
EXTRA PROBLEMS #6

DUE: FRI NOVEMBER 2ND

In this assignment, we give a proof for the chain rule. We gave an incomplete proof in
class. In particular, we assumed that the inner-function, didn’t actually achieve the value of
its limit in a little interval around that point.

Consider the following function.

f(t) =

{
0, t = 0
t2 sin(1

t
), t 6= 0

We’ve talked about why this function is continuous in class before. Even more can be said
however, this function is actually differentiable everywhere.

FACTS: We’ve done the following things in class (or done things close enough to them).
You may use them without proving them.

(i) The functions

s(t) =

{
0, t = 0
sin(1

t
), t 6= 0

and c(t) =

{
0, t = 0
cos(1

t
), t 6= 0

are NOT continuous at t = 0. Even more, the functions s(t) and c(t) even have
undefined limits at t = 0.

(ii) The functions ts(t) and tc(t) ARE continuous at t = 0. Here ts(t) is just the product
of the functions i(t) = t with the function s(t). We can also view the function ts(t)
as the multipart function

ts(t) =

{
0, t = 0
t sin(1

t
), t 6= 0

Exercise 0.1. Prove that

f ′(t) =

{
0, t = 0
2t sin(1

t
)− cos(1

t
), t 6= 0

Hint: The case where t 6= 0 should be easy, simply apply the chain and product rules. For
the case of t = 0, you’ll have to use the limit-definition of the derivative.

Exercise 0.2. Prove that the related function

k(t) =

{
0, t = 0
2t sin(1

t
), t 6= 0

is continuous but not differentiable.

Hint: You’ll need to use the limit definition of the derivative to prove the function is not
differentiable.

Exercise 0.3. Prove that f ′(t) is not continuous.

Hint: Show that k(t) can be added to a non-continuous function, to get f ′(t).

Now we get into the real work.
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Theorem 0.4. Let f : (a, b) → (c, d) and g : (c, d) → R be differentiable functions. Then

(g ◦ f)′(x) = g′(f(x))f ′(x)

for every x ∈ (a, b).

We only proved this in class in the case that f did not do exactly what the f function
above did (equal its limit many times around the limiting value). We begin with a warm-up
exercise that gives us a new perspective to the derivative.

Exercise 0.5. Suppose f : (a, b) → R is differentiable at x0 ∈ (a, b) and set L = f ′(x0).
Consider a new function E : (−δ, δ) \ {0} → R defined by the formula

E(h) =
f(x0 + h)− f(x0)

h
− L.

Here δ > 0 is assumed to be chosen in such a way that E can be defined.
Show that

a. for every h ∈ (−δ, δ) \ {0} we have

f(x0 + h) = f(x0) + Lh + hE(h).

b. limh→0 E(h) = 0.

The function E defined in the exercise can be called as an error term. This error term
actually characterizes the derivative as the following exercise shows.

Exercise 0.6. Let f : (a, b) → R be a function and x0 ∈ (a, b). Suppose that there exists a
function E : (−δ, δ) \ {0} → R so that limh→0 E(h) = 0 and

f(x0 + h) = f(x0) + Lh + hE(h)

where L is a number. Show that f is differentiable at x0 and f ′(x0) = L.

These two exercises can be combined as a lemma which we will use later.

Lemma 0.7. A function f : (a, b) → R has derivative L at x0 if and only if there exist δ > 0
and Ef : (−δ, δ) \ {0} → R so that

(1) limh→0 Ef (h) = 0, and
(2) f(x0 + h) = f(x0) + Lh + hEf (h)

for every 0 < |h| < δ.

Exercise 0.8. Let f : (a, b) → (c, d) and g : (c, d) → R be functions and x0 ∈ (a, b). Suppose
that f is differentiable at x0 and g is differentiable at f(x0). Let Ef : (−δ0, δ0) → R be an
error term for f (here we define Ef (0) = 0) and let Eg : (−δ1, δ1) → R be an error term
for g (we also define Eg(0) = 0). Let also `f : (−δ0, δ0) → R be the function `f (h) =
f ′(x0)h + hEf (h).

a. Show that there exists δ > 0 so that for every h ∈ (−δ, δ) we have

|`f (h)| < δ1.

(Hint: Use the limit limh→0 `f (h))
b. Show that with this δ we have

g(f(x0 + h)) = g (f(x0) + `f (h))

= g(f(x0)) + g′(f(x0))`f (h) + `f (h)Eg (`f (h))

for every 0 < |h| < δ.



c. Show that there exists a function E : (−δ, δ) \ {0} → R so that

g′(f(x0))`f (h) + `f (h)Eg (`f (h)) = g′(f(x0))f
′(x0)h + hE(h)

for every 0 < |h| < δ and limh→0 E(h) = 0.
d. Prove Theorem 0.4.

The formula

(1) f(x0 + h) = f(x0) + f ′(x0)h + hE(h)

can also be used to approximate the values of function f .

Exercise 0.9. Argue how (1) could be used to give a decimal approximation for
√

25.012 if
you are able to assume that the error term in (1) is very small. Calculate an approximation
using (1) and compare it to a result given by a calculator.


