of an electron, which requires a 720° rotation to return to itself,
and is thus essentially a “half-order” tensor. I like the example of Robert Palais, who simplified a related
example of Misner, Thorne, and Wheeler (1973): see their Figure 41.6. If you stand on a belt and rotate the
buckle by 720°, you can easily manipulate it (without twisting the buckle) so that the belt straightens out to
the original belt before the 720° rotation- but you cannot do this with 360° rotations. Try it yourself! (See
also http://www.math.utah.edu/~palais/links.html).

In linear elasticity the relevant fields are the stress field which is a second-order tensor o (x) (not to be
confused with the conductivity tensor which has the same symbol) measuring the local tension or compression
forces in the material (if one makes a small slit in the material perpendicular to a vector n then one has to
apply the opposing forces on and —on per unit area to the two surfaces of the slit to restore the materials to
its state before the slit was made: since we are free to choose the direction of n, such experiments allow us to
measure o (x)), the strain field €(x) measuring the local stretching, also a second-order tensor, which is the
symmetrized gradient of the displacement vector field u(x) that measures the displacement of the body relative
to its original stress free state (roughly speaking, neglecting thermal vibrations, an atom at x gets displaced to
x' = x+u(x), where u(x) is in some sense small). A beautiful way to see strains in a transparent material is to
place it between crossed polarizers (oriented at 90° with respect to each other so ordinarily no light would pass
through): the strain causes the plane of polarization of the light to rotate which results in a twisting rainbow of
colors when one looks through the crossed polarizers. The relation between stress and strain involves material
parameters which are contained in C(x), the fourth-order elasticity tensor. Then ignoring body forces (such
as gravitation) the equations take the form

o(x) =C(x)e(x), V-o=0, e=[Vu+ (Vu)’]/2. (1.12)

Again we have
c:e=0:Vu=V-Q, where Q(x)=o0(x)u(x), (1.13)

where the first identity follows from the symmetry of the stress field. Here the scalar product A : B of two
second-order tensors A and B, with elements A4;; and B;; is defined to be Tr(ATB) = A;;B;;. (The two
dots in : refer to a double contraction of indices). This leads to the key identity

/Qa:ez/mn-a(x)u(x). (1.14)

One can get materials where there is a coupling between electricity, magnetism, and elasticity. As before
the electric potential, electric field, stress field, strain field and elastic displacement field are V' (x), e(x),
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o(x), €(x) and u(x). Additionally, we let d(x) be the electric displacement field, we let b(x) and h(x) be
the magnetic induction, and magnetic field, and we let ¢)(x) be the magnetic scalar potential (assuming there
are no free currents). Then the constitutive equation takes the form

€(x) S(x) D) LQ(kx)\ [o(x)
dx) | = [DT(x) ex) Bx) | |ex) ], (1.15)
b(x) Q'(x) B'(x) m(x)/ \h(x)

L(x)

where the elements of the local tensor L(x) are material parameters, whose meaning arises from the consti-
tutive equation: for example, the compliance tensor S(x) gives the strain €(x) in terms of the stress o (x),
when h(x) and e(x) are zero; Q(x) gives the strain €(x) in terms of h(x) when the stress o (x) and electric
field e(x) are zero. The fields satisfy the differential constraints

e = [Vu+(VwT)/2, V.o=0
V-d = 0, e=-VV;
V:b = 0, h=-Vy. (1.16)

When Q(x) = B(x) = 0, one has the equations of static piezoelectricity, while when D(x) = B8(x) = 0,
one has the equations of static magnetostriction.
Again we have

€(x) o (x)
dx) | - [ e(x) | =Vu(x):0(x) — VV(x)-d(x) — Vi(x) - b(x) = V- Q(x), (1.17)
b(x) h(x)
where
Q(x) = o(x)u(x) — V(x)d(x) — ¥(x)b(x), (1.18)
which gives the key identity
e(x) o(x)
/ dix) |- | ex) | = / n-[o(x)u(x) — V(x)d(x) — ¥ (x)b(x)]. (1.19)
Q b(X) h(X) o0

Some equations that do not at first seem to fit in this scheme, in fact do when the full equations are
considered. Consider the Duhamel-Neumann equations of linear thermoelasticity (classic references include
Boley and Weiner 1997; Nowacki 1986). We let # = T — T, be the change in temperature 7" measured
from some constant base temperature Ty, and we let c(x) be the symmetric second-order tensor of thermal
expansion. Let 8(x) be the fourth-order compliance tensor, which is the inverse of the elasticity tensor C(x)
when 6 = 0. Then with €(x) and o (x) representing the strain and stress as before, the equations take the
form:

€(x) = S(x)o(x) + a(x)6. (1.20)

This equation of thermal expansion is insufficient to describe the total thermoelastic state of the composite.
One also needs to introduce ¢(x) which is the increase in entropy per unit volume over the entropy of the
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state where ¢ = 6 = 0, and c¢(x) the specific heat per unit volume at constant stress. This specific heat
measures the amount of additional heat energy or, more precisely, entropy that is stored in the material when the
temperature is increased at constant stress. Then, within a linear theory the complete description is provided
(Chandrasekharaiah 1986) by the equations

()~ (58 ym) (757) oo om0 emmueoryn aa

where the second line of this matrix equation is interpreted to mean ¢ = « : o + ¢f/Tp. Now ¢(x) is not
subject to any differential constraints, so we can write ¢(x) = V - r(x) for some nonuniquely defined vector
potential r(x). For example, we could let r(x) = V¢(x) and solve Poisson’s equation VZ¢(x) = ¢(x)
subject to some boundary conditions to obtain ¢(x) and hence r(x). So we have

€X)) (7)) _ vurx) - o(x ) — T O
<§(x)) ( 0 )‘V (x) - o(x) + 0V -r(x) = V- Q(x), (1.22)
where

Q(x) = o(x)u(x) + r(x), (1.23)

which gives the key identity

/Q CEQ) ' (UEQX)> - /mn' o (x)u(x) + r(x)]. (1.24)

One caveat is that r(x) is not directly measurable from experiments, and so the key-identity in this case has
less utility.

We remark that these equations of static thermoelasticity are mathematically the same as the static equa-
tions of poroelasticity (Biot 1962, Norris 1992). Also the equations (1.20) are appropriate if there is swelling
due to humidity (Schulgasser 1989) or if the material is prestressed during manufacture (in which case 6
cannot be varied, and can arbitrarily be set to 1).

In quasistatics, for dielectrics or conducting materials, for viscoelastic materials, or for thermoviscoelastic
materials when the applied fields (including the spatially constant temperature for thermoviscoelasticity) vary
with time the constitutive laws in (1.6) and in (1.20) get replaced by convolutions,

t

d(x,t) = e(x,t)*xe(x,t) = / e(x,t —t)e(x,t") dt’,
e(x,t) = S(x,t)*xo(x,t)+ a(x,t) *6(t)
= / S(x,t —to(x,t') +a(x,t —t)ot')dt, (1.25)

where in defining the convolution say e(x,t) * e(x, ), the notation means a convolution of the function
e(x, -) of time up to time ¢ with the function e(x, -) of time up to time ¢, as written in each final expression.
These convolutions arise because the electrons (which cause the current or displacement field) take a while to
respond to changes in the electric field, while the displacement u(x) takes a while to respond to changes in
forces (stresses) and temperature variations.

If the variation with time is sufficiently slow (so that the body, or unit cell of periodicity under consideration
is much smaller than the wavelength) then we can apply the quasistatic approximation, which means keeping
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the differential constraints on the fields the same. The constitutive laws (1.20) become local in frequency
space,

d(x,w) = 8(x,w)e(x,w), €(x,w)=38(x,w)F(x,w)+ a(x,w)d(w), (1.26)
where
Flx,w) = / et f(x, 1) dt (1.27)
denotes the Fourier transform with respect to time of a function f(x,t), which has the inverse transform
1 > —iwt 7
flx,t) = o e f(x,w) dw. (1.28)
™ —0o0

The dependence of the moduli £(x,w) or S (x,w) on the frequency w is often quite complicated in real
materials, though may sometimes be well approximated by simple models in certain frequency regimes. As
we will see later in Section 1.6 the imaginary parts of the tensors £(x, w) and S(x,w) are associated with
energy loss (to heat) in the material: the material is called “lossy” or “viscoelastic” if these are nonzero. In
general the thermal expansion tensor &(x,w) can be frequency dependent and complex [even in composites
when the constituent materials have thermal expansion coefficients which are not frequency dependent: see
Berryman 2009]. At fixed frequency one can think of the real parts of the fields e‘i‘“ta(x, w), e~ whe(x, w),
e~ e(x,w), e~ G (x,w), and e~“'f(w), as representing the physical displacement field, electric field,
strain field, stress field, and temperature field. Because the quasistatic equations are exactly the same as the
static equations, except that the fields and moduli are complex, we will drop the “hats” from the symbols.

Note that the thermoviscoelastic quasistatic equations ignore mechanical source terms of heat which are
quadratic in the strain rate of deformation (Francfort and Suquet 1986). These may be important in some
solids, but then the equations become nonlinear.

1.3 The canonical forms and their key identities

We have seen in the previous section that for statics, or for steady-state problems such as electrical or thermal
conductivity where there is a flow of electrons or heat but the fields do not change with time, the constitutive
equation takes the canonical form

J(x) = L(x)E(x), (1.29)

where the Hermitian part of the tensor L(x) is positive definite on an appropriate space (e.g., for elasticity it
is positive definite on the space of symmetric matrices, not all matrices which include the antisymmetric ones

which lie in the null-space of L(x)). [A matrix B is Hermitian if B = ﬁT, i.e., it is the complex conjugate
of its transpose. It is positive definite if v - Bv > 0 for all nonzero vectors v in the space on which B acts,
and positive semidefinite if v - Bv > 0, for all vectors v in the space on which B acts. A matrix C is anti-
Hermitian if C = —C . The Hermitian part of a matrix L is (L + fT) /2 and it is such that the difference
between L and it, (L — fT) /2, is anti-Hermitian.] The differential constraints on the fields are such that with
an appropriate definition of the dot product,

J(x) - E(x)=V-Q(x), (1.30)
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for some “supercurrent” Q(x), and straightforward integration by parts, leads to the key identity that

[ 36)-B60 = [ n-qee. (1.31)

This structure arises quite naturally. It is a natural consequence of “energy or power” minimizing variational
principles that these key identities hold for static equations. The identities are also key to the mathematical
basis of homogenization theory (Bensoussan, Lions, and Papanicolaou 1978; Kozlov 1978; Papanicolaou and
Varadhan 1982; Bakhvalov and Panasenko 1989; Golden and Papanicolaou 1983; Zhikov, Kozlov, and Oleinik
1994), and are essential components of the “div-curl” lemma and the method of compensated compactness,
which underlie the homogenization theory of Tartar and Murat (Tartar, 1975, 1979a, 1979b, 2009; Murat
1978, 1981, 1987; Murat and Tartar 1985)

However in the wider context of wave equations, it is not generally clear that there should be such key
identities. It is the aim of this chapter to discover them, leaving aside the physical question as to why they
exist.

For quasistatics, at fixed frequency (sufficiently low that the wavelength associated with the full wave
equations, which give rise to the quasistatic equations, is much larger than the size of the body), the constitutive
law takes again the form (1.29) only now the fields E(x), J(x) and the tensor L(x) are complex (and generally
frequency dependent). The real and imaginary parts of the fields satisfy the same differential constraints as for
the static or steady-state equations. Consequently (1.30) and the key identity (1.31) still hold. Note that the dot
product does not involve any complex conjugation: if E(x) = E'(x) 4+ ¢E”(x) and J(x) = J'(x) +iJ"(x),
where E'(x), E”(x), J'(x), and J”(x) are real vectors, then

J-E=[J+iJ"] - [E +iE'|=J -E -J" E' +iJ -E'+J"-E). (1.32)

This is the standard dot product for bivectors, which are complex valued vectors [see, for example, equation
(2.1.6) in Boulanger and Hayes 1993]. With this definition, E - E is not necessarily real and E - E = 0 has
nonzero solutions for E. Typically, which we assume to be the case, L(x) can be represented by a symmetric
complex matrix. Thus these quasistatic problems involve complex symmetric operators, as reviewed in Garcia,
Prodan, and Putinar (2014). Interestingly, as illustrated by their example 2.21, it is not always easy to detect
if a matrix is unitarily equivalent to a complex symmetric one.

If at a given frequency the equations are in the correct canonical form, then by definition there exists a
range of angles 6 (possibly just one angle) such that Im[ewL(x)] is positive semidefinite for all x. Introducing

J(x) =e?J(x), Ex)=E(x), Lkx) =¢Lx), Qx)=¢7Q(x), (1.33)

where 6 is independent of x, we see that the new fields and tensors still satisfy the same constitutive law
and differential constraints. Dropping the tilde’s we see that we can assume, without loss of generality, that
Im[L(x)] is positive semidefinite. When Im[L(x)] is positive definite, rather than just positive semidefinite,
one can then, for instance, apply the minimization variational principles of Cherkaev and Gibiansky (1994).
For full wave equations at fixed frequency we will see in Sections 1.7 and 1.8 that the constitutive relation
takes the form
G=171F, (1.34)

where F = F(x), G = G(x), and Z = Z(x) are generally complex and the differential constraints are such
that with an appropriate definition of the dot product,

G(x) - F(x)=V- Q(x), (1.35)
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for some supercurrent Q(x), implying the key identity

0(x) - 7(x) = [ n- Q). (1.36)
Q a9
If the equations are in the correct canonical form the tensor Z(x) /7 has a positive semidefinite Hermitian part
when the materials are lossy (absorb energy), and when the frequency w is complex with positive imaginary
part (so the fields increase exponentially with time) and Z(x) is Hermitian (though not positive semidefinite)
when there is no loss and the frequency is real. When the materials are lossy or the frequency is complex,
one can look for real angles 6 such that the Hermitian part of e*?Z(x) is positive definite. One can then,
for example, apply the minimization variational principles of Milton, Seppecher, and Bouchitté (2009) and
Milton and Willis (2010) which generalize those of Cherkaev and Gibiansky (1994). A distinction between
these equations and those of quasistatics is that while in quasistatics one can find periodic solutions for E(x)
and J(x) when L(x) is periodic, for wave equations one cannot generally (in the absence of sources) find
periodic solutions for G(x) and F(x) when Z(x) is periodic and the material is lossy (so the imaginary part
of Z(x) is nonzero and positive semidefinite). Hence if one wants to obtain periodic solutions it makes sense
to include source terms: we will see an example of this in Chapters 12 and 13 for the Schrédinger equation.
For dynamic problems that are not time-harmonic, the constitutive law will still be (1.34) but now the
fields G and F, and possibly the tensor Z, depend not just on space, but on the time ¢ as well, i.e., they are
functions of x = (z1, x2, x3, —t), where generally it proves convenient to put a minus sign in front of ¢. With
an appropriate definition of the dot product, we still require

G(x)- Fx) = V- Q(x). with ¥ = ( Va) 7 (137)

ot

for some supercurrent Q(x), which leads to the key identity

/Q 69 709 = [ n-Qp) .

QA,

where now (Q is a body in space—time with outward normal n. For wave equations the tensor Z is Hermitian
although for parabolic equations such as thermal conduction, diffusion, and thermoelasticity Z /i can have a
nonzero positive semidefinite Hermitian part: see Sections 1.13 and 1.14.

Generally it takes time for the field G to respond to the field F, so in many cases the constitutive law gets
replaced by a convolution in time:

t

G=Z+F, ic, G(x, —t):/ Z(x,t' — )G(x, —)dt', (139)

— 00

which in Fourier space becomes a local relation
G(x,w) = Z(x,w)F(x,w). (1.40)

If the equations are in the right canonical form then the Z(x,w) /¢ will have a positive semidefinite Hermitian
part in lossy materials if w is real and positive, and negative semidefinite in lossy materials if w is real and
negative. The key-identity (1.38) still holds but it is cautioned that G(x) inside a space—time body depends on
the field 7 (x) outside that body, unless the body boundary does not depend on the time coordinate.
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We emphasize that this new canonical form of the equations is not just to make them look pretty, although
it does that. More importantly it casts them in a form similar to that used in the theory of composites, enabling
us to apply appropriate machinery from the theory of composites to obtain new results. The key identity is
of course just integration by parts, but the challenge is to write the equations so an appropriate dot product of
the fields on the left and right hand sides of the constitutive law can be integrated by parts.

Of course many materials at a sufficiently small length scale have a response which is both nonlocal in
space and in time. In this case the constitutive relation will get replaced by an integral transform, in both space
and time. Also if the fields are sufficiently strong, the constitutive relations should be replaced by nonlinear
ones. We do not treat these generalizations in this book.

1.4 Associated key identities, conservation laws, & boundary field in-
equalities

In all the examples presented in this chapter, with the exception of the Dirac equation, the fields E(x), F(x)
and F(x) appearing on the right-hand side of the constitutive equation have the property that the complex
conjugate fields, E(x), F(x) and F(x) satisfy the same differential constraints as E(x), F(x) and F(x):
here the overline denotes complex conjugation, and x = (1,2, x3, —t). [Similarly the complex conjugate
fields J(x), G(x) and G (x) satisfy the same differential constraints as the fields J(x), G(x) and G (x) appearing
on the left-hand side of the constitutive equation.] Consequently we have the associated key identities

[360- %69 = [ n-Q)
(660760 = [ n-Qu),
/Qg(z)-]-‘(g) — /@QQQ(X) (1.41)

which hold for some appropriate supercurrent Q(X) or Q(g), defined according to the problem under con-
sideration. (In the first two identities €2 is a body in space, while in the third € is a body in space—time with

outward normal n). For example, for conductivity, we have Q(x) = —V (x)j(x) and the expressions for Q(x)
for other problems are just as easy to obtain from the corresponding expression for Q(x) given in this chapter.

If for some nonzero complex constant A, AL(x) is Hermitian, or AZ(x) is Hermitian, or A\Z(x) is Her-
mitian, then by substituting the constitutive equation in the equation in (1.41), multiplying it by A, and taking
the imaginary part of both sides we obtain the conservation laws

0=Im [ n-Qx)/\, 0=Im [ n-Q(x)/A (1.42)
o0 o0
as appropriate. For example, for the quasistatic dielectric problem if the dielectric constant is real and sym-
metric we obtain the result that

0=Im /('m —n - [V(x)d(x)] (1.43)

which is equivalent to conservation of energy: no power is absorbed by the lossless dielectric medium. It
might happen that the tensor entering the constitutive law is Hermitian only in one phase. In that case for
(1.42) to hold the integral needs to be restricted to a sub-domain of that phase.
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Conservation laws have of course played an enormously important role throughout history across the sci-
ences. One important theorem is due to Noether (1918) which makes the connection in Hamiltonian systems
between conservation laws and continuous symmetries, such as invariance under time or space translation,
or spatial rotation (implying respectively the laws of conservation of energy, momentum, and angular mo-
mentum). In mechanics, conservation laws (which imply the invariance of certain integrals) have played
an important role in determining information about the field near a crack-tip, or other singularity, from the
far field (see, for example, Eshelby 1951; Cherepanov 1967; Rice 1968; Eshelby 1970; Atkinson and Cras-
ter 1992). Mathematically, conservation laws are also connected to null-Lagrangians, which are functionals
whose Euler—Lagrange equations vanish. If the fields are such that the null-Lagrangian itself vanishes every-
where in €2, and the null-Lagrangian involves gradients of a potential up to order k, then its integral provides a
conservation law: this is because any such (C'!) null-Lagrangian is a divergence (Ball, Currie, and Olver 1981).
A simple example in two-spatial dimensions with a two component vector field u(x) is the null-Lagrangian
det(Vu) and we have

COu dus  Ouyduy D [ 3%] 5{ 5“2}, (1.44)

det (V) = o ey~ 92y 021~ 2 |“ 0z, | 92 | n,

and clearly the quantity on the right is a divergence, so its integral just depends on boundary values and there
is an associated conservation law if det(Vu(x)) = 0 in €. Another simple example of a null-Lagrangian in
one dimension ¢ is an exact integrand, a function f (¢, u(t), du(t)/dt) of the form 9.5/9t + (du(t)/dt) - VS
derived from a function S(¢, u) whose integral just depends on the values of S at the endpoints, irrespective
of the choice of the function u(t):

/ " 1080t + (du(t) /dt) - VuS] dt = S(ta, u(t)) — S(tn, u(tr)). (1.45)

Exact integrands have played an important role in the calculus of variations from its infancy (see, for exam-
ple, Chapter 1 of Young 2000) and null-Lagrangians continue to play an important role, such as through
the polyconvex functions introduced by Ball (1977), which are convex functions whose arguments are null-
Lagrangians. Null-Lagrangians of fields which are not necessarily gradients, but are subject to other differen-
tial constraints, have been characterized by Murat (1978, 1981, 1987) [see also Pedregal (1989)].

Now take a general complex matrix A = A’ + A" and a vector E = E’ + {E”, where the primed
quantities denote real parts and the double primed quantities denote imaginary parts. Also let A’ and A”
denote the symmetric parts of A’ and A", and let A/, and A’/ denote the antisymmetric parts of A’ and A"

A=A+ (A2, AD=[A"+(A")T))2, AL =[A' = (A)T]/2, AL =[A"—(A")T]/2
(1.46)
Then the quantity

Im[(AE) - E| Im{[(A’ + iA")(E' +iE")] - (E' —iE")}
(A//E/) . E/ _|_ (A//E//) . E// + (A/E//) . E/ _ (A/E/) . E//

(A‘IS/E/) . E/ + (A/S/E//) . E// + (A/aE//) . E/ _ (A;EI) . E//

E A Al E’
= <E//> ) (—A’ A//) <E//> (1.47)

will be nonnegative for all vectors E if and only if the matrix

Al A,
(2 &) a4
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is positive semidefinite. This condition is equivalent to requiring that the Hermitian part of A /i is positive
semi-definite. (I am grateful to Aaron Welters for making this observation.)

So suppose there is some nonzero complex constant A such that for all x € €, the matrix in (1.48) is
positive semidefinite with A = AL(x), or with A = MZ(x), or with A = MZ(x) as appropriate to the
physical problem under consideration. Then by substituting the constitutive equation in (1.41), multiplying it
by A, and taking the imaginary part of both sides we obtain the inequalities

0<Im [ n-Qx)/A 0<Im|[ n-Q(x)/\ (1.49)
o) oQ

as appropriate. We call these boundary field inequalities. They generalize the idea of a conservation law,
since the main thing that distinguishes them from the integral form of a conservation law is the presence
of the inequality rather than an equality. For example, for the quasistatic dielectric problem if the dielectric
constant is symmetric with a positive semi-definite imaginary part we obtain the result that

0 <Im —n - [V(x)d(x)], (1.50)

o0

which reflects the fact that the dissipation of electrical energy into heat is nonnegative within the body, and
thus there must be a net flow of electrical energy into the body.

1.5 Other boundary field equalities and inequalities

Interestingly, there are boundary field equalities that do not arise from conservation laws. Just as the boundary
field inequality (1.49) requires one to make some assumption about the medium inside the body (namely that
the matrix in (1.48) is positive semidefinite), so too do we need to make some assumptions about the medium
inside the body to obtain these other boundary field equalities. An example is a coupled field problem in a
locally isotropic medium where the constitutive law takes the form

(Jl(X)) _ (a(x)l c(X)I) (el(x)) (1.51)
ja(x) c(x)I b(x)I) \ea(x)/’
in which a(x), b(x), and ¢(x) are scalars, and the fields are subject to the differential constraints that

\Y% 'j1 = 0, \Y% 'jg =0 e = *Vvl, €y = 7VV2. (152)

Here the fields e;(x) and e5(x) could represent electric fields, magnetic fields, temperature gradients, or
concentration gradients, and the associated fluxes j; (x) and j(x) could represent electrical currents, electrical
displacement currents, magnetic induction fields, energy fluxes and particle currents. A classical example is
thermoelectricity, although one has to be careful how one defines the fields [for the proper formulation see
Callen (1960b) or Section 2.4 of Milton (2002)]. The assumption we make is that the matrix of coefficients

M(x) = (a(x) ) ) ; (1.53)

entering the constitutive law satisfies the bounds

BI > M(x) > oI, forsome > a >0, (1.54)
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and can be diagonalized by a congruence transformation, i.e., there exists a 2 x 2 matrix W independent of
x such that
ax) 0
WMW’ = : 1.55
("0 o) (1
In particular, the diagonalization assumption is satisfied if the body only contains two phases (in a possibly
unknown configuration), so that M(x) takes just two known values M; > 0 and My > 0: these can be

simultaneously diagonalized by taking W = QMl_l/ * where Q is the rotation (satisfying QQ” = I) that

diagonalizes Mfl/ 2M2M;1/ % One boundary field equality says that if we apply boundary potentials of the

form
Vi(x)\ _wr (f®)
(Vg(X)) =W ( 0 ) for x € 09, (1.56)
for some choice of f(x), then
Wailn - j1(x)] + Waz[n - jo(x)] = 0, for all x € 99, (1.57)

where Ws; and Wy, are the matrix elements of the second row of W and n is the outwards normal to the
boundary 02. This boundary field equality is easily proved and is an immediate corollary of the ideas of
Straley (1981) and Milgrom and Shtrikman (1989b, 1989a) [see also the developments in Milgrom (1990,
1997) and Chen (1995, 1997) and Chapter 6 of Milton (2002)]. Introducing new potentials and new fluxes,
which are linear combinations of the old ones:

() = () () =w ().

we see that these satisfy the uncoupled equations:
Vi) =0, ji=—d(x)VV{, V-jhx)=0, =YV (1.59)

So clearly if V3 (x) = 0 on 92 (which is implied by (1.56)) then j5(x) - n = 0 on 9§ (which implies (1.57)).

In two-dimensions other things can be said. Suppose that ¢(x) = 0 and that b(x) = o /a(x) where o > 0
is a real constant. The key observation, following the ideas of Keller (1964), Dykhne (1970), and Mendelson
(1975), is that the two-dimensional fields

é=a 'R ji, j=oR,e;, where R, = ( 01 (1)) , (1.60)
are respectively divergence free and curl-free. (By curl-free in two-dimensions we mean that 9é/dx1 —
0¢é1/0x5 = 0.) Here R is the matrix for a 90° rotation. Now instead of prescribing the potentials V; (x) and
V2 (x) at the boundary J€) one can equivalently prescribe the tangential values t - e1(x) and t - e3(x) of the
electric fields e; (x) and e2(x), where t = R | n is the vector tangential to J€2. By integrating t - e; (x) and
t - e2(x) along 0€2, from one point on 92, one can recover (up to constants) V; (x) and Vz(x) at the boundary
09, and conversely from the tangential derivatives of V7 (x) and V5(x) along 052 one can obtain t - €1 (x) and
t - ez(x). Now if we prescribe t - e2(x) = a~!n - ji(x) the equations will be solved with ez(x) = & and
j2(x) = j. Thus we obtain the boundary field equality that on

1

n-jo(x) = —at-e;(x) when t-ex(x)=a n-ji(x). (1.61)
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Boundary field equalities are in a sense analogous to exact (microstructure independent) relations satisfied
by the effective tensors of composites. There is a very general theory of such exact relations (Grabovsky 1998;
Grabovsky and Sage 1998; Grabovsky and Milton 1998; Grabovsky, Milton, and Sage 2000; Grabovsky 2004;
see also Chapter 17 in Milton (2002)).

Just as there is a connection between null-Lagrangians and conservation laws, so too is there a connection
between QF-convex functions and boundary field inequalities. A QF-convex function f(E) = E - TE is a
quadratic function of the vector or tensor E, involving the Hermitian matrix T, such that its volume average
is non-negative whenever E = E(x) is C-periodic and satisfies the appropriate differential constraints, which
we write as E € £ where & is the space of C-periodic fields satisfying these differential constraints. [A
more precise definition, which differs slightly from the one given in Milton (2013b), is provided later in
equation (8.76)]. Using the ideas of Tartar and Murat (Murat 1978, 1981, 1987; Tartar 1979a); see also
Milton (2013b); by taking Fourier transforms it is easy to obtain algebraic conditions for a quadratic function
to be Qf-convex: in essence it suffices to consider all C-periodic test fields E(x) that are pure sinusoidal
waves in space. Convex functions are ()-convex, but the interesting applications generally come from Q.-
convex which are not convex. ()¢.-convexity generalizes the notion of quasiconvexity that beginning with the
work of Morrey (1952,1966) has been fundamental in proving the existence of minimizers of functionals, such
as those that occur in elasticity theory (Ball 1977; Ball and James 1987): for an excellent introduction to the
subject see the book of Dacorogna (2007). As shown by Milton (2013b) (see also the addendum to that paper)
Q&-convexity enables one to obtain inequalities of the form

/Qf(E(X)) > fo, (1.62)

which holds for all fields E(x) satisfying appropriate differential constraints, which we write as E € &g,
where the constant fj just depends on fields at the boundary 02 and 2 is a region that lies inside the unit cell
of periodicity. To obtain such an inequality we look for one solution E¢(x) of the Euler-Lagrange equations:

Jo(X) = TE()(X), JoeJa, Eoe€ Ea. (1.63)

where Jq and &, are spaces of fields respectively satisfying differential constraints appropriate to the equa-
tions at hand, and such that the associated key identity holds: the integral over € of E - Jo, which we label f,
can be obtained from boundary values of the superflux n - Q(x) associated with Jo(x) and Ey(x). If E(x)
is a field satisfying the same boundary conditions on €2 as Eq(x) then we define dE(x) to be E(x) — E¢(x)
inside €2 and to be zero in that part of C' which is outside 2. Then we extend JE(x) to be C-periodic. Pro-
vided the boundary conditions on €2, and the definitions of the spaces £ and &, ensure that JE(x) satisfies
the differential constraints appropriate to fields in &, by the Q7,-convexity of f it follows that

0< /C F(OB(x)) = /Q f(PB()). (1.64)

Since f is quadratic, and T is Hermitian, we have

FOEX)) = f(E(x)) = f(Eo(x)) — 0E(x) - Jo(x) — Jo(x) - E(x), (1.65)

and the associated key identity implies

/ 0E(x) - Jo(x) =0, / Jo(x) - 0E(x) =0, (1.66)
Q Q
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since the boundary fields on 2 associated with JE(x) vanish. So we conclude that

/Qf(E /on AE'%Z]"& (1.67)

which establishes (1.62). We emphasize that even with specified boundary conditions, there may be many
fields Eq(x) satisfying (1.63).

The most interesting choices of T are the extremal translations (page 87 of Milton 1990; Allaire and Kohn
1994) which have the property that f(E) loses its Q5 -convexity whenever a nonzero positive semidefinite
matrix is subtracted from T. For such choices of T one expects there to be many fields E(x) satisfying
(1.63) that are compatible with the boundary conditions of interest. An extreme example is if we are in two-
spatial dimensions, u(x) is a two-component vector field with components u; (x) and uz(x), E = Vu, and
f(E) is the null-Lagrangian det(E) as in (1.44). Then the equations (1.63) can be expressed in the form

G;Ei;) - (Riq/’Z Rgﬂ) (28) V=0 ei=Vu, i=12 (1.68)

—_—— ——
Jo (x) T Eqo (x)

where R | with transpose R? is the matrix for a 90° rotation given by (1.60). These equations are clearly
satisfied for any choice of fields u; (x) and us(x), due to the fact that R} maps curl-free fields to divergence-
free fields. We remark that with extremal choices of T it is not clear that the left hand side of (1.62) is even
bounded below as E(x) varies over those fields in &, satisfying desired boundary conditions. However it
is bounded below (by fy) if we can find solutions of the Euler-Lagrange equations (1.63) compatible with
the desired boundary conditions. One could, for example, look for a superposition of plane-wave solutions to
these Euler—Lagrange equations that satisfy the desired boundary conditions, or we could choose our boundary
conditions to match those of a superposition of these plane waves.

Inequalities of the form (1.62) can be obtained by other means too. In particular, if T is positive semidef-
inite, so that f(E) is a convex function of E, then Jensen’s inequality says that (1.62) holds for any boundary
conditions with fo = || f((E)) where || is the volume of €2, and (-) denotes a volume over (2. It is frequently
the case that the differential constraints on E(x) allow one to calculate (E), and hence f; from boundary val-
ues: for instance, this is clearly true if E(x) = Vu(x) for some vector (or scalar) potential u(x).

Now, following the argument given in Section 2 of Harutyunyan and Milton (2015b), suppose, for simplic-
ity, that L(x) is Hermitian and that we can find a constant ¢ > 0 such that L(x) — ¢T is positive semi-definite
forall x € €. [See also the related papers of Kang, Kim, and Milton (2012), Milton and Nguyen (2012), Kang,
Milton, and Wang (2014), Kang and Milton (2013), Kang, Kim, Lee, Li, and Milton (2014), and Thaler and
Milton (2015) that implicitly derive boundary field inequalities for bodies containing two phases, with a known
volume fraction of one phase: these are used in an inverse fashion to derive bounds on the volume fraction.]
Such a constant ¢ is easiest to find if the body contains N-phases and we know the value of L(x) inside each
phase, although the phase geometry may be unknown. Then, using (1.62) and the associated key identity
(1.41), we obtain the boundary field inequality,

0< [ BB LOOER) — cf(B(x) < ~cfo+ [ n- Q). (1.69)

Q a0
Such boundary field inequalities, which generalize those in Section 2 of Harutyunyan and Milton (2015b),
place constraints on the Dirichlet-to-Neumann map that maps the potential on the boundary 02 to the asso-
ciated flux through 0f2. The inequality (1.69) is a natural extension of the translation method (also known
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as the compensated compactness method ) introduced by Murat and Tartar (Tartar 1979b; Murat and Tartar
1985; Tartar 1985) and independently by Lurie and Cherkaev (1982, 1984) and the associated comparison
bounds (see, for example, Chapter 24 in Milton 2002) in the theory of composites. These boundary field
inequalities can be used in an inverse fashion to tell us something about the moduli inside €2. For example,
if the boundary field inequalities are violated for some value of ¢ then this tells us that L(x) — ¢T cannot be
positive semi-definite everywhere inside €2, or alternatively that the equations have broken down. By taking a
variety of possible T and boundary conditions, one can narrow down the range of possible values that L(x)
takes inside the body 2.

In some problems it may happen that we know that E(x) within € only takes values in a compact set K.
Then defining

+ _
[m= max f(E), (1.70)

we have from (1.62) the boundary field inequality
Q1fT = fo, (1.71)

in which || is the volume of 2. Here f; depends on the boundary fields, so if (1.71) is not satisfied for
some boundary fields, then the occurrence of those boundary fields signals that E(x) has in fact taken values
outside X somewhere within §2. An example is polycrystalline plasticity, where the stress o (x) must take
values within the yield set appropriate to the crystal at x. Suppose for simplicity there are only a finite number
n of crystal grains in {2, perhaps in an unknown geometry, with respective yield sets K;,7 = 1,2, ...,n. Then
clearly within €2,

o(x)ek, K=[JKi V-o=0 (1.72)

=1

The associated boundary field inequalities can then be useful for determining which loads on the boundary
002 will cause the material to yield. Similar ideas have been used, for example, by Kohn and Little (1998)
in determining bounds on the homogenized yield set and stem from the theory of compensated compactness
(Tartar 1979b) and the related translation method (see, for example, Chapter 24 of Milton 2002 and references
therein). Another example is if the body contains crystals of shape memory material. One may be interested
in deformations that do not leave any residual stress. Then it is the strain field e(x) which lies in some set IC
and satisfies the differential constraint that € = [Vu + (Vu)?] for some displacement field u. In this context
similar ideas have been used, for example, by Bhattacharya and Kohn (1997) to bound the set of recoverable
strains of polycrystalline shape-memory materials.

Boundary field inequalities, like conservation laws, should have many important applications in analy-
sis. The main problem is to pick useful ones among the plethora of possibilities. In this connection, recent
advances (Nesi and Rogora 2007; Milton 2013b; Harutyunyan and Milton 2015a; Harutyunyan and Milton
2015b; Harutyunyan and Milton 2016) on characterizing extremal Q¢ -convex and quasiconvex functions may
help. (For fields E = Vu, Q¢ -convexity and quasiconvexity are equivalent, and the extremal ones are those
that lose their quasiconvexity whenever a convex function is subtracted from it.)
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1.6 Consequences of passivity

Let us suppose the frequency w is complex, w = w’+iw”, where w” > 0 so that the fields which are modulated
by et = e te~iwt grow with time. The physical electric and magnetic fields are

en(x,t) = Rele “e(x)] = e[ ™" e(x) + e "8(x)]/2,
hp(x,t) = Rele ™'h(x)] = ¢ e ™ "h(x)+ et™ "h(x)]/2, (1.73)

where @ is the complex conjugate of a, and the complex electric field e(x) and complex magnetic field h(x)
do not depend on time. Now the total flow of energy into the body up to time 7" should be positive and by
Poynting’s theorem, this implies

/ /mn hgr(x,t) x er(x,t) = / /mn {Re[e”“"h(x)] x Re[e"™“!e(x)]}
/Ttég " [h(x) x 8(x) + B x e(x) + e h(x) x e(x) + €2 h(x) x &(x)]/4

o
IN

" 4
62w T 67220.) T

= — n- X) X e(x 2T -_ n-h(x) x e(x)] ,. (1.
= /8Q {Refh(x) x &(x)]} + Re{4(w”—iw’) /m [h(x) x ()]} (1.74)

If w’ is nonzero then the second term oscillates sinusoidally with time 7', multiplied by e2"T and so changes
sign with time. So a necessary condition for this to remain positive for all time is that

Re /aQn~[h(x)><é(x)]:Re /Q V- [h(x) x &(x)]
_ Re/Qé~(V><h)—h-(V><e) Re/Q[ - (iwee) — h - wph]

0

IN

= / e Im(we)e+ h - Im(wp)h, (1.75)
Q

where &(x) and p(x) are the electric permittivity and magnetic permeability tensors and we have used the
Maxwell equations,
V x h = —iwee, V xe€=iwyuh. (1.76)

Clearly (1.75) will be nonnegative provided
Im(we(x,w) > 0, Tm(wp(x,w)) >0, (1.77)

for all x € Q and for all w in the upper half plane Imw = w” > 0. Conversely, by considering a small region
 with boundary conditions chosen so that the interior fields e and h have almost constant desired values, with
either |e|> |h| or |e|> |h|, (assuming e(x, w) and p(x, w) are smooth) we see that the conditions (1.77) are
not only sufficient, but also necessary.
Similar arguments can be applied to elasticity. The physical velocity, and traction at the surface of a body
when the fields grow at a complex frequency w = w’ + iw” with w” > 0 are
0

vR(x.t) = o Rele —iwiy(x)] = e —iwe ™™ tu(x) + iwe T T (x)] /2,

tr(x,t) = Refe™'n. o] =" e o(x)+ e “n 7(x)]/2, (1.78)



1.7. Acoustic, Schridinger, elastic, and electromagnetic equations 21

where u(x) and o (x) are the complex displacement field and complex stress field, which are independent of
time. Hence the total work done on the body up to time ¢ = 7", which must be positive is

/_1 /BQ VR(X,t) - tr(x,t)

T
/ / e Mem i g (x) + e - T (x)][—iwe ™ Tu(x) + iwe ™ T (x)] /4
—oo JON

o
IA

eQw”T ) L
= 8Q{Re[zn co(x)wu(x)]}
—e* " Re {‘WW') /89[iwn . a’(x)u(x)]} . (1.79)

Again because the second term oscillates (unless w’ = 0) a necessary condition for this to be nonnegative for
all T' is that

0 < /asz Relin - o (x)wu(x)]
= /QRe[iO'(x) :Vou(x) + (V- o(x)) - wu(x)]
= w@/ﬂ €(x) : Im[—C/w|€ + u - Im[wp]u, (1.80)

where C(x,w) is the elasticity tensor, p is the density, and we have used the elastodynamic equations that
o=Ce €= [Vu+ (Vu)T]/2, (V- 0(x))=wp(x)=—iw’pu, (1.81)

in which p(x) is the complex momentum density.
The nonnegativity of (1.80) will be ensured provided the moduli are such that

Im(—C(x,w)/w) >0, Im(wp(x,w)) >0, (1.82)

hold for all x € 2 and for all w in the upper half plane Inw = w” > 0, and conversely by considering
small bodies with almost constant fields o (x) or u(x), one sees that the conditions (1.82) are also necessary.
Complex, frequency dependent, elasticity tensors arise naturally in the theory of viscoelasticity (Christensen
2003). Complex, frequency dependent, effective mass-density tensors also arise naturally in the theory of
elastic metamaterials (Sheng, Zhang, Liu, and Chan 2003; Movchan and Guenneau 2004; Liu, Chan, and
Sheng 2005; Milton, Briane, and Willis 2006; Milton and Willis 2007). The associated mathematical theory
was first developed by Zhikov (2000), Section 8.1: see also Bouchitté and Felbacq (2004) and Smyshlyaev
(2009).

1.7 The time-harmonic acoustic, Schrodinger, elastic, and electromag-
netic equations

It was recognized by Milton, Seppecher, and Bouchitté (2009) that a similar structure holds true for the equa-
tions of acoustics, elastodynamics and electromagnetism in the case when the fields vary harmonically with
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time, i.e., have a time-dependence of e~ iwt

where w is the frequency. The constitutive equation takes the form

G(x) = Z(x) F(x), (1.83)

where, in the absence of sources, G(x) and F(x) satisfy the differential constraints that

Vu G
() (5

in which the potential u(x) is scalar- or vector-valued field, while G(x) is, correspondingly, a vector or
second-order tensor field. When u(x) is a vector field, these differential constraints imply

9(x) - F(x) = G(x) : Vu(x) +u(x) - [V-Gx)] = V- Q(x), (1.85)
where the supercurrent Q(x) is the vector field
Q(x) = G(x)u(x), (1.86)
thus giving the key identity
/ G(x)- F(x) = / n- G(x)u(x). (1.87)
Q a0
When u(x) is a scalar field u(x) and G(x) is a vector field, the same identity holds once we define
G(x) - F(x) = G(x) - Vu(x) + u(x)[V - G(x)]. (1.88)

For acoustics we can make the identifications

-1
u="P, G=—iv, Z= <_(‘””) 0 ) , (1.89)
0 w/k

where P is the complex pressure, v the complex velocity, p the complex density tensor, and « the complex
bulk modulus [see Dukhin and Goetz (2009) and references therein]. With these substitutions, the constitutive
law (1.83) implies

—iv=—(wp)"'VP, —iV.v=(w/k)P, (1.90)

which on eliminating v leads to the familiar acoustics equation
V- p 'VP+uw?k P =0. (1.91)
The multielectron Schrodinger equation, for time-harmonic fields with a time-dependence e~ *#*/" where

E is the energy and £ is Planck’s constant divided by 27, is equivalent to the acoustic equation and can be
written in the same form, with the (generally complex-valued) wavefunction ¢ (x) playing the role of the

pressure,
(Vo-l?()@) - (1? E—OV(X)) (Vﬁi’;’) ! (1.92)

Z(x)

where V(x) is the potential and A in the simplest approximation is #*I/(2m) in which m is the mass of the
electron, but it may take other forms to take into account the reduced mass of the electron, or mass polarization



1.7. Acoustic, Schridinger, elastic, and electromagnetic equations 23

terms due to the motion of the atomic nuclei. Here x lies in a multidimensional space x = (x1,X2,...,Xx)
where following, for example, Parr and Weitao (1994), each x; represents a pair (r;, s;) where r; is a three
dimensional vector associated with the position of electron ¢ and s; denotes its spin (taking discrete values
+1/2 for spin up or —1/2 for spin down). Accordingly, V represents the operator

V =(Vi,Vs,...,Vn), where V, = < 8(j) , 8(],) , 8(j)> . (1.93)
ory” ory’ Ors
Typically one thinks of the matrix Z(x) in (1.92) as being Hermitian, but it can have a positive semidefinite
imaginary partif E = E'+iE" is complex with a positive imaginary part E”, corresponding to having fields
with a time-dependence ¢Z"t/"e~iE't/M which is increasing with time. The key restriction on t(x) for the
multielectron Schrodinger equation, is that it must be antisymmetric when we interchange any pair x; and
x;, with ¢ # j, (i.e., when we interchange both position and spin). The wavefunction (x) has the physical
interpretation that mw(x) gives the joint probability density of finding electrons at the points ry, ro, . . .,
r with corresponding spins s1, S92, . .., Sy When a measurement of electron positions and electron spins is
taken (and this measurement will destroy the wavefunction).
For elastodynamics in the absence of sources we identify u with the displacement, and

() 5 (5 0 o (B) e

where o (x) is the complex stress tensor, p(x) is the complex momentum density, C(x) the fourth-order
elasticity tensor, and p(x) the complex density tensor. With these substitutions, the constitutive law (1.83)
implies

o(x) =CVu, ip(x)=V-(-0(x)/w)=uwpu, (1.95)

thus reducing to the familiar elastodynamic equation,
V- CVu+w?pu=0. (1.96)

In elastodynamics (or whenever the potential u is vector-valued) one could take any constant second-order
tensor M and redefine

G(x) - F(x) = G(x) : [(Vu(x))M] + [u()M] - [V- G(x)] = V- [G)(ux)M). (197

In this way one sees that there is not just one key identity but a whole multitude of them, parameterized by M.
As the identities are linear in M it suffices to give them for a basis of M, yielding d? identities where d = 2
or 3 is the dimensionality of the space.

For electromagnetism at fixed frequency w (in the absence of “free current” sources, but allowing for
conduction currents oe, which are instead incorporated in the term ee) the basic equations for the electric
field e(x), electric displacement field d(x), magnetizing field h(x) and magnetic field b(x) are

Vxe=iwb, Vxh=—iwd, d=ece, b=puh, (1.98)

where £(x) is the complex-valued electric permittivity tensor and g (x) is the complex-valued magnetic per-
meability tensor. We have chosen units of dimensions so the speed of light c is 1. Maxwell’s equations can
also be cast as an “elasticity type equation’:

V- (CVe) — w?ee = 0, (1.99)
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where now C has elements
Cijre = €ijmCren it Ymns (1.100)

and e;;, is the Levi-Civita (alternating) tensor [e;j,, = 1 (—1) if (¢,7,m) is an even (odd) permutation
of (1,2,3) and is zero otherwise]. Thus electromagnetism can also be cast in the form (1.83), with fields
satisfying (1.84) with u being replaced by the electric field. Note however there is an error in equation (4.2)
of Milton, Seppecher, and Bouchitté (2009): the left hand side should not have a minus sign. The correct form
is (1.99) as originally correctly stated by Milton, Briane, and Willis (2006). Fortunately this does not effect
much of the analysis in that paper which is mostly based on the equations (4.16) to (4.20) there, which are
correct.

For electromagnetism, at fixed frequency, the fields and tensor entering the constitutive law are most
naturally taken as

_ (—ih B —[wu(x)]fl 0 _ [iwb
G(x) = <Wd>, Z(x) = < ; o)) F= ("), (1.101)
where the fields F(x) and G(x) are subject to the differential constraints that
V xe —ih
F(x) = ( o ) G(x) = <N y h), (1.102)

for some fields e(x) and h(x). Now we have

G(x) - F(x)=—ith-Vxe+ie-Vxh=V-Q(x), (1.103)
where
Q(x) = —ie x h. (1.104)
This implies the key identity
G(x) - F(x) = / —in- (e x h), (1.105)
Q o0

which is essentially Poynting’s theorem, apart from the appearance of h rather than h on the right-hand side
of the equation. (The associated key identity is Poynting’s theorem.)

1.8 The time-harmonic thermoacoustic equations

A more challenging set of time-harmonic equations to express in the desired form are those of linearized
thermoacoustics, which incorporate thermal and viscous losses into the equations of acoustics. The source of
these equations that I am using is a COMSOL Acoustics Module User’s Guide (COMSOL 2013), equations
(7-5), page 286. Some related theory can be found in Pierce (1981).

The time-harmonic linearized thermoacoustic equations involve the density fluctuations, temperature fluc-
tuations, pressure fluctuations, stress, and velocity fields which are the real parts of e p(x), e~ (x),
et P(x), e" o (x), and e~“!'v(x), where the complex fields, in the absence of source terms, satisfy

iwp=—po(V-v), dwpov=V-0o, iw(poCpd—ToagP) =V -[k(x)VH], (1.106)
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representing the equations of conservation of mass, momentum, and energy: where pg and 7} are the back-
ground density and temperature; C,, is the heat capacity at constant pressure; oy is the coefficient of thermal
expansion at constant pressure; and k(x) is the thermal conductivity. Additionally one has the relations

P = PO(BTP - 0609)7 o=—-Pl+ vaa
2
DVv = u[Vv+(Vv)T]+ (uB - 3M> (V-v), (1.107)

where the first equation is the linearization of the equation of state linking pressure, density, and temperature,
while the second and third equations give the constitutive law for the stress in a fluid, in terms the velocity
gradient and pressure fields. Here D is the isotropic fourth-order tensor of viscosity moduli, i and p 5 are the
dynamic shear and bulk viscosities (for a discussion of bulk viscosity see Dukhin and Goetz 2009) and S is
the isothermal compressibility. We first eliminate the density from these equations to get

s=—(V-v) —iwbrP +iwagh = 0, (1.108)

and we can use this to express P in terms of the other variables (including s which is zero),

s i oo
P=—+4+—V.v4+—, (1.109)
wlr  whr Br
which we can use to eliminate P from the other equations (in favor of s):
151 il b1
o = DVv—- ———- —V.v— ,
wBr  wPhr Br
T T 2700
V- [k(x)VO = iwpeChf + 2020 | D00y gy, L0207 (1.110)

Br Br Br

Hence we can rewrite the thermoacoustic equations (without sources) as

io iD(x)+ 5L 0 0 —a0Tol b Vv
iV-o 0 —wpo 0 0 0 v
q | = 0 0 ik(x)Ty 0 0 VO/Ty | . (1.111)
V-q 7i“°ﬁzol' 0 0 waéfg —wpoCpTy  “gto /Ty
—iP o 0 0 —igalo b s
Z(x)

The matrix Z(x) entering this constitutive law is such that the Hermitian part of Z /i is positive semidefinite
as desired. Furthermore, recalling that s is zero, we have the key identity,

1o Vv
iV-o v

q | VO/Ty | =V - liov+ qf/Tp]. (1.112)
\Y% q 9/T()
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1.9 The time-dependent acoustic equation

Now let us consider the acoustic equations, removing the assumption of time-harmonicity. We begin by
assuming that the bulk modulus x(x) and density p(x) only depend on the spatial variable x and not on time
t. Then the time-dependent equations of acoustics for the pressure field P(x,t) and velocity field v(x, t) can

be written as 5 )
) _ —p(x)7 0 )(V‘P) (1.113)
()= ) (o

Z(x)

Here we assume p and x do not depend on frequency, but it’s okay if they do: then the constitutive law gets
replaced by a convolution in time. Writing out these equations enables us to check that indeed they are the
equations of acoustics:

0%pP oV v
L SN v S A v 22 1.114
o o VY (1.114)
Also, taking the dot product
ov
& VP ov or OAVERY oV -v
ot . = (VP)- | = )| == | (V- P - P
<V~v> ("yj’) (VP) (8t> (8t>( v+ P—5 at
ov
- () (wh)
= V-Q, (1.115)
where V is the 4 dimensional gradient with 4 = —t, and Q = [(P9;v)T, PV - v]T. This is a divergence so
the key identity
ov
55 VP ov
ot . = zw  P— —nyPV - 1.116
/gl(v.v) (—%{’) /agn ot VY (1.116)
holds. Now  is a body in space—time with outward normal n = (n,, n;).
A further simplification can be made. Suppose we are in three (spatial) dimensions. Let z, = —t, and set
vV :(2), =l o1 =V (1.117)
31 ~ 5 ot

Then, with x = (21, z2, 3, —t), the equations (1.113) can be rewritten as
V-jx) =0, jx)=ZxVP(x), (1.118)

so they look like a “space-time” version of the conductivity equations, with j(x) satisfying the conservation
law V- j(x) = 0. Of course, there are important differences: most notably the matrix entering the constitutive
law is real but not positive definite, as it should be for a wave equation.

Now, by direct analogy with the transformation of the conductivity equations under affine transformations
(see, for example, Section 8.3 of Milton (2002)), under the Galilean transformation

x' = Ax, withA:((I) Vlv) (1.119)
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where X' = (2}, 2%, 25, —t'), x = (21, x2, 3, —t), and w is the velocity of the moving frame of reference,
the equations transform to

V-ix)=0 j&)=2E))YPK), (1.120)
in which
;o r_ (—p(x) T T+ k(x)TTwwT k(x)Tw
Z' = AZA _( ()T K(X>_1),
J&) = Ajkx), P')=Pkx), VPE)=(A")"'VP(x). (1.121)

Thus in a moving fluid the tensor Z will not be diagonal, and the density term will not be isotropic. One
expects in a fluid where there is a small fluid velocity v(x) superimposed on a large macroscopic velocity
w(x), that the tensor Z will take the form

x. 1) = —[px, )7 k(x,1)
20 ([k(x,t)]T [Kz(x,t)]_l)’ (1.122)

with a generally anisotropic density p. Note that this form is preserved under the transformations of special
relativity and not just Galilean transformations (in fact we are free to choose any transformation matrix A).
Anisotropic effective mass densities may seem unfamiliar but Willis (1985) found the effective density in a
composite should be a nonlocal anisotropic density operator, Schoenberg and Sen (1983) found anisotropic
layered fluids had an anisotropic effective density, and Milton, Briane, and Willis (2006) found simple models
exhibiting anisotropic density: see their Figure 3. The coupling one sees in (1.122), is similar to that one
sees in the Willis equations of elastodynamics (developed in Willis 1981a, 1981b and explicitly stated in
Willis 1997), or in the bianisotropic equations of electromagnetism (Serdikukov, Semchenko, Tretkyakov,
and Sihvola 2001).

1.10 The equations of elastodynamics and piezoelectricity in the time
domain

We rewrite the equations of elastodynamics in the form

feled _ _1 T
( ot ) :( C(X) 0 ) ( 2 [V\nger ])’ (1.123)
V.o 0 p(x) S
| —
Z(x)
where o is the stress and v(t) = %‘t‘ is the velocity. Once again taking dot products we find a divergence
form:
foles 1 T
W (ATETI (00 oo (V) 9
<V~o-) ( oy 5 :Vv+(V-0o) 50 ) T o
A(Vv)
Y

av
= (_Va) : (a" 6‘Vtv) =V Q, (1.124)
ot '
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where we have used the fact that o is symmetric, V is the 4 dimensional gradient with x4 = —t, and Q =
(00, v)T, (aV - v)T]T. Again the key identity applies: (2 is now a space—time body.
Guided by the form (1.118) of the acoustic equations, set

\Y% 0o .
A _<V6), T ==k forik=1,2,3, Ju=—{V-oh, (1.125)
T ~ o ot

which defines the 4 x 3 matrix-valued field J(x). Then, noting that, due to the symmetry of C, we can replace
[Vv + (Vv)T]/2 by Vv in (1.123), the equations take the form

V-J=0, J=ZVv. (1.126)

So we see that under the Galilean transformation (1.119) the new fields, based on the transformation laws

T) = AJ(x), V()= (AT)Tv(x) WhereA:(g Vlv>, (1.127)

for J and Vv, become
g _ (T wI 8o _ 9 +w(V-o)T
AV 0 I V.o V.o ’
—1
—V'v Z 0 —Vv —Vv
, = = 1.12
( 2 ) (o 1) g ) (z: o) (1129

in which Z is the fourth-order identity tensor, I is the second-order identity tensor, and wl is a third-order
tensor with elements w;d;, (in which d is one if j = k and zero otherwise). These fields are now linked by

the new constitutive tensor
T wl I 0
Z/ ! — Z
o) = (T )20 (e )

(—C(x) + wp(x)w” WP(X>> _

plx)w” p(x)

(1.129)

Under more general transformations, such as a Galilean transformation followed by a rotation, the fields in
(1.128) will be also multiplied on the right by rotation matrices (and the transformation matrix A would also
need to be adjusted). However if it is a pure Galilean transformation then there is no multiplication on the
right by a rotation matrix: note that since u(x) represents an assumed small difference between the position
of a particle in the undeformed state (now moving) and the position of the particle in the deformed state, v
being the difference between two velocities is itself invariant under a Galilean transformation.

Note that the new stress field is not symmetric, and does not just depend on the symmetric part of Vv, but
also on its antisymmetric part.

Significantly, this analysis shows that the stress tensor o (x,t) does not have the symmetries, nor the
transformation law assumed in the theory of relativity: consequently this casts doubt on the general theory
of relativity in its standard form, unless stress is taken to have some different meaning there. The need for
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nonsymmetric stress-energy-momentum tensors with accompanying modifications to Einstein’s gravitational
theory has been noted before: see Hehl, von der Heyde, Kerlick, and Nester (1976) and references therein.

It has been argued (see appendix A in Martin, Parodi, and Pershan 1972 and also Lautrup 2005) that it is
only the divergence of the stress (which equals the body force) that has a physical meaning and one can replace
a nonsymmetric stress by a symmetric one, while keeping the divergence of the stress the same. However this
seems unnatural as the constitutive law then becomes very nonlocal and stress fields then exist in regions that
are void of material.

One expects in an elastic medium where there is a small material velocity v(x, t) superimposed on a large
macroscopic velocity w(x, t) that the tensor Z will take the form

<. 1) — —C(x,t) k(x,t)
20 = (1ol ) (1130

where the density p could be anisotropic, and D need not satisfy the usual elastic symmetries. In general if
Z(x,t) was nonlocal, i.e., the constitutive relation involved an integral kernel, then the effective one would
too, and again there would be a coupling. These nonlocal equations, with couplings, are known as the Willis
equations (developed in Willis 1981a, 1981b and explicitly stated in Willis 1997), although his equations retain
a symmetric stress field and a stress that only depends on the symmetrized displacement gradient. An explicit
model exhibiting (over a very narrow frequency band) local Willis type couplings, but with a nonsymmetric
stress, was constructed by Milton (2007). An example of a mechanism for producing a material with Willis
type couplings is shown in Figure 1.2. The Willis equations keep their form under arbitrary spatial curvilinear
coordinate transformations, even when the constitutive relation is nonlocal (see Appendix B and Appendix C
of Milton, Briane, and Willis 2006). Due to this, materials with a Willis type constitutive law could be useful
for elasticity cloaking (Milton, Briane, and Willis 2006) using the elastic analog of transformation optics
cloaking techniques (Dolin 1961; Greenleaf, Lassas, and Uhlmann 2003a; Greenleaf, Lassas, and Uhlmann
2003b; Pendry, Schurig, and Smith 2006). By contrast the normal equations of elastodynamics do not keep
their form unless one allows for stress fields that are nonsymmetric and elasticity tensors that lose their minor
symmetries, i.e., Cijre 7# Cjire and Cijpe 7# Cijer, but which keep the major one Cjjpy = Ciyij (Brun,
Guenneau, and Movchan 2009; Norris and Shuvalov 2011; see also Guevara Vasquez, Milton, Onofrei, and
Seppecher 2013).

For piezoelectricity in the absence of body forces and free charges the dynamic equations (Auld 1973; see
also Norris 1994) are

PUi it = 0455, djj =0, 04y = Cijreere — arijer, di = Qireere + Einer, (1.131)

where the Einstein summation convection is assumed, d(x) and e(x) are the electric displacement and electric
fields, and the third-order tensor a(x) couples the electromagnetic and elastic fields. These equations can be
rewritten in the desired form

& —C(x) 0 —a(x)\ [—3[Vv+Vv']
V-ol|= 0 p(x) 0 o : (1.132)
%‘3 —al(x) 0 e(x) %
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B = Lead B = Rubber [l = Stiff [ | = Elastic

_—— == _— == _— ==
—— — ——— ——— -
—— = —— = —— =

(b)

Figure 1.2: A mechanism for producing a material with Willis type couplings. The lead balls, surrounded
by rubber, and coated by a shell of stiff material have a different amount of lead on the left and right sides

of each pair, as shown in (a). This leads to the material in the shell on the
mass —m and the material in the shell on the right having an almost equal

left having a negative effective
and opposite positive effective

mass +m, for a suitably tuned frequency. At this frequency these oscillating effective masses generate an
array of oscillating force dipoles acting in the matrix as in (b) for one moment in time. Just like an array
of electrical dipoles gives rise to an average polarization field, so too does an array of force dipoles give
rise to an average stress field when the strain field is zero. Thus the time-harmonic acceleration of the
material gives rise to a time-harmonic oscillating average stress when the average strain is zero, which is

a characteristic feature of a Willis material.

with Z(x) being Hermitian. The key identity,

%—at- f% [Vv + VVT]
od e
ot ot
holds with
ov _ 9V od
Q= 05t — ot ot
oV v ’

where V' (x, t) is the potential associated with e(x,t): e(x,t) = —VV(x,1)

(1.133)

(1.134)

. Of course, for these equations
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to be valid the body must be small compared with the wavelength of the electromagnetic radiation associated
with the fields e(x, t) and d(x, t).

1.11 The dynamic equations for vibrating thin plates and moderately
thick plates

The dynamic plate equations can be written in the form

(_v.?\éM)) = (_DO(X) h(x)op(x)> (_EZW), (1.135)

Z(x)

where M(x, t) is the bending moment tensor, D(x) is the fourth-order tensor of plate rigidity coefficients,
h(x) is the plate thickness, p(x) is the density, and v = Qw /¢ is the velocity of the vertical deflection w(x, t)
of the plate. Note that the matrix Z(x) is Hermitian, and we have the key identity,

(Ha) (T)-C) M) e
——

v Q

For moderately thick plates we need to replace these equations by those of Mindlin (1951) (see also Larsen,
Laksafoss, Jensen, and Sigmund (2009)). We now assume the plate material is locally isotropic. The equilib-
rium equations for a small plate element read as

ph® 0%,
ﬁ 8152 = Tm - Mw,;ﬂ - sz,zﬁ
ph® 9%y
12 8t2y = Ty —Myy— My,
0%w
phr = Toa+Tyy (1.137)

Here w is the out of plane deflection; 1), and 1), are the angles of rotation; M, M, and M, are the bending
moments (we use the abbreviated notation M, and M, to denote the components M, and M, of the tensor
field M(x)); T, and T, are the shear forces; p = p(x,y) is the plate density; and h = h(z,y) is the plate
thickness. The relation which links the bending moments and shear forces to the deflection and rotation angles
takes the form
M, Vyy
Myy | = =D | tay + ¢y |, (1.138)
Tz 1/}30 - w,:r
1, Yy —wy
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where the subscript comma denotes differentiation and the stiffness matrix D is

D vD 0 0 0
vD D 0 0 0

D=D(zy)=|0 0 %D 0 0 (1.139)
0 0 0 kGh 0
0 0 0 0 kGh

Here D = Eh3/[12(1 — v?)] is the flexural rigidity; E is the Young modulus; G is the shear modulus; v is
the Poisson ratio; and k is a shear correction factor taking the value 5/6 for a plate. We now can rewrite the
equations in the canonical form:

M, Yoo
M, - Vv,
Mwy ww.,y + wy,x
Tw wm — Wy
. = Z(z,y ; S (1.140)
T, &9) Yy —wy
Tm - Mz,m - Mry,y /l#x,t
Ty - My,y - sz’m wy,t
Tw,w + Ty,y wt
—_— —
g F

where the dot denotes differentiation with respect to time: ¥, = 9t /Ot, Uy = Oy /0t, and w = Ow/0t;
and the matrix Z(z, y) entering the constitutive law takes the block-diagonal Hermitian form

_ 0 p(z, y)[h(z,y)]?/12 0 0
2 =1 o 0 L R (1141
0 0 0 p(z,y)h(z,y)
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Now note that with T = (T}, T})), ¥ = (¢, %,) and V = (9/dx,d/dy) we have the identities

oT o v —wIr
_ v V- -T)— = . at 7
o Vet (V- —gt) (—wv-T)
oY 9T . ) .
T. . = —[T.
o TV T T Yk
j i 9,
3My%,aMy% = <88%> . (_My ot
ot 0 Jy Ot —= Yy
Y Yy ot -M, I
. . aw'm
OMyy Opy  OMyy 0%y _ ( 59%) : (_Mw ot
ot 0 dy Ot -Z o, |’
Y Y ot — My, By
. . 5 aw’y
OMey Oy — OMzry Oy = ( %) N ot | . (1.142)
ot Oz Ox Ot — 5 ~M,, 6(;[;1,
These imply the key identity
9
gaz
G-F= o |- Q, (1.143)
d
Tt
with a supercurrent
- 0Ty 81!’1. 311}'y
W — M, ot Mﬂﬂy ot
Q= 771-)367;1/ — M, Bgty — My, 3(})/? . (1.144)
~wV T+ T ap — M9 — M, % — M, % — M, B

1.12 The Biot wave equations of poroelasticity in the time domain

The Biot equations of poroelasticity (Biot 1962; see also Norris 1994) describe the dynamic motion of porous
media containing fluids. One of the great successes of the theory was its prediction of an additional compres-
sional sound mode, the Biot slow wave, which was experimentally observed by Plona (1980). In the absence
of sources, the equations are comprised of equations of motion

PUitt + PFWi e = Oijiy  Pflipe + Mg * Wi e = —P (1.145)

where u(x, t) is the displacement in the solid phase, w(x, t) is the relative fluid displacement, o is the stress
in the solid, P is the fluid pressure, p and p; are the solid and fluid densities, the 7;; are viscodynamic
convolution operators, in the time domain (the asterisk * denoting a convolution)-and thus are represented by
local operators m;;(w) in the frequency domain. The constitutive equations read

045 = Oijkgﬁkg + Mij<7 P = Mijéij + MC, (1146)
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where € = [Vu + (Vu)?] is the strain, ((x) is the increment of fluid content which measures the net fluid
flow per unit volume in or out of a region, the M;; = M;; are elastic moduli coupling the solid and fluid
deformation, and the Cj;, are the elastic moduli of the drained porous solid. The scalar M should not
be confused with the tensor M of elastic moduli. Finally, because the fluid is treated as incompressible,
conservation of fluid mass implies

s=(s+wiie =0, (1.147)

where we have introduced the constant field s, which is zero if there is no net source of fluid.
We can use the relation between s and  ; to eliminate ¢ in favor of s:

P
Ct=—-V-w;+s, aa—t =M:Vv-MV -w,+ Ms, %—Z =CVv -M(V - -w,), (1.148)

where v = Qu/dt is the velocity, w, = Ow/0t, and in the last equation we have used the fact that s = 0 to
eliminate s from it. Hence the Biot equations can be rewritten as

& -C 0 0 M 0 ~Vv
V.o 0 pf 0 0 o
-VP|=|0 p; myx 0 0 gwe . (1.149)
-ar M 0 0 M M||-V-w
M+ 0 0 0 M M 5
Using the fact that s is zero, we have the key identity
foles
ar A
V.o ¥ ov Owy
Cop| | S8 | (V. ( ou - P% (1.150)
op ot -2 oV -v—PV-w;)’ ‘
~ ot -V Wi
MC,t S

1.13 The equations of thermal conduction and diffusion in the time
domain

Now let us consider thermal conduction with a time-dependent temperature T'(x, t) and heat flux q(x, t). Let
k(x) be the second-order tensor of heat conduction, and let a(x) be the product of the heat capacity per unit
mass C},(x) and the mass density p(x). For diffusion we let T'(x, t) denote the particle concentration, q(x, t)
the particle current, k(x) be the second-order diffusivity tensor, and we take «(x) = 1. Then the reformulated
equations for thermal conductivity and diffusion read as

A ik(x) 0 0 vT
@« =0 o —tabd | | T ) (1.151)
V-q + 5 0 o T
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To see the connection with the standard equations of thermal conductivity, let us write the equations out
explicitly:

q. = ik(x)VT,
q = 7¥Ta
Oqy ia(x) 0T  ia(x) 0T

The latter equation implies

a(x)a =V -k(x)VT, (1.153)
which is the heat or diffusion equation. Clearly the matrix Z(x) entering the constitutive law has the de-
sired feature that the real matrix Z(x)/i has a Hermitian part (symmetric part as it is real) which is positive
semidefinite. However the Hermitian part of ¢Z(x) is never positive definite for any choice of 6, and is
positive semidefinite only when e = 1/i.

The key identity,
A vT
oT 0
@ %] = @ VIt 4TV @ T
Voq, + % T
\Y% qu)
- - (1.154)
<—§t> (—T(It
holds.

1.14 The equations of thermoelasticity in the time domain

The equations of thermoelasticity (Chandrasekharaiah 1986; see also Norris 1994) take the form

9%u
PoE = V.o, o0y = Cijrecre — Bij0,
oS 0
pS = (pe/00)0+Bieis, V-a+bopr =0, a+ rai;‘ — KV, (1.155)
where o is the stress; € = [Vu + (Vu)7] is the strain; q is the heat flux; S is the entropy change; @ is

the change in temperature above the ambient temperature g; c is the specific heat per unit mass at constant
temperature; the 3;; = [3;; are essentially coefficients of thermal expansion, k is the (matrix-valued) thermal
conductivity tensor, and T is a thermal relaxation time. We rewrite the last relation in (1.155) as

Q= —# % V0, (1.156)

where k is a convolution operator in time (and the asterisk * represents a convolution). This allows for a more
general spectrum of relaxation times. The thermoelasticity equations can now be written as
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100 )

.o 0 ipg 0 0 0 u
iq =1 o 0 ifokx 0 0 —V0/0 | . (1.157)
ipSty —iBly, 0 0 0 —ifopc ~% /6,
i(V~q+ %) 0 0 0 ifopc —iopc ) \ —0/0,
Z(x)

Note that the operator :0/dt which enters three of the diagonal elements of Z(x) is formally self-adjoint.
We have the key identity

i%(tf —Vu
iV-o du
iq . —vdet/e)o _ ( Va> . ("7%‘2 —iqé/90> . 1158)
ipS0o _ei% — 5z oV -u+1ipS0
i (V -q+ —8”65;9”) —6/6,

1.15 Maxwell’s equations in the time domain

Guided by (1.101) and (1.102), it might seem that an appropriate form for Maxwell’s equations in the time
domain would be

oh —1
ot = ("H O> (V * e) . (1.159)
(v X h> ( 0 € ge
—_————
Z

In this form the key identity does not hold. Alternatively, we can write the system as

h —1
5t ) _ (K O) <V><e) (1.160)
(Vxh) ( 0 € %

—_————

V4

and then the key identity will hold. To show this, introduce the antisymmetric matrices

O 7h3 hg O —E€3 €2
h= hg 0 —h , €= €3 0 —e1 ], (1.161)
—hg h1 0 —€9 €1 0

sothat Vxh =V -hand V x e = V - e (where the divergence acts on the first index). Then one can check
that

oh Oe oh Ode oV -e oV -e
\Y
- (_a>-Q(x), (1.162)
ot
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where
h- %
Q= <h- (Va-te)> , (1.163)
in which we have used the identity
de Oe
= (V- -h) = Tr[(Vh)T = 1.164
(V- h) = T(VR)T ], (1164
that in index notation takes the form
dey 0O e,
T einih] = he o —ei—= 1.1
5 Bxk[ ereihi] = hig[—€ire 815]’ (1.165)

and is satisfied because ey¢; = e;1¢, Where e is the completely antisymmetric Levi-Civita tensor taking the
value +1 (or —1) if ¢k is an even (or odd) permutation of 123, and is zero otherwise.

However, this does not seem like the right form for the constitutive equation as when the response is non-
local in time, and one Fourier transforms the constitutive equation in time one sees that the Fourier transform
of Z entering (1.160) will generally not have positive semi-definite imaginary part.

Instead let us look for a solution using the formulation of special relativity theory including the vector
potential ® of the electromagnetic field. We set x4 = t and the fields we take are essentially those in C of
table 2 on page 55 of Post (1962) (with the rows and columns changed to account for the different choice of
coordinates, and with my G being essentially Post’s —®), namely

0 b3 —by e
71)3 0 b1 €9

F= 1.166
b2 —b1 0 €3 ( )
—€e1 —€2 —€3 0
and
0 —h3 h2 dl
hs 0 —h1 do
G = 1.167
—ho  hq 0 ds ( )
—d; —dy —d3 O
Introducing the electromagnetic potentials ® = (®1, Po, P5) and V such that
oP
b=Vx®, e:—VV—E, (1.168)

and letting &4 = —V and ®° = (&, By, By, &) = (B, Py, P, — V'), Maxwell’s equations now read
_ 0 0
Fj = - %

Giyj = O, (1.169)

where we have assumed there are no free current sources. We also assume there are no conduction currents
in the body such as resulting from j = oe, but at the end of this section we will return to this point and
incorporate them.
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We check for a divergence form:

/Fi'Gij = /(‘P?,i*‘D?,j)Gij
) Q

2 / ((I)?G”)’l
Q

2/ n.(Gi;99)ds, (1.170)
o9

where we have denoted n as the 4 dimensional vector normal to the boundary of the space—time region §2. So
the key identity holds.
Now look at the constitutive law. In engineering notation it can be written as

(3= (= ) ()

Z
without destroying the key identity. Now the differential constraints (1.168) (1.169) take the form

b\ (@ S (~h\
(%) -0 (%), o (1) s axm

where the operator © and its formal adjoint ©' are given by

Vx 0 Vx 2
0= ef = ot ) 1.17
(5 %) o= (v §) A
We can check directly that the key identity holds:
—h b o® od
. = —h- d)—d- d-Z=_-=.® h)-®
/Q(d> (e> /Q (Vx®)—d- TV -d 50— 5.8+ (Vxh)
= / n, (hx®)—mn, - (Vd) —md - ®, (1.174)
o9

where n = (n,, n;) is the normal to the boundary of the space—time body {2, and we have used the fact that
0d /0t = V x h. The form (1.171) with differential constraints (1.172) are similar but not quite the same as
those given in pages 207-210 of Strang (1986), who has a positive definite tensor in the constitutive law at
the sacrifice of having operators in the differential constraints which are not formal adjoints.

In general there will be a convolution in time and possibly space, so Z gets replaced by a convolution

operator K:
—h b
( d ) =K=x (e) . (1.175)

Suppose we only have a convolution in time. Then the constitutive relation in the frequency domain reads as

(o) = (o 2 ()

Z(x,w)
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Here we can allow for conduction currents by incorporating an additional term io(x)/w into the complex
permittivity (x,w). Now Z(x, w) has the properties that

Z(x,w) = Z4(x,—w), (1.177)
where the overline denotes complex conjugation, and
Im(Z(x,w)) > 0 when Re(w) > 0 and Im(w) > 0. (1.178)

The first property follows from the fact that it is a Fourier transform of a real integral kernel. It implies that
Im[e(x,w)] = 0 and Im[p(x,w)] = 0 when w = ip with p real and positive. Also from the fact that

Imjwe(x,w)] > 0 whenImw >0,
Imfwp(x,w)] > 0 whenImw >0, (1.179)

we see that Im[e(x, w)] > 0and — Im{[p(x,w)] "1} > 0in the limit when w approaches the positive real axis.
(Strictly speaking these could be positive measures in this limit). Furthermore as |w|— oo both &(x,w) and
p(x, w) approach the permittivity and permeability of free space, oI and 101, since the electrons (because of
their inertia) can’t respond quickly enough to the rapidly oscillating fields. Finally since e(x, w) and p(x, w)
are analytic functions of w when Imw > 0 it follows that for any fixed real vector v both Im[v - e(x, w)V]
and — Im{v - [u(x,w)] v} are harmonic functions of w which must take their infimum in the quadrant
Re(w) > 0 and Im(w) > 0 as |w|— oo or at the boundaries of the quadrant Re(w) > 0 and Im(w) > 0. This
establishes (1.178).

Let 7 = w?, and w = /7 where the square root is defined with a branch cut (in the 7 plane) just below
the negative real axis, so the cut complex 7 plane (with the cut along the negative real axis) gets mapped to
the upper half plane Im(w) > 0, and the lower half 7 plane gets mapped to the quadrant Re(w) > 0 and
Im(w) > 0. Then we have

ImZ(x,v/7) >0 whenIm7 <0. (1.180)
——
S(7)

Additionally (1.177) implies S(7) is real symmetric, i.e., S(7) = S(7), and as 7 — oo, S(7) approaches

—I/po 0
Sec = . 1.181
( 0 501 ( )
So S(7) has the integral representation
°° dM(7’)
S(7) = Sw ) 1.182
CEENT L (1.182)

where M(7') is a 6 x 6 matrix-valued positive measure (which separates into two 3 x 3 blocks) when Z has
the form (1.171). The measure must be such that the integral converges which is the case if

> dM(7)
/0 S (1.183)

is bounded. The function S(7) — S is a matrix-valued Stieltjes function of 7. There are various definitions
of Stieltjes functions in the literature. Berg (2008) defines a Stieltjes function f(z), mapping the nonnegative
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real axis z > 0 to the nonnegative real axis, to be a function of the form
oo d /
f(Z):a+/ 1) (1.184)
0

where a > 0 and p is a positive measure on the nonnegative real axis (satisfying [ 1/(1 + 2)du(z’) < oo
to ensure convergence of the above integral), and then points out (1.184) allows one to define f(z) for all z
in the cut complex plane, where the cut extends along the negative real 2’ axis. In a matrix-valued Stieltjes
function, a (which is the value of f(z) as z — c0) is replaced by a positive semidefinite matrix A and du(z’)
is replaced by a positive semidefinite matrix-valued measure dg(2’).

If the medium is moving then it follows (Kaplan and Murnaghan 1930; Post 1962; see also Section 3 of
Milton, Briane, and Willis (2006)) that there are couplings, i.e., the constitutive relation has the form

*h(X, t) 7[“’()(7 t)]71 I‘-‘/(X, t) b(X,t)
= T . (1.185)

d(x,1) [k DI"  e(x,1)) \e(x,1)
Naturally one still expects this relation if the medium is moving in different directions with different velocities
in different areas. In fact such equations are known as the “bianisotropic equations” of electromagnetism
(Serdikukov, Semchenko, Tretkyakov, and Sihvola 2001). Note the fields and tensors could depend on time.
Bianisotropic constitutive laws provide one way of understanding chiral effects in electromagnetism, as an

alternative to including field gradients in the constitutive law with d(x, ¢) depending linearly on e(x, t) and
Ve(x,t).

1.16 A canonical form for Schrodinger’s equation in the time domain
To reformulate Schrédinger equation in the time domain for a system with /V electrons, let
Y(x,t) =¥(x1,X2,...,XN,t) (1.186)

be the time-dependent wavefunction at time ¢ which is antisymmetric when we interchange x; and x;,. Here
x = (x1,X2, ..., Xy ) where each x; = (r;, s;) represents a combination of a spatial coordinate r; and a spin
coordinate s;, and the joint probability density p(x, t)dr = ¥ (x, t)1(x,t)dr, where dr = dridrs...dry,
has the quantum mechanical interpretation of being the joint probability density of finding the one electron in
the neighborhood dr; of ry with spin s;, and a second electron in the neighborhood dr; of ry with spin s, . . .,
and the remaining electron in the neighborhood dr 5 of r with spin sy at time ¢. Let the (time-independent)
potential be V' (x1, X, ..., xx) and denote Planck’s constant divided by 27 as . Then the canonical form of
Schrodinger equation for a system with NV electrons is

Az —-A 0 0 Vi
0 —[o o —m|[e (1.187)
dq¢ ih
Z(x)
where q;(x1,X2,...,Xy,t) is a 3N component vector field, ¢;(x1,X2, . .., Xy, t) is a scalar field, and A in

the simplest approximation is h21 /(2m) where m is the mass of the electron, but it may take other forms to
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take into account the reduced mass of the electron, or mass polarization terms due to the motion of the atomic
nuclei. Computing the dot product we find the usual divergence form and the key identity holds:

e Vi
. 0 ol
/ @ %] = /qx~Vw+Qtf81f+wV-qw+w7£
@ V'qx+ %q{ w @

B
/QV (qzt) + a&b(h)

_ /Y-CL (1.188)
Q
where Q = (qZ+), —q;1)T. Since this is a divergence it can be expressed in boundary terms as

/ (ng - qe +n¢ - qu )2 (1.189)
oQ

Note when we take “dot” products we do not conjugate the left hand side.
Also from the constitutive law we have

qQz = _Ava
ih
qt = 7511[}7
o _ hov _ihov
V~qz+§ = V- -AVy 2t~ 2 ot Va, (1.190)

where the last equation is the Schrodinger equation. We remark in passing that another quite different formu-
lation of the Schrodinger equation has recently given by Ajaib (2015): it uses matrices with special properties
in a first order equation, and in this sense is reminiscent of the Dirac equation.

We also have the associated key identity:

A Vi P
o || %] = V@t g en

. v.((vw>w’f>+§t<w(f)w), (1191)

where we have assumed A = 1%2, m = 1. Now take the imaginary part of both sides. We have

Vi -A 0 0 Vi
Im|([2]- 0o o —-Z][%]|=0, (1.192)
(G 0o g -V (4
Z
since Z is Hermitian. This gives
- — ho , —
5V B0 - (VO - 55 ) =0, (1.193)

p
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which implies
v.34+% (1.194)
ot 7 '
with J = 2 [)V1) —1) V)] and p = 1p1), which is the well-known conservation law for the probability density
p.

1.17 Schrodinger equation for a single electron in a magnetic field

Now we take i = 1 and we reformulate the Schrodinger equation for the single electron wavefunction 1 (x, t)
in a magnetic field. Let ®(x) = (P1(x), P2(x), P3(x)) be the time-independent magnetic potential, with
b = V Xx ® the magnetic induction, V' (x) the time-independent electric potential, e is the charge on the
electron, and m its mass. Then the canonical form for the Schrodinger equation in a magnetic field is then

A 20 =2\ vy
@ = o o -2 Q. (1.195)
Vg, + 9 =@ i ey ) \ W
The key identity still holds and
1 ied
Qv = *%V¢+%¢v
i
q = _51/]7
0g: V2 iV (e®yY) i O ie® i oY
. - = - - =—— —— — . 1.1
Vot om | 2m 2ot~ am WV tagr Vv (199
Thus we have
ia—w = i[iv+e<1>]2w+ev¢ (1.197)
ot 2m ’ '

which is the Schrodinger equation in a magnetic field.

1.18 Rewriting the Dirac equation

The Dirac equation for the electron can be represented using the 4 x 4 matrices

oo _ (20 L (0 o,
7_ O —Z.IQ, 7__ Oa

oy
2 = ( 0 "y), - < 0 "Z)7 (1.198)
-o, 0 —o, 0

where I is the 2 x 2 identity matrix o, o, and o, are the Pauli matrices so that
i 0 0 1
1, —
2 (0 z) ’ (1 0) ’
0 —i 1 0
= . 1.199
w=(0) ) @199

0 -1

o,
o,
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Setting the speed of light ¢ = 1, Dirac’s equation for the electron wavefunction 1), which is a 4 component
vector, takes the form
9

iyt = map, (1.200)

o

in which (z1, xs, 3, 24) = (2,9, 2,t) and m is the mass of the electron. It can be reformulated as

.0
Q 0 0 0 0~ 2%
Q2 0 0 0 0 2 i%
a | =] 0 0 0 0~ ; 6671/} . (1.201)
ar 0 0 0 0 iy o
V-q Ayl o2 A8 a0 %I f/j
’ ’ v

Here V = (i%, '6%, '8%, %) and q = (q1,4d2,4q3,q¢) is a4 x 4 matrix. Thus

V-q:ia—+z—+z—+— (1.202)

is a 4-component vector. Note that the matrix Z entering the constitutive relation is Hermitian because
~, 42,43, i~ are all anti-Hermitian.
Now let us verify this corresponds to the Dirac equation:

a = 7YY, =7 a@a=7v a@=i"
Vg = Vgt
= 1 vlg—f—k'f%—i—’y?’% —&-i'yoaa—lf
_ 71@%’ 2%’ 3%_7O%+2%¢, (1.203)

and from the last two lines we see this is indeed equivalent to (1.200).
The equations (1.201) can be abbreviated as

s iV
a =z| 2 |, (1.204)
iV g+ B "
Checking the key identity we find
Ao A%
) 0 . 0q:
U 2 = Z%'W+qt~a—”f+z<vqx>¢+%¢
iV g+ G "
v iqw)
= . =V Q(x,t). (1.205)
(‘a%) (—th Ge.2)
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1.19 Adding sources, regularizing the equations, and making them
into periodic composite problems
Source terms are easily handled for any of the problems we have discussed, in a similar way that the source

term a(x)# is handled in the thermoelasticity equation (1.20).
Suppose h(x, t) is the source term and 6 is a constant scalar, and we have the relation

G(x,t) = Z(x,t) F(x,t) + 6h(x,t). (1.206)

Then we can reformulate this as
g(x,t) \ _ Z(x,t)T h(x,t)\ (F(x,t) . (1.207)
V- r(x,t) h(x,t)!  c(x,t) 0
Here r(x, t) is a field not subject to differential constraints, and ¢(x, t) can be chosen as we please. The main
observation is this: since G - F can be written as a divergence, i.e., G(x,t) - F(x,t) = V - Q(x, t), we have

the key identity
L&) (C5 ) = [ neamn + ot 1200

Again, however, we have the caveat that this may not be so useful as r(x, t) cannot be directly obtained from
boundary measurements.

In many of the equations we have discussed the matrix Z(x, t) is Hermitian, or such that the Hermitian
part of Z(x,t)/i is positive semidefinite, rather than positive definite. To regularize the problem we can add
a small imaginary part ¢0I to Z(x,t). Also in the presence of source terms we can assume c¢(x,t) has an
imaginary part. That is, instead of (1.207) we can consider the equations

(o) -Cal ) e

g z N

We may now look for solutions to these equations where G (x,t), F(x,t), Z(x,t) and Q(x,t) are periodic
functions with a common unit cell of periodicity €2 in space—time. Here we are focusing on wave equations:
for static or quasistatic equations one expects Q(x, t) to be a sum of a linear part plus a periodic part. Due to
the periodicity of Q,

/Q’(x,t)-]:(x,t):/ n-Q(x,t) =0, (1.210)
Q a0

since at opposing points across the cell Q(x, t) takes the same value, while the outward normal n has opposite
directions. Hence G(x,t) and F(x, t) lie in orthogonal subspaces.
Now let us define the space £ to consist of all Q-periodic fields E that are square integrable in the unit

cell, of the form
E— (f(z’t)) , 1.211)

where F(x,t) satisfies the differential constraints appropriate to that field. We define 7 to consist of all
Q-periodic fields J that are square integrable in the unit cell, of the form

J= <g5<’(;§)> 7 (1212)
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where G(x,t) satisfies the complementary differential constraints appropriate to it, and the 2-periodic field
S(x) has zero average value over the unit cell, but is not subject to any differential constraints. The space U
consists of all constant fields of the form
U= (O> , (1.213)
c

where c is a constant. These three spaces U, £ and J are mutually orthogonal and the problem of solving
(1.209) is equivalent to the following: given Ey € U (with ¢ = 6), find fields E € £,J € J,and Jy € U
such that

Jo+ J(x,t) = Z(x,t)[Eo + E(x,t)], (1.214)

which as we will see in the next chapter is a problem in the abstract theory of composites. A similar formulation
can be applied to time-harmonic problems, with w replacing ¢, and with the fields G(x,w), F(x,w), Z(x,w)
and Q(x,w) being periodic functions with a common unit cell of periodicity €2 in space. In this setting
quasiperiodicity (Bloch wave) conditions are natural on the cell of periodicity of Z(x,w), so to allow for this
one should take € to include many unit cells of Z(x, w).

We may, for example, solve (1.214) using Fast Fourier Transform methods (Moulinec and Suquet, 1994,
1998; Eyre and Milton 1999; Moulinec and Silva 2014; see also Section 14.11 of Milton 2002), although the
main interest will probably be in finding solutions when the regularization parameter § entering (1.209) is
small, and in this case the convergence of the Fast-Fourier transform algorithms may be slow.
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Composites and the associated
abstract theory
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Abstract

We provide an introduction to composites and review the accompanying abstract theory,
where effective tensors are associated with a linear operator acting in a Hilbert, or finite-
dimensional vector space with an inner product, that is decomposed into three orthogonal
subspaces. The purpose of the chapter is to provide the necessary background for the reader
in a handy place relative to the rest of the text. It is shown that convergent series expansions
can be developed for the fields, and minimization variational principles developed for the
effective tensor. We also review the theory of the Y, tensor. This tensor is associated with
a Hilbert, or finite-dimensional vector space with an inner product, that is decomposed into
two orthogonal subspaces in two different ways, with a linear operator and accompanying
Y. tensor each acting on subspaces which are orthogonal complements. The transformation
from the effective tensor to the Y, tensor had its origins in the theory of composites for
simplifying bounds, and for preserving analytic properties. The Y, tensor is also naturally
associated with resistor networks and the set of batteries that power the network.

2.1 An introduction to composite materials

The purpose of this chapter is to provide a brief introduction to composites and the associated abstract theory,
for those readers not familiar with it, in a convenient place relative to the rest of the text.

Theoretical studies of composites have a long history: see the excellent review of Landauer (1978) who
mentions that in 1837 Faraday had proposed a model of dielectrics consisting of metallic inclusions separated
from each other by insulating material, and in 1846 Mossotti had submitted a paper “Analytical discussion
of the influence which the action of a dielectric medium exerts on the distribution of the electricity on the
surfaces of several electric bodies dispersed in it”, but which was not published until 1850, as in the meantime
he had fought in the first war for Italian independence at the head of a battalion of students at the University
of Pisa, and was subsequently made prisoner.

Examples of composites include porous rock containing oil or salt water (of obvious interest to the oil
industry); suspensions or colloids such as clouds, fog, mist, rain, dusty air, aerosols, or milk (which has
butterfat globules in a watery solution), flour in water; silts or clays; carbon fiber composites; reinforced
concrete; fiberglass in resin; wood; paper; sheep and steel wool; cotton; artificial and natural opals (consisting
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of periodic arrays of silica spheres); polycrystalline materials such as metals, basalt and granite; sintered
materials; foams; shape memory materials; sea ice containing pockets of sea water in ice; snow; ceramics;
materials with microcracks; magnets (where magnetic domains cause inhomogeneities); liquid crystals with
a spatially varying order-parameter; air (where thermal fluctuations cause inhomogeneities as manifested in
the twinkling of stars); bone and biological tissue; and even chocolate chip ice-cream. Alloys, gels, glasses,
and rubbers are generally not regarded as composites, as the inhomogeneities are on the atomic or molecular
scale rather than on a larger scale, and one needs quantum equations rather than classical equations to predict
their macroscopic properties.

In general a composite is periodic or statistically homogeneous on some length scale: if it is not we call
it an inhomogeneous body. Roughly speaking, statistical homogeneity means that correlation functions, such
as the probability that a polyhedron will land with all vertices in one phase when dropped randomly in say a
sufficiently large cubic sample of the composite (called a Representative Volume Element (RVE) : see Hashin
1983 and Nemat-Nasser and Hori 1999), will be essentially independent of where that cubic sample was taken
from (within a range determined by the length scale at which the material is statistically homogeneous). This
definition is not so precise, but this is fitting as most materials are only composites in an approximate sense.
Assumptions such as periodicity or translational invariance of ensembles of materials [See the books of Beran
(1968); Bensoussan, Lions, and Papanicolaou (1978); Bakhvalov and Panasenko (1989); and Zhikov, Kozlov,
and Oleinik (1994), and the article of Kozlov (1978)] lend precision to the meaning of a composite material
and the associated definitions of effective tensors, but it is to be keep in mind that these are idealizations. We
will see, in Chapter 3, that the abstract theory of composites also applies to inhomogeneous bodies, without
the assumption of periodicity or statistical homogeneity.

In the theory of composites one is interested in the effective moduli of materials. The effective moduli gov-
ern how the material responds on the macroscopic scale: for a material which is periodic on the microscale, it
behaves almost the same as a homogeneous material with moduli the same as the effective moduli. The math-
ematical framework for giving a precise meaning for this is homogenization theory. To describe a sequence
of say conducting materials with finer and finer microstructure, we take a periodic function o (x), where x
takes values in 3-dimensions, and consider the sequence o(x) = o(x/¢) of conductivity tensor fields pa-
rameterized by a real positive number € and consider what equation the associated electrical potential V,(x)
satisfies in the limit as e — 0. To fix things so that the solutions are unique we could, for example, assume x
is constrained to lie inside a body €2 which is independent of €, and require that V,(x) takes an e-independent
value Vj(x) at the boundary 02. Additionally we require that the matrix representing the conductivity tensor
o(y) is symmetric and real, and that o (y) is bounded, i.e., there exists a constant 3 > 0 such that

Bl >o(y) forally, 2.1

(where the inequality holds in the sense of quadratic forms, implying that 81 — o (y) is a positive semidefinite
matrix for all y) and that o (y) is coercive, i.e., there exists a constant o > 0 such that

o(y) > ol forally. 2.2)
Then it can be shown that if V. (x) satisfies
V-o(x/e)VVi(x) = —f(x) forallx e Q, V.(x)=Vy(x)ondQ, (2.3)

where the source of current f(x) is assumed to be independent of ¢, then the potential V. (x) converges
(strongly) to the potential V; (x) satisfying the homogenized equation :

V.o.VVi(x)=—f(x), forallxeQ, V.(x)=Vy(x)onodf, 24)
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where o is the effective conductivity tensor. One remark is that while V,(x) converges to V,(x), VV,(x)
only converges to VV, (x) in a weak sense, as fluctuations in the electric field still remain. The weak conver-
gence implies the volume integral of g(x)V V. (x) converges to g(x)VV,(x) for all (e-independent) smooth
scalar-valued test functions g(x) with compact support contained in 2. One can generalize the result to func-
tions o.(x) = o(x,x/e) which depend on both the “slow variable” x, and the “fast variable” x /e, where
o(x,y) is periodic in y: in this case the associated effective tensor o, (x) depends on position, and at a
point xg, 0. (Xo) is the same effective tensor as that associated with the periodic material o (xo,x/€). One
can also consider materials where there are inhomogeneities on multiple, well-separated, length scales: a
model example is where the local conductivity takes the form o (x) = o(x,x/e,x/€?, x/e%,...,x/€")
where o (x,y(1, y3) y®) . y() is periodic in each variable y\), j = 1,2,...,n. Thus homogeniza-
tion is a bit like quantum mechanics: one is interested in functions of one variable x (such as the electron
density in quantum mechanics) but to obtain it one needs to solve equations involving functions of multiple
variables (such as the electron wavefunction in quantum mechanics). In quantum mechanics the number of
dimensions is related to the number of particles, while in homogenization it is related to the number of length
scales. Periodic homogenization is described in the books of Bensoussan, Lions, and Papanicolaou (1978);
Sanchez-Palencia (1980); Bakhvalov and Panasenko (1989); Persson, Persson, Svanstedt, and Wyller (1993);
and Zhikov, Kozlov, and Oleinik (1994). The two-scale and multiscale treatments of Nguetseng (1989), Allaire
(1992), and Allaire and Briane (1996), provide a rigorous basis for the method.

Homogenization theory also applies to random, but statistically homogeneous, materials: these can be
treated by considering an ensemble of such materials and taking ensemble averages rather than volume aver-
ages. [See the books of Beran (1968); Bensoussan, Lions, and Papanicolaou (1978); Bakhvalov and Panasenko
(1989); and Zhikov, Kozlov, and Oleinik (1994), and the article of Kozlov (1978).] It has been shown by Pa-
panicolaou and Varadhan (1982) and Golden and Papanicolaou (1983) that the ensemble averaged definition
of the effective conductivity tensor agrees with the more physical definition where a cubic sample of the
composite is taken and then o, is obtained in an infinite volume limit as the size of the cube tends to infinity.

In fact, amazingly, homogenization theory in the framework of G—, H—, or I'—convergence (which we not
fully describe as they will not be needed in this book) applies to any real symmetric matrix-valued sequence
o (x) which is bounded and coercive (with constants 3 and « that are independent of €) provided one takes
an appropriate subsequence. [See for example, the articles of De Giorgi (1984), Allaire (1997), and Murat
and Tartar (1997), the books of Buttazzo (1989), Dal Maso (1993), Zhikov, Kozlov, and Oleinik (1994), and
Attouch (1984), and the lecture notes of Raitums (1997). Allaire (1997), in particular, provides an excellent
short summary of the different approaches.] Roughly speaking, the restriction to a subsequence allows one to
remove parts of the sequence where in some region, for example, o . (x) oscillates as € varies but is independent
of x. This general perspective is beautiful, but has the difficulty that in physical experiments one is given a
single material and it is difficult to imagine what an associated sequence o(x) could be.

A suspension of bubbles in water is very good at screening sound (and hence has been used to cloak the
sound of submarines): it behaves as an effective material with a large damping to compression oscillations
(essentially the water near the bubbles is sheared, and the shear viscosity of the water is converted to a com-
pressional viscosity of the bubbly fluid). It’s easy to do an experiment yourself: take an empty wine glass
(filled with air) — it rings when struck with a table knife. Fill it with water — it again rings. But add Alka—
Seltzer and wait until it effervesces — the composite of air bubbles in water only produces a dull thud when
the glass is struck by the knife. The brilliant reds of old stained glass windows, and the colors of the Roman
Lycurgus cup, (https://en.wikipedia.org/wiki/Lycurgus_Cup) come from the effective electromag-
netic properties of suspensions of tiny gold and silver particles, not from any chemical interactions. A sponge
rubber behaves as an effective elastic material, the holes only becoming evident on closer inspection. An array
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(a) (b)

Figure 2.1: Grima and Evans (2000) realized that an array of rotating rigid squares, as shown in (a),
attached at appropriate corners by flexible junctions would have a Poisson’s ratio of —1 over a finite
range of deformation, i.e., a dilation would be the only easy mode of deformation. [An earlier, but
more complicated, model having this property is the hexagonal spoked model of Milton (1992).] Under
stretching the material deforms from (a) to (b). Their model simplified a related one given in Figure 4 of
Sigmund (1995). Three dimensional materials for which a dilation is the only easy mode of deformation
over a finite deformation range have been constructed by Sigmund (1995), Milton (2013a), Biickmann,
Schittny, Thiel, Kadic, Milton, and Wegener (2014) and Milton (2015b).

of parallel conducting wires in a dielectric medium has an effective conductivity which is highly anisotropic,
being greatest in the direction of the wires. The effective properties of rock containing oil and salt water are
important to the oil industry, a high effective conductivity indicating the presence of salt water rather than
oil. The effective properties of polycrystalline rocks are important to geophysicists in seismic studies. Metals
can be treated to control their polycrystalline structure to obtain desired properties The effective properties of
carbon fiber composites are important in applications. The theory of composites is discussed in the books of
Cherkaev (2000), Milton (2002), Allaire (2002), Torquato (2002), Tartar (2009).

There are surprises in the theory of composites: it is possible to combine materials which narrow when
stretched to obtain (auxetic) composites which widen when stretched (Lakes 1987; Milton 1992; Greaves,
Greer, Lakes, and Rouxel 2011). A beautiful example of a composite which does this is illustrated in Fig-
ure 2.1. It is also possible to combine three materials (or two plus void) all of which by themselves expand
when heated to obtain a composite which contracts when heated, or alternatively which expands more than
the constituent materials (Lakes 1996; Sigmund and Torquato 1996, 1997). An example showing how one
can get negative thermal expansion from positive thermal expansion is shown in Figure 2.2. One can com-
bine materials with positive Hall-coefficient to obtain a composite with negative Hall-coefficient (Briane and
Milton 2009, Kadic, Schittny, Biickmann, Kern, and Wegener 2015), thereby destroying the argument that in
classical physics it is the sign of the Hall coefficient which tells one the sign of the charge carrier; one can
combine nonmagnetic materials to produce artificial magnetism and composites with negative magnetic per-
meability (Schelkunoft and Friis 1952, Pendry, Holden, Robbins, and Stewart 1999); as shown in Figure 2.3
one can combine materials with positive mass density to obtain composites with negative effective mass den-
sity (Sheng, Zhang, Liu, and Chan 2003; Liu, Chan, and Sheng 2005); and as shown in Figure 2.4 one can
obtain materials with anisotropic and even complex effective mass density (Schoenberg and Sen 1983; Mil-
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L

(c)

Figure 2.2: Figures (a) and (b) show a mechanism whereby one can get negative thermal expansion from
positive thermal expansion. The black regions are rigid and do not expand much when heated while the
shaded regions expand a lot, thus shortening the length of the structure from (a) to (b) as it is heated.
Figure (c) shows how one can extend this idea to two dimensions, where the white region between the
elements is void, or material that is easily compressed. The microstructure can also clearly be extended
to three dimensions.

ton, Briane, and Willis 2006; Biickmann, Kadic, Schittny, and Wegener 2015). In fact, it follows directly from
the work of Movchan and Guenneau (2004) that there is a close link between negative effective mass density
and negative magnetic permeability: in cylindrical geometries the same Helmholtz equation underlies both
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B = Lcad B = Rubber | |= Stiff

Figure 2.3: As shown by Sheng, Zhang, Liu, and Chan (2003) and Liu, Chan, and Sheng (2005), negative
effective mass density can be achieved in composites consisting of inclusions of coated spheres, with a
core of lead surrounded by rubber, in a stiff light matrix. As the material is oscillated above the resonant
frequency the lead balls move out of phase with the velocity v of the stiff light matrix, which from the
outside is the only velocity which matters. Thus when the lead balls are moving in the direction of the
arrows pointing to the right, the average momentum p is also in this direction, while the matrix is moving
in the direction of the arrows pointing to the left. Hence p and v are in opposite directions: the effective
mass is negative.

antiplane elasticity and transverse electric (TE) or transverse magnetic (TM) electromagnetism.

Composites which have unexpected properties outside the range of naturally occurring materials are fre-
quently called metamaterials: see Cai and Shalaev (2010) for an introduction to the topic of optical metama-
terials, and see Banerjee (2011) and Craster and Guenneau (2013) for an introduction to acoustic and elastic
metamaterials.

We mention too, that part of the reason for the surge of interest in these metamaterials arises because three-
dimensional lithography and printing techniques (Pendry and Smith 2004; Kadic, Biickmann, Stenger, Thiel,
and Wegener 2012; Biickmann, Stenger, Kadic, Kaschke, Frolich, Kennerknecht, Eberl, Thiel, and Wegener
2012; Biickmann, Schittny, Thiel, Kadic, Milton, and Wegener 2014; Meza, Das, and Greer 2014) now allow
one to tailor beautiful structures with desired properties. Still there are limitations: usually one wants the
cell size to be small and this restricts the size of the overall sample, since in three dimensions the number of
cells scales as the cube of the sample side. For this reason metasurfaces may hold more promise for practical
applications.

To determine the effective properties of composites it usually suffices to consider periodic materials (i.e.,
take a large cubic sample of the material and periodically extend it). So one looks for solutions of (1.5) where
j(x), o(x) and e(x) are periodic functions with the same unit cell of periodicity €2 as the composite. The
potential V' (x) however is not periodic: it has a linear part —(e) - x plus a periodic part: here the angular
brackets denote a volume average over §). It is the relation between the volume averaged current field (j) and



2.1. An introduction to composite materials 53

Figure 2.4: This figure, which is a variant of Figure 3 in Milton, Briane, and Willis (2006), shows how
it is possible to get metamaterials with an anisotropic and possibly complex effective mass density. The
body is treated as a black box, and one is interested in how its momentum is related to its velocity under
time-harmonic vibrations at a fixed frequency w. If the spring constants K and M are different, then the
inertial responses to vibrations in the horizontal and vertical directions differ: the effective mass density
is anisotropic. If the springs in the cavities have some viscosity, causing energy loss, then the effective
mass density will be complex-valued.

the volume averaged electric field (e) which determines the effective conductivity tensor o ;

() = o (e). 2.5)

So the recipe for obtaining o, is to compute the periodic fields e(x) and j(x) for a basis set of independent
“applied fields” (e) (d applied fields in d dimensions), find (j) for each of them, which then through the linear
relation (2.5) determines the effective tensor o.. In experiments applying the field (e) is achieved by inserting
a large sample of the material (with many unit cells) between parallel conducting plates. If the unit cell has
some reflection symmetries, then it may suffice to put a single cell between the plates, with no flux of current
through the sides of the unit cell.

For conduction in a magnetic field the Hall effect causes the conductivity tensor to be nonsymmetric
(Landau, Lifshitz, and Pitaevskii 1984), and convection enhanced diffusion also can be cast as a problem
with a nonsymmetric conductivity tensor (Fannjiang and Papanicolaou 1994). We remark in passing that the
nonlinear equations of conduction similarly apply to a wide variety of problems (Milgrom 2002).
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2.2 The history of the abstract theory of composites

This section can easily be skipped by those readers not interested in historical details. The mathematical
content will be revisited in subsequent sections.

Kohler and Papanicolaou (1982), Papanicolaou and Varadhan (1982) and Golden and Papanicolaou (1983)
formulated the conductivity problem in composites with random microstructure. They introduced the Hilbert
space of square integrable, stationary, fields with zero average value and observed that the nonlocal opera-
tor I' = V(V?2)~1V- was a projection onto the subspace of curl-free fields. Fokin (1982) formulated the
conductivity problem in terms of two projections onto orthogonal subspaces. Dell’Antonio, Figari, and Or-
landi (1986) considered the response of bodies under quite general boundary conditions and formulated the
equations for conductivity and elasticity in terms of appropriate projections, which for periodic boundary
conditions reduce to the projections onto the space of vector fields which are gradients of periodic scalar
potentials, or for elasticity are the symmetrized gradient of a periodic vector potential.

The general formulation applicable to many problems in composites, not just conductivity, where the
Hilbert space is split into three-orthogonal subspaces U, £ and J each appropriate to the problem at hand was
presented by Milton (1987a, 1990).

By contrast the theory of the Y-tensor Y, developed from many different directions. Walpole (1966)
noticed, for example, that the bounds of Hashin and Shtrikman (1963) and Hill (1963) on the effective bulk
modulus £* of an isotropic 3-dimensional composite of 2 isotropic phases, having bulk moduli 1 and ko,
and shear moduli w7 and po, with p11 > ps could be expressed as

2
D filss +r)] T = R5 < e <D filkT + R =R (2.6)

where k5 = 45/3, k] = 41 /3, and f; and f5 are the volume fractions of the two phases (with f; + fo = 1).
Milton (1981b, 1982) found the conductivity bounds of Beran (1965) could be simplified to

fif2(o1 —02)?

0. < 01+ fo02 — ’
fio1 4 fa00 fao1 + fro9 +2((ro1 + (202)
fif2(1/o1 = 1/o5)?
1/o. < o1+ J2/02 = ’ =7
/ fifor+ faf o fe/or+ fi/oz+ (Ci/or+ G/o2)/2
and similarly the bulk modulus bounds of Beran and Molyneux (1966) could be simplified to
fifa(ki — K2)?
ke < K1+ foko — '
Jik1 + fako for1 + fike +4(Crn +C2M2)/3
1/k1 — 1/k2)?
ke < fi/k1+ fa/k2 - Pl e ey

fa/k1+ fi/k2 +3(C/p1 + Co/p2) /4

where the nonnegative parameters (; and (5 (with (; 4+ (2 = 1) are given by

2f1fz/ dr/ ds/ fm o u)Pz(U% 2.9)

in which P»(u) = (3u? — 1)/2 is a Legendre polynomial, and f111(r, s,u) is the probability that all three
vertices of a triangle having side lengths r and s, and included angle cos ™! u land in phase 1 when thrown

G=1-C¢=
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randomly in the composite. (The conductivity bounds of Beran (1965) were also simplified by Torquato
(1980)). Part of the reason I chose this form for the simplified bounds was that I realized when formulating it
that, for example, the second bound in (2.7) could be expressed equivalently as

f1f2(01 — 02)?
Jao1 + fioa +2(C1 /o1 + G2 /o2) 7!

thus connecting it to the form of the upper bound in (2.7). Also the form (2.7) of the bounds displays a nice
symmetry in the sense that when o; is replaced by 1/0;, for j = 1,2, * in the upper bound it almost maps
to the lower bound apart from the factor of 2. Values for the parameter (; = 1 — (2, and an associated one
m = 1 — 12 which enters the simplified bounds on the effective shear modulus (McCoy 1970; Milton 1981b,
1982; Milton and Phan-Thien 1982; Gibiansky and Torquato 1995), are given for various microgeometries in
the references found in the section 15.6 of Milton (2002) and in the book of Torquato (2002): for recent results
with impressive numerical simulations see Gillman, Amadio, Matous, and Jackson (2015) and Hlushkou,
Liasneuski, Tallarek, and Torquato (2015).

Berryman (1982) (see also Berryman and Milton (1988)) introduced a transformation which for n-phase
elastic composites took the form

0 > fio1 + fao2 —

(2.10)

K(z)=[Y_ fidz/3+ k)] 7" — dz/3, (2.11)
i=1
and realized the bounds of Hashin and Shtrikman (1963) and Hill (1963), and those of Beran and Molyneux
(1966) as given in (2.8), could be written when n = 2 as

K(p2) < K((G /i + Gfp2) ™) < ke < K((CGu + Gop)) < K (). (2.12)

For multiphase composites with n > 3 it is not clear if the transformation (2.11) has any relation with the
Y -tensor.

For isotropic two-component conducting composites with isotropic component conductivities o; and oq
with o1 > 092, Milton and Golden (1985) found a sequence of transformations which preserved analytic
properties. The first transformation in this sequence is the transformation from o, to o} given by

ol = ow0a(ou(o") = 1)/2((0) — 0u)]
= {—foo1 — fio2 + fifalor — 02)?[f101 + fa02 — 0] 7'} /2, (2.13)

in terms of which the bounds of Hashin and Shtrikman (1962) and those of Beran (1965) as given by (2.7)
reduce to
o2 < (Gi/o1 + (ofo2) !t <ol < oy + (oo < oy (2.14)

It was found (Milton 1986a) that the related matrix transformation simplified the translation method conduc-
tivity bounds of Murat and Tartar (1985) and Lurie and Cherkaev (1986) on the effective conductivity tensor
o . of possibly anisotropic three-dimensional composites of two isotropic phases mixed in fixed proportions.

For multiphase conducting composites (and related problems) one could stratify the Hilbert space, and
obtain a sequence of effective tensors which were linked by this sort of transformation (Milton 1987a, 1987b,
1991). Independently Cherkaev and Gibiansky (1992) recognized that the translation bounds for two phase
composites with commuting tensors Ly, Ly and L, generally simplified when expressed in terms of the tensor

Y. =—foLi — filo + fifo(L1 — Lo)[fiL1 + foLo — L7 Y(Ly — Ly). (2.15)
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Later their simplification was found to be valid even when L1, L, and L, did not commute (Milton 1991). A
simple physical interpretation of the tensor Y, for two-phase composites was given by Gibiansky and Milton
(1993) [see equation (2.99) in Section 2.9]. The complete abstract formulation of the Y, tensor problem is
given in Chapters 19, 20, and 29 of Milton (2002).

2.3 The abstract setting for defining effective tensors

Here we review the general abstract theory of composites, see also Section 12.7 of Milton 2002. The setting
is a Hilbert or finite-dimensional vector space H (over the complex numbers) which has some inner product
(P1, P5) defined for all Py, Py € H, having the usual properties that

(Pl, P2) = (PQ, 1:)1)7 (Pl, Pl) >0 for all Py 7& 0. (2.16)
where the overline denotes complex conjugation. The Hilbert space has the decomposition
H=UBEDT, (2.17)

where the subspaces U, £ and J are mutually orthogonal with respect to this inner product. [By the definition
of a subspace of ‘H these are required to remain closed under multiplication by complex numbers, i.e., if P is
in one of the subspaces then so is AP for all complex numbers A.] Then we suppose we are given an operator
L which maps fields in H to fields in . Given a field or a vector Eg € U the problem is to find fields or
vectors

JoeclU, JeJ, Ecg, (2.18)

such that

Assuming that there is a unique solution for the fields Jg, E and J for all E, € U, then since Jy depends
linearly on E we can write
Jo = L.Eo, (2.20)

which defines the effective operator L. which maps U/ to U/, or to some subspace of it if L, is singular. There
is also the dual problem: given Jy € U, find fields or vectors Eqg € U, E € £ and J € J such that (2.19) is
satisfied. If there is a unique solution for these fields for all Jy € U/ then since E( depends linearly on Jy we
can write

Eo =L 1J, (2.21)

which defines the inverse effective operator. This formulation defining effective tensors is central to the theory
of periodic composites, where H consists of periodic fields of some sort (which may have elements which are
tensors, vectors, or scalars), that are square integrable over the unit cell of periodicity, I consists of constant
fields, and the subspaces £ and J have meanings according to the problem one is considering, with the
projections onto these subspaces being local in Fourier space. The simplest example is electrical conductivity,
where H consists of vector fields with the same periodicity as the composite that are square integrable over the
unit cell, U consists of constant vector fields, £ consists of electrical fields E(x) which are minus the gradient
of a potential with the same periodicity as the composite, and J consists of current fields J(x) with the same
periodicity as the composite, which have zero divergence and which have zero average value. The operator L
is local in real space and can be identified with the conductivity tensor o (x). Given an applied electric field
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E, € U, representing the average of the total electric in the composite, the action of L = o is to multiply the
total electric field Eqg + E(x) by o(x) to produce the total current field

Jo+J(x) = O'(X)[Eo + E(X)] (2.22)

Here Jg € U is the average of the total current field, and the linear relation between Jy and Eq defines the
effective conductivity tensor L, = o, i.e, Jg = 0. Eq.

2.4 Solving for the effective tensor and fields

To solve for the effective tensor and fields, we introduce the projections I'g, I'y, and I'; onto the spaces U, £
and 7. In the theory of composites the action of these projections are readily calculated in Fourier space, but
here we will just assume they are projection operators. Applying I'; to both sides of the relation (2.19), gives

0=TI1L(E;+E)=T4LI'\E;, + I'; LT, E, (2.23)
which implies
Jo = TY\L(Eg + E) = T\ L[l, — I';(T',LT;) " 'T, LT Ey, (2.24)

where the inverse of I'y LTy, if it exists, is to be taken on the subspace £. This gives the formula
L, =T\LIy — I‘OLI‘1(I‘lLI‘l)’lI‘lLI‘O7 (2.25)

for the effective operator L. If £ is a finite-dimensional vector space then inverting I'; LT'; will be inverting a
matrix, which will generally be no problem. If however £ has infinite dimension, then to ensure invertibility of
the operator I'y LT';, we should make additional assumptions, for instance that L is bounded on the subspace
£, i.e., there exists 5 > 0 such that

B > sup |LE|, (2.26)
Ecé
|E|=1

and that L has the following coercivity property on the subspace £: there exists cv > 0 such that
Re(E,LE) > o|E|*> for all E € £. (2.27)

To obtain an alternative formula for the effective tensor L, we introduce the “polarization field” (or polar-
ization vector if 7 has finite dimension)

P= (L — 0’01)[E0 -‘rE] =Jo+J— Uo[Eo + E], (2.28)

where we are free to appropriately choose the constant oy, which may possibly be complex. Applying the
projection operator I'; onto to the space £ to P gives

I''P = —0ogE, (2.29)

and hence we have
[I+I‘1(L/O’0—I)](E0+E):E0+E+F1P/O'0:E0, (230)

which gives
Jo+J=L(E)+E)=L[I+T(L/oyg — )] 'Eq. (2.31)
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Applying the projection I'y onto the space U/ to (2.31) we obtain the desired formula for the field

Jo =ToL[I+ T (L/og — I)] 'E,, (2.32)
and hence for the effective operator,

L. =T LI+ T (L/og —1)]7'T,. (2.33)
From (2.30) and (2.31) we obtain formulas for the fields E and J:

E = F1[1+I‘1(L/0071>]71E07
J TLL[I+ T (L/og — 1) ' E,. (2.34)

Expanding each inverse gives the associated series expansions

oo
L. = Y ToL[I(I-L/og)l’Ty,
=0

Jo = > ToLI—T:(L/gg)/E,
j=0
E = Z[Fl(I—L/Uo)]jEm

J=0

J = ) LLIN(I-L/og)VEo. (2.35)
j=0

If these series expansions converge for a given Eg € U it is quite clear that the fields lie in the right subspaces
JoeU,E € & and J € 7, and that the relation (2.19) is satisfied. This is one way to show that a solution to
the original equations exists. Although the converged fields Jo, E and J, and the effective tensor L, appear
to depend on the choice of oy, this is not the case: the tensor oI just serves as the expansion point for these
series as they converge quickest when L — oI is small. To see that the converged fields do not depend on
00, note that if we vary oy in (2.30) the left hand side changes by an amount proportional to I'y L(Eq + E),
which from (2.23) vanishes. While the effective tensor L, is of primary interest, it can also be important in
composites to know the local field Eg + E(x), or equivalently Jo + J(x), to see for example if at any point
in the material the field is close to (or has exceeded) a critical value which would cause the material to break
down (the “yield surface” for plastic yielding or the critical electric field strength for dielectric breakdown )
or to cause the onset of other nonlinearities which would render the analysis invalid. Knowing the local field
E( + E(x) is also useful if we are interested in knowing how perturbations of L(x) effect the effective tensor
L.. [See Chapter 16 of Milton (2002) and references therein.]

For composites these expansions are useful in Fast Fourier Transform methods for computing effective
tensors and fields (1994, 1998). Variants of the expansion are useful for accelerated Fourier transform methods
for computing effective tensors and fields (Eyre and Milton 1999; see also the generalization in Section 14.9
of Milton 2002, and in particular equation (14.38)). They are also useful for deriving algebraic conditions for
exact microstructure independent relations satisfied by effective tensors (Grabovsky, Milton, and Sage 2000;
see also Chapter 17 of Milton 2002).
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In multicomponent media the series expansions (2.35) are useful for proving that the fields and effective
tensor are analytic functions of the component moduli (provided those component moduli are such that the
series converges): see Bruno (1991b), Bruno and Leo (1992), page 372 of Milton (2002) [though there I
should have referenced Section 14.7 page 300 since if L(x) is complex it is not self-adjoint], and also Section
3.5 of the current book.

To show convergence we recall the definition of the norm of an operator A:

|Al|=sup [AP], (2.36)
P(x)
|P|=1
where
Q= (Q.Q)"/2. (2.37)
The operator norm has the properties
IAB[I< [[A][IBI, [IA+B|< [|Af+[]B], (2.38)

and I'y and I'; being projections have norm 1. Hence all the series in (2.35) will certainly converge if
|I—L/oo|< 1. (2.39)

To establish that I — L /o has norm less than 1, for an appropriate real value of oy, when L is bounded,
i.e., there is some 3 > 0 such that
B> sup |LP|, (2.40)
PcEH
[P[=1

and L is coercive in the sense that there is some « > 0 such that
Re(P,LP) > a|P|*> forall P € H, (2.41)

we follow (with some corrections) Section 14.7 of Milton (2002). For any field Q € H, introduce Q' =
(I-L/00)Q, sothat LQ = 0¢(Q — Q’). Then the coercivity property (2.41) with P = Q implies

oo[|QI*—Re(Q, Q)] > a|QJ?, (2.42)
whereas the boundedness of L (2.40) implies
#21QI*> o51Q - QP (2.43)
which, when expanded out, gives
2Re(Q, Q) > [1 - (8/00)*]|QI*+|Q'*. (2.44)
Combining (2.42) and (2.44) gives
[1+(B8/00)* = 2(a/00)]|QI*> |Q'[, (2.45)

which implies
I = L/oo]|< [L+ (B/00)* = 2(a/a0)]'/2. (2.46)
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Thus by choosing oy = 3%/« we obtain the bound

IT—L/ool|< V1-(a/B)? <1, (2.47)

which ensures convergence of the series.

When the coercivity property (2.41) is satisfied, then solution to the equations is unique. To see this,
suppose there is another solution J, € U, E' € £, and J' € J to (2.19) with the same value of Ey € U.
Subtracting solutions we get

Jo—Jo+J —J)=L(E —-E). (2.48)
Using the coercivity condition (2.41) with P = E’ — E, and using the orthogonality of the subspaces, implies
0=Re(E' —E,(J, —Jo+J' —J)) =Re(E — E,L(E' —E)) > o|E — E. (2.49)

From this we deduce that E' = E, and then projecting (2.48) onto the subspaces U and J gives J;, = J; and
J’ = J. This uniqueness provides an alternative proof that the solutions (2.35) cannot depend on oy.

Note that the norm ||T — L/ag|| does not change if we multiply o by a phase factor ¢’ and at the same
time multiply L by this same factor. Hence we obtain convergence when L is bounded and L is coercive in
the sense that there is some « > 0 and angle 8 such that

Re(P,e’LP) > a|P|? for all P € H. (2.50)

2.5 An example: a subspace collection associated with a function that
takes positive semidefinite matrix values
Consider a positive semidefinite Hermitian n» x n matrix valued function m(y) defined on the interval y €

[0, 1], with bounded integral over this interval. Now given two 2n-dimensional vector fields Py (y) and P2 (y)
defined on the interval y € [0, 1] of the form

rin=(31). Peo=(320)

we define their inner product to be

(P17P2)=/0 Ai(y) - Az(y) + Bi(y) - Ba(y) dy, (2.52)

and the associated norm is then |P|= (P,P)Y/2. We take our Hilbert space  to consist of such 2n-
dimensional vector fields P(y), with y € [0, 1] having finite norm. The subspaces P; and P, are defined
to consist of fields that can be expressed in the form

_ VY P1(y) _ (V1@ =y)p2(y)
Pl(y)_( (1—y)p1(y))’ PQ(y)_( —\/9p2(y) ) (29

respectively for some choice of n-dimensional vector fields p; (y) and p2(y) defined on the interval y € [0, 1].
They are clearly orthogonal spaces, with respect to the inner product (2.52), and the associated projection
operators are

- ( y(yln y1—y) In>’ o (_ 1=y, —@In) sy

l-yL, (Q-yI, y(1 -y I, yI,
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in which I, is the n x n identity matrix. Clearly x1 + X2 is the 2n x 2n identity matrix I,,. We define ¢/ and
£ to consist of all fields that can be expressed in the form

- (). 8- (3)

for some choice of n-dimensional vector u, and for some choice of n-dimensional vector field e(y) defined
on the interval y € [0, 1]. Here the square root of the matrix m(y) is defined in the usual way: \/m(y) is
Hermitian and positive semidefinite and has the same eigenvectors as m(y), but eigenvalues which are the
square root of those of m(y). To obtain an orthonormal basis for I/, we consider a set of n fields of the form

m(y)u;
U; = < 0 J) , (2.56)
where the n-dimensional vectors u;, j = 1,2, ..., n, are real. These have inner products
1
(U;,U) =1u; - Wuy, where W :/ m(y) dy. (2.57)
0

Clearly the matrix W is Hermitian and positive semidefinite. If we assume it is in fact strictly positive definite,
then we can find an orthogonal set of n vectors u; such that

W= "/l (2.58)
=1

i.e., the u; should be chosen as the eigenvectors of W with lengths [u;|= (@;7 -u;)'/? chosenso 1/|u,|? is the

corresponding eigenvalue. Then from (2.57) we see that the fields U, j = 1,2,...,n, form an orthonormal
basis for ¢/, satisfying (U;, Uy) = 6;%. The projections onto I and £ are then given respectively by

n
0 O
P =Y U;(U,P), Ty= (O : ) . (2.59)
j=1 n

We define J to be the orthogonal complement of &/ @ £ in the Hilbert space H. Let us suppose the operator
L acting on fields in H has the form
L =o01x1 + o2x2, (2.60)

where o1 and o are (possibly complex) scalars. Then, since

1 (IO 0
Iy (T, LT)"'T, = (0 s+ (1 — y)al]_11n> , (2.61)

we deduce that

1 1—y)(o1 — 02)0; - m(y)uy
U, LT,(T,LT,)"'T, LU :/ u 1~ 92)7 Y
(U, LEL(PLL0) T LU 0 yo2 + (1 —y)or

1
(U, LUy) = / (yor + (1 — 9)0a) T - m(y)ug dy, 2.62)
0

dy,
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implying, via (2.25), that the effective operator L, using this basis U;, j = 1,2,...,n, of U is represented

by the matrix with elements
1 I
;- m(y)uy
(L.} = / i dy. (2.63)
’ o y/or+(1—y)/oz
Introducing the matrix valued measure dM(y) with elements {dM(y)} ;x = T; - m(y)uy, dy, we can rewrite
this as

Y {aM@y)}k ' s
Ladye = [ AT e [ (M)} = 55 2.64)

in which the last identity follows by integrating {dM(y)},x over y € [0, 1], giving U; - Wuy, = §;3.

In fact, the integral representation formula (2.64) for the effective operator L, as a function of ¢y and o4
holds true, not just for our example, but more generally whenever the three subspaces U/, £ and J are mutually
orthogonal, and L has the form (2.60) where x; and x2 project onto subspaces P; and P that are orthogonal
complements in the space H. This representation formula follows from the analytic properties of the function
L.(01,02) (Bergman 1978; Milton 1981a; Golden and Papanicolaou 1983; see also Chapter 2 of Milton
2002). The measure dM(y) can be recovered from the values that L, (o1, 1) takes as o1 ranges just above the
negative real axis. What the above example shows is that any function L, (o1, 03) of the form (2.64), where the
n X n matrix valued measure dM (y) takes positive semidefinite values, can be associated approximately with
the effective tensor of a subspace collection, by replacing dM (y) with a continuous measure m(y) dy. (Then
W = I and the vectors u;, j = 1,2,...,n can be chosen to be orthonormal.) For conducting composites,
in two or more dimensions, one can find periodic microstructures that realize (to an arbitrarily high degree
of approximation) as a diagonal element of their effective conductivity tensor o, any scalar valued function
{0+ }11(01, 02) of the component conductivities o1 and o5 having this integral representation (Milton 1981c;
see also Section 18.4 of Milton 2002): y has the physical interpretation of the volume fraction of phase 1 in a
laminate of both phases with layer surfaces perpendicular to the x;-axis (so the effective conductivity of that
laminate in the x1-direction is the harmonic mean 1/(y/o1 + (1 — y)/02)) and at a much larger length scale
these laminates are layered together in an orthogonal direction (so one gets an arithmetic average of their
effective conductivities in the x;-direction), with the measure {dM(y)}11 giving the proportions of these
laminates in the final microstructure.

2.6 Some properties of the effective tensor

Not only is the norm ||I — L/oy|| invariant when multiply L and o by a phase factor, but more generally
if Eg,Jo e U, E € £and J € J solve (2.19) then for any complex number A\, Eg, \Jg € U, E € £ and
AJ € J, will solve the equations when L is replaced by AL. In this way we see that if L is multiplied by a
constant A so will be L.

The effective tensor has the property that when we replace the operator L by its adjoint, then the effective
tensor is replaced by its adjoint. To see this, we follow Section 12.10 of Milton (2002), and suppose that we
are given fields Eg, E( € Y. Let Jo € U, E € £, and J € J be the associated fields which solve (2.19) and
letJ, € U, E' € £, and J' € J be fields which solve the adjoint problem,

J,+J =LY(E, +E), (2.65)
where L1 is the adjoint of L, meaning that

(P, LP) = (L'P’,P), forallP',P €. (2.66)
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Now the orthogonality of the subspaces implies the string of identities

(B, L.Eo) = (Ep,Jo) = (Ej +E,Jo+J) = (E) + E,L(E; + E))
= (LY(E,+E),Ec+E)=J,+J,Ey +E) = (J,Eo)
({L'}.Ef, Eo). (2.67)

We conclude that the problem with tensor L' has an effective tensor {LT}* which is the adjoint of L,. A
corollary is if L is self-adjoint (meaning LT = L) so too will be the effective tensor L.
We also have the identity that

(Eo, (L, + {L'}.)Eg) = (Eo,J0) + (Jo,Eq) = (Eg + E,Jo+J) + (Jo + J,Eg + E)
= (Eo+E,(L+L")(Ey+E)). (2.68)
Defining
L! = (L. +{L™},)/2, L,=(L+LM)/2, (2.69)

as the self-adjoint parts of L, and L, we see that L is positive semidefinite on ¢/ whenever L; is positive
semidefinite on H. More generally using the invariance discussed at the beginning of this section, if for
any value of 0, (e?L + e~%LT)/2 is positive semidefinite, so too will (¢?’L, + e~*{L'},)/2 be positive
semidefinite for that value of §. In composites, with a symmetric tensor L(x), and with ¢?Y = —i this means L.,
will have an imaginary part which is positive semidefinite if the imaginary part of Li(x) is positive semidefinite.

2.7 Variational principles and elementary bounds

When the operator L is self-adjoint and positive definite, then one has a variational principle for the effective
tensor L,.:

(Eo, L.Eo) = inf (Eo + E, L(Eo + E)). (2.70)

inf
Ecé&
For conductivity this is a corollary of the well-known Dirichlet variational principle. It is easily established
in the abstract case and follows from the orthogonality of the subspaces. Following Section 13.1 in Milton
(2002), given E € £,J € J and Jy € U solving (2.19) for some Eq € U/ we have the chain of inequalities

0 < (E-ELE-E)=(E(+E—-E;—-ELE,-E-E(E))
= (Eo+EJo+J)—(Jo+J.Ey+E)— (Eg+E, Jo+J)+ (Eo +E,L(E;+E))
= (Eg+E,L(E;+E))— (Jo,Eo)
= (Eg+E,L(E(+E)— (Ey,L.E), (2.71)

where we have used the fact that L and hence L, is self-adjoint. Since the left hand side is zero when E = E we
immediately have the variational principle (2.70). The dual variational principle, (also called the Thompson
variational principle)

(Jo,L; o) (Jo+I, L7 (Jo+J)), (2.72)

= inf

JeJg
also immediately follows by switching the roles of the subspaces £ and 7, and switching L, and L with their
inverses L and L1,
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From these variational principles we easily obtain the elementary bounds:
L. >0, L.<T(Ll,, L;'<T(L™'Ty, (2.73)

where I’y is the projection onto the space {/. The first bound follows directly from (2.70) because the right
hand side is nonnegative. The other two bounds follow from (2.70) and (2.72), respectively, by taking the
simplest possible choice of trial fields namely E = 0 and J = 0.

In the simplest example of a periodic conducting composite with a local real conductivity o (x) > 0 and
effective conductivity o, the bounds (2.73) become

0.>0, o.<(o), o' <(c7"), (2.74)

where the angular brackets denote a volume average over the period cell. The latter arithmetic/harmonic
mean bounds are known as the Wiener (1912) bounds. More generally, for many other equations in periodic
composites where the local real self-adjoint tensor is L(x) > 0 and the effective tensor is L, one has the
classical bounds

L.>0, L.<(L), L'<(@L™"). (2.75)

For example, for elasticity, the latter two bounds were derived by Hill (1952) and are known as the Voigt—
Reuss—Hill bounds. [Voigt (1889, 1910) and Reuss (1929) had suggested the arithmetic/harmonic mean av-
erages as approximations, but in fact did not prove they were bounds].

2.8 The abstract setting for defining Y -tensors

Here we review the general setting of the Y -tensor problem. In the subsequent sections of the chapter we will
see how it is related to the effective tensor, and how it plays an important role in the theory of composites and
in characterizing the response of multiterminal impedance networks. The setting is now a Hilbert space or a
finite-dimensional vector space /C (with an inner product satisfying (2.16)) that has the decomposition

K=aJ=VaH, (2.76)

where the spaces £ and 7 are orthogonal complements, as are the spaces } and H. (For the moment these are
not to be confused with the spaces £, J and ‘H associated with effective tensors). We let I'; and I'5 denote
the projections onto the spaces £ and J, while we let I1; and IT, denote the projections onto the spaces V
and H. Given a linear operator L which maps H to H, the Y -tensor problem is to find for each given field (or
vector) E; € V the associated fields

EQ,JQEH, J1€V, with E = E; +E2€(€, J=J +J2€j, Jo = LEs. 2.77)

At first sight the Y-tensor problem looks almost the same as the effective tensor problem, but what is important
is the different partitioning of the Hilbert space ((2.76) compared to (2.17)) and the different association of
fields ((2.77) compared to (2.18) and (2.19)). Thus the action of L needs only to be defined on the subspace
‘H and its action on fields or vectors in } may not even be defined. Supposing that a unique solution exists for
each E; € V), the associated field (or vector) J; must depend linearly of E; and this linear relation,

J, =-Y.E,, (2.78)
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defines the linear operator Y, which maps V to V, or to a subspace of V. The dual problem consists of finding
for each given field (or vector) J; € V the associated fields

Ey,JoeH, Ei€V, withE=E +E,c€€& J=J1+J:€J, Jy;=LEs. (2.79)
Then supposing that a unique solution exists for each J; € V, the linear relation,
E, =-Y1J, (2.80)

defines the inverse operator Y, !. The appearance of the minus sign in front of (2.78) and (2.80) looks a
little strange but is motivated by the fact that defined in this way Y, is positive semidefinite, when L is
Hermitian and positive semidefinite. To see this we follow equation (19.12) in Milton (2002) and note that
the orthogonality of the various subspaces implies

0= (E; +E2,J1 +J2) = (Ey1,J1) + (E2,J2) = —(Ey1, Y.E;) + (E2, LEy), (2.81)

or equivalently that (Eq, Y.E;) = (Eg, LE3) where the latter is nonnegative if L is Hermitian and positive
semidefinite.

It is easy to check, following a string of identities like (2.67), that if an operator L has a Y-tensor Y.
then the adjoint operator Lt will have a Y -tensor Y which is the adjoint of Y. Hence adding (2.81) to its
complex conjugate we obtain

(Er, (Y. + YDE)) = (Eg, (L +L"Ey). (2.82)
More generally, noting that if we multiply L by ¢* then Y. will be multiplied by e’ we conclude that if
¢L + e~ LT is positive definite so to will be Y, + e~ Y. Taking ¢? = —i we conclude that if L is
symmetric with positive semi-definite imaginary part, then Y, will be symmetric with positive semi-definite

imaginary part.
To solve for the tensor Y, one notes that since E; + E5 € £ it follows that

IE, = —ThEy = —ThWL 1)y = —ThL 1 IL,TLJ, (2.83)
which, provided the operator 'L~ II,T'; is nonsingular on the space 7, implies
J, =11J = T, T[T LTI, ' TLE,, (2.84)

and this gives the formula
Y. = IL D5 [Tyl T, Do I, (2.85)

where the inverse is to be taken on the subspace 7. A necessary constraint for this inverse to be nonsingular
is that there is no field (or vector) in J which is in the null-space of I's, i.e

TNV ={o}. (2.86)

Indeed if there is such a field W in both spaces, then the equations are still satisfied if we add W to both J;
and J.
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2.9 Example of a Y -tensor problem in two-phase composites

Y -tensor problems most naturally arise in the context of electrical circuits. However, another context in which
they have a natural significance is in conduction in two-phase periodic composites where the conductivity
tensor o takes the form

o(x) = o1x1(X) + o2x2(%), (2.87)

where the indicator function y;(x) takes the value 1 in phase i, and is zero in the other phase, and the con-
ductivity tensors o1 and o of the two phases may be anisotropic (and not necessarily commute). The space
KC is taken to be all fields which have zero average value, H those fields which average to zero in each phase
separately, £ is taken to be the space of electric fields that are minus the gradient of a periodic potential, and
J the space of divergence free fields that have zero average value (though not necessarily zero average value
taken over each phase separately). The operator L is to be identified with the conductivity tensor o (x), with
its action restricted to H (as K is not closed under the action of o(x)). Note that H is closed under the action
of o(x). The space V consists of fields of the form

V(x) = [fox1(x) — fixe(®)]v = [x1(x) — fi1]v, (2.88)

that are constant in each phase, with zero overall average, where to obtain the last expression in (2.88) we
have used the fact that x2(x) = 1 — x1(x). Due to the simple form of these fields the operator Y, can be
represented by a local constant operator (this is not true for composites of more than two phases). Thus we
have the relations

E1+E2 Eg, Jl +J2 € j, JQ(X) :O’(X)EQ(X), Jl(X) = 7Y*E1(X) (289)
Given a solution to these equations, we can now consider the larger space
H=UsK=UesVeH=UsES T, (2.90)

where U is the subspace of uniform fields and ' is now the space of periodic square integrable fields. We
postulate that the solution to the usual conductivity equations can be expressed in terms of the solution to the
Y -tensor problem, and takes the form

Jo+J=0(E¢+E), withJ=J;1+J, E=E; +E,, (2.91)
with Eg,Jg e U, J1 +J3 € J,and E; + Es € £. Since Jo = LE, this reduces to a simpler problem,
Jo+Ji=0(Eo+E), Ji=-Y.E, (2.92)
that only involves piecewise constant fields. Writing Eq = [x1(x) — f1]v the equation becomes

Jo— ) - filY.av = [(o1 —o2)xi(x) + o2]{Eo + [x1(x) — fi]v}
= {(o1—02)[Eo + fov] + g2v}xi(x) + 02(Eg — f1v), (2.93)

which separates into

Y.v=—{(o1—02)[Eo+ fav] +02v}, Jo+ fiY.v=02(Eg— f1v). (2.94)
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From the first equation we get
~[Y. + fao1 + fro2] (01 — 02)Ey, (2.95)
and by substituting the first into the second we get

Jo = (fio1 + fao2)Eg + fif2(01 — 02)v, (2.96)
and taken together they imply a formula for the effective conductivity tensor L, = o, in terms of the Y -tensor:
0. = [101+ 202 — fif2(01 — 02)[Y. + foo1 + fioa] (01 — 02). (2.97)

Using the last equation in (2.89) we also see that, for either ¢t = 1 or ¢ = 2,
Y. (GE) = Yo (GED) = (GYED = () = (ad), (2.98)

which gives a direct physical meaning to the tensor Y, in two-phase composites (Gibiansky and Milton 1993).

One advantage of introducing the tensor Y, is that well-known bounds take a simpler form. As follows
from the observations of Torquato (1980), Milton (1981b, 1982) and Berryman (1982), when the components
and effective tensor are isotropic, i.e., o; = o;I fori = 1,2, %, and Y, = y.I, the well-known bounds
of Hashin and Shtrikman (1962) on the effective conductivity o, of a three-dimensional composite, when
o1 > 09, reduce to

01> 1./2> o, (299)
while the bounds of Beran (1965) reduce to
C1o1 + G202 > 5. /2 > (G /o1 + G2/02) 7, (2.100)

where ¢; and (2 = 1 — (3 are nonnegative weights, that can be determined from three-point correlation

functions:
G=1—( = 2f1f2/ dr/ ds/ fm (r,s, u)Pg(u), (2.101)

in which P (u) = (3u? — 1)/2 is a Legendre polynomial, and f111(r, s, u) is the probability that all three
vertices of a triangle having side lengths r and s, and included angle cos ™! « land in phase 1 when thrown
randomly in the composite.

Curiously, Berryman (1982) found that the self-consistent equation

Y2 = oy, (2.102)

corresponded to the well-known effective medium approximation of Bruggeman (1935) that is realized by a
hierarchical model consisting of spheres of the two-components with a very wide range of sizes, distributed
so spheres of similar size are well-separated (Milton 1984, 1985). This result of Berryman extends to multi-
component media too (Milton 1987a).
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2.10 Analytic properties preserving feature of the Y -transformation
in two-phase composites

The transformation from o, to y, is also important (Milton and Golden 1985), for simplifying and deriving
bounds when the conductivities o and o9 are complex. When o, for example, represents a diagonal elements
of the effective conductivity tensor o ., then bounds on o, have been obtained using the analytic properties of
the function o (01, 02) established by Bergman (1978), Milton (1981a) and Golden and Papanicolaou (1983).
These properties are that the function satisfies the:

1. The Homogeneity property: o.(\o1, Ao2) = Ao (01, 09) for all real or complex J;

2. The Analyticity property: 0. (o1, 02) is an analytic function of the complex variables o1 and o except
possibly when o1 /o5 is real, and zero or negative;

3. The Herglotz property: Im(c.(01,02)) > 0 when Im(o) > 0 and Im(o3) > 0;
4. The Normalization property: o.(1,1) = 1.

From a physical viewpoint it is more natural to require Re(c,) > 0 when Re(o1) > 0 and Re(o2) > 0 rather
than the Herglotz property (unless o is representing the dielectric constant) but both are equivalent as follows
from the homogeneity property with A = ¢. If we ignore the normalization property 4, and know nothing else
about the function o, (Ao, Ao1) other than properties 1,2 and 3, then the most we can say is that o, satisfies
the wedge bounds: o, lies in the wedge W in the complex plane bounded by the two straight lines which both
pass through the origin, and one through ¢; and the other through o (these wedge bounds follow easily from
the Herglotz property and the fact that one can rotate the complex plane due to the homogeneity property with
A = et?).

Tighter bounds when more information is known were obtained by exploiting the analytic properties of the
function o, (Ao, Ao1) by Milton(1980, 1981a, 1981b), Bergman(1980, 1982) and Clark and Milton (1995):
see also Milton (1979), Golden and Papanicolaou (1983) and Bergman (1993). In a wider mathematical
context most of these bounds follow from bounds of Stieltjes functions, see Milton (1986a), the discussion
in the Introduction of Milton 1987b and references therein, and Chapter V in Krein and Nudel’man (1974).
Many of them can alternatively be derived from variational principles (Milton and McPhedran 1982; Cherkaev
and Gibiansky 1994; Milton 1990).

As brought recently to my attention by Mihai Putinar, there is also a close connection to the Nevanlinna—
Pick interpolation problem, solved by Nevanlinna (1919, 1929) and Pick (1915), of obtaining sharp bounds
which correlate the values a Herglotz-function takes at a set of points in the upper half of the complex plane
(a Herglotz function is a function which is analytic in the upper half of the complex plane, and has positive
imaginary part there). Generalizations of the Nevanlinna—Pick interpolation problem, and different ways to
obtain these generalizations, have been the subject of much research [see Ball and Trent (1998), the book of
Agler and McCarthy (2002), the appendix of Charina, Putinar, Scheiderer, and Stockler (2015), and references
therein]. Of particular relevance to the theory of composites (as for anisotropic materials the effective tensor is
represented by a matrix) is that the Nevanlinna—Pick interpolation problem has been solved for matrix-valued
Herglotz functions (Delsarte, Genin, and Kamp 1979) and that algorithms are available for computing inter-
polations (Chen and Ko¢ 1994, 1995). Nevanlinna—Pick interpolation and its generalizations to multivariate
functions are also important in circuit and system theory, network synthesis, and control theory (Delsarte,
Genin, and Kamp 1979; Kummert 1989; Ball and ter Horst 2010).
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Figure 2.5: Bounds on a diagonal element o, of the complex effective tensor o .. If one ignores the
normalization property that o.(1,1) = 1, o, is only confined to the wedge W. If the normalization
property is taken into account, o, is confined to €2, and if the volume fractions are known, o, is confined
to . The Y-transformation (2.105) maps €' back to the wedge.

When we include the normalization property, o is confined to the lens—shaped shaded region 2 in Fig-
ure 2.5, bounded on one side by the straight line joining o1 and o2, and on the other side by the circular
arc joining these two points that when extended passes through the origin. When the volume fractions of the
phases are known, this information translates to knowledge of the first derivative,

_do.(01,1)

— /. 2.1
bit do, ; (2.103)

g1= 1
and o is confined to the lens—shaped black region €’ in Figure 2.5, bounded by two circular arcs, both passing

through
(o) = fio1 4 f202, and (o7 ") 7' =1/(f1/01 + f2]02), (2.104)

one of which, when extended, passes through o while the other, when extended, passes through os.

Now lets look for a transformation which maps the more complicated bound, represented by the black
region 2’ back to the most elementary bounds, represented by the wedge TW. Since the boundaries of these
regions are straight lines or circular arcs it makes sense to look in the class of fractional linear transformations
since these map circular arcs or straight lines to straight lines or circular arcs. The point (¢ ~1) ! since it is at
the intersection of the two circular arcs bounding 2, should get mapped to the origin (or the point at infinity)
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being the intersection of the straight lines forming the wedge. Similarly the point (o), should get mapped to
infinity (or the point at the origin) being the other point of intersection of the straight lines forming the wedge.
The transformation from o, to y, does precisely this:

Yy =Y(0.) = *f201*f102+f1f2(01*02)2[f101+f202*0*rl
= oy09(0. (o™t = 1)/({o) — 04), (2.105)

as follows from the fact that
Y(<0'_1>_1) =0, Y({o)) =00, Y(o1)=-01, Y(01)=—01. (2.106)

Thus the circular arcs forming the boundary of ' that pass through the points {7) and (¢~*)~! which when
extended pass through o; and o2 map to rays from the origin to infinity, that when extended in the opposite
direction pass through —o; and —o3. These are the rays that bound W.

The wedge bounds immediately imply y. (o1, 02) satisfies the Herglotz property, and hence shares with
o«(01,02) the analytic properties 1, 2, and 3. (Note that y, (o1, 02) cannot have a zero or pole except when
o1/04 is real and negative, since in the vicinity of that pole or zero, the wedge bounds would be violated. Also
y« (01, 02) cannot have other singularities, except when o1 /o5 is real and negative, as these would transfer
to 0.(01,02)). A more direct proof that the transformation (2.105), or in fact its matrix analog, preserves
analytic properties is given in Section 28.4 of Milton (2002).

Now in a three-dimensional isotropic composite (2.99) (or the series expansion for o,(c1,02)) implies
y«(1,1) = 2. Making a normalization transformation of y, (o1, o1) by this factor n = y.(1,1) = 2 we obtain
a function

0'9)(0'1,0'2) = yu(01,01)/2, (2.107)

satisfying all four analytic properties. In particular a(kl) is also confined the lens—shaped shaded region €2 in

Figure 2.5, bounded on one side by the straight line joining o1 and o5, and on the other side by the circular arc
joining these two points that when extended passes through the origin. When mapped to the o, plane we see
that o, is confined to a lens—shaped region §2” inside §’. Furthermore knowledge of the parameter (; = 1— (s
given by (2.101), implies through (2.100) (or through the series expansion for o, (o1, 02)), knowledge of

B oV (01,1)

= , (2.108)

dO’l o1=1

Hence we can define

Y = —Goo1 — oo + G1Ga(01 — 09)2[¢ro1 + o — oV] 7, (2.109)

and the wedge bounds on yfkl) provide even tighter bounds on afkl) and hence on o,. As more and more series

expansion coefficients are incorporated in the bounds one can introduce a hierarchy of functions Jﬁ") (01,01)
and y,(k") (01,01), that are linked by fractional linear transformations and normalization transformations. In
this way, one obtains a nested sequence of lens—shaped regions in the complex plane which bound . The
effect of the factor of (o1 — 02)2 entering the Y-transformation (2.105), is to shift to order m information that
is contained in the series expansion of o, (o1, 02) at order m + 2.

For other problems in composites, where one has tensors L; and Lo in phases 1 and 2 (which may for

example, be elasticity tensors) and an effective tensor L., (2.97) generalizes to
L. = fiL1 + foLa — fif2(L1 — Lo)[Y. + foLi + fiLlo] ' (L1 — Lo). (2.110)

which is the inverse of the relation (2.15).
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2.11 Bounds on the Y -tensor in two-phase composites using the trans-
lation method

As an example of the usefulness of the Y -tensor in two phase composites let us derive the associated trans-
lation bounds. Translation bounds on the Y -tensor were first derived using algebraic manipulations of the
translation bounds on L, by Cherkaev and Gibiansky (1992) assuming L; and L commute. This restriction
was subsequently removed (Milton 1991). The following simple derivation follows Section 24.10 in Milton
(2002).

One looks for constant self-adjoint tensors T (translations) whose associated quadratic forms are quasi-
convex on the space &, i.e, such that

(E,TE) >0, forallE€E&. 2.111)

By taking Fourier transforms this condition reduces to an algebraic condition on T: for example if E = Vu,
then the Fourier components of E are rank-one matrices, and so A - TA must be nonnegative for all rank-one
matrices A. Therefore it is quite easy to see if the quadratic form associated with a tensor T is quasiconvex
or not (but it is less easy to see which are the best translations to take).

Now E = E; + E; € £ and TE; is piecewise constant and hence orthogonal to E,. So we deduce that

0<(E; +Eo, T(E; + Ey)) = (E,TE;) + (E3, TE,). (2.112)
By the orthogonality of the subspaces we also have the identity
0=(E1 +Eo,J1 +J2) = (E1,J1) + (Eq,J2) = (Ey, LEy) — (Eq, Y.Eq). (2.113)

Now suppose T is such that L — T > 0, i.e., L; — T and Lo — T are positive semidefinite matrices. Then it
follows from the above two equations that

(E1,Y.E,) = (E2,LE) > (E3, TEz) > —(E;, TE). (2.114)
So we have the translation bound that
Y.+T>0 if Ly —-T>0 and L; — T > 0. (2.115)
By contrast the corresponding bound on L, is more complicated:
L.>T+[fi(Li —T)"' + fi(Le - T)"'] 7L (2.116)

The form (2.115) of the translation bounds makes it clear that if T = T’ + A where A is positive
semidefinite and T also satisfies (2.111) then the bounds using T’ will be as least as good as those using T.
Thus the best translations to use are the extremal ones, which are such that the associated quasiconvex quadratic
form loses its quasiconvexity whenever a nonzero positive-definite quadratic form is subtracted from it (Milton
1990). An algorithm for constructing extremal translations was given in Milton (2013b), and an explicit
example of a (nontrivial) extremal translation was presented by Harutyunyan and Milton (2015a). Curiously
there seems to be a connection between extremal translations and extremal polynomials (Harutyunyan and
Milton 2015b).
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2.12 Introducing the Y -tensor in multiphase composites using varia-
tional principles

In composite materials, when the local tensor L(x) is real, symmetric, and positive definite, the effective
tensor is given by the variational principle

Ey-L.Ey = %ﬂg((Eo +E)-L(E;+ E)), (2.117)
€
as proved in Section 2.7. When the material has n-phases (each with constant orientation) we can introduce
the space V consisting of those fields V which are constant in each phases, yet average to zero so they are
orthogonal to the space U:

V= Zvixi(x), where Z fivi =0, (2.118)
i=1 i=1
in which x;(x) is the indicator function taking the value 1 in phase ¢ and zero elsewhere, while f; = (x;)
is the volume fraction of component i. Also let us introduce the space H(!) consisting of those fields P (x)
that have zero average value over each phase: i.e., P(x)y;(x) = 0 for all <. Now the trial field E can be
decomposed into a sum

E=E; +E; where E; €V, E,eHD, (2.119)

and L(x), by assumption, takes the form
L(x) =Y Lixi(x). (2.120)
i=1

Since the spaces U @ V and H") are each closed under the action of L and are orthogonal to each other it
follows that
(Eo + E) - L(Eq + E)) = (Eo + E1) - L(Eg + E1)) + (Ez - LE). (2.121)

Consequently the minimization in the variational principle for L, can be done in two steps: first the compu-
tation of the quadratic form,

(E,,Y.E))= min (E;-LEy), (2.122)
EzE'H(l)
E=E,+E>c&

which defines the Y -tensor Y, mapping V to V, and then the computation of

Eq-L.Eg = éﬂleI%(Eo +E;) LE;+ Ey)) + (Ei, Y.Ey), (2.123)

which gives the relation between the effective tensor L, and the tensor Y ..

If in the variational principle (2.122), Ey(x) is varied by a small perturbing field §E3(x) € £NH (Y then
the first order variation in the integrand will be 2(0Es - LE2) and so will vanish if Jo, = LE, € J @ V. Since
H D) is closed under the action of L, it follows that Jo € H(*) and

Jo=J-J;, withJeJ, J; eV (2.124)
The value of the minimum in (2.122) is therefore

<(E —El) . (.] —J1)> = <E1 -J = (El —|—E2) -Ji—Eq - (Jl —|—J2)> = —<E1 .]1> (2.125)
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Figure 2.6: A conducting body may be approximated by a discrete network.

Comparing this with the left of (2.122) we see that J; = —Y.E;. This establishes the minimization varia-
tional principle (2.122) for Y.

From (2.123) one can deduce (see Section 19.2 in Milton 2002) that the operator L, and the operator Y,
are linked via the relation

L. = (L) — ToLIL; [IT, LI, + Y,] ', LTy, (2.126)

in which II; is the projection onto ) and the inverse is to be done on this space. The relation between the
matrix representing Y, and the matrix representing L, is given by (2.126) but depends on what basis one
uses for the subspaces U and V. Unlike the case when there are two-phases, one cannot for a fixed value of L
recover Y, from L,. However, if one looks at the equation with source terms (constant in each phase), then
one can recover Y, from the macroscopic response: see Section 19.3 in Milton (2002).

2.13 Effective tensors and Y -tensors for discrete electrical circuits

The connection between Dirichlet-to-Neumann maps and the theory of composites established in the next
chapter is clearer if we replace the continuous body by a discrete electrical network. For an entertaining
introduction to electrical circuits and their connection with random walks see Doyle and Snell (1984). The
approach we follow, using incidence matrices, is nicely presented by Strang (1986), pages 87-95.

Suppose, for simplicity, we were considering electrical conductivity and the body was composed of two
conducting materials with conductivities o1 and o2. Then we could replace the body by a discrete resistor
network as shown in Figure 2.6, where applied electrical potentials and the resulting fluxes of current through
the boundary are replaced by potentials and fluxes of current through electrical terminals placed at the former
boundary of the body. That effective tensors and Y -tensors may be associated with such resistor networks is
discussed in depth in Chapter 20 of Milton (2002). Briefly, the finite-dimensional vector space H associated
with the network consists of fields which are constant in each bond, but which have a direction. The bonds
have an arrow associated with them, and the field component in that bond is positive if the field is directed in
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the direction of the arrow, and is negative if the field is directed opposite to the arrow. It is helpful to introduce
the incidence matrix M, with M;; = 1 if the arrow of bond ¢ points towards node j, M;; = —1 if the arrow
of bond 7 points away from node j, and M;; = 0 if bond 7 and node j are not connected. Let 2y = 1 be our
reference admittance. We take the space U to consist of fields U satisfying

Uy =-Mep, M'U,=1I, (2.127)

where ¢ represents the potentials at the nodes taking the value ¢ = ¢, at the terminal nodes, and I represents
the net current flowing out of each node (taking a negative value if there is a net current flowing into that node)
which we restrict to be zero for all nodes but the terminal nodes. We take £ to consist of fields expressible as
E = —M where ¢ is zero at the terminal nodes, and we take 7 to consist of fields J such that M7 J = 0.
It is easy to check that the spaces U/, £, and J are mutually orthogonal using the fact that the null space of
MT is orthogonal to the range of M. Solving the conductivity equations in the network is then equivalent to
finding fields Eg and Jo in U, E € £, and J € J such that

(Jo+J) =L(Ey +E), (2.128)

where .
L=>Y zx, (2.129)

=1

and the indicator function 7, is 1 in those bonds having admittance z;, and zero otherwise. (The admittance
is the inverse of the resistance). The effective tensor L, by definition governs the relation between J, and Eg,

Jo = L.Ey, (2.130)

and measures the overall response of the network, relative to its response when z = z( in every bond in the
network. To see this take an orthonormal basis Ug of U/ indexed by the integer 3, and resolve Eq into its
components

Ef=Ug -Ey=—(M"Up) ¢, =1 ¢y, (2.131)

where ¢, are the potentials we apply at the terminals. Similarly we resolve J into its components
J9=U,-Jog=—M"J0) ¢,y = —To- ¢, (2.132)

where I represents the current fluxes we measure at the terminals.
In this basis the relation (2.130) takes the form

JY = L.y EY, (2.133)

implying
Io - ¢(y) = Luypls - o (2.134)
Writing this relation out using indices we have

I? - 9iy = Luysls - o, (2.135)

giving
I} = Ky Lingls - @y, (2.136)
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(b)

Figure 2.7: The resistor network is on one side (a) of the circuit board. On the other side (b) is a
collection of batteries which power the network, and the relation between the potentials across each
battery and the currents going through them define the Y,-tensor.

where K is the inverse matrix satisfying
SDiA/Km”/ = §imu (2137)

assuming it exists. We rewrite (2.136) as
1% = Dyn¢®, where Dy = — Ky LunsIon, (2.138)

which expresses the discrete Dirichlet-to-Neumann map D in terms of L, where I, is the value of I at
terminal n. Given prescribed potentials ¥ at the terminals, this map gives the current —I9, flowing into
terminal m.

One can also complete the network by adding the part of the circuit associated with the batteries that
power it. (Some of these “batteries” could in fact be resistors depending on whether they produce or absorb
power). For instance, consider the resistor network in Figure 2.7(a). We drill holes in the circuit board and
attach batteries to the other side of the circuit board. The relation between the currents through these batteries
and the voltages across them, which is measured by the Y -tensor, provides an alternative description of the
response of the network on the front side of the circuit board.

Now the appropriate finite-dimensional vector space K is the direct sum of /{ and the space ) representing
those directed bonds on the reverse side of the circuit board associated with the network of batteries. We now
have a new incidence matrix IM, associated with the full circuit. We define £ to consist of those fields E such
that E = —Mgo for some potential ¢ defined on the nodes (that needs not be zero on the terminal nodes), and
we define 7 to consist of those fields J such that MTJ = 0. Since the null space of MY is the orthogonal
complement of the range of M the spaces J and € are orthogonal and span /C, so we have

K=EaT=Va (2.139)
To find the Y. tensor one looks for fields E S £ and J IS j which have a decomposition

E=E, +E,, J=J,+Js, (2.140)
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with
El,Jl ey, EQ,JQ € H7 Jo = LEs. (2.141)

Then the relation between J; and E; determines Y :
J =-Y.E;. (2.142)
If no restrictions are placed on Y, then a necessary constraint for Y, to be uniquely determined is that
vnJ = {0}, (2.143)

since otherwise if there is a field W in this intersection (2.139) and (2.140) are still satisfied if we add W to
both J and J;. The restriction (2.143) says there are no closed loops in the network V' on the reverse side of
the circuit board, as in Figure 2.7(b)
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Abstract

We show that the problem of determining the Dirichlet-to-Neumann map can be reformulated
as the problem of determining an effective operator, associated with exactly the same sort
of abstract problem for determining effective tensors in the theory of composites. In partic-
ular this implies that for a body containing n, possibly polycrystalline phases, the effective
operator, and hence the Dirichlet-to-Neumann map is an analytic function of the elements
of the component tensors Ly, Lo, ..., L, in the domain consisting of the union over 6 of the
region where all the tensors eij have positive definite self-adjoint part.

3.1 Introduction

Generally the response of a body is determined by the “Dirichlet-to-Neumann” map which is a generic term:
in electromagnetism it could measure current fluxes which result when one applies potentials to the body
boundary, or it could measure the tangential components of the magnetic field that result when tangential
components of the electric field are applied, or for linear elasticity it could measure the tractions (forces) at
the boundary of the body when displacements are prescribed at the boundary. One can sort of think of the
Dirichlet-to-Neumann map as a matrix: really it’s a linear operator but one can approximate it by a matrix.

Here we show that the Dirichlet-to-Neumann map, when appropriately defined, is mathematically speaking
the exact analog of an effective tensor in a composite material. This link between the Dirichlet-to-Neumann
map and an effective tensor in the abstract theory of composites is the analog at the continuum level of the way
effective tensors have been obtained from the response matrix of discrete electrical networks: see Sections
20.4, 20.5, and 20.6 in Milton (2002) and also Section 2.13 of the previous chapter. Roughly speaking, the
Dirichlet-to-Neumann map gets replaced by a map (the effective operator in the abstract theory of composites)
which acts on the space of fields that (modulo multiplication by an appropriate matrix) solve the equations
when the body is filled with a homogeneous “reference medium”: thus boundary conditions are removed from
the problem.

77
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When suitably formulated, the equations defining the Dirichlet-to-Neumann map are exactly those of ef-
fective tensors in the abstract theory of composites. Consequently, many of the tools that have been developed
in the theory composite materials essentially carry over directly to Dirichlet-to-Neumann maps. In particu-
lar, variational principles for composites map over to variational principles for boundary-value problems, the
theory of bounds on effective tensors carries over to an analogous theory of bounds on Dirichlet-to-Neumann
maps, and the analyticity properties of effective tensors as functions of the component moduli map over to an-
alyticity properties of the Dirichlet-to-Neumann map as functions of the component tensors within the body,
assuming the body contains a multiphase mixture. Some results do not directly carry over, such as the general
theory of exact relations (Grabovsky 1998; Grabovsky and Sage 1998; Grabovsky, Milton, and Sage 2000;
see also Chapter 17 of Milton 2002 and Grabovsky 2004) and Fast Fourier Transform methods for computing
fields that solve the equations (Moulinec and Suquet 1994, 1998; Eyre and Milton 1999; Moulinec and Silva
2014; Willot, Abdallah, and Pellegrini (2014); Willot 2015). These rely heavily on the simple form of the
operator I'; (the projection onto the subspace £) in Fourier space that is dictated by the differential constraints
on the fields.

This is not the first time that results from the theory of composites have been carried over to the re-
sponse of bodies. Huet (1990) obtained elementary bounds on the response of bodies to special boundary
conditions (such as affine boundary conditions) that were the analog of classic arithmetic average—harmonic
average bounds of composites. [The same observation was made by Willis in a 1989 private communication
to Nemat-Nasser and Hori (1993).] Milgrom (1990) found that exact relations satisfied by the effective moduli
of composites in coupled field problems carried over to exact relation satisfied by the response of bodies (see
also Chapter 9 in this book). For ellipsoidal bodies Nemat-Nasser and Hori (1993) and Hori and Nemat—
Nasser (1995,1998) obtained bounds that were the analog of the famous Hashin—Shtrikman bounds on the
effective moduli of composites. Subsequently, Milton (2012) removed the restriction that the bodies had to
be ellipsoidal. The Hashin—Shtrikman method was also used by Capdeboscq and Vogelius (2003, 2004) to
asymptotically bound the volume of a dilute suspension of inclusions in a body. Variational minimization prin-
ciples that had been primarily developed for bounding the quasistatic effective moduli of composites (Cherkaev
and Gibiansky 1994), led to variational minimization principles for the full time-harmonic wave equations (of
acoustics, elastodynamics, and electromagnetism) in lossy inhomogeneous bodies (Milton, Seppecher, and
Bouchitté 2009, Milton and Willis 2010). The translation method for bounding the effective tensors of com-
posites was extended to bodies, and used in an inverse way to bound the volume fraction of an inclusion in
a two-phase body (Kang, Kim, and Milton 2012; Kang, Milton, and Wang 2014; Milton and Nguyen 2012;
Kang, Milton, and Wang 2014; Kang and Milton 2013; Kang, Kim, Lee, Li, and Milton 2014). It allowed for
more general boundary conditions, and led to the related splitting method for bounding the volume fraction
of an inclusion in a body (Milton and Nguyen 2012; Thaler and Milton 2015).

What sets this work apart is establishing a direct mathematical isomorphism between the theory of effective
tensors of composites and the theory of the Dirichlet-to-Neumann map for bodies. The chapter assumes the
reader is familiar with the contents of Chapters 1 and 2.

3.2 General theory

The general problem we address in this chapter is the response of an inhomogeneous body (2 to fields,
which may be waves or static fields. The starting point is the section “General Theory” in the paper Mil-
ton, Seppecher, and Bouchitté (2009) which provides a framework for treating the time-harmonic equa-
tions of acoustics and elastodynamics on one footing. Also the framework encompasses the time-harmonic
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Schrodinger equation since for time-harmonic fields it is directly analogous to the acoustics equation.
Let’s begin by assuming there are no sources in the body (i.e., h = 0 in the terminology of the paper of
Milton, Seppecher, and Bouchitté (2009)). First let us define the operators M and LI: given a vector (or scalar)

“potential” u we define
Mu = (Vu“> (3.1)

G= (G> (3.2)
g

where the “current” G is a second order tensor field and g is a vector field (or G is a vector field and g is a
scalar field when u is scalar) we define

and given a field

UG=-V-G+g. (3.3)

One can think of these operators I and LI as being a little analogous to the gradient V, and divergence V- that
one is familiar with in electrical conduction.
Now inside a body €2 we consider fields F(x) and G(x) that satisfy the constitutive relation

9(x) = Z(x)F(x), (3.4

and are subject to the differential constraints that

UG =0, F= (f) = Mu, 3.5)

where F' is a second order tensor field and f is a vector field (or F is a vector field and f is a scalar field
when u is scalar). The tensor field Z(x) could be complex-valued, but is typically such that the self adjoint
part of Z(x) /i is positive semidefinite, or more generally such that the self adjoint part of ¢ Z(x) is positive
semidefinite for at least one real value of 6.

Equivalently, these differential constraints imply that F and G take the form

Vu G
(2 ()

The two simplest examples are those given in Section 1.7: time-harmonic acoustics,

(—z’Vi‘Tv> B <(w(l)) = w(/),€> <VPP>7 3.7
——

G(x) Z(x) F(x)

where P(x) is the pressure, and v(x) the velocity; and time-harmonic elastodynamics

(1) (5 ()
ip 0 wp u
——— —_—— N ——

G(x) Z(x) F(x)

where u(x) is the displacement, o (x) is the stress, and p(x) = iV - o/(x)/w is the momentum.
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In the case where u is a vector field we have the key identity

/Q-]-'z/G:Vu+(V-G)~u=/V'(G'U):/ n- Gu, (39)
Q Q Q o0

where n is normal to the boundary 0f). [In fact, as pointed out in Section 1.7, there are a multitude of key
identities parameterized by the second order tensor M entering (1.97), but we will ignore these additional key
identities in this chapter.]

In the case where u is a scalar P and G is a vector, as for acoustics, the key identity becomes

/g-]—":/G-VP+(V-G)-u:/V~(PG)=/ Pn-G. (3.10)
Q Q Q le)

Choose a constant comparison medium or “reference medium” Z(x) = Zg, where Z, is a positive definite
Hermitian (or real) tensor which is independent of x. Consider, as the boundary fields range over all possible
data, the set of all solutions to the equation

Go(x) = ZoFo(x), (3.11)
subject to the differential constraints that
UGo(x) =0, Fo(x) =g (3.12)

for some potential uy.
Suppose some real boundary potential ug(x) = v(x) is prescribed for x € 9€). Consider the variational
formula
min /(Hu) - Zo(Mu). (3.13)
u=v on 9N v 2
Provided v is regular enough (in the space H'/2) the minimum exists, is unique and at the minimum u takes
a value ug such that for all variations du vanishing on 92 we have

/(V(Su) - Gg+9du-gyg=0, where <G0> = Zo - (Muy). (3.14)
Q go

By integrating by parts the first term in the integral we see that a necessary condition for this to hold is that
go = V - Gy, i.e., that the Euler-Lagrange equation LIZ M ug = 0 is satisfied. So for any real regular
boundary potential u = v there exists a unique field F(x) = Mug which corresponds to it.

Given a complex boundary potential v = v’ + iv” then we find the fields Fy’(x) and Fy" (x) associated
with the real and imaginary parts of the potential v/ and v/, to generate the field Fo(x) = Fo'(x)+iFo" (x) =
Muy associated with the complex potential ug = uy’ + 7uy” that has the boundary-value v = v/ + iv”.

Similarly if for given real values of the flux t(x) = n - G(x) we consider

G G
i A 3.15
& /Q(v.c) o(v-c)’ G
n-G(x)=t(x) on 9Q

then if t is regular enough (in the space H~'/2), the minimum exists and is unique. If we let

- A B
Z,' = (BT c)’ (3.16)
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then at the minimum G(x) takes a value Gg(x) such that
/5G[AG0 +BV -G +V-0GBTGy+ CV -Gy =0, (3.17)
Q

for all variations 0 G meeting the boundary condition that n - G = 0 on 0f). By integrating by parts this last
term we see that Go(x) must satisfy the Euler-Lagrange equation

[AGO + BV - Go] = Vugy, where ug= BTGO + CV - Gg, (3.18)

—1 Go _ Vuo
i (%, ) - (7). a1

So for any real regular boundary condition n-G(x) = t(x) there exists a unique field Gy (x) which corresponds
to it. Given a complex-valued boundary flux t = t’ -+t then we find the fields Gy’ (x) and Gy" (x) associated
with the real and imaginary parts of the potential t’ and t”, to generate the field Go(x) = Go'(x) + iGo" (x)
associated with the complex flux t = t’ + it”.

Thus, for either prescribed potentials or prescribed fluxes, we have

implying

Zal/ng(X) _ Zé/2]:0 (X) = UQ(X), (3.20)

and we let U be the space of all these fields Ug(x) as the boundary data varies (over real and complex values).

Similar in some respects to the trick of introducing Z(l)/ ? are the reference transformations discussed in Section
9.7 of Milton (2002). Reference transformations multiply the fields on the left side of the constitutive law by
a constant tensor L, 1/2 and the fields on the right hand side of the constitutive law by Lg v ?, thus preserving
the key identity and the orthogonality of the subspaces when the action of L(T Y2 or L, /2 on U leaves it
invariant: under a reference transformation in the abstract theory of composites the three mutually orthogonal
subspaces U, € and J get replaced by the three mutually orthogonal subspaces I/, Larl/ %€ and L, 1 27,

Now let £ be the space of all fields E(x) that are square integrable in €2 (don’t confuse them with electric
fields) such that

E(x) = Z./*Mu, (3.21)

for some potential u with u = 0 on 9€2. This last boundary condition ensures that E is perpendicular to every
field Ug in U, where given square integrable fields P (x) and Py (x) we take the usual inner product

(Pq,Py) = / P, P, (3.22)
Q
The orthogonality condition can then be written as
0= (E.Un) = [ BG) - Vo) = [ [ Golo) = [ (Go-m)ouw (3.23)
Q Q aQ

which vanishes because u = 0 on 0f2.
We let J be the space of all fields J(x) that are square integrable in 2 (don’t confuse them with current
fields) such that for some G(x), with n - G(x) = 0 on 992,

_ G
J(x) =12,"? (v . G) . (3.24)
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The flux condition n - G(x) = 0 on 95 ensures that J(x) is perpendicular to every field Uy in U:

0= (3,00 = [ 360 Vo) = [ (V?G) A= [ (@ 629)

which vanishes because G - n = 0 on 0f).
Finally we show that £ and 7 are orthogonal: the inner product

/QE(X).J(X)/Q<V(-;G) 'I_lu:/Em(G~n)«u:0, (3.26)

vanishes because we have shown for fields in £ the potential u is zero at the boundary, and for fields in 7 the
flux G - n is zero.
Now we can consider equations

Jo(x) + J(x) = L(x)(Eo(x) + E(x)), (3.27)
with Jo(x), Eo(x) €U, J(x) € T, E(x) € £, and
L(x) = Z; *Z(x)Z5 /2. (3.28)

This is exactly the abstract formulation associated with the theory of composite materials (see Section 2.2 of
the review Chapter 2, or Section 12.7 of Milton 2002). For example, in the concrete setting of the conductivity
equations in a periodic medium, I consists of the space of constant fields, £ consists of electric fields that are
gradients of periodic potentials, E(x) = —VV(x), and J consists of divergence free fields J(x) that have
zero average value (i.e., V - J = 0 and (J) = 0 where the angular brackets denote a volume average).

Therefore many results about composites carry over directly to this new setting. In particular, in Section
3.5, we will see that the analyticity properties of the effective tensor L. as a function of the component moduli
carry over. One distinction between solving (3.27) in a body, rather than in a composite, is that in a composite
the operators I'y, I'; and I’z defined as the projections onto the spaces U, £ and J are local operators in
Fourier space, which is not the case when we are considering a body, although being projections they still
have norm 1.

The inverse problem we discuss in Chapter 5 is recovering L(x) from knowledge of the effective operator
L. using tools from the abstract theory of composites (such as bounds obtained from variational principles and
the translation method, and using analyticity and integral representations of the relevant analytic functions).
As shown in the next section, this effective operator L, can be obtained from the Dirichlet-to-Neumann map.
Once one has information about L(x) one can of course transfer it to information about Z(x), using (3.28).
This, of course, is the real goal in imaging: obtaining information about Z(x) from information (which may
be complete or partial) about the Dirichlet-to-Neumann map, or equivalently about L,.

3.3 Relating the effective operator to the Dirichlet-to-Neumann map

Given a potential ug(x) at the boundary 92 one may solve the minimization problem (3.13) to find the asso-
ciated field Eo(x). Then one can solve the equations (3.27) for the remaining fields E(x), Jo(x) and J(x).
This is exactly equivalent to solving the equations (3.4) subject to the differential constraints (3.6) with ug(x)
prescribed at the boundary 9€2. Since J, depends linearly on Ey we may write

Jo = L.Eo, (3.29)
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which defines the effective operator L, which is a linear map from U to U/. It is to be stressed that L, is an
operator and that (3.29) does not imply Jo(x) = L.Eq(x) for some matrix L.

To see the meaning of this take an orthonormal basis Ug of U/ indexed by /. For simplicity we will
assume that our basis is a countable set so that 3 ranges over a discrete set N. For example, in two-dimensions
if Q) was the unit disk and u was an m-component vector then we could take N as the set of m-tuples § =
(k1,ka, ..., km), where the k; are integers, and the field Ug = Z(l)/ 2N ug could be that associated with
solving the equation LIZ Mug = 0 with boundary-values

{ug};(x) = cos(lkjlg) ifk; >0
= sin(|k;jl¢) ifk; <0, (3.30)

at points x = (cos ¢, sin ¢) on the boundary 052, where {ug};(x) denotes the j-th component of the vector
ug(x),j =1,2,...,m. If we were in three dimensions and 2 was a sphere, we could prescribe the boundary-
value of the component {ug};(x) to be a spherical harmonic. If we had some other smoothly shaped domain
we could choose boundary-values that were the image of spherical harmonics under a map that takes the
boundary of the sphere to the boundary of this smoothly shaped domain.

‘We now resolve our “applied field” Ey = Zé/ ® My into its components

EOBZ/UB-Eoz/Qﬁ(X)~I_Iu0:/ n - Gguy, (3.31)
Q Q o0

where the boundary-value of uy is the potential which we impose at 9€2. We assume the field Ug has been
calculated (this probably has to be done numerically, rather than analytically, if {2 is not a circular disk or
sphere) and thus the boundary-value of n - G and the coeflicients g can be obtained. We similarly resolve

our “response field” Jo = Z Y 290 into its components as well:

‘]07 = U’Y . Jo = /(ﬂuv) . go(X) = / n- Gouw, (332)
Q

Q o

where Gy is associated with Jo, i.e., Gy = Z~1/2J,, and n - Gy is the “surface flux” associated with it. Again
the coeflicients can be obtained from the prescribed value of u, on 9%2 (see, for example, (3.30)) and the
measured value of n - Gg.

In this basis the relation (3.29) takes the form

Joy = Z Lo Eop. (3.33)
BER

where the L, are the elements of the matrix representing the operator L, : &/ — U in this basis. Since
the basis of I/ contains infinitely many fields one would in practice want to truncate this matrix: for example,
by ignoring those basis fields that are generated from potentials that oscillate rapidly around the boundary,
such as the high order Fourier modes in (3.30) with large k; for some j. Note that from the definition of the
effective tensor, there are, according to (3.27), fields E € £ and J € 7 such that

G(x) = Z*Jo(x) + I(x)], F(x)= 25" *[Eo(x) + E(x)] (3.34)

satisfy
G(x) =Z(x)F(x), UG=0, F=nu, (3.35)
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where on the boundary 992, n - G(x) = n - Go(x) and u(x) = up(x). These boundary fields ug(x) and
n - Go(x) are thus related via the Dirichlet-to-Neumann map.
Now (3.31), (3.32) and (3.33) imply

/a S Go(x)uy(x)dS =Y Luyp / n - Gg(x)ug(x)dS. (3.36)

BeER 9

Knowing the left-hand side for all 7 € X gives us the components of n - Gg(x) in the basis of surface fields
u(x), from which we can recover n - Go(x). Thus, from the effective tensor L., we obtain the Dirichlet-to-
Neumann map A mapping the potential ug on df2 to the flux tg = n - Gy on 9€2. In the example where 2
was the unit disk, the choice of basis fields (3.30) gives us the Fourier components of n - Gg(x), which, by
taking the Fourier transform, allows us to recover n - Go(x). The effective tensor L, gives us an alternate
representation of the Dirichlet-to-Neumann map. Of course we need to know the fields in the space ¢/, and in
general this requires some numerical computation.

Alternatively, we could prescribe the flux t(x) = n- G(x) at the boundary 052 and solve the minimization
problem (3.15) for the associated field Jo(x). Then we could solve (3.27) for the remaining fields J(x), Eq(x),
and E(x). Since the relation between Eq and Jj is linear we can write

Eo =L 1J, (3.37)

which defines the inverse effective operator L, ! which is a map from I to U, and which can be connected
with the inverse of the Dirichlet-to-Neumann map.

A remark is that everything extends more or less directly to coupled field problems where the constitutive
relation looks like

G FO
G2 F@2)
g Fn
F@ G
Fn) Gm
where
, fel0) , o o G0
gl — (v . G<i>) o FO @ FO @, o) = (v-ém . (3.39)

3.4 Quadratic forms

The connection between the Dirichlet-to-Neumann map and the effective operator can also be made through
the quadratic forms associated with them. Given two possibly complex-valued vector fields p; and ps (at
least one of which is infinitely differentiable, in C'*°) defined on the surface 02 let us define their “o” product
to be

Pi1op2 = / p1(x) - p2(x) dS. (3.40)
a0
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Note that there is no complex conjugation here. Assuming Z(x) is a symmetric (possibly complex-valued)
matrix, the Dirichlet-to-Neumann map A is a symmetric operator in the sense that

u; o (Auy) = (Aug) ouy forallug, uy € C. (3.41)

To see this, let uy (x), G1(x), F1(x), G1(x) and us(x), G2(x), F2(x), G2(x) be the fields inside the body,
respectively, associated with the given boundary potentials u;(x) and us(x). Then, using the key identity
and the symmetry of Z(x) [that Z”' (x) = Z(x)], we have

u; o (Auy) = /ul'(n~G2
d

)
K;h%téﬂﬂﬂ]lyﬂyﬁégfé

= / n-Gijuz = (Aug) o uy, (3.42)
99

which establishes (3.42). Thus the form in (3.41) is a symmetric bilinear form of u; and u,, and by the
“polarization identity”

4uy o (Aug) = (uy + uz) o [A(ug + u2)] — (up — ug) o [A(u; — uz)], (3.43)
we see that we can recover A from knowledge of the quadratic form

flug) =ugo(Aug) = /Q]-'- g, (3.44)

where F(x) and G(x) are the fields inside the body, satisfying F = Mu, LG = 0 where u(x) = ug on 9.
Making the substitution (3.34) and using the orthogonality of the spaces U, £ and J we see that f(u) can be
determined from L, and from the field Eq associated with the boundary-value of u:

f(uo) = /Q Eo(x) - Jo(x). (3.45)

in which Jg = L,Eg. [Again, to emphasize the point, we cannot write the integrand as E(x) - L.J¢(x).]
By following steps similar to that in (3.42) we see that

wo () = [ F-[27

AW—JW@W+JW

/fr-qu+fW¢ZIm
Q
(3.46)

where we have used the symmetry of Z to cancel the cross terms, and 7' and F” are the real and imaginary
parts of F'. Taking imaginary parts of both sides gives

IM@MMMzéFﬂmmﬂ+Fﬂm@Wﬂ (3.47)

So the quadratic form associated with the Dirichlet-to-Neumann map A has a positive semi-definite imaginary
part when the imaginary part of Z(x) is positive semi-definite for all x.
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3.5 Analyticity properties of effective tensors

Suppose the body has n-phases, each having varying orientations, so that the tensor field L takes the form
L(x) = Q(R(x)) lz m(x)h] [QRX)]", (3.48)
i=1

in which Q(R) is the orthogonal matrix (satisfying QQ” = I) associated with a rotation R acting on elements
in the tensor space, R(x) is a field of rotation matrices giving the local orientation of each phase, and y;(x)
represents the characteristic function that is 1 in phase 7 and zero elsewhere. For example, L(x) could represent
the moduli in an n-phase polycrystalline material. In that case the matrices Ly, .. ., L,, represent the moduli
of the pure crystalline phases, while R(x) represents the field of rotation matrices required to account for the
different crystal orientations throughout space.

The proof of the analytic properties of L, as a function of the component tensors L, Lo, . . ., L, carries
over directly from the theory of composites, and is a straightforward extension of an argument of Bruno
(1991b) (see also Bruno and Leo 1992). For composites, the extension is given on page 372 of Milton (2002),
although there I should have referenced Section 14.7 page 300, rather than Section 14.6 on page 298, since if
L(x) is complex it is not self-adjoint). The argument given in Section 14.7 itself needs a minor correction, as
the inner product (P, LP) needs to be replaced by Re(P, LP): the correct analysis is given here in Section
2.4.

In Section 2.4 we obtained the formula (2.35) for the effective tensor as a series expansion

L, =Y T,L[y(I-L/g)’|T,. (3.49)
j=0
Note that each term in this series expansion is a polynomial in the elements of the matrices L1,...,L,,. Asa

sequence of analytic functions that converge uniformly on any compact subset of a domain is analytic in that
domain [see theorem 10.28 Rudin (1987)], it follows that if this series converges, then it will be an analytic
function of all the elements of L;, Lo, . . ., L,, in this region of convergence.

In Section 2.4 we established the series converges when L is bounded, i.e., there is some 8 > 0 such that

B8 > sup |LP|, (3.50)
PeH
[P|=1
and L is coercive in the sense that there is some o > 0 with

Re(P,LP) > a|P|? forall P € H. (3.51)

With the natural choice (3.22) of inner product these conditions are satisfied if the tensors L1, Lo, ..., L,
are all bounded, and coercive in the sense that (2.50) holds, i.e., if for some angle 6 (independent of j), the
self adjoint part of eieLj is strictly positive definite for all 5. This condition holds, for example, when the
tensors L; are all symmetric with positive definite imaginary parts. Hence L, is an analytic function of

L,,L,,...,L, in the domain where for some angle 6 (independent of j), the self adjoint part of e“’Lj is
strictly positive definite for all j.
For time-harmonic problems each of the tensors Ly, Lo, ..., L, are often analytic functions of the fre-

quency w in the upper half plane Imw > 0, having positive definite imaginary parts, ImL; > 0 for all s.
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Since an analytic function of analytic function is an analytic function, it follows that in this case L, will be an
analytic function of frequency in the upper half plane Im w > 0.

Note that, since in (3.36) the basis fields U g(x) (and hence ug(x) and Gg(x)) only depend on Z, and not
on the component moduli, it follows that the Dirichlet-to-Neumann map A will inherit the analytic properties
of the effective operator L, as a function of the component moduli, or component tensors. The Herglotz
properties of A as a function of the component moduli, or component tensors, then follow immediately from
(3.47).

‘We also remark that there are results (Alessandrini and Vessella 2005; Beretta and Francini 2011; Beretta,
de Hoop, and Qiu 2013; Beretta, Francini, and Vessella 2014) on Lipschitz stability of the Dirichlet-to-
Neumann map, when the moduli are piecewise constant. These results are not only for stability when the
moduli change with fixed geometry (which could be derived using the analyticity properties established here)
but also, and more importantly, for stability under changes in the geometry.

3.6 Partial data

The structure extends to the case when there is partial data. Again there is a modified subspace collection.
This observation is basically made (in the general setting) in (29.1) and below on page 620 of Milton (2002).
One considers the restricted subspace U’ to be that subspace of I/ associated with boundary data where u can
only be nonzero on a portion 9’ of 9€2. Then we suppose U’ is the orthogonal complement of ¢/’ in the
space U. Fields in /| have a flux G - n which is zero on 99’ (as the inner product of two fields in U involves
at the boundary the flux of one, and the potential of the other). Keep the Hilbert space the same as before, but
redefine the subspaces

J=UeJ, &=¢. (3.52)

Then everything goes through. The solutions are exactly the same as before but now the field Jy + J gets
re-expressed as Jo’ + J/, where Jo' € U’ and J' € J'. There is an effective tensor L/, which maps fields in
U’ to fields in U’.

More generally, we can just do a set of M measurements where, say, u at the boundary takes values u;,
Us, ..., uys. Given Zg, associated with these are fields Eq, Eo, . . ., Ej; in /. We then take U’ to be the space
spanned by these fields, and define 7’ and £’ through (3.52). The associated effective operator L, can then
be represented by an M x M matrix.

One can also consider partial data where the flux G -n is nonzero only on a portion Q" of 9). Again there
is a subspace U" of U associated with such boundary data. We suppose U] is the orthogonal complement of
U" in the space U. Fields in I/ have a potential u which is zero on 9Q". Let

J'=7J, & =colU], (3.53)

and everything proceeds as before. There is an effective tensor L which maps fields in " to fields in U”.
Again more generally, we can just do a set of M/ measurements where, say, the flux G - n at the boundary
takes values t1, to, ..., tas, and obtain an effective operator L/, represented by an M x M matrix.

3.7 Mixed data

Now suppose we have mixed data where u is prescribed on a portion Q" of 9, while the flux G - n is
prescribed on the remaining portion 9 of 9S), where 9" U 9" = 0. We first consider two problems
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separately: first the problem where the flux G - n is prescribed on the portion 9’ of 9€2, and u is zero on
09" ; and second where u is prescribed on a portion 9Q" of 912, and the flux G - n is zero on 9. These
are essentially the same problems considered in the previous section when we have partial data. Therefore
let us define the subspaces U’, &', J', and U”, £, J" as in the previous section. For the first problem the
appropriate effective tensor is L/, since the field Eq’ will have nonzero u on 9€)’ and zero u on 9" . For
the second problem the appropriate effective tensor is L”, since the field Jo” will have nonzero flux G - n on
0" and a zero flux G - n = 0 on the remaining part 92" of the boundary.

In the first problem we apply a field J,’ associated with the prescribed flux G - n on 9, then Ey' =
(L.,)~1J¢  gives us the potential u on 9S2, which will be zero on the portion Q). Applying L. to Eq’ gives

Jo =L, (L) 'Jy, (3.54)

and from this field we can obtain the flux G - n on 9, which will coincide with the prescribed flux on 9.
Thus we obtain the response, which is the potential u on 9Q’ and the flux G - n on 99",

In the second problem we apply a field E’ associated with the prescribed potential u on 99", then Jo” =
L”E," gives us the flux G - n on 9, which will be zero on the portion Q. Applying (L.)~! to Jo” gives

Eo = (L.)"'L/J3,", (3.55)

and from this field we can obtain the potential u on 952, which will coincide with the prescribed potential on
09", Thus we obtain the response, which is the potential u on 9§ and the flux G - n on 99)".

Finally by summing the responses for the first and second problem, we obtain the response for the original
mixed boundary conditions.

3.8 Applicability to the Schrodinger and heat conduction equations in
the time domain

Recall from Chapter 1, the heat conduction (diffusion) equation (1.151) for the temperature (or particle con-
centration) 7',

Q@ ik(x) 0 0 vT

“ = 0 i) gl (3.56)
Veae+ G 0 g T

g v/ F

and the Schrodinger equation (1.187) for the wavefunction 1) of an electron, or many electrons, in a potential
V.

Az —-A 0 0 Vi
o V=0 0 =) (%) 337
V.q, + G 0o 2 -y ¥
——
g Z F
where the meanings of the various quantities are explained in Chapter 1. These equations are of the form
(3.6) and (3.4) with V replaced by
V= <g> ) (3.58)
ot

Therefore, all the preceding analysis applies with V replaced by V and €2 replaced by a “space—time” body 2.



3.9. Adding source terms 89

3.9 Adding source terms

These are easily handled in the theory, and follow the treatment in Section 1.19. With a source term h(x)
weighted by a constant 6, the equations take the form

G(x) = Z(x)F(x) + 6ph(x), (3.59)
which we can reformulate as
g(x) \_ (Z(x) h(x)\ (F(x)
(v500) = (oot a) o) (360
——
g'(x) Z'(x) F'(x)

where we are free to choose d(x) (often it is chosen so Z’(x) is positive definite). Here F' satisfies the
G

v G> and the vector field r(x) is not subject to any

differential constraints (and in general is not uniquely determined by the equations, only its divergence). We

have the key identity:
o=, ()
Q o \ 1 r bo )

and all of the analysis applies, although we may not be able to physically measure r(x) at the boundary since
itis V - r(x) which has the physical significance.

We start by choosing a positive definite reference tensor Z{, and look at those fields satisfying (3.60) with
Z' (x) replaced by Zj: the associated fields (Z})'/2F'(x) = (Z})~/?G’(x) span a subspace which we define
to be U’. We take £’ to consist of fields E’(x) that are square integrable in 2 taking the form

differential constraint that 6 is constant, G(x) = <

Vu(x)
E'(x) = (Z)Y? | ux) |, (3.62)
0

for some potential u(x) with u(x) = 0 when x € 9€). The space J consists of fields J'(x) that are square
integrable in ) of the form
G(x)
J(x)=(Zy)"V?* [ V-G(x) |, (3.63)
V- r(x)

where n - G = n - r = 0 on 0f2. Equivalently 7 consists of fields of the form

G(x)
J(x)=(Z))" V2| V-Gx) |, (3.64)
S(x)

where n - G = 0 on 912, and the average of S(x) over , (S), is zero.
Defining L' (x) = (Z{)~'/?Z/(x)(Z{)~'/? the equations become

(Jo'(x) +J'(x)) = L' (x)(Eo'(x) + E'(x)), (3.65)
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with Jo', Eo € U, J'(x) € J, E'(x) € . The effective operator L, defined by
J) = L'E, (3.66)

then governs how the field n- G at the boundary 92 responds to applied potentials u(x) and 6y at the boundary.
We skip the analysis which parallels (3.29) to (3.36).

3.10 Static and quasistatic equations

We can consider electrical and thermal conduction, elasticity, piezoelectricity, magnetostriction, Hall Effect
conductivity, thermoelectricity, thermoelasticity, the steady-state Biot equations, magnetic permeability, fluid
flow in porous media (with spatially varying permeability), the dielectric problem, plate equations, chemi-
cal diffusion, neutron diffusion, antiplane elasticity (see e.g., Section 2 of Milton 2002). These can all be
formulated as

(S) = (23 2o (a0,
g'(x) Z/(x) FI(x)

where 0 is a constant /-component vector (possibly ¢ = 0 when the equations are simply G = AVu,
V-G = 0), u(x) is an m—component vector field, G(x) is a d x m dimensional matrix satisfying V-G (x) = 0
and R(x) is a d x ¢ component matrix-valued vector field. When the body is subject to time-harmonic fields
varying at a frequency w such that the wavelength is much bigger than the size of the body, then the quasistatic
equations are often appropriate. These retain the same form, only the fields G’(x), F'(x) and tensor Z’(x)
become complex: the physical fields are Re[e~“!G’(x)] and Re[e ™! F'(x)].

We have the key identity:
/Q (V(-;g()x)> ' (VZEX)> = /BQH'G(X)U(X) +n - R(x)8o, (3.68)

and all of the analysis applies, although again we may not be able to physically measure R.(x) at the boundary
since it is V - R(x) which has the physical significance.

We start by choosing a positive definite reference tensor Z{, and look at those fields satisfying (3.60) with
Z' (x) replaced by Z/: the associated fields (Z{)'/2F’(x) = (Z))~'/2G’ (x) span a subspace which we define
to be U’. We take £’ to consist of fields E’(x) that are square integrable in €2 taking the form

E'(x) = (V‘B(X)> , (3.69)

for some potential u(x) with u(x) = 0 when x € 9. The space J consists of fields J'(x) that are square
integrable in 2 of the form
G(x)
J(x) = 3.70
= (om0 3.0
where V- G = O inside 2 and n - G = n - R = 0 on 0f2. Equivalently 7 consists of fields of the form

J(x) = (g((;{))) 7 (3.71)
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where V - G = 0 inside 2, n - G = 0 on 92, and the average of S(x) over €2, (S), is zero.
Defining L' (x) = (Z})~/2Z/(x)(Z})~*/? the equations become
(Jo'(x) + J'(x)) = L' (x)(Eo'(x) + E'(x)), (3.72)
with Jo', Eo’ € U, Y (x) € J, E/(x) € &. The effective operator L/,, defined by
Jo' =L.E¢, (3.73)
then governs how the field n- G at the boundary 9f2 responds to applied potentials u(x) and 8 at the boundary.

Again we skip the analysis which parallels (3.29) to (3.36).

3.11 Applicability to acoustics and elastodynamics in the time domain

V= (Z) = ( Va), (3.74)
8w4 _E

we have the equation (1.118) for acoustics in the time domain,

Recall from Chapter 1, that with

V-j(x)=0, jx)=2xVPx), (3.75)

where P is the pressure and x = (x1,x2,3,24), With 24 = —t where ¢ is the time. Also recall from
Chapter 1, the equation (1.126) for elastodynamics in the time domain,

V-J=0, J=2ZVv, (3.76)

where v is the velocity. Both these equations are of the form (3.67) (with 8 = B = D = 0) with x replaced
by x and V replaced by V. Therefore, with {2 replaced by a space-time body {2 all the results carry through
and the problem can be reformulated in the language of the theory of composites.

3.12 The electromagnetic equations in the frequency domain

For electromagnetism at fixed frequency w in a three-dimensional body €2 the governing equations for the
electric field e(x) and magnetic field intensity h(x) are

L
g Z F

where p(x) is the magnetic permeability tensor and (x) is the electrical permittivity tensor. We have the
key identity (Poynting’s theorem):

. X) = —in- (e x = i(n x . —nnTle .
/Qg<x> Fx) /m (e x h) /m< h) - {[T - nn”le}. (3.78)
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in which [I —nn”]e = n x e x n is nothing but the tangential component of the electric field, I — nn? being
the projection operator onto this tangential component.

The mapping from the field [I — nn”e at the boundary 912 to the field i(n x h) is what we define as our
Dirichlet-to-Neumann map. The appearance of n(x) x h(x) on the left of this relation is quite natural. In the
special relativity form of Maxwell’s equations in Section 1.15 the electric field e(x) enters F as a vector with

3 spatial components while the magnetizing field h enters the field G (1.167) as an antisymmetric matrix:

0 —hy he
h=|hs 0 —n]. (3.79)
—he h1 0

The associated flux is n-h=n x h. In the next section, an alternative Dirichlet-to-Neumann map from e x n to
n x h x n is used. If we use the invariance of the time-harmonic Maxwell’s equations under the interchanges

esh deb ie—i, esp (3.80)

then this map transforms to a map from h x n to n x e x n, which is the inverse of the map considered here.
Both maps differ from the map of Uhlmann and Zhou (2015) which maps n x e ton X h.
We take a positive definite real tensor Z, and consider the solutions to

—ih V xe
(z’Vxh)ZO( e ) (3-81)
\7_/ ——

o Fo

as the boundary fields range over all possible data. For any prescribed real value of the tangential field e =

(I — nnT)e we calculate
min / (v x e) - Zo (v x e) . (3.82)
Jo e e

e
(I—nn7)e=er on IQ

Provided e has sufficient regularity the minimum exists, is unique and at the minimum

V x fe —ih )
0—/9( Se )-(wd)——z(Vxée)~h+5e-wd, (3.83)

for all e with zero tangential value at the boundary. By integrating this last expression by parts we see that
wd = iV x h. So for any sufficiently regular real-valued boundary condition (I — nn”)e = e there exists a
unique field Fy(x) which corresponds to it. For a complex prescribed field e = e/ + ie//. we find the fields
F§(x) and F/(x) associated with €/, and €7}, to get the field Fy = F|, + F{ associated with ep = e/, 4 ie/}..
T
)

We define U as the space of values of Z(l)/ 2]-"0 (x) as the tangential field ep = (I — nn* )e is varied. The

space & consists of fields of the form
E=127./ (V x e) : (3.84)

e

as e is varied with (I — nn”)e = 0 at 9€). The space J consists of fields of the form

_g-12( —th
J=17, (N y h) : (3.85)
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as h is varied with n x h = 0 on 0f2. All the analysis goes through as before. In particular the effective
tensor L, and hence the Dirichlet-to-Neumann map, mapping the boundary field er = (I — nn”)e to the
boundary field i(n x h) in an n-phase medium is an analytic function of the matrix elements of we; and wp;,
i = 1,2,...,n when the imaginary parts of all these tensors are positive definite. A separate and rigorous
proof of this fact is given in the next chapter.

3.13 The electromagnetic equations in the time domain

In the time domain, the desired form of the electromagnetic equations from (1.171), (1.172), and (1.173) is

given by
“h\ _ ([t 0 ®)\ i (-h)_
( d ) = ( 0 e(x) (S} 6) S} d )= 0, (3.86)
Z
where 5
Vx 0 Vx £
0= el = ot ) . 3.87
Cp ) o= (% §) 587
We take a positive definite matrix Z, and consider the solutions to the equations
_ _e (% i _
go(x) = Zofo(x), ]:0 =0 d) y (C)] go(X) =0. (388)
0

These are generated by taking some potentials ®o(x) and ¢ defined at the boundary of the space—time body

) and considering
L P
i (] -Zy |© . 3.89
gn [ [e(3)] =[e ()] G5

P-_P, p=¢¢ on 90
The minimizing potentials, called ®( and ¢q, give fields

U, = z\%e (‘I’O> , (3.90)
Po
which generate a space U as the boundary potentials are varied. The space £ consists of fields of the form
E=12)/"© (‘I’) , (3.91)
¢
as ® and ¢ vary with ® = ¢ = 0 on 092. The space . consists of fields of the form
—172 {—h ) —h
J:Z0/<d>, wmh@T(d):o, (3.92)

as h and d vary (subject to the last constraint in (3.92)) with d = 0 and n, x h = 0 on 9. All the analysis
applies as before. However, from a practical viewpoint the vector potential ® cannot be directly measured: it
is the magnetic field b(x) which has the physical significance. Nevertheless, if we have a n-phase body where
the moduli p(x) and e(x) are piecewise constant, then the Dirichlet-to-Neumann map will be a Herglotz
function of the component tensors p; and €5, j = 1,2,...,n. Unlike in the time-harmonic case, complex
values of p; and €; do not have a physical significance.
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Abstract

In this chapter we derive the analyticity properties of the electromagnetic Dirichlet-to-Neu-
mann map for the time-harmonic Maxwell's equations for passive linear multicomponent
media. Moreover, we discuss the connection of this map to Herglotz functions for isotropic
and anisotropic multicomponent composites.

Key words: multicomponent media, electromagnetic Dirichlet-to-Neumann map, analytic properties, Her-
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4.1 Introduction

In this chapter, we study the analytic properties of the electromagnetic “Dirichlet-to-Neumann” (DtN) map
for a composite material. Using passive linear multicomponent media, we will prove that this DN map is an
analytic function of the dielectric permittivities and magnetic permeabilities (multiplied by the frequency w)
which characterize each phase. More specifically, it belongs to a special class of functions known as Herglotz
functions. In that sense, this chapter is highly connected to the previous one by Graeme Milton since both are
proving analyticity properties on the DtN map, but with different methods. In Chapter 3, these analyticity
properties are derived by using the theory of composite materials, whereas in this chapter they are proved via
spectral theory in the usual functional framework associated with the time-harmonic Maxwell’s equations.
Maxwell’s equations at fixed frequency w involve the electric permittivity £(x, w) (also called the dielectric
constant if measured relative to the permittivity of the vacuum) and the magnetic permeability p(x,w). The
approach taken in the current chapter has the important advantage of being applicable to bodies where the
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96 4. Analyticity of the Dirichlet-to-Neumann map for the time-harmonic Maxwell’s equations

moduli we(x,w) and wpu(x,w) are not piecewise constant but instead vary smoothly (or not) with position.
In this case we establish (in Subsection 4.3.4) the Herglotz properties of the Dirichlet-to-Neumann map, as a
function of frequency, assuming the material is passive at each point x, i.e., that we(x,w) and wp(x,w) are
Herglotz functions of the frequency w.

The use of theory of Herglotz functions in electromagnetism and in the theory of composites has many
important impacts and consequences (Bergman 1978, 1980, 1982; Milton 1980, 1981a, 1981c, 2002; Golden
and Papanicolaou 1983; Dell’Antonio, Figari, and Orlandi 1986; Bruno 1991a; Lipton 2000, 2001; Gustafsson
and Sjoberg 2010; Bernland, Luger, and Gustafsson 2011; Liu, Guenneau, and Gralak 2013; Welters, Avniel,
and Johnson 2014) especially in developing bounds on certain physical quantities. Based on this and the work
of Golden and Papanicolaou (1985), Bergman (1986), Milton (1987a, 1987b) and Milton and Golden (1990)
on developing bounds on effective tensors of composites containing more than two phases using analyticity
of the effective tensors as a multivariable function of the moduli of the phases, we also establish that the DtN
map is an analytic function of the permittivity and permeability tensors of each phase. Another potential ap-
plication of these analytic properties is to derive information about the DN map for real frequencies by using
the theory of boundary-values of Herglotz functions (for instance, see Gesztesy and Tsekanovskii 2000 and
Naboko 1996). Moreover, as the DtN map is usually used as data in electromagnetic inverse problems (see,
for instance, Albanese and Monk 2006; Uhlmann and Zhou 2015, Ola, Péivéarinta, and Somersalo 2012), we
believe these analyticity properties and the connection to the theory of Herglotz functions will have important
applications in this area of research (see Chapter 5 of this book). The Herglotz properties might also be im-
portant to characterize the complete set of all possible Dirichlet-to-Neumann maps (either at fixed frequency
or as a function of frequency) associated with multiphase bodies with frequency independent permittivity and
permeability. Indeed such analyticity properties were a key ingredient to characterize the possible dynamic re-
sponse functions of multiterminal mass-spring networks (Guevara Vasquez, Milton, and Onofrei 2011). These
response functions are the discrete analogs of the Dirichlet-to-Neumann map in that problem. Additionally,
analytic properties were a key ingredient in the theory of exact relations (Grabovsky 1998; Grabovsky and
Sage 1998; Grabovsky, Milton, and Sage 2000: see also Chapter 17 in Milton 2002 and Grabovsky 2004)
satisfied by the effective tensors of composites, and for establishing links between effective tensors. These
are generally nonlinear relations that are microstructure independent and thus, besides their intrinsic interest,
are useful as benchmarks for numerical methods and approximations. They become linear (Grabovsky 1998)
after a suitable fractional linear matrix transformation is made (which is nonunique and involves an arbitrary
unit vector n). After any such transformation is made and once certain algebraic relations are satisfied (for
all unit vectors n) it can be proved that all terms in the series expansion satisfy the exact relation, and then
analyticity is needed to prove the relation holds (in the domain of analyticity) even if the series expansion does
not converge (Grabovsky, Milton, and Sage 2000).

We split this chapter in three sections. In the first one, we consider the electromagnetic DtN map for a
layered media. In this setting, the DtN map can be expressed explicitly in terms of the transfer matrix as-
sociated with the medium. This gives a good example in which one can see these analytic properties in the
context of matrix perturbation theory (Baumgértel 1985; Kato 1995; Welters 2011a). In the second section,
we restrict ourselves to bounded media but with a large class of different geometries, more precisely, Lipschitz
domains. In this case, using a variational reformulation of the time-harmonic Maxwell’s equations (Cessenat
1996; Kirsch and Hettlich 2015; Monk 2003; Nedelec 2001), we prove both the well-posedness and the ana-
Iyticity of the DtN map. Also we consider bodies where the moduli we(x, w) and wp(x,w) are not piecewise
constant but instead vary with position, and at each point x are Herglotz functions of the frequency w. In this
case we establish the Herglotz properties of the Dirichlet-to-Neumann map, as a function of frequency. In both
sections, the key step to prove the multivariable analyticity is Hartogs’ Theorem from complex analysis which
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essentially says that analyticity in each variable separately implies joint analyticity (see Theorem 4 below).
Concerning the connection to Herglotz functions, an energy balance equation is derived (which is essentially
Poynting’s Theorem for complex frequencies) that allows us to prove that the imaginary part of the DtN map is
positive definite, as a consequence of the positivity of the imaginary part of the material tensors. Nevertheless,
in the case of anisotropic media, the connection to Herglotz functions has to be made more precise. Indeed, we
leave here the usual framework of Herglotz functions of scalar variables since we are concerned with dielectric
permittivity and magnetic permeability tensors as input variables. Thus, the purpose of the last section is to
provide a rigorous definition of Herglotz functions in this general framework, that provides an alternative to
the one developed in Section 18.8 of Milton (2002), by connecting this notion to the theory of holomorphic
functions on tubular domains with nonnegative imaginary part as described in Vladimirov 2002 (see Sections
17-19). This new link is especially significant since this class of functions (like the Herglotz functions in-
troduced in Section 18.8 of Milton (2002)) admits integral representations analogous to Herglotz functions
of one complex variable (the representation in the one variable case as described in Theorem 3 below) and
are deeply connected to the theory of multivariate passive linear systems (see Section 20 in Vladimirov 2002)
with the notions of convolutions, passivity, causality, Laplace/Fourier transforms, and analyticity properties.

This chapter is essentially self-contained, and written in a rigorous mathematical style. Care has been
taken to explain most technical definitions so that it should be accessible to non-mathematicians.

Before we proceed, let us introduce some notation, definitions and theorems used in this chapter. We
denote:

e the complex upper-half plane by C* = {z € C | Im z > 0},

e the Banach space of all m x n matrices with complex entries by M., ,,(C) equipped with any norm, with
the square matrices M,, ,,(C) denoted by M, (C), and we treat C™ as M,, 1(C) (recall that a Banach
space is a complete normed vector space: unlike a Hilbert space, it does not necessarily have an inner
product defined on the space, just a norm.)

e by - the operation defined for all vectors u,v € C" viau - v = u’'v = w;v;, where T denotes the

transpose. Note that there is no complex conjugation in this definition, so u - u is not generally real.
e the open, connected, and convex subset of M,,(C) of matrices with positive definite imaginary part by

M;H(C)={M € M,(C) | ImnM > 0},

n

where In M = (M — M*)/(2i) with M* = M the adjoint of M, and the inequality M > 0 holds in
the sense of quadratic forms. We remark that this set is invariant by the operation: M — —M ™1 since
if M € M, (C) then M is invertible and

~Im(M ™) = (M 1)* Im(M)M~! >0

e by L(E, F) the Banach space of all continuous linear operators from a Banach space E to a Banach
space F equipped with the operator norm.

Definition 1. (Analyticity) Let E and F be two complex Banach spaces and U be an open set of E. A function
f U — F s said to be a analytic if it is differentiable on U.
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Definition 2. (Herglotz functions) Let m,n, N € N, where N is the set of natural numbers (positive integers),
and T = (C*)"™ or (M3 (C))™. An analytic function h : T — Corh : T — M,,(C) is called a Herglotz
function (also called Pick or Nevanlinna function) if

Im(h(z)) >0, Vz € T.

We note here that Definition 2 is the standard definition of a Herglotz function when 7 = C (see Gesztesy
and Tsekanovskii 2000, Berg 2008) and 7 = (C*)™ (in Agler, McCarthy, and Young 2012 it is called a Pick
function), but not when 7 = (M (C))™. Its justification in this last case is given in Section 4.4.

A particular and useful property of Herglotz functions defined on a scalar variable, which has been a
key-tool to use analytic methods to derive bounds, is the following representation theorem.

Theorem 3. A necessary and sufficient condition for a function h : CT — C to be a Herglotz function is that
there exist o, 3 € R with a > 0 and a positive regular Borel measure i for which [ du(X)/(1+ \2) is finite
such that

h(z):az+5+/

R

1 A
——— ) du), eCt. 4.1
(2 )i, s w

For an extension of this representation theorem, for instance, in the case of matrix-valued Herglotz func-
tions h : Ct — M,,,(C), we refer to Gesztesy and Tsekanovskii (2000).

Theorem 4. (Hartogs’ Theorem) If h : U — FE is a function with U an open subset of C™ and E is a Banach
space then h is a multivariate analytic function (i.e., jointly analytic) if and only if it is an analytic function
of each variable separately.

A proof of Hartogs” Theorem when E = C can be found in Hormander (1990) (see Section 2.2, p. 28,
Theorem 2.2.8). For the general case, we refer the reader to Mujica (1986) (see Section 36, p. 265, Theorem
36.1).

Theorem 5. Let E and F denote two Banach spaces and U an open subset of C™. If h : U — L(E, F) is
an analytic function and for each z € U the value h(z) is an isomorphism, then the function z — h(z) ' is
analytic from U into L(F, E).

For a proof of Theorem 5 when n = 1, we refer the reader to Kato (1995) (see Chapter 7, Section 1, pp.
365-366). The proof for an integer n > 1 is then obtained by using Hartogs’ Theorem.

The next theorem, which is a rewriting of Theorem 3.12 of Kato (1995) shows that the notion of weak
analyticity of a family of operators in L(E, F') implies the analyticity of this family for the operator norm of
L(E, F). More precisely, we have the following result:

Theorem 6. Let E and F be two Banach spaces, U an open subset of C and h : U — L(E, F'). We denote
by (-,-) the duality product of F and its dual F*. If the function

hew(2) = (h(2)$,¢), V2 € U,

is analytic on U for all ¢ in a dense subset of E and for all 1) in a dense subset of F'*, then h is analytic in U
for the operator norm of L(E, F).

The following is a theorem for taking the derivative under the integral of a function which depends analyt-
ically on a complex parameter (see Mattner 2001). It introduces the notion of a measure space that we briefly
recall here. A measure space (), F, i) is roughly speaking a triple composed of a set 2, a collection F of
subsets of {2 that one wants to measure (F is called a c—algebra) and a measure x defined on F.
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Theorem 7. Let (), F, 1) be a measure space, let U be an open set of C and [ : Q x U — C be a function
subject to the following assumptions:

e f(-,z) is F measurable for all z € U and f(x,-) is analytic for almost every x in €,
o [olf(x,)|du(x) is locally bounded, that is, for every zy € U there exists a 6 > 0 such that

sup /Q (%, 2)] du(x) < oo,

z€U||z—z0|<6

then the function F : U — C defined by

Fz) = | f(x 2)du(x),
Q
is analytic in U and one can take derivatives under the integral sign:

FR(z2) = /Q %du(x), vk € N.

4.2 Analyticity of the DtN map for layered media

4.2.1 Formulation of the problem

We consider passive linear two-component layered media (material 1 with moduli &, p,; material 2 with
moduli €2, ,) with layers normal to the z-axis. The geometry of this problem, as illustrated in Figure 4.1, is
as follows: First, a layered medium in the region Q = Q; U Qs = [—d, d] consisting of a two-phase material
lies between z = —d and z = d. A homogeneous passive linear material lies between —dy < z < d5 (denote
this “inner” region by Qy = [—d2, d2]) with permittivity and permeability €s, tt5. Another homogeneous
passive linear material lies between —d < z < —da, i.e., the region 1 _ = [—d, —d3), and d2 < z < d, i.e.,
the region Q1 + = (d2, d] (denote “outer” region by ; = 1 _ U £ ;) with permittivity and permeability
€1, 11 The unit outward pointing normal vectors to the boundary surfaces of these regions are n € {e3, —e3},
wheree; = [0 0 1]T.

The dielectric permittivity € and magnetic permeability p are 3 x 3 matrices that depend on the frequency
w and the spatial variable z only (i.e., spatially homogeneous in each layer) which are defined by

€= E(wa Z) = X0 (Z)El(w) + X2 (Z)EZ(w)a S [_da d}v w € (C+a (42)
B = p(w,2) = xa, (2)p1 (@) + X0, ()2 (W), 2 € [~d,d], we CT. (4.3)

Here xq, denotes the indicator function of the region 2;, for j = 1,2. Moreover, they have the passivity
properties (see, for example, section 1.6)

Im(we(w, z)) > 0, Im(wp(w,z)) >0, for Inw > 0, (4.4)
and e, p are analytic functions of w in the complex upper-half plane for each fixed z, i.e.,

wej(w), wp;(w) : Ct — M;"(C) are Herglotz functions, for j = 1,2. 4.5)
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Figure 4.1: A plane-parallel, two-component layered medium €2 consisting of two phases, €1, p; and
€2, Wy, Of linear passive materials with layers normal to the z-axis. The core containing the homogeneous
material 2 (with permittivity €2 and permeability p,) is sandwiched between the shell containing the
homogeneous material 1 (with permittivity €1 and permeability p;). Moreover, the system is symmetric
about the xy-plane.

The time-harmonic Maxwell’s equations in Gaussian units without sources are
iw iw
curlE= —B, curlH=—-—D, D=c¢cE, B=puH, (4.6)
c c
where ¢ denotes the speed of light in a vacuum.

Let us now introduce some classical functional spaces associated to the study of Maxwell’s equations (4.6)
in layered media:

e For a bounded interval I C R, we denote by Lt (I), the Lebesgue space of integrable functions on I. It
is a Banach space with norm

1flh= /1 F@)dz, fe LMD, @)

e For a bounded interval I C R, we denote by AC(I), the Banach space of all absolutely continuous
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functions equipped with the norm

1 flla= / F()ldz + / F(2)ldz, | € AC(D). 48)

Recall, that any f € AC([) is continuous on [ into C, differentiable almost everywhere on I (i.e.,
except on a set of Lebesgue measure zero), and is given in terms of its derivative f/ = % (which is
integrable on I) by

£ =10+ [ " f(w)du, 20,7 € 1. 49)

e Denote the Banach space of all m x n matrices with entries in the Banach space E with norm |||,
where (E, [[][) € {(L*(1),[|-ll1), (AC(I), [[{|1.1) (C, |-}, by My, (E) and equipped with norm

m n 2

M= [ DD IMGIP | M = [M;;] € My, n(E), (4.10)

i=1 j=1
with M,, ,(E) denoted by M, (E), and we treat E™ as M, 1 (E).

e Similarto AC(I), any M € M,, ,(AC(I)) is continuous on I, differentiable almost everywhere on 7,

and in terms of its derivative M’ = ‘fi—l\f = [M];] is given by
M(z) = M(z) +/ M (u)du = {Mij(zo) +/ M{](u)du] , 20,2 € 1. 4.11)
20 20

e Denote the standard inner product on C™ by (+,-) : C* x C™ — C, where
(1, 2) =9 2, 1,12 € C™. (4.12)

Now, because of the translation invariance of the layered media in the x, y coordinates, solutions of equa-
tion (4.6) are sought in the form

M = [H(éﬂ elkiethey) gy e R, z € [—d,d], k= (ki ky) € C?, weCT, (4.13)
in which & is the tangential wavevector. Maxwell’s equations (4.6) for this type of solution can be reduced [see
the appendix in Shipman and Welters (2013) and also Berreman (1972) for more details] to an ordinary linear
differential equation (ODE) for the vector of tangential electric and magnetic field components ), where

P(z) = [Ei(2) Ea(z) Hi(z) Ha(2)] (4.14)
—iJ% = A(2)(2), ¥ € (AC([—d,d)))*, (4.15)
in which
_ 0 P _ 0 1 * _ o7—1 __
J_L)* 0}’ p—{_l o}’ J=J1=17 (4.16)

A=A(2) = Az, k,wel (W), wes (W), Wty (W), Wty (w)), 2 € [-d,d], kK € C?, we CT,. (4.17)



102 4. Analyticity of the Dirichlet-to-Neumann map for the time-harmonic Maxwell’s equations

Here A = A(z) is a piecewise constant function of z into M, (C) (for fixed &, w) with the following explicit
representation in terms of the entries of the matrices € = [g;;], it = [14;] in (4.2), (4.3):

A=V =V (Vi) 'V, (4.18)
where
Vv, =1 {”533 0 ] (4.19)
L 0 wpuss
WEl  WE12 0 0
vy =L e e 0 0 (4.20)

¢ 0 0 w11 WH12
0 0 wp2r wpe

We1s 0 0 kg
0 0 -k
V=1 ! 421
”L c 0 UJM13 + _k2 0 ? ( )
0 w23 k‘l 0

V=2

L WEs1 WE32 0 0 :|+|: 0 0 7]{:2 kl (422)
0 0  wpusr wpss

ke —ki O 0

From these matrices the normal electric and magnetic field components ¢ are given in terms of their tangential
components by

] T

¢=1[BE; Hs] =—-(Vi) 'V (4.23)

The fact that the matrix V| | (z,w) is invertible follows immediately from the fact that the passivity properties
(4.4) imply

Im(V_ (z,w)) > 0. (4.24)

We will now prove in the next proposition [using the methods developed in the appendix of Shipman and
Welters (2013) and in the Ph.D. thesis of Welters (2011b)], some fundamental properties associated to the
ODE (4.15). In particular, we will show that the solution of the initial-valued problem for the ODE (4.15)
depends analytically on the phase moduli.

Proposition 8. For each zy € [—d, d] (and for fixed k,w), the initial-value problem for the ODE (4.15), i.e.,

dp _
dz

has a unique solution 1 in (AC([—d, d)))* for each 1, € C* which is given by

P(z) = T(zo, 2)¥y, z € [—d,d], (4.26)

—iJ A(Z)’I/J(Z), 111’(20) = 17[)07 (4.25)

where the 4 x 4 matrix T(zo, z) is called the transfer matrix. This transfer matrix T has the properties

T(20,2) = T(21,2)T(20,21), T(20,21) " = T(21,20), T(20,20) =1, 4.27)
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forall zg, 21,z € [—d, d]. Furthermore, the map

T = T(29, 2) = T(z20, 2, K,w)
= T(20, 2, K, we1 (W), wea(w), W (W), wps (W), 20,2 € [—d,d], Kk € C% weCT, (4.28)

belongs to My(AC([—d,d))) as a function of z (for fixed zy, k,w) and it is an analytic function as a map of
(k,w) into My(C) (for fixed zo, z). More generally, the map

Z — T(20,2, K, w1, WE, Wiy, Wiks) (4.29)

is analytic as a function of Z = (we1, wea, wpy,wity) € (M3 (C))* into My(C) (for fixed z, 2, k).

Proof. First, it follows from Hartogs’ Theorem (see Theorem 4), the hypotheses (4.2), (4.3), (4.5), the formulas
(4.17)—(4.22), and Theorem 5 that

(k,w) = A(-, k,wer (W), wes(w), wi (W), Wi (W)) (4.30)

is analytic as a function into M4(L* (1)), where I = [—d, d], from C? x C*. And, more generally, it follows
from these theorems, hypotheses, and formulas that the map

(k,Z)—~ A(,K,Z) 4.31)

is analytic as a function of (k,Z) € C? x (M; (C))* into My(L*(I)), where Z is the variable Z =
(wer,wea, Wiy, wiky).

In particular, for either fixed variables (k,w) € C2xC™ or (k,Z) € C?x (M3 (C))* wehave A = A(z)
from (4.17)isin M4(L(I)). Fixa zo € I. Then by the theory of linear ordinary differential equations [see, for
instance, Theorem 1.2.1 in Chapter 1 of Zettl (2005)], the initial-value problem (4.25) has a unique solution t»
in (AC(1))* for each 1p, € C*. Denote the standard orthonormal basis vectors of R* by w, for j = 1,2, 3,4.
Letp; € (AC(I))* denote the unique solution of the ODE (4.15) satisfying 4 (z0) = w, for j = 1,2,3,4.
Now let T(zo,2) = [¥1(2)|Y5(2)|5(2)|4(2)] € M4(C) denote the 4 x 4 matrix whose columns are
T(z0,2)w; = v;(2) for j = 1,2,3,4 and z € I. This matrix T(zo, 2) is known in the electrodynamics of
layered media as the transfer matrix.

Now it follows immediately from the uniqueness of the solution to the initial-value problem (4.25) and the
definition of the transfer matrix T(zo, z), that T = Tz, z) as a function of z € I belongs to M,(AC(I)),
it has the properties (4.27), and it is the unique matrix-valued function in M, (AC(I)) satisfying: if 1, € C*
then ¥ (z) = T(20,2)1, for all z € I is an (AC(I))* solution to the initial-value problem (4.25). From
this uniqueness property of the transfer matrix T'(zg, 2), it follows that T'(zo, z) is the unique solution to the
initial-value problem:

U (2) =iJ TA(2)®(2), ¥(z) =1, ¥ € My(AC(I)), (4.32)

where I € M,4(C) is the identity matrix.
Now we wish to derive an explicit representation for Tz, z) in terms of J and A. To do this we first

introduce some results from the integral operator approach to the theory of linear ODEs. For fixed M €
My(L*(I)), define the linear map Z[M, o] : My (AC(I)) — M4(AC(I)) by

(Z]M, 2]N)(z) = / " M(uN(u)du, N € My(AC(I)), = € I, (4.33)
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It follows that Z[M., z¢] is a continuous linear operator on the Banach space M (AC(I)), i.e., it belongs to
L(M4(AC(I)), M4(AC(I))). Next, define the linear map T [M, zo] : M4(AC(I)) — M4(AC(I)) by

T[M, Zo} =1- I[M, Zo], (434)

where 1 € L(M4(AC(I)), M4(AC(I))) denotes the identity operator on M4(AC(I)). Then it follows
that T[M, z] € L(M4(AC(I)), M4y(AC(I))) and, moreover, T [M, 2] is invertible with T [M, 29] ! €
L(My(AC(I)), My(AC(I))), i.e., T[M, 2] is an isomorphism. The fact that 7 [M, z] is invertible follows
immediately from the existence and uniqueness of the solution Y € M,(AC(I)) for each C € My(C),
F € My (L'(I)) to the inhomogeneous initial-value problem [see, for instance, Theorem 1.2.1 in Chapter 1
of Zettl (2005)]:

Y'(2) =M(2)Y(2) + F(2), Y(20) =C. (4.35)
In other words, Y is the unique solution in M4(AC(I)) to the integral equation
TIM, z]Y = Z[M, z]F + C. (4.36)
Hence, the solution is given explicitly by
Y = T[M, 2] 1 (Z[M, 2]F + C). (4.37)

In particular, it follows from this representation and the fact that the transfer matrix T(zo, z) is the unique
solution to the initial-value problem (4.32) that with F' = 0, C = I in the notation above,

T(z0,-) = TiJ A, 2] ' (1), (4.38)

where A = A(z) as you will recall belongs to My (L*(I)) as a function of z € I (ignoring its dependence on
the other variables) and hence so does iJ 1 A.

Now since iJ~! A is an analytic function of either of the variables (k,w) or (k, Z) into My(L'(I)) as a
function of z € I, for fixed 2, then it follows immediately from this, the representation (4.38), and Theorem
5 that (k,w) — T(20,2,k,w) and (k,Z) — T(z0, 2, Kk, Z) are analytic functions into M4(AC(I)) as a
function of z € I, for fixed zy. Finally, the proof of the rest of this proposition now follows immediately
from these facts and the fact that the Banach space AC(I) can be continuously embedded into the Banach
space C'(I) of continuous functions from I into C equipped with the sup norm || f||ococ= sup,;|f(z)|, that
is, the identity map ¢ : AC(I) — C(I) between these two Banach spaces [i.e., t(f) = f for f € AC(I)]is a
continuous (and hence bounded) linear map under their respective norms [i.e., ¢ € L(AC(I), C(I))]. O

Remark 9. Using Proposition 8 and due to the simplicity of the layered media considered we can derive a
simple explicit representation of the transfer matrix T'(zo, z) for all zg, z € [—d, d). First, the transfer matrix
T(—d, z), z € [—d, d] takes on the simple form

e IAL(z+d) —d <2< —dy,
T(—d, z) = I AL(d=d2) i Az (2+dz) —dy < 2 < do, (4.39)
eiJAl(d—dz)eiJAg(ng)eiJAl(Z—dg)7 d2 S z S d7

where Ay and A5 are the matrices (4.17) for a z-independent homogeneous medium filled with only material
1 (with permittivity and permeability €, and ) and with only material 2 (with permittivity and permeability
€9 and ), respectively (see Figure 4.1).
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Therefore, in terms of this explicit form for T(—d, z), it follows from (4.27) that the transfer matrix
T(z0, 2), 20,2 € [—d, d] is given explicitly in terms of (4.39) by

T(z0,2) = T(—d, 2)T(20, —d) = T(—d, 2)T(—d, z) " *. (4.40)

4.2.2 Electromagnetic Dirichlet-to-Neumann Map

Now every solution to Maxwell’s equations (4.6) of the form (4.13) has in terms of its tangential components
(4.14) a corresponding solution of the ODE (4.15) with normal components given by (4.23). And conversely,
every solution of the ODE (4.15) gives the tangential components of a unique solution to equations (4.6) of
the form (4.13) with normal components expressed in terms of its tangential components by (4.23). We use
this correspondence to now define the electromagnetic “Dirichlet-to-Neumann” (DtN) map in terms of the
transfer matrix T whose properties are described in Proposition 8.

The DtN map is a function

A= A(Zo, Zl) = A(Zo, 21, R, wc—:l(w), MEQ(OJ), Wy (w)7w“2(w))a (4.41)
20,21 € [—d,d], 29 < 21,6 € C?, w e CT,

which can be defined as the block operator matrix

(4.42)

Azo, 21) {E X nz_zl] _ {zn x H x n|Z_Zl} 7

E xn|,—,, in x Hxn|,—,,

where E, H denote a solution of the time-harmonic Maxwell’s equations (4.6) of the form (4.13), i.e., a
function of the form (4.13) whose tangential components 1) with the form (4.14) satisfy the ODE (4.15) and
whose normal components are given in terms of these tangential components 1) by (4.23).

A more explicit definition of this DtN map can be given as follows. First, on C2, with respect to the
standard orthonormal basis vectors, we have the matrix representations

0 -1 0 100
esx =11 0 0|, —e3xe3x=1({0 1 0], 4.43)
0 0 O 0 0 0
and this allows us to writt E x n = —n X Eand n x H x n = —n X n x H as matrix multiplication so that
we can write A as a 6 x 6 matrix which can be written in the 2 x 2 block matrix form as
An A12}
A= : (4.44)
{Am Ao

We now want to get an explicit expression of this block form. Thus, we define the projections

1 0
1 0 0 O 0 0 1 0
P = = = . 4.4
¢ 8 (1) » Qe [O 1 0 0}7 Q2 {0 0 0 1] (4.45)

It follows from this notation that

E x e3 = —¢'(Motke)es « P [Qe19(2)], nx Hx n = F1e+k20)p [Q9p(2)].
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Hence, we have

{in x H x nz_zl} _ joillaatkay) {Pt 0 } {Qt,ﬂﬂ(z&)}

in x Hxn|,—, 0 Py [Qi2%(20)
g P, 0 Q w(zl):|
— i(kiz+kay) t T l: t,1
ie 20, %
{0 PJ (0, 21) Qi1%(20)
_ P, 0 (20, 21) P, 0 T nxExn|,_,,
o0 Py 10 P |[nxExn|._.,

_ P, O (- z)Pt 0 Te3>< 0 E xn|,_,,
"o P V" 0 Py 0 —esx| |Exn|.—s]|’
where we have used the fact that since
|:u1:| _ |:Qt,1'¢'(zl>:| [uo} _ [Qt,l’lb(zo)} T(20, 1) [uo} _ [lh]
Vi Qt,Q"/)(Zl) ’ Vo Qt,21/’(20) ’ ’ Vo vi|’
then by Proposition 13 (given later in Section 4.2.3) we must have
Qt,l";b(zl)] _ l:Qt,2";b(Zl)]
Qi1%(20) Q2%(20)]

where T'(2g, z1) is defined in (4.53) [which is well-defined provided the matrix T12 (29, 21) in the block de-
composition of T(zg, z1) in (4.55) is invertible]. Therefore, the DtN map A(zo, z1) can be defined explicitly
as follows.

I'(20, 21) {

Definition 10 (Electromagnetic Dirichlet-to-Neumann map). The electromagnetic DN map A(zo, z1) is de-
fined to be the 6 x 6 matrix (4.44) defined in terms of the 4 x 4 matrix T'(zo, z1) in (4.53) and the 3 X 2 matrix
P in (4.45) by

T
Az 21) =i [I;)‘ P(’)t] T'(z0, 21) ﬁ‘ I?J {ei’)x _(33 X} : (4.46)
and in the 2 X 2 block matrix form its entries are the 3 X 3 matrices
A11(20,21) = iPT11 (20, 21) Pl esx, (4.47)
Aia(20, 21) = —iPT12(20, 21)PT e3x, (4.48)
A2 (20, 21) = iPT21 (20, 21) Pl e3x, (4.49)
Ago(20, 21) = —iPTaa(20, 21)PT e3x, (4.50)

where e3 X is the 3 X 3 matrix in (4.43).

Now for any zo, z1 € [—d,d], z0 < 21, we want to know whether the DtN map A(zo, z1) is well-defined
or not. The next theorem addresses this.

Theorem 11. If Imw > 0 and k € R? then for any 3 x 3 matrix-valued Herglotz functions we ; (w), wi(w),

j = 1,2 withrange in M3 (C), the electromagnetic DIN map A(z, 21, Kk, we1 (w), wea (W), wpty (W), Wity (w)
is well-defined.
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Proof. Letwej(w), wp;(w), j = 1,2 be any 3 x 3 matrix-valued Herglotz functions with range in M (C).
Choose any values w € Cand k withIm w > 0 and k € R?. Consider the time-harmonic Maxwell’s equations
(4.6) for the plane parallel layered media in Figure 4.1 at the frequency w for solutions of the form (4.13) with
tangential wavevector k, where the dielectric permittivity € and magnetic permeability p are defined in (4.2)
and (4.3).

For zg, z1 € [—d, d] with zp < 21, the transfer matrix (defined in Section 4.2.1) of the layered media with
tensors €(z,w), p(z,w) is T(zo, 21, K, wer (W), wea(w), Wi, (W), wp,(w)). For simplicity we will suppress
the dependency on the other parameters and denote this transfer matrix by Tz, z1). It now follows from the
passivity property (4.4) and Theorem 15, given below, that the matrix J — T'(zq, 21)*JT (20, 21) is positive
definite. By Proposition 14, given below, it follows that the 2 x 2 matrices Tij(zo, z1), 1 <i,7 < 2, that
make up the blocks for the transfer matrix T(zp, z1) in the 2 x 2 block form in (4.52), are invertible. It
follows from this that the matrix I'(zg, z1 ) defined in (4.53) terms of these 2 x 2 matrices is well-defined. And
therefore it follows from the fact that T'(zg, z1 ) is well-defined that the electromagnetic DN map A(zg, 21) =
A(zo, 21, Kywer (W), wes (w), wpq (w), wps(w)), as given in Definition 10, is well-defined. This completes
the proof. O

The main result of this section on the analytic properties of the DtN map is the following:

Theorem 12. For any & € R? and any 3 x 3 matrix-valued Herglotz functions wej(w), W ; (w), 7 =1,2
with range in My (C), the function

w— Az, 21, K, wer (W), wea (W), wp (W), Wty (w)) 4.51)

is analytic from C* into MGJr (C) and, in particular, it is a matrix-valued Herglotz function. More generally,
it is a Herglotz function in the variable Z = (we1,wea, wity,Wits) € (M3 (C))* (see Definition 2).

Proof. Fix any 3 x 3 matrix-valued Herglotz functions we j (w), wp;(w), j = 1,2 with range in M (C). Then
for any electromagnetic field E, B with tangential components 1) with Imw > 0 and tangential wavevector
k € R? we have, by Theorem 15 and its proof, that

E xnl|,—., E xn|,—. E xn|,—. nxHxn|,_,

I A 1 — 1 1

([E x nz_zj A (20, 21) [E x nMD fre ([E xnl.—s,] " |n x Hx nl.—,
=Re{(Exn|,—,,,nxHxn|,—,, )+ (Exn|,—,,,nxHXn|,—.,)}

= (8 (20) 9 () 5 (8 (20) T (20)

= %/(H,Im [wi (z,w)|H) + (E, Im [we (2,w)| E)dz > 0,

with equality if and only if » = 0. It now follows from this and Theorem 15, which tells us that J —
T (20, 21)*IT (20, z1) is positive definite, that we must have Im A(zg, z1) > 0.

We will now prove that the function w — A(zg, 21, k, we1 (W), wea(w), wp, (w), wpy(w)) is analytic from
C* into M{ (C). By Proposition 8 we know that the map

w = T(z20, 21, K, wer (W), wez (W), Wiy (W), wpo (W)
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is an analytic function into M, (C). This implies by (4.53), (4.54) and Theorem 6 that
w — Tz, 21, K, wer (W), wea (W), wpy (W), Wity (wW))

is an analytic function into M,(C) and so by (4.46) it follows that
w = A(zo, 21, K, wer (W), wes(w), wpg (W), wits (w))

is an analytic function into Mg (C).

Now we introduce the variable Z = (we1,wes, Wiy, wpy) € (M3 (C))% Here M, (C) is an open,
connected, and convex subset of M3(C) as a Banach space in any normed topology (as all norms on a finite-
dimensional vector space are equivalent) and hence so is (M; (C))* as a subset of (M3(C))%. Our goal
is to prove that the function Z ~ A(zg, 21, Kk, Z) is analytic. Now as (M3(C))* equipped with any norm
is a Banach space and is isomorphic to the Banach space C3® (by mapping the components of the 4-tuple
and their matrix entries to a 36-tuple) equipped with standard inner product on C36. Thus, by Theorem 4
(Hartogs’ Theorem) it suffices to prove that for each component Z; of Z as an element of C3°, the function
Zj v (20,21, k,Z) is analytic for all other components of Z € (M (C))* fixed. But this proof follows
exactly as we did for proving w — A(zp, 21, Kk, we1 (w), wes(w), wpq (W), Wiy (w)) is an analytic function
into Mg (C). Therefore, Z + A(20, 21, K, Z) is analytic. This completes the proof. O

4.2.3 Auxiliary results

In this section we will derive some auxiliary results that are used in the preceding subsection. First, we write
the transfer matrix T'(zg, z1) in the 2 x 2 block matrix form

T le}
T = 4.52
{Tm T2 (452)

with respect to the decomposition C* = C? & C?. We next define the 4 x 4 matrix I'(zg, 21) in the 2 x 2
block matrix form by

(4.53)

1-1(20721) _ l:r11(20721) Flg(zo,zl):l

I'21(20,21) Ta2(z0,21)

_ [T22(20, 21)T12(20, 21) ™" Ta1(20, 21) — T22(20, 21) T12(20, 21) " T11(20, 21) (4.54)
= 1 ) *

T12(20,21)~ —Ti2(20, 21) " T11(20, 21)
provided T12(2p, 1) is invertible.

Let us now give an overview of the purpose of the results in this section. Using the next proposition,
Proposition 13, we are able to give an explicit formula for the DN map A(zg, 21) in terms of the transfer matrix
T(z0, z1) using the matrix I'(zg, 21), the latter of which requires the invertibility of the matrix T12(zo, 21).
The proposition which follows after this one, i.e., Proposition 14, then tells us that the matrix T12(zg, 21) is
invertible, provided the matrix J — T2, 21)*JT (20, 21) is positive definite. And, finally, Theorem 15 tells
us that this matrix is positive definite (due to passivity).

Proposition 13. If T15(z0, z1) is invertible then for any ug,u; € C? there exist unique vy, v1 € C? satisfying

T (20, 21) {“O} - [“1} . (4.55)

Vo Vi
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These unique vectors vq, vy are given explicitly in terms of the vectors ug, u; by the formula

Vi| Z oz a) [3{1}] . (4.56)

LVol

Proof. Assume T15(z9, 21) is invertible. Let ug, u; € C2. Then we have

[ul} Tz, 21) [20] = [T11(z0: 2100 + Tz(z0, 21)vo]
Vi ’ Vo] | T21(20, 21)uo + T22(20, 21) Vo |

if and only if

|:0 I:| |:I _TQQ(ZO,Zl):| -V1:| _ |:I —T11(ZO,21):| |:U1
I 0 0 T12(20,21> _V() 0 T21(Z()721) uo_

and this holds if and only if
{W] _ {I T22(ZO,21)T12(ZO,21)1} {0 I} {I T11(2072’1)} |:u1:|

Vo 0 T12(20,21) " I 0] [0 Tai(z0,21) ] [uo
_ |:T22(20a z1)T12(20,21) 7" Ta1(20, 21) — Ta2(20, 21) T12(20, 21) "' T11 (20, 21)] [111]
T12(20,21) 7" —T12(20,21) "' T11 (20, 21) u|
The proof of this proposition follows immediately from these equivalent statements. O

Proposition 14. The matrix J — T*JT [dropping dependency on (zy, z1) for simplicity] has the block form

4.57)

J—T*IT — [ 2Re (T, pT21) p— (T5,p" T + T’{lpTQQ)} 7

[p— (T3 p*T12+ T5,pT22)|" 2Re (T3,pT22)

where Re(M) = %(M -+ M*) denotes the real part of a square matrix M. In particular, if J — T*JT > 0
then Re (T}, pT21) > 0, Re (T},pT22) > 0, and T;; is invertible for 1 < i,j < 2.

Proof. The block representation (4.57) follows immediately from the block representations (4.16), (4.52) by
block multiplication. Suppose J — T*JT > 0. Then it follows immediately from the block representation
(4.57) that Re (T5;pT21) > 0, Re (T73pT22) > 0. Now it is a well-known fact from linear algebra that if
ReM > 0 for a square matrix M then M is invertible. From this it immediately follows that T';; is invertible
for 1 < 1,5 < 2. This completes the proof. O

Now we define the indefinite inner product [-,-] : C* x C* — C in terms of the standard inner product
(,-): C*x C* - Chy

1] = 7= (B91.9), 1,4, €CL (458)

We also define the complex Poynting vector S for functions of the form (4.13) to be

S = 8%E><ﬁ = e 2Imk)a+Im(k)y)g (1) §(2) = 8%E (2) xH ()
The energy conservation law for Maxwell’s equations (4.6) for functions of the form (4.13) is now described
by the next theorem.



110 4. Analyticity of the Dirichlet-to-Neumann map for the time-harmonic Maxwell’s equations

Theorem 15. Assume Imw > 0 and k € R%. Then for any 29,21 € [—d,d], zo < 21 and any solution 1)

of the ODE (4.15) with [E H} T the corresponding solution of Maxwell’s equations (4.6) of the form (4.13)
whose tangential components (4.14) are ¥, we have

21

[%(20), ¥(20)] — [¥(21), 9 (21)] = —/az [ReS (z) - es]dz = f/V-Re(S)dz (4.59)

20
21

= 8% (H, Im [wp (2, w)] H) + (E, Im [we (z,w)] E) dz > 0, (4.60)

with equality if and only if 1 = 0. In particular, this implies
J — T(20, 21, &, w) " IT(20, 21, K, w) > 0. (4.61)

Proof. The equalities in (4.59) follow immediately from the equalities

st o= () L 5] -Hoerswer

The proof of the last term in (4.59) being equal to (4.60) is proved in almost the exact same way as the proof
of Poynting’s Theorem for time-harmonic fields [see Section 6.8 in Jackson (1999) and also Section V.A of
Welters, Avniel, and Johnson (2014)] and so will be omitted. The inequality in (4.60) follows from passivity
(4.4) and necessary and sufficient conditions for equality follow immediately from this. These facts imply
immediately the inequality in (4.61). This completes the proof. O

4.3 Analyticity of the DtN map for bounded media

4.3.1 Formulation of the problem

For the sake of simplicity, we consider here an electromagnetic medium (see Figure 4.2 for an example)
composed of two isotropic homogeneous materials which fills an open connected bounded Lipschitz domain
Q C R3 (we refer to the Section 5.1 of Kirsch and Hettlich 2015 for the definition of Lipschitz bounded
domains which includes domains with nonsmooth boundary as polyhedra). However, our res