EXTRA PROBLEMS #6

DUE: FRI NOVEMBER 2ND

In this assignment, we give a proof for the chain rule. We gave an incomplete proof in class. In particular, we assumed that the inner-function, didn't actually achieve the value of its limit in a little interval around that point.

Consider the following function.

$$f(t) = \begin{cases} 0, & t = 0\\ t^2 \sin(\frac{1}{t}), & t \neq 0 \end{cases}$$

We've talked about why this function is continuous in class before. Even more can be said however, this function is actually differentiable everywhere.

FACTS: We've done the following things in class (or done things close enough to them). You may use them without proving them.

(i) The functions

$$s(t) = \begin{cases} 0, & t = 0\\ \sin(\frac{1}{t}), & t \neq 0 \end{cases}$$
 and $c(t) = \begin{cases} 0, & t = 0\\ \cos(\frac{1}{t}), & t \neq 0 \end{cases}$

are NOT continuous at t = 0. Even more, the functions s(t) and c(t) even have undefined limits at t = 0.

(ii) The functions ts(t) and tc(t) ARE continuous at t=0. Here ts(t) is just the product of the functions i(t)=t with the function s(t). We can also view the function ts(t) as the multipart function

$$ts(t) = \begin{cases} 0, & t = 0\\ t\sin(\frac{1}{t}), & t \neq 0 \end{cases}$$

Exercise 0.1. Prove that

$$f'(t) = \begin{cases} 0, & t = 0\\ 2t\sin(\frac{1}{t}) - \cos(\frac{1}{t}), & t \neq 0 \end{cases}$$

Hint: The case where $t \neq 0$ should be easy, simply apply the chain and product rules. For the case of t = 0, you'll have to use the limit-definition of the derivative.

Exercise 0.2. Prove that the related function

$$k(t) = \begin{cases} 0, & t = 0\\ 2t\sin(\frac{1}{t}), & t \neq 0 \end{cases}$$

is continuous but not differentiable.

Hint: You'll need to use the limit definition of the derivative to prove the function is not differentiable.

Exercise 0.3. Prove that f'(t) is not continuous.

Hint: Show that k(t) can be added to a non-continuous function, to get f'(t).

Now we get into the real work.

Theorem 0.4. Let $f:(a,b) \to (c,d)$ and $g:(c,d) \to \mathbb{R}$ be differentiable functions. Then $(g \circ f)'(x) = g'(f(x))f'(x)$

for every $x \in (a, b)$.

We only proved this in class in the case that f did not do exactly what the f function above did (equal its limit many times around the limiting value). We begin with a warm-up exercise that gives us a new perspective to the derivative.

Exercise 0.5. Suppose $f:(a,b)\to\mathbb{R}$ is differentiable at $x_0\in(a,b)$ and set $L=f'(x_0)$. Consider a new function $E:(-\delta,\delta)\setminus\{0\}\to\mathbb{R}$ defined by the formula

$$E(h) = \frac{f(x_0 + h) - f(x_0)}{h} - L.$$

Here $\delta > 0$ is assumed to be chosen in such a way that E can be defined.

Show that

a. for every $h \in (-\delta, \delta) \setminus \{0\}$ we have

$$f(x_0 + h) = f(x_0) + Lh + hE(h).$$

b. $\lim_{h\to 0} E(h) = 0$.

The function E defined in the exercise can be called as an *error term*. This error term actually characterizes the derivative as the following exercise shows.

Exercise 0.6. Let $f:(a,b)\to\mathbb{R}$ be a function and $x_0\in(a,b)$. Suppose that there exists a function $E:(-\delta,\delta)\setminus\{0\}\to\mathbb{R}$ so that $\lim_{h\to 0}E(h)=0$ and

$$f(x_0 + h) = f(x_0) + Lh + hE(h)$$

where L is a number. Show that f is differentiable at x_0 and $f'(x_0) = L$.

These two exercises can be combined as a *lemma* which we will use later.

Lemma 0.7. A function $f:(a,b) \to \mathbb{R}$ has derivative L at x_0 if and only if there exist $\delta > 0$ and $E_f:(-\delta,\delta) \setminus \{0\} \to \mathbb{R}$ so that

- (1) $\lim_{h\to 0} E_f(h) = 0$, and
- (2) $f(x_0 + h) = f(x_0) + Lh + hE_f(h)$

for every $0 < |h| < \delta$.

Exercise 0.8. Let $f:(a,b) \to (c,d)$ and $g:(c,d) \to \mathbb{R}$ be functions and $x_0 \in (a,b)$. Suppose that f is differentiable at x_0 and g is differentiable at $f(x_0)$. Let $E_f:(-\delta_0,\delta_0) \to \mathbb{R}$ be an error term for f (here we define $E_f(0) = 0$) and let $E_g:(-\delta_1,\delta_1) \to \mathbb{R}$ be an error term for g (we also define $E_g(0) = 0$). Let also $\ell_f:(-\delta_0,\delta_0) \to \mathbb{R}$ be the function $\ell_f(h) = f'(x_0)h + hE_f(h)$.

a. Show that there exists $\delta > 0$ so that for every $h \in (-\delta, \delta)$ we have

$$|\ell_f(h)| < \delta_1.$$

(*Hint*: Use the limit $\lim_{h\to 0} \ell_f(h)$)

b. Show that with this δ we have

$$g(f(x_0 + h)) = g(f(x_0) + \ell_f(h))$$

= $g(f(x_0)) + g'(f(x_0))\ell_f(h) + \ell_f(h)E_g(\ell_f(h))$

for every $0 < |h| < \delta$.

c. Show that there exists a function $E : (-\delta, \delta) \setminus \{0\} \to \mathbb{R}$ so that

$$g'(f(x_0))\ell_f(h) + \ell_f(h)E_g(\ell_f(h)) = g'(f(x_0))f'(x_0)h + hE(h)$$

for every $0 < |h| < \delta$ and $\lim_{h\to 0} E(h) = 0$.

d. Prove Theorem 0.4.

The formula

(1)
$$f(x_0 + h) = f(x_0) + f'(x_0)h + hE(h)$$

can also be used to approximate the values of function f.

Exercise 0.9. Argue how (1) could be used to give a decimal approximation for $\sqrt{25.012}$ if you are able to assume that the error term in (1) is very small. Calculate an approximation using (1) and compare it to a result given by a calculator.