The Equivalence of Two Forms of the Canonical Element Conjecture

Paul Roberts

We wish to show that the following two conjectures are equivalent:

A. (M. Hochster). Let (R,m,k) be a local ring, where d is the Krull dimension of R, and let

$$(*) \qquad 0 \longrightarrow S \longrightarrow F_{d-1} \longrightarrow \dots \longrightarrow F_0 \longrightarrow k \longrightarrow 0$$

be exact, with F_i free for $0 \le i \le d-1$, so that S is a $d \pm h$ module of syzygies of k. The sequence (*) defines an element of $\operatorname{Ext}_R^d(k,S)$, which maps to an element η in the local cohomology $\operatorname{H}_m^d(S)$. Conjecture: $\eta \neq 0$.

B. Let x_1, \ldots, x_d be a system of parameters for R. For all $n \geq 1$, let K^n denote the Koszul complex on x_1^n, \ldots, x_d^n , and let G^n be a free resolution of $R/(x_1^n, \ldots, x_d^n)$. The identity map on induces a map of complexes from K^n to G^n , which we denote ϕ . Then $K^n_d \cong R$, and $\phi_d(1)$ defines an element ξ in $Tor_d^R(k,R/(x_1^n,\ldots,x_d^n))$ which is unique up to multiplication by a unit. Conjecture: $\xi \neq 0$.

The relation between these two conjectures comes through the description of local cohomology using the complex C. defined as follows:

$$c_{d-k} = \bigoplus_{1 \le i_1 < \dots < i_k \le d} Ax_{i_1, \dots, x_{r_k}}$$

 $d_{d-k}: C_{d-k} \longrightarrow C_{d-k-1}$ on each component

The connection with conjecture A comes from the isomorphism: $H^k_m(M) \cong H_{d-k}(C.\otimes M) \quad \text{for all modules} \quad M.$

The connection with conjecture B comes from the isomorphism: C. $\cong \varinjlim_{n} K^{n}$ where the map: $K^{n} \longrightarrow K^{n+1}$ takes the element

Let F denote the complex

 $0 \longrightarrow F_{d-1} \longrightarrow \cdots \longrightarrow F_0 \longrightarrow k (=F_{-1}) \longrightarrow 0.$ Then the homology of F. is S in degree d-1, and we have

$$H_{m}^{d}(S) \cong H_{d-1}(C.\otimes F.).$$

The first step in showing the equivalence of Conjectures A and B is the identification of η with an element in $H_{d-1}(C_{\bullet}\otimes F_{\bullet})$. First, the sequence (*) can be mapped into an injective revolution

$$0 \longrightarrow s \longrightarrow i_{d-1} \longrightarrow i_{d-2} \longrightarrow \cdots \longrightarrow i_0 \longrightarrow i_{-1} \longrightarrow \cdots$$

of S (strangely numbered to correspond to F:), and if the map is

then the element of $H_{-1}(\operatorname{Hom}(k,I_{\bullet}))$ corresponding to the extension (*) in $\operatorname{Ext}^d(k,S)$ is the class of the map ψ_{\bullet} (See for instance MacLane Homology Theorem). Note that ψ can be identified with an element x in I_{-1} annihilated by m; it is zero in $\operatorname{Ext}^d(k,S)$ if and only if x can be lifted to an element of I_0 annihilated by m, and η is zero in $H^d_m(S)$ if and only if x can be lifted to an element of I_0 annihilated by element of I_0 annihilated by some power of η_{\bullet} .

Let $I. = 0 \longrightarrow I_{d-1} \longrightarrow I_{d-2} \longrightarrow \dots$. Then $H_m^d(S) \cong H_{d-1}(C.\otimes I.)$ Furthermore, $l \otimes x \in C_d \otimes I_{-1}$ is a cycle in $(C.\otimes I.)_{d-1}$, and we claim that its class in homology is n. To see this, consider the spectral sequence obtained from $C. \otimes I_k$ for each k. This degenerates, leaving

where Γ_m denotes elements annihilated by a power of m. Thus $1\otimes x$ corresponds to the element $x\in I_{-1}$, and from the above discussion the class of x is η .

We now return to F.. We have a map F. —> I. which sends $\overline{l} \in F_{-1} \cong k$ to $x \in I_{-1}$. Since F. —> I. induces an isomorphism in homology and C. is a complex of flat modules, we have isomorphisms

$$H_{\star}(C. \otimes F.) \longrightarrow H_{\star}(C. \otimes I.).$$

Furthermore, the cycle $1\otimes\overline{1}$ goes to $1\otimes x$, so we can identify η with the class of $1\otimes\overline{1}$ in $H_{d-1}(C\cdot\otimes F\cdot)$.

the element $1\otimes\overline{1}$ in $C.\otimes F.$ can be lifted to $1\otimes\overline{1}\in K^n_.\otimes F.$ for any n. Also, but the commutativity of \varinjlim with \otimes and homology, we have

$$H_{d-1}(C \cdot \otimes F \cdot) \cong \lim_{n \to \infty} H_{d-1}(K^n \cdot \otimes F \cdot) \cdot$$

Hence conjecture A can be reformulated: for every $n\geq 1$, the class of $1\otimes\overline{1}$ in $H_{d-1}(K^n_{\bullet}\otimes F_{\bullet})$ is not zero.

Now let G^n be a free resolution of $R/(x_1^n, \cdot, x_d^n)$ as in Conjecture B. The map $\phi: K^n \longrightarrow G^n$ induces a map $\phi.\otimes 1: K^n \otimes F. \longrightarrow G^n \otimes F.$ Furthermore, the quasi-isomorphism: $S \longrightarrow F.$ induces quasi-isomorphism,

$$K_{\bullet}^{n} \otimes S \longrightarrow K_{\bullet}^{n} \otimes F_{\bullet}$$
 and $G_{\bullet}^{n} \otimes S \longrightarrow G_{\bullet}^{n} \otimes F_{\bullet}$,

and we have a commutative diagram:

But $H_{d-1}(K_{\bullet}^n\otimes S)\cong R_{/(x_1^n,\dots,x_d^n)}\otimes S\cong H_{d-1}(G_{\bullet}^n\otimes S)$, so we can conclude that the map induced in H_{d-1} by $\phi_{\bullet}\otimes 1$ is an isomorphism. Thus $\eta \neq 0$ if and only if the image of $1\otimes \overline{1}$ in $H_{d-1}(G_{\bullet}^n\otimes F_{\bullet})$ is not zero.

We now examine the spectral sequence of $G^n_i\otimes F_i$. The double complex looks like: (writing G_i for G^n_i):

Now the image of $1\otimes\overline{1}$ in $G_{\overline{d}}\otimes k$ is just $\phi_{\overline{d}}(1)\otimes\overline{1}$. If we now take the homology of the columns in this diagram, the class of $\phi_{\overline{d}}(1)\otimes\overline{1}$ will be ξ in the diagram:

All maps to or from $\operatorname{Tor}_d(R/{x_i^n},k)$ in future stages of the spectral sequence are zero. Hence $\xi \neq 0 \Leftrightarrow \xi$ survives forever in the spectral sequence $\Leftrightarrow \xi$ defines a non-zero element in $\operatorname{H}_{d-1}(G^n \otimes F_\bullet) \Leftrightarrow \eta \neq 0$. Thus Conjectures A and B are equivalent.