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Outline of Lectures

Lecture 1:

• Root data and reductive groups

• Automorphisms and inner classes

• Real forms and involutions

• Basic Data

• Extended groups

• Strong involutions
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Lecture 2:

• Representations of strong involutions

• Translation families

• L-homomorphisms

• L-data

• Parametrization of representations in
terms of L-data
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Lecture 3:

• The flag variety K\G/B

• The one-sided parameter space X

• Structure of X

• Twisted involutions in the Weyl group
and IW

• Fibers of the map X → IW
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Lecture 4:

• W action on X

• Cartan subgroups and strong real forms

• Cayley transforms

• The parameter spaceZ and the parametriza-
tion of representations
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We recommend making some simply-
ing assumptions the first time through.
At various times we will assume:

• G is semisimple

• G is simply connected

• G is adjoint

• Out(G) = 1

• γ = 1

• x2 = 1

• All of the above

For example if G is semisimple Out(G)
is a subgroup of the automorphism group
of the Dynkin diagram, and equal to it if
G is adjoint or simply connected. Also
the spaces X ,Y and Z are all finite.

6



The main topic of these talks is:
Problem: Compute the irreducible rep-
resentations of a real reductive algebraic
group explicitly.

This is in principle done, by work of
Langlands, complete by Knapp, Zuck-
erman and Vogan. Even for the experts
this is a difficult calculation in even small
groups, not to mention E8.

These talks report on work of Fokko
du Cloux.
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His work, and these talks, are described
boxed:

math −→ algorithms −→ software

The math involves work of many peo-
ple, most recently Adams, Barbasch and
Vogan. The algorithm is largely due to
Fokko du Cloux, based on conversations
with Adams and Vogan. The atlas

software is 100% due to Fokko.
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Example 1 The complex group E8 has
three real forms, which together have

1 + 1 + 3, 150 + 73, 410 + 73, 410 + 453, 010

= 603 − 032

irreducible representations with infinites-
imal character ρ (the same as that of the
trivial representation).

Of these 3, 733, or .62%, are unitary
(this was computed by Scott Crofts).

The number of irreducible representa-
tions is closer to the

√

|W | than |W |,
which is very good news: |W | = 696, 729, 600,
which would be too many representa-
tions to handle easily, even by computer.

The Atlas of Lie Groups and Rep-

resentations is a project to compute
the unitary dual of real groups. One
of the main goals of the project is to
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make information available to the gen-
eral mathematical audience, much like
the Atlas of Finite Groups.

An early version of the atlas soft-
ware is availabe on the atlas web site,
www.liegroups.org. We encourage you
to download it and try it yourself. These
talks will outline the algorithm behind
the software. In some accompanying
evening talks I will demonstrate the soft-
ware itself.

Note: a windows version of the soft-
ware is now available.
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Here is an example of the kind of com-
binatorial object we will be discussing.

Theorem 2 Let G = Sp(2n, C) and
G∨ = SO(2n + 1, C).

The irreducible representations of Sp(2n, R)
with infinitesimal character ρ are parametrized
by:

{(x, y}/G × G∨

where

(3)

x ∈ NormG(H), x2 = −I

y ∈ NormG∨(H∨) y2 = I

θt
x,h = −θy,h∨

Here H ⊂ G is a Cartan subgroup,
θx,h(X) = Ad(x)(X) for X ∈ h. Sim-

ilarly H∨ ⊂ G∨ and θy,h∨. There is a
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natural duality between h and h∨, and
θt
x,h ∈ End(h∨).

For example for Sp(4) the set under
discussion has 18 elements.
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The basic setting is a connected re-
ductive algebraic group G. This is de-
fined by its root data (X, ∆, X∨, ∆∨)
where

(1) H is a Cartan subgroup

(2) X = X∗(H) is the character lattice

(3) ∆ is the set of roots

(4) X∨ = X∗(H) is the co-character lat-
tice

(5) ∆∨ is the set of co-roots

There is a standard exact sequence

1 → Int(G) → Aut(G) → Out(G) → 1

A splitting datum is a set (H, B, {Xα})
where H is a Cartan subgroup, B is a
Borel subgroup, and Xα is a set of sim-
ple root vectors. Given such a splitting
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datum we obtain a splitting of the ex-
act sequence, taking Out(G) to the sta-
bilizer of the splitting.

A real form of G is the fixed points
G(R) = G(C)σ of an anti-holomorphic
involution σ, or the involution σ itself.
Instead of anti-holomorphic involutions
we prefer to work with holomorphic ones.

Lemma 4 Given an anti-holomorphic
involution σ there is a holomorphic
involution θ satisfing θσ = σθ and
G(R)θ is a maximal compact subgroup
of G(R).

The correspondence σ ↔ θ is a bi-
jection, between G(C) conjugacy classes
of σ’s and θ’s.

Definition 5 We say involutions θ, θ′

are inner if they have the same image
14



in Out(G).
Fix γ ∈ Out(G), γ2 = 1. The inner

class of γ is the set of involutions θ
mapping to γ.

Let Γ = {1, σ} be the Galois group of
C/R.

Definition 6 Given (G, γ) we let

GΓ = G o Γ

where the action of σ ∈ Γ is by φS(γ)
for some splitting φS.

Recall

(G, γ), γ2 = 1

GΓ = G o Γ 3 δ = 1 × σ
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θδ(g) = δgδ−1

Suppose

θ2 =, p(θ) = γ ∈ Out(G)

Then

θ(g) = (hδ)g(hδ)−1 h ∈ G

= hθδ(g)h−1
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Definition 7

x = hδ ∈ GΓ\G, x2 ∈ Z(G)

define

θx(h) = xhx−1

Example: G = GL(n, C)

x = diag(

p
︷ ︸︸ ︷
1, . . . , 1,

q
︷ ︸︸ ︷
−1, . . . ,−1)

Gθx = GL(p, C) × GL(q, C)

Corresponding real form is U(p, q), K =

U(p)×U(q), K(C) = GL(p, C)×GL(q, C)
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Definition 8 A “strong involution” or

“strong real form” of G is x ∈ GΓ\G,

x2 ∈ Z(G)

I(G, γ) = {strong real forms}/G

Proposition 9

I(G, γ) ↔ {involutions in inner class γ}/G

This is a bijection if G is adjoint.
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Example: G = SL(2) (γ = 1)

I/G = {I,−I, diag(i,−i)}

These map to the (ordinary) real forms:

πI → SU(2)

diag(i,−i) → SL(2, R)

It is helpful to think of these strong

real forms as:

I → SU(2, 0)

−I → SU(0, 2)

diag(i,−i) → SU(1, 1)
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Representations

A representation of G = SL(2, R) is

an action on a Hilbert space

Algebraic version: a (g, K)-module where

g = LieC(G) = sl(2, C)

K = SO(2, C) ' C
×

Here K is the complexification of the

maximal compact subgroup SO(2) of

SL(2, R). The representations of SO(2)

and the algebraic representations of SO(2, C)

are the same.

A (g, K) module is a representation

of g, and an algebraic representation of

K, with a compatibility condition.
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Definition 10 A representation of a

strong real from x of G is a (g, K)-

module. We say (x, π) ' (x′, π′) if

there exists g ∈ G(C) such that gxg−1 =

x′, πg ' π′.

Recall Kx = Gθx
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Key Example: G = SL(2)

x =

(
i 0
0 −i

)

π = Holomorphic discrete series

with K − types 2, 4, 6, . . .

π∗ = Anti-holomorphic discrete series

with K − types − 2,−4,−6, . . .

{(x, π), (x, π∗)}

is a discrete series L-packet for x, i.e.

SL(2, R)
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Now let

w =

(
0 1
−1 0

)

Then wxw−1 = −x, πw = π∗, i.e.

(x, π∗) ≡ (−x, π)

So we can write our L-packet

{(x, π), (−x, π)}
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Translation

An infinitesimal character for G is given

by a semisimple conjugacy class in g∗.

Write λ for an infinitesimal character.

We say λ is regular if 〈λ, α∨〉 6= 0 for

all roots α.

Let

M(x, λ) = {(x, π) | π has infinitesimal character λ}

(up to equivalence).

This is a finite set.

Theorem 11 If λ, λ′ are regular and

λ − λ′ ∈ X∗(H) then

M(x, λ) ' M(x′, λ)
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Fix (G, γ)

If G ↔ (X, ∆, X∨, ∆∨), let G∨ be

the dual group: given by root data (X∨, ∆∨, x, ∆)

There is a natural definition of γ∨ =

−w0γ
t ∈ Out(G∨)

Define GΓ = GoΓ and G∨Γ = G∨
o

Γ

Remark 12 G∨Γ is the L-group of G

(not obvious from this definition)

For example if γ is the inner class of

the split real form of G, then γ∨ = 1

The Langlands classification says:

Associated to an admissible homomor-
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phism

φ : WR → G∨Γ

and a real form G(R) of G in the given

inner class is an L-packet, which is a

finite set Πφ of representations of G(R)
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Definition 13 A one sided L-datum

for (G, γ) is a pair (y, B∨
1 ) where y is

a strong involution for (G∨, γ∨) and

B∨
1 is a Borel subgroup of G∨.

A complete one sided L-datum is a

triple (y, B∨
1 , λ) with e2πiλ = y2 ∈

Z(G∨).

Given S = (y, B∨
1 , λ) let

φS : WR → G∨Γ

be defined by

φS(z) = zλ1zAd(y)λ1

φS(j) = e−πiλy

Here

WR = 〈C×, j〉
27



where jzj−1 = z and j2 = −1.

Note: we have chosen a y-stable Car-

tan subgroup H∨
1 ⊂ B∨

1 , and chosen

g ∈ G∨ so that gH∨g−1 = H∨
1 and

λ1 = Ad(g)λ is B∨
1 -dominant.

Definition 14

P = {one sided L-data (y, B∨
1 )}/G∨

Pc = {complete one sided L-data (y, B∨
1 , λ)}/G∨
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The next result follows easily.

Theorem 15

Pc ↔ {L-packets for strong real forms of G

with regular integral infinitesimal character}

↔ {φ : WR → G∨Γ}/G∨

and

Pc ↔ {translation families of

L-packets for strong real forms of G

with regular integral infinitesimal character}

Note: Let {xi | i ∈ I} be a set of rep-

resentatives of I/G. By definition an

“L-packet for strong real forms of G” is

a union of L-packets as i ∈ I .

Example 16 G = SL(2), for a cer-
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tain φ,

Φφ = {(I, C), (−I, C), (x, π), (x, π∗) = (−x, π)}

where x = diag(i,−i).

Here

(I, C) = trivial representation of SU(2, 0)

(−I, C) = trivial representation of SU(0, 2)

(x, π) = holomorphic discrete series of SU(1, 1)

(−x, π) = (x, π∗) = holomorphic discrete series of SU(1, 1)

{(x, π), (x, π∗)} = L-packet for SU(1, 1)
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Recall

(G, γ), γ2 = 1

GΓ = G o Γ 3 δ = 1 × σ

θδ(g) = δgδ−1

Suppose

θ2 =, p(θ) = γ ∈ Out(G)

Then

θ(g) = (hδ)g(hδ)−1 h ∈ G

= hθδ(g)h−1
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Definition 17

x = hδ ∈ GΓ\G, x2 ∈ Z(G)

define

θx(h) = xhx−1

Example: G = GL(n, C)

x = diag(

p
︷ ︸︸ ︷
1, . . . , 1,

q
︷ ︸︸ ︷
−1, . . . ,−1)

Gθx = GL(p, C) × GL(q, C)

Corresponding real form is U(p, q), K =

U(p)×U(q), K(C) = GL(p, C)×GL(q, C)
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Definition 18 A “strong involution”

or “strong real form” of G is x ∈

GΓ\G, x2 ∈ Z(G)

I(G, γ) = {strong real forms}/G

Proposition 19

I(G, γ) ↔ {involutions in inner class γ}/G

This is a bijection if G is adjoint.
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Example: G = SL(2) (γ = 1)

I/G = {I,−I, diag(i,−i)}

These map to the (ordinary) real forms:

πI → SU(2)

diag(i,−i) → SL(2, R)

It is helpful to think of these strong

real forms as:

I → SU(2, 0)

−I → SU(0, 2)

diag(i,−i) → SU(1, 1)
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Representations

A representation of G = SL(2, R) is

an action on a Hilbert space

Algebraic version: a (g, K)-module where

g = LieC(G) = sl(2, C)

K = SO(2, C) ' C
×

Here K is the complexification of the

maximal compact subgroup SO(2) of

SL(2, R). The representations of SO(2)

and the algebraic representations of SO(2, C)

are the same.

A (g, K) module is a representation

of g, and an algebraic representation of

K, with a compatibility condition.
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Definition 20 A representation of a

strong real from x of G is a (g, K)-

module. We say (x, π) ' (x′, π′) if

there exists g ∈ G(C) such that gxg−1 =

x′, πg ' π′.

Recall Kx = Gθx
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Key Example: G = SL(2)

x =

(
i 0
0 −i

)

π = Holomorphic discrete series

with K − types 2, 4, 6, . . .

π∗ = Anti-holomorphic discrete series

with K − types − 2,−4,−6, . . .

{(x, π), (x, π∗)}

is a discrete series L-packet for x, i.e.

SL(2, R)
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Now let

w =

(
0 1
−1 0

)

Then wxw−1 = −x, πw = π∗, i.e.

(x, π∗) ≡ (−x, π)

So we can write our L-packet

{(x, π), (−x, π)}
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Translation

An infinitesimal character for G is given

by a semisimple conjugacy class in g∗.

Write λ for an infinitesimal character.

We say λ is regular if 〈λ, α∨〉 6= 0 for

all roots α.

Let

M(x, λ) = {(x, π) | π has infinitesimal character λ}

(up to equivalence).

This is a finite set.

Theorem 21 If λ, λ′ are regular and

λ − λ′ ∈ X∗(H) then

M(x, λ) ' M(x′, λ)
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Fix (G, γ)

If G ↔ (X, ∆, X∨, ∆∨), let G∨ be

the dual group: given by root data (X∨, ∆∨, x, ∆)

There is a natural definition of γ∨ =

−w0γ
t ∈ Out(G∨)

Define GΓ = GoΓ and G∨Γ = G∨
o

Γ

Remark 22 G∨Γ is the L-group of G

(not obvious from this definition)

For example if γ is the inner class of

the split real form of G, then γ∨ = 1

The Langlands classification says:

Associated to an admissible homomor-
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phism

φ : WR → G∨Γ

and a real form G(R) of G in the given

inner class is an L-packet, which is a

finite set Πφ of representations of G(R)
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Definition 23 A one sided L-datum

for (G, γ) is a pair (y, B∨
1 ) where y is

a strong involution for (G∨, γ∨) and

B∨
1 is a Borel subgroup of G∨.

A complete one sided L-datum is a

triple (y, B∨
1 , λ) with e2πiλ = y2 ∈

Z(G∨).

Given S = (y, B∨
1 , λ) let

φS : WR → G∨Γ

be defined by

φS(z) = zλ1zAd(y)λ1

φS(j) = e−πiλy

Here

WR = 〈C×, j〉
42



where jzj−1 = z and j2 = −1.

Note: we have chosen a y-stable Car-

tan subgroup H∨
1 ⊂ B∨

1 , and chosen

g ∈ G∨ so that gH∨g−1 = H∨
1 and

λ1 = Ad(g)λ is B∨
1 -dominant.

Definition 24

P = {one sided L-data (y, B∨
1 )}/G∨

Pc = {complete one sided L-data (y, B∨
1 , λ)}/G∨
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The next result follows easily.

Theorem 25

Pc ↔ {L-packets for strong real forms of G

with regular integral infinitesimal character}

↔ {φ : WR → G∨Γ}/G∨

and

Pc ↔ {translation families of

L-packets for strong real forms of G

with regular integral infinitesimal character}

Note: Let {xi | i ∈ I} be a set of rep-

resentatives of I/G. By definition an

“L-packet for strong real forms of G” is

a union of L-packets as i ∈ I .

Example 26 G = SL(2), for a cer-
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tain φ,

Φφ = {(I, C), (−I, C), (x, π), (x, π∗) = (−x, π)}

where x = diag(i,−i).

Here

(I, C) = trivial representation of SU(2, 0)

(−I, C) = trivial representation of SU(0, 2)

(x, π) = holomorphic discrete series of SU(1, 1)

(−x, π) = (x, π∗) = holomorphic discrete series of SU(1, 1)

{(x, π), (x, π∗)} = L-packet for SU(1, 1)

Fix (G, γ), gives (G∨, γ∨)

GΓ = G o Γ

G∨Γ = G∨
o Γ

Recall one-sided L-data:
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P(G∨, γ∨) = {(y, B∨
1 )}/G∨

y is a strong involution

B∨
1 ⊂ G∨ is a Borel subgroup

and complete one-sided L-data:

Pc(G
∨, γ∨) = {(y, B∨

1 , λ)}/G∨

λ ∈ h∨, exp(2πiλ) = y2 ∈ Z(G∨)
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Theorem 27

Pc(G
∨, γ∨) ↔ {φ : WR → G∨Γ}/G∨

↔ {L-packets for strong real forms of G,

regular integral infinitesimal character}

P(G∨, γ∨) ↔

{translation families of L-packets

for strong real forms of G, with

regular integral infinitesimal character}

First step in our algorithm: combina-

torial description of P(G∨, γ∨)
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By symmetry (and to avoid ∨ clutter)

define

P(G, γ) = {(x, B1)}/G

We may as well conjugate B1 to B:

g : (x, B1) → (x′, B)

We can furthermore conjugate by B

to take x to the normalizer of H :

b : (x′, B) → (x′′, B)

We can still conjugate by H .
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This gives the primary combinatorial

construction.

Definition 28 Fix (G, γ) and there-

fore (G∨, γ∨) Define X = X (G∨, γ∨):

X = (I ∩ NΓ)/H

= {x ∈ NormGΓ\G(H) |x2 ∈ Z(G)}/H

For example if γ∨ = 1 this can be

identified with

X = (I ∩ N)/H

= {g ∈ NormG(H) | g2 ∈ Z}/H

Note: W acts on X by conjugation
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Proposition 29 There is a natural

bijection

X (G∨, γ∨) ↔ P(G∨, γ∨)

so X parametrizes translation fami-

lies of maps of the Weil group.
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Example: G = SL(2)

N = {diag(z, 1/z)} ∪ {

(
0 z

−1
z 0

)

I∩N = {±I,±diag(i,−i)}∪{

(
0 z

−1
z 0

)

H acts on the second term by z →

z−1, so

X = {I,−I, t,−t, w}

(t = diag(i,−i), w =

(
0 1
−1 0

)

)
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Suppose G = PGL(2) and G∨ =

SL(2)

Then P(G∨, 1) gives translation fam-

ilies of maps φ : WR → SL(2).

Take λ ∈ Z + 1
2 with e2πiλ = y2

(1) y = εI, y2 = I, λ = n:

φ(z) = diag(|z|2n, |z|−2n)

φ(j) = ε(−I)n

(2 )y = εt, y2 = −1, λ = n + 1
2:

φ(z) = diag(|z|2n+1, |z|−2n−1)

φ(j) = ε(−I)n

(3) y = w, y2 = −1, λ = n + 1
2:

φ(z) = diag((z/z)2n+1, (z/z)−2n−1)

φ(j) = w

(1), (2) ↔ principal series
(3) ↔ discrete series
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(1) y = εI, y2 = I, λ = n:

φ(z) = diag(|z|2n, |z|−2n)

φ(j) = ε(−I)n

(2) y = εt, y2 = −1, λ = n + 1
2:

φ(z) = diag(|z|2n+1, |z|−2n−1)

φ(j) = ε(−I)n

(3) y = w, y2 = −1, λ = n + 1
2:

φ(z) = diag((z/z)2n+1, (z/z)−2n−1)

φ(j) = w
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Relation with K-orbits on the flag va-
riety

Recall we conjugated (x, B1) to (x′, B)
to get X . Instead we now conjugate x
to a fixed set of representatives of I/G.

Choose

{xi | i ∈ I} ↔ I/G

If G is semisimple this is a finite set.
For i ∈ I let θi = int(xi), Ki = Gθi
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P(G, γ) = {(x, B1)}/G

We may conjugate x to some xi:

g : (x, B1) → (xi, B2)

We are still allowed to conjugate by
Ki on the B′s, i.e. the flag variety
G/B:

This gives:

X (G, γ) = P(G, γ) = ∪iKi\G/B

the union of the flag varieties of the
strong real forms of G.
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Symmetrize the picture:

Definition 30 An L-datum for (G, γ)
is:

(x, B1, y, B∨
1 )

where

(1) x is a strong real form of G,

(2) B1 is a Borel subgroup of G,

(3) y is a strong real form of G∨,

(4) B∨
1 is a Borel subgroup of G∨

(5) (θx,h)t = −θy,h∨

L = {L − data}/G × G∨

56



(Note: choose g : H → H1, B → B1.
Then θx,h = θx ∈ Aut(h1) carried over
to H by g, and θy,h∨ similarly.)

57



Theorem 31

L ↔ {translation families of irreducible

representations of strong real forms of G

with regular integral infinitesimal character}

Note: define

Lc = {x, B1, y, B∨
1 , λ)}/G × G∨

similarly, resulting theorem without the
“translation families”.
Sketch:

(y, B∨
1 , λ) → φ → Πφ

an L-packet of representations of strong
real forms of G

The element x gives a strong real form,
and the choice of B1 is what is needed
to pick out a single representation of the
strong real form x in this L-packet.
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A bit more precisely:

φ : WR → H∨Γ
1 ↪→ G∨Γ

Assume G is semisimple and simply
connected. Then H∨

1 is isomorphic to
the L-group of H1. This isomorphism is
not canonical: it depends on the choice
of B1. This choice then gives a charac-
ter of H1(R), and this gives a represen-
tation of the strong real form x of G.
[General case: algebraic covering group
of H1 plays a role.]
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Our parameter set is

L ⊂P(G, γ) × P(G∨, γ∨)

= X (G, γ) ×X (G∨, γ∨)

We want to study it in more detail.
This really only involves X (G, γ) and
X (G∨, γ∨) separately.

Consider X (G, γ).
For simplicity assume γ = 1
Recall

X = (I ∩ N)/H

= {x ∈ N, x2 ∈ Z}/H

Let
IW = {w ∈ W |w2 = 1}
The map N → W induces

p : X → IW
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Example: SL(2)

X = {I,−I, t,−t, w}

I,−I, t,−t → 1

w → sα

61



Xw = fiber over w ∈ IW

X (z) = {x ∈ X |x2 = z ∈ Z}

Recall W acts on X by conjugation

w · Xv = Xwvw−1
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Proposition 32

(1) X ↔ ∪iKi\G/B

(2) I/W ↔ {Cartan subgroups in Gqs}

(3) X/W ↔ ∪i{Cartan subgroups in Gxi}

(4) Xw(z) ' [∨H(R)/H∨(R)0]∨

(5) X1/W ↔ {strong real forms}

Some loose ends

1) Some of the combinatorics related to
K\G/B may be found in The Bruhard
order on symmetric varieties, R. W.
Richardson and T. A. Springer, Geome-
triae Dedicata, 1990.
2) The most complete version of this
picture is the book by Adams, Barbasch
and Vogan. However:

a) In ABV GΓ is defined to be G o

Γ where Γ acts by an anti-holomorphic
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involution
b) You won’t find the parameters (x, B1, y, B∨

1 ),
or X (G, γ) there. See Lifting of Char-
acters, Birkhauser 101 (Proceedings of
the Bowdoin confererence), 1991. This
is a more friendly introduction to the
program, only considering regular inte-
gral infinitesimal character.
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These slides, and revised versions of
the notes will appear at www.liegroups.org
(and the conference web site)

Recall some constructions:

(G, γ), GΓ = G o Γ

X = {x ∈ NormGΓ\G(H) |x2 ∈ Z(G)}/H

= {x ∈ NormG(H) |x2 ∈ Z(G)}/H (γ = 1)

IW = {w ∈ WΓ\W |w2 = 1}

= {w ∈ W |w2 = 1} (γ = 1)
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p : X → IW

φ : X 3 x → x2 ∈ ZΓ

Xτ = p−1(τ ) τ ∈ IW

X (z) = φ−1(z) z ∈ ZΓ

Xτ (z) = Xτ ∩ X (z)

W acts on X and IW by conjugation
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Proposition 33

(1) X = ∪iXi ↔ ∪iKi\G/B

(2) IW/W ↔ {Cartan subgroups in Gqs}

(3) X/W ↔ ∪i{Cartan subgroups in Gxi}

(4) Xτ (z) ' [∨H(R)/H∨(R)0]∨

(5) Xτ/W ↔ {strong real forms containing Cartan τ}

(6) Xδ/W ↔ {all strong real forms}

(7) W (Kx, H) ' StabW (x)

(8) W τ acts on Xτ

In particular |Xτ (z)| = 2k
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•Sp(2, 0)





−→ z = I

•Sp(0, 2)

•




Sp(1, 1)

• • •

•





Sp(4, R)






−→ z = −I
•

• • •

• • • • • •

1Iw : sα1
sα2

sβ1
sβ2

−1

TCartan: C
× S1 × R

× A

Figure 1: X for G = Sp(4)

(Thanks to Les Saper for this slide)
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Return to the symmetric setting:
(G, γ), (G∨, γ∨),X = X (G, γ),X ∨ = X (G∨, γ∨)

Definition 34

Z = X ×0 X
∨

= {(x, y) ∈ X × X ∨ | θt
x,h = −θy}/G × G∨

Note:

Z = ∪iKi\G/B ×0 ∪jK
∨
j \G

∨B∨

Theorem 35 There is a natural bijection be-
tween Z and the set of translation families of
irreducible representations of strong real forms
of G with regular integral infinitesimal charac-
ter.
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Corollary 36

(1) Fix a set Λ ⊂ Preg of representatives of

P/X∗(H). Then there is a natural bijection

between Z and the union, over λ ∈ Λ, of irre-

ducible representations of strong real forms of

G, with infinitesimal character λ.

(2) Suppose G is semisimple and simply con-

nected. Then there is a natural bijection be-

tween Z and the irreducible representations of

strong real forms of G with infinitesimal char-

acter ρ.

(3) Suppose G is adjoint, and fix a set Λ ⊂ Preg

of representatives of P/R. Then there is a natu-

ral bijection between Z and the irreducible rep-

resentations of real forms of G, with infinitesi-

mal character in Λ.
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Example: SL(2)/PGL(2)

Orbit x x2 θx Gx λ rep Orbit y y2 θy G∨

y λ rep

O2,0 I I 1 SU(2, 0) ρ C O′

∗
w I -1 SO(2, 1) 2ρ PSC

O0,2 -I I 1 SU(0, 2) ρ C O′

∗
w I -1 SO(2, 1) 2ρ PSsgn

O+ t -I 1 SU(1, 1) ρ DS+ O′

∗
w I -1 SO(2, 1) ρ C

O− -t -I 1 SU(1, 1) ρ DS− O′

∗
w I -1 SO(2, 1) ρ sgn

O∗ w -I 1 SU(1, 1) ρ C O′

+ t I -1 SO(2, 1) ρ DS

O∗ w I 1 SU(1, 1) ρ PSodd O′

3,0 I I 1 SO(3) ρ C
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Definition 37 A block of representations is the
Z-span of irreducible representations given by
the equivalence relation Ext(X, Y ) 6= 0.

A block B is where the Kazhdan-Lusztig poly-
nomials live: B has two bases: of irreducible
representations, or of standard representations.
The Kazhdan-Lusztig polynomials compute each
standard module as a sum of irreducible mod-
ules, and vice-versa.

The program computes Kazhdan-Lusztig poly-
nomials. We’ve computed them for every group
up to rank 8, with the exception of the block of
size 453, 060
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Vogan duality

Theorem 38 Given a block B for a real form
G(R) of G, there is a real form of G∨, and a
block B∨ for G∨(R) which is “dual” to B.

Dual means: the Kazhdan-Lusztig matrices
for B and B∨ are transposes.

Theorem 39 Vogan duality is:

(x, y) → (y, x)
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Example: Sp(4)/SO(3, 2)
Block of Sp(4, R):

0( 0,6): 1 2 ( 4, *) ( 6, *) [i1,i1] 0

1( 1,6): 0 1 ( 4, *) ( *, *) [i1,ic] 0

2( 2,6): 3 0 ( 5, *) ( 6, *) [i1,i1] 0

3( 3,6): 2 3 ( 5, *) ( *, *) [i1,ic] 0

4( 4,4): 4 8 ( *, *) ( *, *) [r1,C+] 1 1

5( 5,4): 5 9 ( *, *) ( *, *) [r1,C+] 1 1

6( 6,5): 7 6 ( *, *) ( *, *) [C+,r1] 1 2

7( 7,2): 6 7 ( *, *) (10,11) [C-,i2] 2 121

8( 8,3): 9 4 (10, *) ( *, *) [i1,C-] 2 212

9( 9,3): 8 5 (10, *) ( *, *) [i1,C-] 2 212

10(10,0): 10 11( *, *) ( *, *) [r1,r2] 3 2121

11(10,1) 11 10( *, *) ( *, *) [rn,r2] 3 2121

Dual block of SO(3, 2) = PGSp(4, R):

0(0,10): 1 0 ( 2, *) ( 3, 4) [i1,i2] 0

1(1,10): 0 1 ( 2, *) ( *, *) [i1,ic] 0

2(2, 7): 2 7 ( *, *) ( *, *) [r1,C+] 1 1

3(3, 8): 5 4 ( *, *) ( *, *) [C+,r2] 1 2

4(3, 9): 6 3 ( *, *) ( *, *) [C+,r2] 1 2

5(4, 4): 3 5 ( *, *) ( 8,10) [C-,i2] 2 121

6(4, 5): 4 6 ( *, *) ( 9,11) [C-,i2] 2 121

7(5, 6): 7 2 ( 8, 9) ( *, *) [i2,C-] 2 212

8(6, 0): 9 10 ( *, *) ( *, *) [r2,r2] 3 2121

9(6, 1): 8 11 ( *, *) ( *, *) [r2,r2] 3 2121

10(6, 2): 10 8 ( *, *) ( *, *) [rn,r2] 3 2121

11(6, 3): 11 9 ( *, *) ( *, *) [rn,r2] 3 2121
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Relation with Vogan’s talks

M(g, K, λ)

Vogan Duality

))S

S

S

S

S
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S

S

S

S

S

S

S

S
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S

S

Local Langlands
// P(G∨/B∨, K∨)λ∨

Localization

²²

M(g∨, K∨, λ∨)

As discussed by Vogan, the top line conjecturally exists over
any local field. It takes the

Kazhdan-Lusztig matrix for M(g, K, λ)
to the transpose of the
Kazhdan-Lusztig matrix for P(G∨/B∨, K∨)λ∨

The right arrow only exists over R, and is what makes our
picture entirely symmetric in G, G∨

76



What is left to do?

(1) Non-integral infinitesimal character λ:
Replace G∨ with

G∨
λ = Cent∨G(λ)

This has root system

〈λ, α∨〉

(2) Singular infinitesimal character λ
Use translation principle from regular infinites-

imal character. This has a big kernel, and there
should be a better way directly at λ
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(3) K-types and representations of G
Implement K, irreducible representations of

K, actual representations of G (rather than trans-
lation families) and their K-types, including low-
est K-types
Note: K is not necessarily the real points of a
connected algebraic group. What does it mean
to describe K?
David Vogan and Alfred Noel are working on
this
(3) Compute the unitary dual

References
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