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Definitions

R ess. f.t. char 0. has rational singularities if for all/any res.

π : Y → Spec R

one has Rπ∗OY
∼= R. (WRITE)

R has pseudo-rational singularities if CM & for any proper
birat. map

π : Y → Spec R

one has Hd
m(R)→ Hd

m(Rπ∗OY ) injects (WRITE)
R in char. p has F-rational singularities if CM &

0∗
Hd
m(R)

= 0

Above is smallest Frobenius compatible. (WRITE)
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History

Theorem (Elkik, 1978)

(R,m) local char. 0. f ∈ m reg. elt.

R/f is rational⇒ R is rational.

Theorem (Smith, 1997)
In general, if Rp char p > 0.

Rp is F -rat. ⇒ Rp is pseudo-rational.

In particular, RQ char. 0, RZ spread out. p > 0 big enough.

RZ/p is F-rational⇒ RQ is rational

Converse [Hara, 1998], [Mehta-Srinivas]
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Our results

Theorem (Ma-S.)

Suppose (R,m) is nice mixed char local domain.

R/p is F-rat. ⇒ R is pseudo-rational⇒ R ⊗Z Q is rational.

Several steps in proof.

Deduce something in mixed char.

Rough idea: R ⊆ B in bal. big CM-alg.

Hd−1
m (R) = 0 // Hd−1

m (R/p)

��

// Hd
m(R)

��

·p // Hd
m(R)

��
Hd−1
m (B) = 0 // Hd−1

m (B/p) // Hd
m(B) ·p

// Hd
m(B)

Socle chase! So Hd
m(R) ↪→ Hd

m(B).
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Proof sketch continued

Blowup.
We saw

Hd
m(R) ↪→ Hd

m(B).

Say π : Y → Spec R blowup. Choose B big enough (related to
Rees algebra of blowup). Then [Ma] says

Hd
m(R) ↪→ Hd

m(B)

implies
Hd
m(R) ↪→ Hd

m(Rπ∗OY )

Done!
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Warning

Our main result only works locally (or for proper varieties).
It can happen that R finite type / Z.
R/p is F -rational for some p > 0.
But R/p is not F -rational for other p > 0
and R ⊗Z Q is not rational.

SpecZ

R

p

Rp

badly singular locus
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Say more

We we can say a lot more.
(RQ,mQ) char. 0. Then

Rp is F -rational for one p
⇒ RQ is rational
⇒ Rp is F -rational for almost all p > 0.

We believe we can prove a restriction theorem for
something like param. test modules.

Image(τ(ωR)/p → ωR/p) ⊇ τ(ωR/p).

Then we believe we can show via cyclic covering,

R is Z(p)-Gor. & R/p is strongly F -regular⇒ R is pseudo-KLT.
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Computational application

We can prove rings have rational singularities using a computer
now!

Start out with (R,m) char. 0, say over Q.(
Q[x1, . . . , xn]/(f1, . . . , fn)

)
m0

fi ∈ Z[x1, . . . , xn].
Check if

(Fp[x1, . . . , xn]/(f1, . . . , fn))m0

is F -rational for some small p.
If yes, then R has rational singularities.
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Macaulay2

Use the new TestIdeals package (in build tree).

Macaulay2, version 1.10
with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems,

LLLBases, PrimaryDecomposition, ReesAlgebra, TangentCone
i1 : S = ZZ/3[a,b,c,d,t]; m = 4; n = 3;
i4 : M = matrix{ {a^2 + t^m, b, d}, {c, a^2, b^n-d} };
i5 : I = minors(2, M);
o5 : Ideal of S
i6 : loadPackage "TestIdeals";
i7 : isFrational(S/I)
o7 = true

This is from Singh’s example of non-F -regular deformation.
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