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1. Introduction

The aim of this paper is to investigate properties of the local cohomology of rings of mixed character-

istic that are analogous to Segre products of rings de�ned over a �eld. The main question is whether the

local cohomology can be almost killed in a �nite extension (we de�ne what this means below). There are

two reasons for considering this type of ring. First, there are special properties of these rings that make

it possible to answer this question. Second, and perhaps more important, Segre products are a large

source of normal non-Cohen-Macaulay domains; in fact, many examples of such rings that are de�ned

by other means turn out to be Segre products. A theorem of Goto and Watanabe [1] gives a formula

for the local cohomology of the Segre product in terms of the local cohomology of the factors; this both

gives a method for constructing examples of normal rings with local cohomology in given degrees and

provides a method for analyzing the questions we are considering.

The general question behind this research is whether the absolute integral closure R

+

of a normal

domain R that is either complete local or of �nite type over a �eld is almost Cohen-Macaulay. The

ring R

+

is known to be Cohen-Macaulay in positive characteristic by results of Hochster and Huneke

[4] and Huneke and Lyubeznik [5]. For rings of mixed characteristic, which is the most interesting

case since many of the homological conjectures are open in that case (see for example Hochster [3]), R.

Heitmann [2] showed that R

+

is almost Cohen-Macaulay in dimension three. The higher dimensional

case, as well as the question of whether R

+

is Cohen-Macaulay in dimension 3, are still open. In the

equicharacteristic case, there are some examples where elements of local cohomology can be almost

killed in Roberts, Singh and Srinivas [10], but the general situation is not known.

In this paper we describe some examples of non-Cohen-Macaulay rings that arise from Segre products

and show that the elements of local cohomology that make the ring non-Cohen-Macaulay can be almost

killed in R

+

.

2. Rings of Segre product type

We �rst recall some basic facts about ordinary Segre products. Let k be a �eld, and let R and S be

�nitely generated graded rings over k. We will assume that graded rings are graded over the nonnegative

integers, and they may or may not be generated over k by �nitely many elements of degree one. The

Segre product of R and S, denoted R#S, is de�ned to be the subring of the tensor product R 
 S

generated by elements r
 s, where r and s are homogeneous of the same degree. We denote an element

r
s of this type by r#s. The terminology, of course, comes from the fact that this ring arises in Segre's

construction of the product of projective varieties. We can write R#S = �

i�0

R

i


 S

i

.

If M and N are a graded R-module and a graded S-module respectively (not necessarily �nitely

generated), we de�neM#N similarly to be the sub-R#S module of M 


k

N generated by the elements

m
 n where m and n are homogeneous of the same degree.

We list some basic properties of Segre products; these can be found in Goto and Watanabe [1]. R#S

is itself a graded ring, where the degree of r#s is the degree of r or s.

(1) If R is generated by x

1

; : : : ; x

n

and S is generated by y

1

; : : : ; y

m

in degree one, then R#S is

generated in degree one by the x

i

#y

j

as i runs from 1 to n and j runs from 1 to m.

(2) If the dimension of R is d and the dimension of S is d

0

, then the dimension of R#S is d+d

0

� 1.
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(3) If R and S are polynomial rings k[x

1

; : : : ; x

n

] and k[y

1

; : : : ; y

m

], where the x

i

and y

j

have degree

one, then R#S is a generic determinantal ring with generators corresponding to the x

i

#y

j

divided by the ideal of 2 by 2 minors.

(4) If k is algebraically closed and R and S are normal domains, then R#S is a normal domain.

The main property of Segre products that we use in this paper is the description of their local

cohomology, a formula due to Goto and Watanabe [1]. We denote the homogeneous maximal ideal of

R by m
R

, that of S by m
S

, and that of R#S by m
R#S

.

Theorem 1. Let R and S be graded rings, and assume that the local cohomologies H

0

m

R

(R) and H

1

m
R

(R)

are zero and similarly for S. Then for each q we have

H

q

m
R#S

(R#S)

�

=

R#H

q

m
S

(S)�H

q

m
R

(R)#S �

�

�

i+j=q+1

H

i

m
R

(R)#H

j

m
S

(S)

�

:

To illustrate this formula, we consider the case in which R and S are Cohen-Macaulay. Let d be

the dimension of R and let d

0

be the dimension of S. The Cohen-Macaulay hypothesis means that

H

i

m
R

(R) = 0 for i 6= d and H

j

m
S

(S) = 0 for j 6= d

0

. We can see from the above formula that there are

three possible nonzero contributions to the local cohomology of R#S, namely R#H

d

0

m
S

(S) in degree d

0

,

H

d

m
R

(R)#S in degree d, and H

d

m
R

(R)#H

d

0

m
S

(S) in degree d + d

0

� 1. The third of these will de�nitely

not be zero; note that d + d

0

� 1 is the dimension of R#S. If we assume that d and d

0

are at least

2 (which must be true if the above formula is to hold), then R#S is Cohen-Macaulay if and only if

both of the other summands vanish. Assume that R

i

6= 0 and S

i

6= 0 for all i � 0 (which is true, for

example, if R and S are standard graded). For R#H

d

0

m
S

(S) to vanish, for example, it is necessary and

su�cient that H

d

0

m
S

(S) have no nonzero elements of nonnegative degree. Thus if we wish to construct

a normal non-Cohen-Macaulay domain, it su�ces to �nd a normal graded domain with an element

of local cohomology of nonnegative degree. The simplest example of this is a polynomial ring in three

variables divided by a homogeneous cubic, say k[x; y; z]=(x

3

+y

3

+z

3

), where k is a �eld of characteristic

not equal to three. Then if k[a; b] is a polynomial ring in two variables, k[a; b]#k[x; y; z]=(x

3

+ y

3

+ z

3

)

is a normal non-Cohen-Macaulay domain of dimension 3.

The Segre product is de�ned for graded rings over a �eld; however, in our applications we will want

to use rings of mixed characteristic. We will use two generalizations of Segre products to the mixed

characteristic case. First, we will consider graded rings over an unrami�ed discrete valuation ring V of

mixed characteristic, and we will assume that all such rings are torsion-free as V -modules. We de�ne

the Segre product of two such rings in the same way as we do over a �eld. The Segre product will

then also be torsion-free as a V -module. If R and S are such graded rings over V , and if x and y are

homogeneous elements of the same degree of R and S, we will also consider the ring R#S=(p� x#y),

where p is the characteristic of the residue �eld of V . Both of these types of rings will be called rings

of Segre product type.

As mentioned above, many of the examples of normal non-Cohen-Macaulay rings turn out to be

rings of Segre product type. We give three examples; we note also that one of the most commonly used

examples in the subject, the ring k[x; y; z; w]=(xw � yz)

�

=

k[a; b]#k[c; d], is a Segre product, and the

ring Z
p

[y; z; w]=(pw � yz), where Z
p

is the localization of Z at the prime ideal pZ, is of Segre product

type.

The �rst example is the mixed characteristic version of the ring k[a; b]#k[x; y; z]=(x

3

+ y

3

+ z

3

)

mentioned above. If we take Z
p

[a; b]#Z
p

[x; y; z]=(x

3

+ y

3

+ z

3

) for some p � 5 and divide by the ideal

generated by p� a#x, we obtain the example worked out in detail at the end of Roberts [8].

The next example is a family of non-Cohen-Macaulay rings discussed in Roberts [7]. The example

was the extension of k[x; y; z; w]=(xw � yz) obtained by adjoining a square root of

Q

2n

i=0

(x � �

i

z) for

distinct �

i

2 k for some n � 2 and taking the integral closure. This integral closure is the Segre product

of k[a; b] with k[u; v; t]=(t

2

�

Q

2n

i=0

(u� �

i

v)), where u and v have degree 1, and where t has degree n.

The �nal example was shown to me by Ray Heitmann. It is obtained from the Rees ring of the

ideal (3; a; z) in R = Z
3

[a; z]=(81 + a

4

+ z

2

); the integral closure of this Rees ring is the subring

R[3T; aT; zT; zT

2

] of R[T ]. Again it is a ring of Segre product type, obtained from the Segre product
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of Z
3

[x; y] and Z
3

[u; a; z]=(u

4

+ a

4

+ z

2

), where all variables have degree 1 except z, which has degree 2,

by dividing by the ideal generated by 3� x#u.

3. A method of almost killing local cohomology

In this section we describe what it means to almost kill local cohomology and present a construction

that we will use later to do this for rings of Segre product type. We �rst recall some de�nitions.

Let K be a �eld. By a valuation on K we mean a function v from K to the ordered additive group

of rational numbers together with a symbol 1 such that

(1) v(ab) = v(a) + v(b) for all a and b in K.

(2) v(a+ b) � min(v(a); v(b)) for all a and b in K.

(3) v(a) =1 if and only if a = 0.

In our applications we will consider valuations on integral extensions of local rings with unique

maximal ideals, and the valuations will be assumed to take nonnegative values on the ring and positive

values on the maximal ideal.

De�nition 1. Let R be a ring with a valuation v. An R-module M is almost zero if for every m 2 m

and every real number � > 0, there is an � in R with v(�) < � and �m = 0.

If R is a local or graded ring of dimension d with system of parameters x

1

; : : : ; x

d

and A is an R-

algebra with a valuation, we will say that A is an almost Cohen-Macaulay algebra if the local cohomology

H

i

(x

1

;:::;x

d

)

(A) is almost zero for i = 0; : : : ; d� 1, and if A=(x

1

; : : : x

d

)A is not almost zero. We note that

the de�nition is based on a system of parameters of R rather than A and does not say anything about

whether A is Cohen-Macaulay or almost Cohen-Macaulay as a ring.

In later sections we will discuss the question of whether the ring R

+

is an almost Cohen-Macaulay

R-algebra, where R is a local domain and R

+

is its absolute integral closure, the integral closure of R

in the algebraic closure of its quotient �eld. In fact, what we will show is that in certain situations an

element u with ux

i

2 (x

1

; : : : ; x

i�1

) can be almost annihilated in a given integral extension of R. If this

can be done for all i = 1; : : : d, then a standard argument (see Matsumura [6]) shows that the Koszul

complex on x

1

; : : : ; x

d

is almost exact and thus the local cohomology is almost zero.

3.1. The basic construction. Let R be a normal domain of mixed characteristic p and dimension d

over a complete unrami�ed discrete valuation ring V with perfect residue �eld k. Let p = x

1

; x

2

; : : : ; x

d

be a system of parameters for R. Let u be an element of R with ux

i

2 (x

1

; : : : ; x

i�1

) for some i � 3. In

this section we outline a procedure for constructing an extension C of R in which, in the cases we work

out below, the image of u modulo (x

1

; : : : ; x

i�1

) is almost zero.

The extension C is constructed as follows. We �rst adjoin p

n

th roots of a set of generators of R;

more precisely, we take a polynomial ring S = V [y

2

; : : : ; y

t

] that maps onto R, where y

2

; : : : ; y

d

map to

x

2

; : : : ; x

d

. We denote the images of y

i

by x

i

for all i. We then adjoin a p

n

th root of x

i

for all i and all

n; we do this in a compatible way, so that the pth power of the p

n

th root we choose is the p

n�1

st root.

Let T denote this ring. We let C denote the ring

C = fa 2 T [1=p]ja

p

n

2 T for some ng:

The question we are studying is whether an element of local cohomology can be almost killed in C.

We �rst show how to construct relations in C.

We recall some facts about the Fontaine ring and its ring of Witt vectors. This construction is

described in more detail in Roberts [8]. We will describe this construction for the ring T ; the same

construction works for C (and in fact for any ring of mixed characteristic).

The Fontaine ring of T , denoted E(T ), is the projective limit of a system of copies of T=pT indexed

over the nonnegative integers, where the maps are the Frobenius map. An element of E(T ) is given by

a sequence (t

0

; t

1

; : : : ; ), where we have t

p

i

� t

i�1

modulo p for all i � 1. In particular, for each i the

system of p

n

th roots of x

i

de�nes an element of E(T ) which we denote X

i

; when i = 1 we have x

1

= p,

and we sometimes denote X

1

by P . Since the residue �eld k of V is perfect and k is a �eld contained

in T=pT , k is embedded in E(T ). We can now de�ne a map � from k[y

2

; : : : ; y

t

] to E(T ) mapping y

i

to

X

i

. Let E

0

be image of �.
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There is a natural map from E(T ) to E(C) by functoriality; we will also use the notation X

i

to

denote the corresponding elements of E(C) and � to denote the corresponding map from k[y

2

; : : : ; y

t

]

to E(C).

In the second part of this construction we take the rings of Witt vectors on E(T ) and E(C), which

we denote W (E(T )) and W (E(C)). Since k is contained in E(T ) and E(C), the ring of Witt vectors

on k, which is isomorphic to V , is contained in W (E(T )) and W (E(C)). We now take the Teichm�uller

elements corresponding to the elements X

i

, that is, the Witt vectors (X

i

; 0; 0; : : :); we denote these

elements [X

i

]. We now have maps, which we denote  , from S to W (E(T )) and W (E(C)) which send

V to V and the y

i

to [X

i

]. There are also maps from W (E(T )) and W (E(C)) to the p-adic completions

^

T and

^

C of T and C respectively; these maps, which we denote �, send [P ] to p, and, more generally,

[X

i

] to x

i

. We let W

0

be the image  (S) of S in W (E(T )). Then the above map to

^

T induces a

surjection from W

0

onto R.

The main property of C is that it behaves well with respect to these constructions in the sense that

it satis�es the following two properties (see Roberts [9]).

(1) The map � induces an isomorphism E(C)=PE(C)! C=pC.

(2) The map � induces an isomorphism W (E(C))=(P � p)W (E(C))!

^

C.

It is the second of these properties that allows us to de�ne nontrivial and useful relations on

^

C. Let

f be an element of the kernel of the map from S to R. Then the image  (f) of f in W

0

is in the kernel

of the map � to

^

R and therefore also the composite to

^

C. By Property 2 above, this implies that  (f)

is in (P � p)W (E(C)). Hence if we compute  (f)=(P � p) as a Witt vector, its components will be in

E(C).

The next two lemmas give us information about the components of the Witt vector  (f)=(P � p)

from information about f .

Lemma 1. Let R be a graded ring generated by homogeneous elements x

i

, and let S = V [y

1

; : : : ; y

t

] be

a polynomial ring mapping onto R as above, where S is graded and y

i

has the same degree as x

i

for each

i. Let f(y

i

) be a homogeneous polynomial in S of degree k. Let [X

i

] denote the element (X

i

; 0; 0; : : :) of

W (E(T )) for each i, and let f([X

i

]) = (a

0

; a

1

; : : :) in W (E(T )). Then, if we give X

i

the degree of x

i

for each i, then a

j

is homogeneous of degree kp

j

for each i.

Proof. We �rst prove the result for a polynomial with one term; that is, the product of an element

of V with a monomial in the x

i

. The corresponding element in W (E(T )) is the element of V as a

Witt vector times the same monomial in the [X

i

] since the Teichm�uller map is multiplicative. Let m

be this monomial and let (k

0

; k

1

; k

2

; : : :) be its coe�cient as an element of W (k). Then the product is

(k

0

m; k

1

m

p

; k

2

m

p

2

; : : :). Since m has degree k and k

i

has degree 0, k

i

m

p

i

has degree kp

i

as required.

The general case will follow from the fact that the sum of two elements (a

0

; a

1

; : : :) and (b

0

; b

1

; : : :)

for which a

i

and b

i

have degree kp

i

for each i also has this property. Let (s

0

; s

1

; : : :) be the sum. For

i = 0, s

0

= a

0

+ b

0

, so the result is true in this case. Assume now that s

i

has degree kp

i

for all i < j.

Then s

j

is found from the equation

s

p

j

0

+ ps

p

j�1

1

+ � � �+ p

j

s

j

= a

p

j

0

+ pa

p

j�1

1

+ � � �+ p

j

a

j

+ b

p

j

0

+ pb

p

j�1

1

+ � � �+ p

j

b

j

:

The hypothesis implies that each of the terms involving a

i

or b

i

has degree kp

j

, and induction implies

the same for the terms involving s

i

for i < j. Hence s

j

has degree kp

j

.

˜

The next Lemma gives the properties we will need of the quotient when divided by P � p.

Lemma 2. Let A be a graded subring of E(T ) as in the previous lemma, and let (a

0

; a

1

; : : :) be an

element of W (E(T ))) such that a

i

is a homogeneous elements of A of degree kp

i

for each i. Let

(a

0

; a

1

; : : :) = (P � p)(z

0

; z

1

; : : :) in E(C). Then for each i � 0 we can write

z

i

=

a

p

i

0

+

P

P

n

ij

b

ij

P

(i+1)p

i

where each n

ij

is a positive integer and b

ij

is a homogeneous element of A of degree kp

i

.
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Proof. Again we prove this by induction on i. We can write the equation de�ning the z

i

as

(a

0

; a

1

; a

2

: : :) = (Pz

0

; P

p

z

1

; P

p

2

z

2

; : : : ; )� (0; z

p

0

; z

p

1

; : : :):

Thus for i = 0 we have z

0

= a

0

=P , and since P = P

(0+1)p

0

, this is in the correct form (here all the other

terms are zero).

We now assume that the result holds for j < i and prove that it holds for i. The de�ning equation

for z

i

is

a

p

i

0

+ pa

p

i�1

1

+ � � �+ p

j

a

p

i�j

j

+ � � �+ p

i

a

i

= (Pz

0

)

p

i

+ p(P

p

z

1

)

p

i�1

+ � � �+ p

j

(P

p

j

z

j

)

p

i�j

+ � � �+ p

i

(P

p

i

z

i

)

�p(z

p

0

)

p

i�1

� � � � � p

j

(z

p

j�1

)

p

i�j

� � � � � p

i

(z

p

i�1

):

Hence, if we solve this equation for z

i

, we conclude that z

i

is a combination of the other terms in the

above expression divided by p

i

P

p

i

. The factor p

i

will divide the other terms in this expression after the

formulas for the z

j

for j < i are substituted from the general theory of Witt vectors; the factor we have

to consider is P

p

i

. Thus to complete the proof we must show that each term in the above equation

other than p

i

(P

p

i

z

i

) is a sum of terms that can be written in the form P

n

a=P

ip

i

with a homogeneous

of degree kp

i

and that the only term for which n = 0 is a

p

i

0

.

Each of the terms p

j

a

p

i�j

j

is homogeneous of degree kp

i

and we can take n = ip

i

, so these terms

clearly satisfy the required condition.

We next consider an element of the form p

j

(P

p

j

z

j

)

p

i�j

. By induction, z

j

is a sum of terms P

k

m

b

m

divided by P

(j+1)p

j

with b

m

homogeneous of degree kp

j

and exactly one k

m

= 0, for which b

m

= a

p

j

0

.

When this sum is multiplied by P

p

j

and raised to the p

i�j

th power we obtain a sum of integer multiples

of terms of the form

(P

p

j

)

p

i�j

Q

n

P

r

n

k

m

n

b

r

n

m

n

(P

(j+1)p

j

)

p

i�j

: (�)

In this product the sum of the r

n

is p

i�j

, the k

m

n

are positive except for one term (coming from a

p

j

0

)

which we compute below, and the b

m

n

are homogeneous of degree kp

j

. It follows that the product of

the b

r

n

m

n

is homogeneous of degree (

P

r

n

)kp

j

= p

i�j

kp

j

= kp

i

. Denoting this product b, and letting

k =

P

r

n

k

m

n

, we can write this term in the form

P

p

i

+k

b

P

(j+1)p

i

:

The denominator of this term is (P

(j+1)p

j

)

p

i�j

= P

(j+1)p

i

. Since j � i�1, the highest possible power

of P in the denominator is P

(i�1+1)p

i

= P

ip

i

. Hence these terms are in the correct form P

n

a=P

ip

i

, and

since the numerator has a factor of P

i

, the power n of P in the numerator is positive.

Finally, we consider the terms p

j

(z

p

j�1

)

p

i�j

. Here we must look at (z

p

j�1

)

p

i�j

= z

p

i�j+1

j�1

for 1 � j � i.

Following the same computation as above, we see by applying the induction hypothesis to z

j�1

that

z

p

i�j+1

j�1

can be written as a sum of terms of the form bP

k

over a power of P , where b is homogeneous of

degree kp

i

. We next determine the possible power of P in the denominator. Since the denominator for

z

j�1

is P

jp

j�1

, the denominator for z

p

i�j+1

j�1

will be (P

jp

j�1

)

p

i�j+1

= P

jp

i

. When j < i, the power of P

in the denominator will be less than ip

i�1

, and all the terms can be written in the form P

n

a=P

ip

i

with

n positive. When j = i (the term p

i

z

p

i�1

), the denominator is P

ip

i

, and by induction the only term in

the expression for z

i�1

which does not have a factor of P is a

p

i�1

0

. Hence when z

i�1

is raised to the pth

power, the only term without a factor of p will be (a

p

i�1

0

)

p

= a

p

i

0

.

Hence z

i

has the stated form, so this completes the proof.

A similar but simpler argument shows the following.

Proposition 1. If in the situation of the above lemmas the element f in the kernel of the map from S

to R is divisible by x

j

, then z

i

is divisible by X

p

i

j

.



6 PAUL C. ROBERTS

˜

4. A general sufficient condition for the existence of small annihilators.

In this section we outline a method for showing that a relation of the form ux

i

2 (x

1

; : : : ; x

i�1

) can

be almost killed in C and a su�cient condition that implies that this method will work.

Lemma 2 gives the form of certain elements in E(C) that are derived from elements of the kernel of

the original map from S to R that presented R as the homomorphic image of a polynomial ring. It was

assumed that the elements of the kernel were homogeneous; if this is not the case, the elements of E(C)

derived from (a

0

; a

1

; : : : ; )=(P � p) still have the form

z

i

=

a

p

i

0

+

P

P

n

ij

b

ij

P

(i+1)p

i

where each n

ij

is a positive integer and each b

ij

is a polynomial in the a

i

.

If u is an element of R satisfying a relation ux

i

2 (x

1

; : : : ; x

i�1

), we wish to �nd a small element


 such that 
u 2 (x

1

; : : : ; x

i�1

)C. We are assuming that x

1

= p, so this means that we want to �nd


 with 
u 2 (x

2

; : : : ; x

i�1

)(C=pC). Since C=pC

�

=

E(C)=PE(C), it su�ces to �nd such a 
 in E(C)

with 
u 2 (X

2

; : : : ;X

i�1

)E(C)=PE(C), where u is a lifting of u. We �rst show how to �nd relations in

E(C)=PE(C) coming from Lemma 2.

Let m = p

n

� 1 for some n > 0. Then in the formula for z

m

the denominator is

P

(m+1)p

m

= P

(p

n

)p

m

= P

p

n+m

:

We now take the p

n+m

th root of z

m

in E(C) (which is perfect). The denominator is now P . Hence if

we multiply this element by P , the result is zero in E(C)=PE(C). This relation in E(C)=PE(C) will

be in the form

a

1=p

n

0

+

X

j>0

h

jn

P

j=p

n+m

= 0

for some coe�cients h

jn

. This discussion holds whether the ring is graded or not; however, if the original

element in S is homogeneous of degree k, then Lemma 2 implies that a

1=p

n

0

and the h

jn

are homogeneous

of degree k=p

n

.

We now assume that there is a function � from E(C)=PE(C) to an ordered abelian group together

with an element 1 satisfying conditions that we will outline below. An example to keep in mind is

the grading in Lemma 2; in our examples we will need a more general function, but it is reasonable

to think of it as a generalization of a grading on a ring. We assume that the function � satis�es

�(xy) � �(x) + �(y) and �(x + y) � min(�(x); �(y)). The main assumption is that there is a set of

elements in S that map to zero in R such that the associated relations in E(C)=PE(C) have very nice

properties. Let u be an element of R such that ux

i

2 (x

1

; : : : ; x

i�1

).

Let f

1

; : : : ; f

t

be a set of elements in the kernel of the map from S to R. For each f

`

, and for each

n � 0, let

P

j�0

h

`jn

P

j=p

m

= 0 be the corresponding relation in E(C)=PE(C) constructed as above.

The condition we need is that any element v with �(v) > �(u) can be expressed as an element of

(X

1

; : : : ;X

i�1

) modulo the leading terms of these elements, that is, the elements h

`0n

, for large enough

n. To make this work we need a slightly more precise condition. For an integer n, let C

n

denote

the quotient E(C)=P

1=p

n+m

E(C), and let I

n

denote the ideal of C

n

generated by the leading terms

h

10n

; : : : ; h

t0n

.

Assume that the following conditions hold for the function � and for some integer s.

(1) We have �(u) � s:

(2) For all � > 0, there is an integer n such that if �(v) � s+ �, then v is in the ideal generated by

X

1

; : : : ;X

i�1

in C

n

=I

n

.

(3) Condition 2 says that we can write

v � w +

t

X

i=1

e

i

(

X

j�0

h

ijn

P

j=p

n+m

) modulo I

n
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for some w 2 (X

1

; : : : ;X

i�1

) and e

i

2 E(C). We require that we can choose w and the e

i

so

that if we write

v � w �

t

X

i=1

e

i

(

X

j�0

h

ijn

P

j=p

n+m

) =

X

j>0

c

j

P

j=p

n+m

;

then c

j

satis�es �(c

j

) � s+ � for all j.

Suppose that this holds. We claim that then there is a small 
 with 
u 2 (X

1

; : : : ;X

i�1

)E(C).

To see this, we take � > 0, and let v be a valuation on R extended to T and C. Choose an element

r with �(r) > 0 and v(r) > 0; by replacing r by a suitable pth root modulo p we may assume that

v(r) < �. Let � = �(r) and choose n as in the second condition above. By that condition we can �nd

elements g

1

; : : : ; g

t

and g in E(C) such that

ru = w +

X

g

`

h

`0n

modulo the ideal generated by P

1=p

n+m

, where w 2 (X

1

; : : : ;X

i�1

). By the third condition, the g

`

can

be chosen so that if we write

ru� w �

X

g

`

h

`0k

=

X

j>0

c

j

P

j=p

n+m

;

we have that �(c

j

) � s+ � for all j, so we can continue this process.

Assume by induction that for a given integer � we have g

`�

such that

ru � w +

t

X

`=1

g

`�

(

X

j�0

h

`jn

P

j=p

n+m

)

modulo P

�=n+m

, where w 2 (X

1

; : : : ;X

i�1

) and where if we write

ru� w �

t

X

`=1

g

`�

(

X

j�0

h

`jn

P

j=p

n+m

) =

X

j��

c

j

P

j=p

n+m

; (�)

the coe�cients c

j

of P

j=p

n+m

satisfy �(c

j

) � s+ � for all j � �. In particular, �(c

�

) � s+�. Hence we

can write

c

�

� w

0

+

X

g

0

`

h

`0n

modulo P

1=p

n+m

with w

0

2 (X

1

; : : : ;X

i�1

) and satisfying the condition that if we write

c

�

� w

0

�

X

g

0

`

X

j

h

`jn

P

j=p

n+m

=

X

j>0

c

0

j

P

j=p

n+m

;

the coe�cients c

0

j

satisfy �(c

0

j

) � s+ �.

We now substitute this expression for c

�

in the inductive expression (*) for ru and obtain

ru = w +

t

X

`=1

g

`�

(

X

j�0

h

`jn

P

j=p

n+m

) +

X

j��

c

j

P

j=p

n+m

=

w +

t

X

`=1

g

`�

(

X

j�0

h

`jn

P

j=p

n+m

) + c

�

P

�=p

n+m

+

X

j>�

c

j

P

j=p

n+m

=

w +

t

X

`=1

g

`�

(

X

j�0

h

`jn

P

j=p

n+m

) + P

�=p

n+m

(w

0

+

X

g

0

`

X

j

h

`jn

P

j=p

n+m

+

X

j>0

c

0

j

P

j=p

n+m

) +

X

j>�

c

j

P

j=p

n+m

If we let w

00

= w + P

�=p

n+m

w

0

, let g

00

`

= g

`�

+ P

�=p

n+m

g

0

`

, and let c

00

j

= c

j

+ c

0

j��

, we have

ru = w

00

+

t

X

`=1

g

00

`

(

X

j�0

h

`jn

P

j=p

n+m

) +

X

j��+1

c

00

j

P

j=p

n+m

:
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Since w and w

0

are in (X

1

; : : : ;X

i�1

) so is w

00

, and the condition that �(v + v

0

) � min(�(v); �(v

0

))

implies that �(c

00

j

) � s+� for all j. Thus we can continue this process, and when we arrive at � = p

n+m

,

we can conclude that ru 2 (X

1

; : : : ;X

i�1

).

We remark that if the function u is de�ned by a grading and everything involved is homogeneous,

then the third condition will be automatic if we assume that the elements in the expression 2 are also

homogeneous of the correct degree.

In the next section we begin to compute how the procedure described in this section can be carried

out for rings of Segre product type.

5. The Segre product of two Cohen-Macaulay rings.

Let R and S be graded Cohen-Macaulay rings of dimensions d

0

and d respectively over a �eld k;

assume that d � d

0

. We assume that d and d

0

are at least 2. Let a

1

; : : : ; a

d

0

be a homogeneous system

of parameters for R and let x

1

; : : : ; x

d

be a homogeneous system of parameters for S. We assume that

the a

i

and the x

i

all have the same degree.

Proposition 2. A system of parameters for R#S is

a

1

x

1

; a

2

x

1

+ a

1

x

2

; : : : ; a

d

x

1

+ � � �+ a

1

x

d

; : : : ; a

d

0

�d+1

x

d

+ � � �+ a

d

0

x

1

; : : : ; a

d

0

x

d

:

Since the number of elements in this sequence is d+d

0

�1, which is the dimension of R#S, it su�ces

to show that the quotient after dividing by the ideal generated by these elements has dimension 0. Since

R and S are �nite extensions of the polynomial rings k[a

1

; : : : ; a

d

0

] and k[x

1

; : : : ; x

d

] respectively, we

may assume that R and S are these polynomial rings. To show that the quotient has dimension zero,

we must show that any prime ideal p containing all the elements in the above list contains a

i

x

j

for all i

and j. We prove this by induction on i+ j. If i+ j = 2, the only element is a

1

x

1

, which is a generator

of the ideal so is certainly in p. We take k > 2 and assume that a

i

x

j

is in p when i+ j < k. If i; j and

i

0

; j

0

are distinct pairs with i+ j = i

0

+ j

0

= k, we have (a

i

x

j

)(a

i

0

x

j

0

) = (a

i

x

j

0

)(a

i

0

x

j

), and either i+ j

0

or

i

0

+ j is less than k, so the second product is in p by induction. Hence the product of any two distinct

elements a

i

x

j

with i+ j = k is in p. Suppose some a

r

x

s

with r + s = k is not in p. Then for any other

i; j with i + j = k, since (a

i

x

j

)(a

r

x

s

) 2 p but (a

r

x

s

) 62 p, we have (a

i

x

j

) 2 p. On the other hand, the

sum of a

i

x

j

over all i and j with i + j = k is in p, so a
r

x

s

must be in p as well. This concludes the

proof.

If R and S are Cohen-Macaulay, the local cohomology of their Segre product is relatively simple; it

is also this situation, as pointed out above, that provides a major source of examples of non-Cohen-

Macaulay normal domains. Then R#S has dimension d+ d

0

� 1, and one non-trivial local cohomology

module is in degree d+ d

0

� 1. The only other possibilities are in degrees d and d

0

. We assume as above

that d � d

0

. We will consider the relations between the elements of the system of parameters in degrees

d and d

0

. First we prove a result on relations in the tensor product R


k

S.

Proposition 3. Let notation be as above. Assume �rst that d < d

0

. Let

I = fu 2 R


k

Sju(a

d+1

x

1

+ � � �+ a

2

x

d

) 2 (a

1

x

1

; a

2

x

1

+ a

1

x

2

; : : : ; a

d

x

1

+ � � �+ a

1

x

d

)g:

Then

I = (a

1

x

1

; a

2

x

1

+ a

1

x

2

; : : : ; a

d

x

1

+ � � �+ a

1

x

d

; a

d

1

):

If d = d

0

, we let

I = fu 2 R


k

Sju(a

d

x

2

+ � � �+ a

2

x

d

) 2 (a

1

x

1

; a

2

x

1

+ a

1

x

2

; : : : ; a

d

x

1

+ � � �+ a

1

x

d

)g:

Then

I = (a

1

x

1

; a

2

x

1

+ a

1

x

2

; : : : ; a

d

x

1

+ � � �+ a

1

x

d

; a

d

1

; x

d

1

):

The proof is by induction on d. We �rst note that since R and S are Cohen-Macaulay, they are


at extensions of the polynomial rings k[a

1

; : : : ; a

d

0

] and k[x

1

; : : : ; x

d

], so R 


k

S is a 
at extension of

k[a

1

; : : : ; a

d

0

]
k[x

1

; : : : ; x

d

]. Hence it su�ces to prove the result for the polynomial rings. Let A denote

R
 S.
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We �rst prove the case d = 2. If d

0

= 2, we are considering the sequence

a

1

x

1

; a

2

x

1

+ a

1

x

2

; a

2

x

2

and the ideal I = fu 2 Ajua

2

x

2

2 (a

1

x

1

; a

2

x

1

+ a

1

x

2

)g.

This is a simple case, but we will work it out in detail since the general argument works the same way.

We compute the homology of the Koszul complex on the sequence a

1

x

1

; a

2

x

1

+a

1

x

2

; a

2

x

2

in degree one.

Let K

�

denote the Koszul complex on a

2

x

1

+a

1

x

2

; a

2

x

2

. Then the Koszul complex we are interested in is

the total complex of the double complex obtained by tensoring K

�

with the complex 0! A

a

1

x

1

! A! 0.

This gives the double complex

0

››

0

››

0

››

0

//
A

�a

2

x

2

a

2

x

1

+ a

1

x

2

//

a

1

x

1

››

A

2

a

2

x

1

+a

1

x

2

a

2

x

2

//

a

1

x

1

››

A

//

a

1

x

1

››

0

0

//
A

�a

2

x

2

a

2

x

1

+ a

1

x

2

//

››

A

2

a

2

x

1

+a

1

x

2

a

2

x

2

//

››

A

//

››

0

0 0 0

If we take the homology of the columns of this double complex, we obtain the Koszul complex on

a

2

x

1

+ a

1

x

2

; a

2

x

2

over the ring A=(a

1

x

1

), so it su�ces to compute the homology of this complex. By

using the short exact sequence

0! A=(a

1

)

x

1

! A=(a

1

x

1

)! A=(x

1

)! 0;

we further reduce the problem to computing the Koszul complex of a

2

x

1

; a

2

x

2

on A=(a

1

) and of

a

1

x

2

; a

2

x

2

on A=(x

1

). The homology of the Koszul complex of a

2

x

1

; a

2

x

2

on A=(a

1

) in degree 1 is

generated by (�x

2

; x

1

), and the image of (�x

2

; x

1

) in (A=(a

1

x

1

))

2

is (�x

1

x

2

; x

2

1

). The homology of the

Koszul complex of a

1

x

2

; a

2

x

2

on A=(x

1

) in degree 1 is generated by (�a

2

; a

1

), and a simple diagram

chase shows that the kernel of the map from this homology to the homology of the Koszul complex of

a

2

x

1

; a

2

x

2

on A=(a

1

) in degree zero is generated by (�a

1

a

2

; a

2

1

). Putting these computations together,

we see that the ideal I = fu 2 Ajua

2

x

2

2 (a

1

x

1

; a

2

x

1

+ a

1

x

2

)g is generated by a

1

x

1

; a

2

x

1

+ a

1

x

2

; a

2

1

;

and x

2

1

as claimed.

The other cases are proven by the same method of factoring out the complex 0! A

a

1

x

1

! A! 0 and

using the short exact sequence 0 ! A=(a

1

) ! A=(a

1

x

1

) ! A=(x

1

) ! 0; in most cases we then apply

induction to complete the computation.

We next consider the general case where d = 2. We assume now that d

0

> 2.

We have I = fu 2 Aju(a

3

x

1

+a

2

x

2

) 2 (a

1

x

1

; a

2

x

1

+a

1

x

2

)g. The computation of I is the same as that

where d

0

= 2 except that the restriction to A=(a

1

) is the Koszul complex on a

2

x

1

; a

3

x

1

+ a

2

x

2

, which is

exact in degree one. Hence I = (a

1

x

1

; a

2

x

1

+ a

1

x

2

; a

2

1

).

For d > 2, we use the same method together with induction on d. If d = d

0

, we are considering the

ideal I = fu 2 R 


k

Sju(a

d

x

2

+ � � � + a

2

x

d

) 2 (a

1

x

1

; a

2

x

1

+ a

1

x

2

; : : : ; a

d

x

1

+ � � � + a

1

x

d

)g. As before,

we consider the Koszul complex on a

2

x

1

+ a

1

x

2

; : : : ; a

d

x

1

+ � � � + a

1

x

d

; a

d

x

2

+ � � � + a

2

x

d

restricted to

A=(a

1

x

1

). The restriction to A=(a

1

) gives a similar situation where the dimension in the a

i

is d � 1

and that in the x

i

is d, and we are computing the homology in the case where the lower dimension is

d � 1. By induction, this homology is generated by x

d�1

1

, and, as in the case d = d

0

= 2, pushing this

element into A=(a

1

x

1

) gives another factor of x

1

, giving x

d

1

. The restriction to A=(x

1

) is the same with

the variables interchanged, giving a generator a

d

1

. Hence we have

I = (a

1

x

1

; a

2

x

1

+ a

1

x

2

; : : : ; a

d

x

1

+ � � �+ a

1

x

d

; a

d

1

; x

d

1

):
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If d

0

> d, we follow the same steps, the only di�erence being that the restriction to A=(a

1

) is now

exact. Hence the only generator is a

d

1

, and we have

I = (a

1

x

1

; a

2

x

1

+ a

1

x

2

; : : : ; a

d

x

1

+ � � �+ a

1

x

d

; a

d

1

):

This proposition describes the relations between the elements in a system of parameters of R#S in

the larger ring R 
 S. The result says that any element in degree d, where d is the dimension of R, is

a multiple of a

d

1

. However, to be in the subring R#S it must be a sum of elements of the form a

d

1

#s;

a simple computation shows that any element of this form does give a relation, so the contributions to

the local cohomology is generated by elements of this type. The actual homology thus depends on the

number of elements s in S of degree equal to d times the degree of a

1

for which a

d

1

#s is not in the ideal

(a

1

x

1

; a

2

x

1

+ a

1

x

2

; : : : ; a

d

x

1

+ � � �+ a

1

x

d

).

In degree d

0

, the situation is more complicated, as there will be relations involving the a

i

as well as the

element x

d

0

1

. We will not pursue this here, but the multiples of x

d

0

1

give the generators of H

d

0

m
R#S

(R#S)

similar to the situation in degree d. Our computations will apply to both of these types of elements.

6. The almost vanishing of the generators of homology

Let R and S be as above, with a

1

; : : : ; a

d

0

a system of parameters for R and x

1

; : : : ; x

d

a system

of parameters for S. We have shown above that the homology of the Koszul complex on a system of

parameters of R#S in relevant degrees is generated by elements of the form a

d

1

#s in degree d and r#x

d

0

1

in degree d

0

, where r and s have degrees d

0

e and de respectively, where e is the degree of a

i

or of x

j

. In

this section we show that these elements are almost zero when extended to the ring C. We do the case

of a

d

1

#s; the other case is similar. We will use e to denote the degrees of the a

i

and x

j

as above.

We will show that there is a function � as in section 4 with the required properties. We �rst note

that our assumption is that R#S is of Segre product type, which means that it is a Segre product of

torsion-free rings over a discrete valuation ring or such a product divided by an element of the form

p� a

1

#x

1

. We assume that the �rst element of a system of parameters is p, and when we divide by p

we are in the case of a Segre product over a �eld. Thus the conditions of the previous section apply.

Proposition 4. Let s 2 S have degree nde and be a polynomial in the x

i

. Then (a

1

)

nd

s is in the ideal

((a

1

x

1

)

n

; (a

2

x

1

)

n

+ (a

1

x

2

)

n

: : : ; (a

d

x

1

)

n

+ � � �+ (a

1

x

d

)

n

).

Proof. We can assume that s is a monomial in the x

i

. We will prove the following statement: if

1 � j � i � d, then if s is a monomial of degree nie with a factor x

n

j

, then a

ni

1

s 2 ((a

1

x

1

)

n

; (a

2

x

1

)

n

+

(a

1

x

2

)

n

: : : ; (a

d

x

1

)

n

+ � � �+ (a

1

x

d

)

n

).

The proof is by double induction on i and j. If j = 1, then a

ni

1

s has a factor (a

1

x

1

)

n

, so the result is

clear. Suppose that j > 1. Then we can write a

ni

1

s = (a

1

x

j

)

n

(a

n(i�1)

1

s

0

) for some s

0

of degree n(i� 1)e.

We can now use the element (a

j

x

1

)

n

+(a

j�1

x

2

)

n

+ � � �+(a

1

x

j

)

n

of the ideal to replace (a

1

x

j

)

n

(a

n(i�1)

1

s

0

)

by the sum of the terms �(a

j+1�k

x

k

)

n

(a

n(i�1)

1

s

0

) for k = 1; : : : ; j � 1. Write s

0

as a product s

1

s

2

, where

s

1

has degree ne and s

2

has degree n(i� 2)e. We can then write

(a

j+1�k

x

k

)

n

(a

n(i�1)

1

s

0

) = (a

j+1�k

x

k

)

n

(a

n(i�1)

1

s

1

s

2

) = (a

n(i�1)

1

x

n

k

s

2

)(a

n

j+1�k

s

1

):

By double induction the �rst factor in the product on the left is in ((a

1

x

1

)

n

; (a

2

x

1

)

n

+(a

1

x

2

)

n

: : : ; (a

d

x

1

)

n

+

� � �+ (a

1

x

d

)

n

), so this completes the proof.

Extend the set x

1

; : : : ; x

d

to a set x

1

; : : : ; x

t

of homogeneous generators of S over V . Since each of

x

d+1

; : : : ; x

t

is integral over V [x

1

; : : : ; x

d

], there exists a constant b such that if s is a monomial in the

x

i

for all i (not just up to d) of degree n+ b, then it is a linear combination of monomials that have a

factor which is a monomial in x

1

; : : : :x

d

of degree n (where the degree is in the graded ring S). In fact,

we can reduce the monomial to a combination of monomials in which the power of each x

i

for i > d is

bounded by a �xed bound, and the sum of these bounds times the degrees of the corresponding x

i

gives

a value of b that will work.

We now de�ne the function � and the relations as in section 4. The function � is de�ned on

E(C)=PE(C); we use the fact that E(C)=PE(C)

�

=

C=pC and de�ne � on C=pC. We let �(v) =1 for
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v 2 pC. For general v we wish to let �(v) be the supremum of rational numbers r such that a

r

1

divides

v. The problem is that a

1

is an element of R not of R#S, so we have to make a more complicated

de�nition. We note that the extension from R to the ring we denoted T was obtained by adjoining the

p

n

th roots of generators of R#S; we denote an element of T which can be represented as a homogeneous

polynomial r in the p

n

th roots of the a

i

times a homogeneous polynomial s in the p

n

th roots of the x

i

for some n as r#s, extending the notation on R#S. We then de�ne �(v) to be the supremum of rational

numbers q so that v can be written as a sum of elements c

i

such that each c

i

is a multiple of some r#s

where r is divisible by a

q

1

. It is clear that �(vv

0

) � �(v) + �(v

0

) and �(v + v

0

) � min(�(v); �(v

0

)). We

now have to check the three conditions of section 4.

First of all, if we let s = d, then �(u) = �(a

d

1

#s) � d = s:

We next de�ne the functions f

1

; : : : ; f

t

. Let e be the degree of a

1

as above, and let the elements

x

1

; : : : ; x

d

; x

d+1

; : : : ; x

d+t

be generators for S. For each ` between 1 and t let g

`

be a homogeneous

monic polynomial in x

d+`

of degree m

`

e for some m

`

with coe�cients in k[x

1

; : : : ; x

d

]. We then let

f

`

= a

m

`

1

#g

`

.

Since the functions f

t

we just de�ned and the notation are not quite the same as those in the general

procedure described in earlier sections, we will brie
y outline the di�erences. In the general description

we had a ring R and a polynomial ring mapping onto it; the images of the variables we called generators

of R. Here the ring corresponding to R is R#S, and we have not given a complete set of generators for

R#S. Of course, a complete set of generators for R#S can be written in terms of generators for R and

S, but their form will depend on the degrees of the generators of R and S. It is admittedly somewhat

of an abuse of notation, but we will consider the elements a

m

`

1

#g

`

as polynomials in the generator a

1

for R and the generators x

i

of S which map to zero in R#S.

Let � > 0. We need to �nd an integer k such that if v is an element of C=pC with �(v) � d+ �, then

v is in the ideal generated by a

1

x

1

; a

2

x

1

+ a

1

x

2

; : : : ; a

d

x

1

+ � � �+ a

1

x

d

modulo the p

k

th roots of the f

`0

.

We may assume that v = a

�

1

r#s, where � is a rational number greater than d+ � with denominator a

power of p and s is a homogeneous element which is a polynomial in the x

j

with rational exponents. If

we look modulo the polynomials g

`

, as mentioned above, there is an integer b such that any monomial

in the x

j

of degree n+ b is congruent to a linear combination of polynomials each of which has a factor

of degree at least n in x

1

; : : : ; x

d

. If we take p

k

th roots, we may conclude that a polynomial of degree

(ed + b)=p

k

is congruent to a linear combination of polynomials with a factor of degree ed in the p

k

th

roots of x

1

; : : : ; x

d

modulo the ideal generated by the polynomials g

`k

, where g

`k

is the polynomial

obtained from g

`

by taking p

k

th roots of the terms. Hence if we choose n such that b=p

n

< � and

assume that �(a

�

1

r#s) � d+ �, which implies that the degree of s is at least ed+ b, we can reduce s to

a �nite linear combination of elements modulo I

n

which has a factor which is a polynomial of degree at

least ed in x

1

; : : : ; x

d

. That is, we can write

s = w

0

+

t

X

`=1

g

`n

(x

1=p

n

i

)�

`

(x

1=p

n

i

)

for some w

0

that is a sum of terms each of which has a factor which is a monomial in x

1

; : : : ; x

d

of

degree de and the �

`

are some homogeneous polynomials. If we now recall that the degree of g

`

is m

`

e,

we have

a

�

1

r#s = a

�

1

r#w

0

+

t

X

`=1

(a

m

`

=p

n

1

#g

`n

(x

1=p

n

i

))(a

��m

`

=p

n

1

r#�

`

(x

1=p

n

i

)):

It then follows from Proposition 4, where the a

i

and x

i

are replaced with their p

n

th roots and the

n and e of that proposition are p

n

and e=p

n

, that each of the terms of w

0

is in the ideal (a

1

x

1

; a

2

x

1

+

a

1

x

2

; : : : ; a

d

x

1

+ � � � + a

1

x

d

). If we take this expression modulo p

1=p

n

C, the factors a

m

`

=p

n

1

#g

`n

(x

1=p

n

i

)

are the leading terms of the f

`n

derived from f

`

as in section 4. Thus condition 2 of the conditions on

� is satis�ed.

To show that the third condition is also satis�ed, let

X

j�0

h

`jn

P

j=p

n+m
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be the nth polynomial derived from f

`

as in section 4. Since f

`

is of the form a

m

`

1

#g

`

, it follows from

Proposition 1 that each h

`jn

is of the form a

m

`

=p

n

1

#t

`jn

for some t

`jn

. We are taking the sum

t

X

`=1

(

X

j�0

a

m

`

=p

n

1

#t

`jn

P

j=p

n+m

)(a

��m

`

=p

n

1

r#�

`

(x

1=p

n

i

)):

If c

j

is the coe�cient of P

j=p

n+m

in this product for some j, then c

j

is a sum of elements of the form

(a

m

`

=p

n

1

#s

1

)(a

��m

`

=p

n

1

r#s

2

) = a

�

1

r#s

1

s

2

for some s

1

and s

2

, so �(c

j

) � d+ �. Thus condition three is

satis�ed.
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