F-rational mod *p* implies rational in mixed characteristic and characteristic zero

Linquan Ma,¹ Karl Schwede¹

¹Department of Mathematics University of Utah

AMS Sectional Meeting, Denton Texas September 2017

Definitions

• R ess. f.t. char 0. has rational singularities if for all/any res.

$$\pi: Y \to \operatorname{Spec} R$$

one has $\mathbf{R}\pi_* O_Y \cong R$. (WRITE)

 R has pseudo-rational singularities if CM & for any proper birat. map

$$\pi: Y o \operatorname{\mathsf{Spec}}
olimits R$$

one has $H^d_{\mathfrak{m}}(R) \to \mathbb{H}^d_{\mathfrak{m}}(\mathbf{R}\pi_* O_Y)$ injects (WRITE)

R in char. p has F-rational singularities if CM &

$$0^*_{H^d_\mathfrak{m}(R)}=0$$

Above is smallest Frobenius compatible. (WRITE)

Definitions

• R ess. f.t. char 0. has rational singularities if for all/any res.

$$\pi: Y \to \operatorname{Spec} R$$

one has $\mathbf{R}\pi_* O_Y \cong R$. (WRITE)

 R has pseudo-rational singularities if CM & for any proper birat. map

$$\pi: Y \to \operatorname{Spec} R$$

one has
$$H^d_\mathfrak{m}(R) o \mathbb{H}^d_\mathfrak{m}(\mathbf{R}\pi_*O_Y)$$
 injects (WRITE)

R in char. p has F-rational singularities if CM &

$$0^*_{H^d_\mathfrak{m}(R)}=0$$

Above is smallest Frobenius compatible. (WRITE)

Definitions

• R ess. f.t. char 0. has rational singularities if for all/any res.

$$\pi: Y \to \operatorname{Spec} R$$

one has $\mathbf{R}\pi_* O_Y \cong R$. (WRITE)

 R has pseudo-rational singularities if CM & for any proper birat. map

$$\pi: Y \to \operatorname{Spec} R$$

one has $H^d_\mathfrak{m}(R) o \mathbb{H}^d_\mathfrak{m}(\mathbf{R}\pi_*O_Y)$ injects (WRITE)

R in char. p has F-rational singularities if CM &

$$0^*_{H^d_{\mathfrak{m}}(R)}=0$$

Above is smallest Frobenius compatible. (WRITE)

History

Theorem (Elkik, 1978)

 (R, \mathfrak{m}) local char. 0. $f \in \mathfrak{m}$ reg. elt.

R/f is rational $\Rightarrow R$ is rational.

Theorem (Smith, 1997)

In general, if R_p char p > 0.

 R_p is F-rat. $\Rightarrow R_p$ is pseudo-rational.

In particular, $R_{\mathbb{Q}}$ char. 0, $R_{\mathbb{Z}}$ spread out. p>0 big enough.

 $R_{\mathbb{Z}}/p$ is F-rational $\Rightarrow R_{\mathbb{Q}}$ is rational

Converse [Hara, 1998], [Mehta-Srinivas]

History

Theorem (Elkik, 1978)

 (R, \mathfrak{m}) local char. 0. $f \in \mathfrak{m}$ reg. elt.

R/f is rational $\Rightarrow R$ is rational.

Theorem (Smith, 1997)

In general, if R_p char p > 0.

 R_p is F-rat. $\Rightarrow R_p$ is pseudo-rational.

In particular, $R_{\mathbb{Q}}$ char. 0, $R_{\mathbb{Z}}$ spread out. p>0 big enough.

 $R_{\mathbb{Z}}/p$ is F-rational $\Rightarrow R_{\mathbb{Q}}$ is rational

Converse [Hara, 1998], [Mehta-Srinivas]

History

Theorem (Elkik, 1978)

 (R, \mathfrak{m}) local char. 0. $f \in \mathfrak{m}$ reg. elt.

R/f is rational $\Rightarrow R$ is rational.

Theorem (Smith, 1997)

In general, if R_p char p > 0.

 R_p is F-rat. $\Rightarrow R_p$ is pseudo-rational.

In particular, $R_{\mathbb{Q}}$ char. 0, $R_{\mathbb{Z}}$ spread out. p>0 big enough.

 $R_{\mathbb{Z}}/p$ is F-rational $\Rightarrow R_{\mathbb{Q}}$ is rational

Converse [Hara, 1998], [Mehta-Srinivas]

Our results

Theorem (Ma-S.)

Suppose (R, \mathfrak{m}) is nice mixed char local domain.

R/p is F-rat. $\Rightarrow R$ is pseudo-rational $\Rightarrow R \otimes_{\mathbb{Z}} \mathbb{Q}$ is rational.

Several steps in proof.

Deduce something in mixed char.

Rough idea: $R \subseteq B$ in bal. big CM-alg.

$$H_{\mathfrak{m}}^{d-1}(R) = 0 \longrightarrow H_{\mathfrak{m}}^{d-1}(R/p) \longrightarrow H_{\mathfrak{m}}^{d}(R) \xrightarrow{p} H_{\mathfrak{m}}^{d}(R)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H_{\mathfrak{m}}^{d-1}(B) = 0 \longrightarrow H_{\mathfrak{m}}^{d-1}(B/p) \longrightarrow H_{\mathfrak{m}}^{d}(B) \xrightarrow{p} H_{\mathfrak{m}}^{d}(B)$$

Socle chase! So $H^d_{\mathfrak{m}}(R) \hookrightarrow H^d_{\mathfrak{m}}(B)$.

Our results

Theorem (Ma-S.)

Suppose (R, \mathfrak{m}) is nice mixed char local domain.

R/p is F-rat. $\Rightarrow R$ is pseudo-rational $\Rightarrow R \otimes_{\mathbb{Z}} \mathbb{Q}$ is rational.

Several steps in proof.

Deduce something in mixed char.

Rough idea: $R \subseteq B$ in bal. big CM-alg.

$$H_{\mathfrak{m}}^{d-1}(R) = 0 \longrightarrow H_{\mathfrak{m}}^{d-1}(R/p) \longrightarrow H_{\mathfrak{m}}^{d}(R) \xrightarrow{\cdot p} H_{\mathfrak{m}}^{d}(R)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H_{\mathfrak{m}}^{d-1}(B) = 0 \longrightarrow H_{\mathfrak{m}}^{d-1}(B/p) \longrightarrow H_{\mathfrak{m}}^{d}(B) \xrightarrow{\cdot p} H_{\mathfrak{m}}^{d}(B)$$

Socle chase! So $H_{\mathfrak{m}}^{d}(R) \hookrightarrow H_{\mathfrak{m}}^{d}(B)$.

Our results

Theorem (Ma-S.)

Suppose (R, \mathfrak{m}) is nice mixed char local domain.

R/p is F-rat. $\Rightarrow R$ is pseudo-rational $\Rightarrow R \otimes_{\mathbb{Z}} \mathbb{Q}$ is rational.

Several steps in proof.

Deduce something in mixed char.

Rough idea: $R \subseteq B$ in bal. big CM-alg.

$$H_{\mathfrak{m}}^{d-1}(R) = 0 \longrightarrow H_{\mathfrak{m}}^{d-1}(R/p) \longrightarrow H_{\mathfrak{m}}^{d}(R) \xrightarrow{\cdot p} H_{\mathfrak{m}}^{d}(R)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H_{\mathfrak{m}}^{d-1}(B) = 0 \longrightarrow H_{\mathfrak{m}}^{d-1}(B/p) \longrightarrow H_{\mathfrak{m}}^{d}(B) \xrightarrow{\cdot p} H_{\mathfrak{m}}^{d}(B)$$

Socle chase! So $H^d_{\mathfrak{m}}(R) \hookrightarrow H^d_{\mathfrak{m}}(B)$.

Proof sketch continued

Blowup.

We saw

$$H^d_{\mathfrak{m}}(R) \hookrightarrow H^d_{\mathfrak{m}}(B).$$

Say $\pi: Y \to \operatorname{Spec} R$ blowup. Choose B big enough (related to Rees algebra of blowup). Then [Ma] says

$$H^d_{\mathfrak{m}}(R) \hookrightarrow H^d_{\mathfrak{m}}(B)$$

implies

$$H^{a}_{\mathfrak{m}}(R) \hookrightarrow H^{a}_{\mathfrak{m}}(\mathbf{R}\pi_{*}\mathcal{O}_{Y})$$

Done!

Proof sketch continued

Blowup.

We saw

$$H^d_{\mathfrak{m}}(R) \hookrightarrow H^d_{\mathfrak{m}}(B).$$

Say $\pi: Y \to \operatorname{Spec} R$ blowup. Choose B big enough (related to Rees algebra of blowup). Then [Ma] says

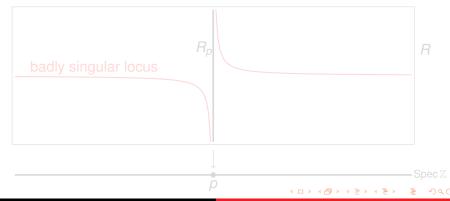
$$H^d_{\mathfrak{m}}(R) \hookrightarrow H^d_{\mathfrak{m}}(B)$$

implies

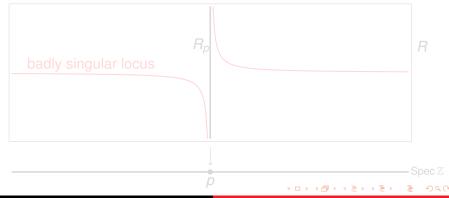
$$H^d_{\mathfrak{m}}(R) \hookrightarrow H^d_{\mathfrak{m}}(\mathbf{R}\pi_*\mathcal{O}_Y)$$

Done!

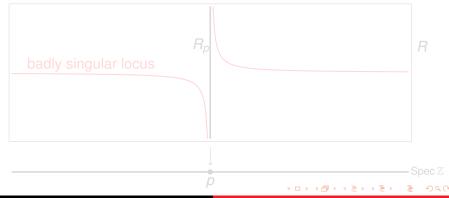
- It can happen that R finite type / \mathbb{Z} .
- R/p is F-rational for some p > 0.
- But R/p is not F-rational for other p > 0
- and $R \otimes_{\mathbb{Z}} \mathbb{Q}$ is not rational.



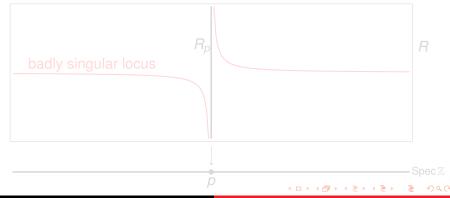
- It can happen that R finite type / \mathbb{Z} .
- R/p is F-rational for some p > 0.
- But R/p is not F-rational for other p > 0
- and $R \otimes_{\mathbb{Z}} \mathbb{Q}$ is not rational.



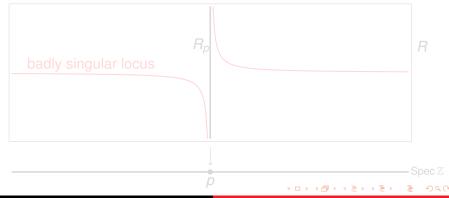
- It can happen that R finite type / \mathbb{Z} .
- R/p is F-rational for some p > 0.
- But R/p is not F-rational for other p > 0
- and $R \otimes_{\mathbb{Z}} \mathbb{Q}$ is not rational.



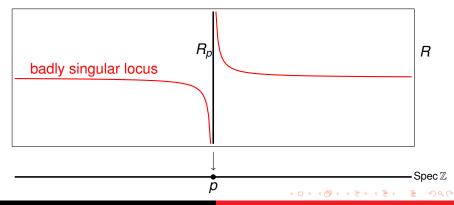
- It can happen that R finite type / \mathbb{Z} .
- R/p is F-rational for some p > 0.
- But R/p is not F-rational for other p > 0
- and $R \otimes_{\mathbb{Z}} \mathbb{Q}$ is not rational.



- It can happen that R finite type / \mathbb{Z} .
- R/p is F-rational for some p > 0.
- But R/p is not F-rational for other p > 0
- and $R \otimes_{\mathbb{Z}} \mathbb{Q}$ is not rational.



- It can happen that R finite type / \mathbb{Z} .
- R/p is F-rational for some p > 0.
- But R/p is not F-rational for other p > 0
- and $R \otimes_{\mathbb{Z}} \mathbb{Q}$ is not rational.



We we can say a lot more.

 \bullet $(R_{\mathbb{Q}}, \mathfrak{m}_{\mathbb{Q}})$ char. 0. Then

$$R_p$$
 is F -rational for one p
 $\Rightarrow R_{\mathbb{Q}}$ is rational
 $\Rightarrow R_p$ is F -rational for almost all $p > 0$

 We believe we can prove a restriction theorem for something like param. test modules.

$$\mathsf{Image}(\tau(\omega_R)/p \to \omega_{R/p}) \supseteq \tau(\omega_{R/p}).$$

Then we believe we can show via cyclic covering,

We we can say a lot more.

ullet $(R_{\mathbb{Q}},\mathfrak{m}_{\mathbb{Q}})$ char. 0. Then

$$R_p$$
 is F-rational for one p

- \Rightarrow $R_{\mathbb{Q}}$ is rational
- \Rightarrow R_p is F-rational for almost all p > 0.
- We believe we can prove a restriction theorem for something like param. test modules.

Image
$$(\tau(\omega_R)/p \to \omega_{R/p}) \supseteq \tau(\omega_{R/p})$$
.

Then we believe we can show via cyclic covering,

We we can say a lot more.

ullet $(R_{\mathbb{Q}},\mathfrak{m}_{\mathbb{Q}})$ char. 0. Then

$$R_p$$
 is F -rational for one p

- \Rightarrow $R_{\mathbb{Q}}$ is rational
- \Rightarrow R_p is F-rational for almost all p > 0.
- We believe we can prove a restriction theorem for something like param. test modules.

Image
$$(\tau(\omega_R)/p \to \omega_{R/p}) \supseteq \tau(\omega_{R/p})$$
.

Then we believe we can show via cyclic covering,

We we can say a lot more.

 \bullet $(R_{\mathbb{Q}}, \mathfrak{m}_{\mathbb{Q}})$ char. 0. Then

$$R_p$$
 is F -rational for one p
 $\Rightarrow R_{\mathbb{Q}}$ is rational

- \Rightarrow R_0 is F-rational for almost all p > 0.
- We believe we can prove a restriction theorem for something like param. test modules.

$$\mathsf{Image}(\tau(\omega_R)/p \to \omega_{R/p}) \supseteq \tau(\omega_{R/p}).$$

Then we believe we can show via cyclic covering,

We can prove rings have rational singularities using a computer now!

• Start out with (R, \mathfrak{m}) char. 0, say over \mathbb{Q} .

$$(\mathbb{Q}[x_1,\ldots,x_n]/(f_1,\ldots,f_n))_{\mathfrak{m}_0}$$

$$f_i \in \mathbb{Z}[x_1,\ldots,x_n].$$

Check if

$$(\mathbb{F}_p[x_1,\ldots,x_n]/(f_1,\ldots,f_n))_{\mathfrak{m}_0}$$

is *F*-rational for some small *p*.

• If *yes*, then *R* has rational singularities.

We can prove rings have rational singularities using a computer now!

• Start out with (R, \mathfrak{m}) char. 0, say over \mathbb{Q} .

$$\big(\mathbb{Q}[x_1,\ldots,x_n]/(f_1,\ldots,f_n)\big)_{\mathfrak{m}_0}$$

$$f_i \in \mathbb{Z}[x_1,\ldots,x_n].$$

Check if

$$(\mathbb{F}_p[x_1,\ldots,x_n]/(f_1,\ldots,f_n))_{\mathfrak{m}_0}$$

is F-rational for some small p.

• If *yes*, then *R* has rational singularities.

We can prove rings have rational singularities using a computer now!

• Start out with (R, \mathfrak{m}) char. 0, say over \mathbb{Q} .

$$\big(\mathbb{Q}[x_1,\ldots,x_n]/(f_1,\ldots,f_n)\big)_{\mathfrak{m}_0}$$

$$f_i \in \mathbb{Z}[x_1,\ldots,x_n].$$

Check if

$$(\mathbb{F}_p[x_1,\ldots,x_n]/(f_1,\ldots,f_n))_{\mathfrak{m}_0}$$

is F-rational for some small p.

If yes, then R has rational singularities.

We can prove rings have rational singularities using a computer now!

• Start out with (R, \mathfrak{m}) char. 0, say over \mathbb{Q} .

$$\big(\mathbb{Q}[x_1,\ldots,x_n]/(f_1,\ldots,f_n)\big)_{\mathfrak{m}_0}$$

$$f_i \in \mathbb{Z}[x_1,\ldots,x_n].$$

Check if

$$(\mathbb{F}_p[x_1,\ldots,x_n]/(f_1,\ldots,f_n))_{\mathfrak{m}_0}$$

is F-rational for some small p.

• If *yes*, then *R* has rational singularities.

Macaulay2

Use the new TestIdeals package (in build tree).

This is from Singh's example of non-*F*-regular deformation

Macaulay2

Use the new TestIdeals package (in build tree).

This is from Singh's example of non-*F*-regular deformation

Macaulay2

Use the new TestIdeals package (in build tree).

This is from Singh's example of non-*F*-regular deformation.