EXTRA PROBLEMS #6

DUE: FRI NOVEMBER 2ND

In this assignment, we give a proof for the chain rule. We gave an incomplete proof in
class. In particular, we assumed that the inner-function, didn’t actually achieve the value of
its limit in a little interval around that point.

Consider the following function.

0, t=20
1) = { t?sin(y), t#0
We've talked about why this function is continuous in class before. Even more can be said
however, this function is actually differentiable everywhere.

FACTS: We've done the following things in class (or done things close enough to them).
You may use them without proving them.

(i) The functions

0, -0 0, t=20
s(t) = { sin(l), t#0 W4t = { cos(¢), t#0

are NOT continuous at ¢ = 0. Even more, the functions s(¢) and c¢(t) even have
undefined limits at ¢t = 0.

(ii) The functions ts(t) and tc(t) ARE continuous at ¢t = 0. Here ts(t) is just the product
of the functions i(t) = ¢ with the function s(¢). We can also view the function ts(t)
as the multipart function

0, t=20
Mw_{mm%t¢o
Exercise 0.1. Prove that

/ 0, t=0
F(t) = { 2tsin(7) — cos(3), t#0

Hint: The case where t # 0 should be easy, simply apply the chain and product rules. For

the case of t = 0, you’ll have to use the limit-definition of the derivative.

Exercise 0.2. Prove that the related function

0, t=0
M”:{%m@%t¢o

is continuous but not differentiable.

Hint: You’ll need to use the limit definition of the derivative to prove the function is not
differentiable.

Exercise 0.3. Prove that f’(t) is not continuous.

Hint: Show that k(t) can be added to a non-continuous function, to get f’(t).

Now we get into the real work.



Theorem 0.4. Let f: (a,b) — (¢,d) and g: (¢,d) — R be differentiable functions. Then
(go f)(z) =g'(f(2)f ()
for every x € (a,b).
We only proved this in class in the case that f did not do exactly what the f function

above did (equal its limit many times around the limiting value). We begin with a warm-up
exercise that gives us a new perspective to the derivative.

Exercise 0.5. Suppose f: (a,b) — R is differentiable at xy € (a,b) and set L = f'(x).

Consider a new function E: (—4,d) \ {0} — R defined by the formula

f(zo +h) — f(xo)
h

Here 6 > 0 is assumed to be chosen in such a way that F can be defined.
Show that

a. for every h € (—4,6) \ {0} we have

E(h) = ~ L

b. limy_q E(h) = 0.

The function E defined in the exercise can be called as an error term. This error term
actually characterizes the derivative as the following exercise shows.

Exercise 0.6. Let f: (a,b) — R be a function and zy € (a,b). Suppose that there exists a
function E: (—4,0) \ {0} — R so that lim, o F(h) = 0 and
where L is a number. Show that f is differentiable at zy and f'(z¢) = L.
These two exercises can be combined as a lemma which we will use later.

Lemma 0.7. A function f: (a,b) — R has derivative L at xo if and only if there exist § > 0
and E;: (=6,0) \ {0} — R so that

(1) limy_o E¢(h) =0, and

(2) f(zo+h) = f(xo) + Lh+ hEg(h)
for every 0 < |h| <.
Exercise 0.8. Let f: (a,b) — (¢,d) and g: (¢,d) — R be functions and zq € (a,b). Suppose
that f is differentiable at x¢ and g is differentiable at f(xy). Let Ef: (—dg,d9) — R be an
error term for f (here we define E;(0) = 0) and let E,;: (—d1,6;) — R be an error term
for g (we also define E,(0) = 0). Let also ¢;: (—dp,00) — R be the function ¢;(h) =
f'(xo)h + hE;(h).

a. Show that there exists 0 > 0 so that for every h € (—6,0) we have
1£4(h)] < 6.
(Hint: Use the limit limy,_o ¢¢(h))
b. Show that with this  we have
9(f(zo+h)) = g(f(zo)+ Ls(h))
= 9(f(x0)) +9'(f(x0)) s (h) + Ls(h) Ey (€4 (h))
for every 0 < |h| < 6.



c. Show that there exists a function E: (—9,9) \ {0} — R so that
9 (f(x0))Cp(h) + Lp(h) Eg (€r(h)) = g'(f (w0)) f'(wa)h + hE(h)

for every 0 < |h| < ¢ and lim,_o E(h) = 0.
d. Prove Theorem 0.4.

The formula
(1) f(wo+h) = f(xo) + f'(w0)h + hE(h)
can also be used to approximate the values of function f.

Exercise 0.9. Argue how (1) could be used to give a decimal approximation for v/25.012 if
you are able to assume that the error term in (1) is very small. Calculate an approximation
using (1) and compare it to a result given by a calculator.



