
MATH 185

DUE WEDNESDAY, NOVEMBER 11TH

We’ll now consider functions which take vectors as input and output other vectors. We’ll
consider vectors in the plane (denoted R2) and in 3-space (denoted R3).

Exercise 0.1. Write down a precise definition of a function that inputs a vector in R2 and
outputs a vector in R2 (based on the definition of a function from Spivak). Such a function
will often be denoted by f : R2 → R2.

Also give a precise definition of a function that inputs a vector from R2 and outputs a
vector in R3. Such a function will often be denoted by f : R2 → R3.

Definition 0.2. A function f : R2 → R2 is a collection of pairs of planar vectors (u, v) such
that whenever (u, v) and (u, w) are both in the collection, then v = w.

Definition 0.3. A function f : R2 → R3 is a collection of pairs of vectors (u, v) where u is
planar and v is in 3-space, such that whenever (u, v) and (u, w) are both in the collection,
then v = w.

Consider the following functions of vectors.

(i) The function h which takes any vector and v and halves its magnitude (but leaves
its direction alone). That is, h(v) = 1

2
v.

(ii) Given any fixed vector w, consider the function gw which takes an input vector v
and outputs w + v, that is gw(v) = w + v.

(iii) The function f which takes a vector v and reverses its direction (but leaves the
magnitude alone).

(iv) Given any fixed non-zero vector w, consider the function Lw which takes an input
vector v and outputs a vector with the same direction as w and the same length as
v.

(v) Fix a basis u, v, w is R3. Consider the function P which takes a vector t ∈ R3,
writes it as

t = au + bv + cw

and then outputs au + bv. This can also be viewed as a function from R3 to R2

because u and v span a plane.
(vi) Fix a basis u and v for R2. Consider the function T : R2 → R2 which sends any

t = au + bv to bu− av.
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Exercise 0.4. Come up with a 7th function that takes an input vector, and then outputs a
different vector.

Fix any non-zero vector w 6= 0. Define T (u) = w to be the constant function.

Recall that a function is called one-to-one if, whenever you have two different input vectors
v and v′, the associated output vectors are also different.

Exercise 0.5. Which of the above functions (including your function) are one-to-one? Jus-
tify your answer.

(i) One-to-one. For if h(u) = h(v) then 1
2
u = 1

2
v and thus u = v.

(ii) One-to-one. For if gw(u) = gw(v) then u + w = v + w so that u = v.
(iii) One-to-one. Note that f(u) = −u so if f(u) = f(v) then −u = −v and so u = v.
(iv) Not one-to-one. Let u and v be two different vectors with the same length. Then

Lw(u) = Lw(v).
(v) Not one-to-one. Notice that P (u + w) = u = P (u) but u 6= u + w.

(vi) One-to-one. Write t = au + bv and s = cu + dv. Then if T (t) = T (s) we have
that bu − av = du − bv so that b = d and that a = b (since u and v are linearly
independent). But then t = s as desired.

(vii) Non one-to-one. The function I made up is not one-to-one because for any two
different vectors u, v, T (u) = w = T (v).



Definition 0.6. Given a function T (which takes vectors as input, and outputs vectors), we
say that T is a linear transformation if the following two properties hold.

(#1) For any two vectors v and v′, we always have T (v + v′) = T (v) + T (v′). In other
words, adding the vectors and then using the function gives the same result as using
the function, then adding the two outputs.

(#2) For any v and any real number c, we have T (cv) = cT (v). In other words, if you
scale the vector and then apply the function, you get the same result as if you’d
applied the function and then scaled the output.

Exercise 0.7. Which of the functions above (including the one you created) are linear
transformations? Give justification for each answer.

(i) Linear transformation. For property #1, notice that h(u + v) = (1
2
)(u + v) =

1
2
u + 1

2
v = h(u) + h(v). For property #2, notice that h(cu) = 1

2
(cu) = c1

2
u = ch(u).

(ii) Not a linear transformation unless w = 0. First suppose that w 6= 0, then notice
that gw(2u) = w + 2u but 2gw(u) = 2w + 2u and if w 6= 0, then w 6= 2w, thus
gw is not a linear transformation. On the other hand if w = 0 then gw(u + v) =
u + v = gw(u) + gw(v) and likewise gw(cu) = cu = cgw(u) and so gw is a linear
transformation.

(iii) Linear transformation. Note that f(u) = −u so that f(u + v) = −(u + v) =
−u +−v = f(u) + f(v) and likewise that f(cu) = −cu = c(−u) = cf(u) as desired.

(iv) Not a linear transformation. Let u be a non-zero vector with the same length as w
and set and v = −u (same length as w also, but opposite direction from u). Then
0 = Lw(Ø) = Lw(u + v). But Lw(u) + Lw(v) = w + w = 2w 6= 0.

(v) Linear transformation. Write x = au + bv + cw and write y = du + ev + fw. Then

P (x + y) = P ((a + d)u + (b + e)v + (c + f)w) = (a + d)u + (b + e)v

= (au + bv) + (eu + fv) = P (x) + P (y),

which proves property #1. For property #2 simply notice that

P (nx) = P (nau + nbv + ncw) = nau + nbv = n(au + bv) = nP (x).

(vi) Linear transformation. Write x = au + bv and y = cu + dv. Then

T (x + y) = T ((a + c)u + (b + d)v) = (b + d)u− (a + c)v

= (bu− av) + (du− cv) = T (x) + T (y)

proving property #1. For property #2 we have

T (nx) = T (nau + nbv) = nbu− nav = n(bu− av) = nT (x).

(vii) Not a linear transformation. Notice that T (u) = w = T (2u). But 2w 6= w since
w 6= 0.



Exercise 0.8. Suppose that u, v, w are a basis for R3 and that T : R3 → R3 is a linear
transformation. Then show that the function T is uniquely determined (amoung linear
transformations) by the values of T (u), T (v), and T (w).

Suppose that T and S are two linear transformations such that

T (u) = S(u)

T (v) = S(v)

T (w) = S(w)

We will show that T = S. So choose any vector x and using the fact that u, v, w is a basis
write x = au + bv + cw.

T (x) = T (au + bv + cw) = aT (u) + bT (v) + cT (w)

= aS(u) + bS(v) + cS(w) = S(au + bv + cw) = S(x).

Therefore S = T and we are done.

Exercise 0.9. Suppose that u, v, w are a basis for R3 and that T : R3 → R3 is a linear
transformation. Prove that T is injective if and only if T (u), T (v), T (w) also form a basis
for R3.

First we prove a lemma.

Lemma 0.10. Suppose that T is a linear transformation. Then T (0) = 0.

Proof. Note T (0) = T (0 + 0) = T (0) + T (0) since T is a linear transformation. But then
cancelling T (0) from both sides gives us T (0) = 0 as desired. �

Now we return to the problem at hand. First suppose that T (u), T (v), T (w) also forms a
basis. We will show that T is injective. So suppose that T (x) = T (y). Write x = au+bv+cw
and write y = du + ev + fw (we can do this since u, v, w is a basis). Thus

aT (u) + bT (v) + cT (w) = T (au + bv + cw) = T (x)

= T (y) = T (du + ev + fw) = dT (u) + eT (v) + fT (w)

Therefore a = d, b = e and c = f because T (u), T (v), T (w) is a linearly independent set.
But then x = y as desired.

For the converse direction, suppose that T is injective. Then suppose that aT (u)+bT (v)+
cT (w) = 0. We will show that necessarily a = 0, b = 0, c = 0 proving that T (u), T (v), T (w)
is linearly independent and thus a basis. Now

T (0) = 0 = aT (u) + bT (v) + cT (w) = T (au + bv + cw)

by the Lemma. Then since T is injective 0 = au + bv + cw. Therefore a = 0, b = 0 and
c = 0 as desired.


