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Linquan Ma,Karl Schwede



@ Ress. f.t. char 0. has rational singularities if for all/any res.
m:Y — SpecR

one has Rm,.Oy = R. (WRITE)

@ R has pseudo-rational singularities if CM & for any proper
birat. map
m:Y — SpecR

one has HJ(R) — HY (Rx,Oy) injects (WRITE)

Linquan Ma,Karl Schwede



@ Ress. f.t. char 0. has rational singularities if for all/any res.
m:Y — SpecR

one has Rm,.Oy = R. (WRITE)

@ R has pseudo-rational singularities if CM & for any proper
birat. map

m:Y — SpecR
one has HJ(R) — HY (Rx,Oy) injects (WRITE)
@ Riin char. p has F-rational singularities if CM &
Him) = O

Above is smallest Frobenius compatible. (WRITE)
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Theorem (Elkik, 1978)

(R, m) local char. 0. f € m reg. elt.

R/f is rational = R is rational.
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Theorem (Elkik, 1978)

(R, m) local char. 0. f € m reg. elt.

R/f is rational = R is rational.

Theorem (Smith, 1997)
In general, if Ry char p > 0.

Ry is F-rat. = Ry is pseudo-rational.
In particular, Ry char. 0, Ry, spread out. p > 0 big enough.

Rz/p is F-rational = Ry is rational

Converse [Hara, 1998], [Mehta-Srinivas]
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Our results

Theorem (Ma-S.)

Suppose (R, m) is nice mixed char local domain.

R/p is F-rat. = R is pseudo-rational = R ®yz Q is rational.
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Our results

Theorem (Ma-S.)

Suppose (R, m) is nice mixed char local domain.

R/p is F-rat. = R is pseudo-rational = R ®yz Q is rational.

Several steps in proof.

Deduce something in mixed char.
Rough idea: R C B in bal. big CM-alg.

HZ-1(R) = 0 — HZ'(R/p) — HI(R) —~ HI(R)

m

L

Hg~1(B) = 0 —= H3~1(B/p) —= HJ(B) —> H(B)

Socle chase! So HY(R) — HY(B). O

y
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Proof sketch continued

We saw
HI(R) — H3(B).

Say 7 : Y — Spec R blowup.
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Proof sketch continued

Blowup.

We saw
HI(R) — H3(B).

Say 7 : Y — Spec R blowup. Choose B big enough (related to
Rees algebra of blowup). Then [Ma] says

Ha(R) — HA(B)

implies
HY(R) — HY(Rr,Oy)

Done! ]
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Our main result only works locally (or for proper varieties).
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Our main result only works locally (or for proper varieties).
@ It can happen that R finite type / Z.
@ R/pis F-rational for some p > 0.
@ But R/pis not F-rational for other p > 0
@ and R ®z Q is not rational.
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Warning

Our main result only works locally (or for proper varieties).
@ It can happen that R finite type / Z.
@ R/pis F-rational for some p > 0.
@ But R/pis not F-rational for other p > 0
@ and R ®z Q is not rational.

Ry R
badly singular locus

% SpecZ
P
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We we can say a lot more.
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We we can say a lot more.
@ (Rg,mg) char. 0. Then
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@ We believe we can prove a restriction theorem for
something like param. test modules.
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We we can say a lot more.
@ (Rg,mg) char. 0. Then

Ry is F-rational for one p
= Ry is rational
= Ry is F-rational for almost all p > 0.

@ We believe we can prove a restriction theorem for
something like param. test modules.

Image(7(wgr)/p — wR/p) D T(wR/p).
@ Then we believe we can show via cyclic covering,

Ris Zp)-Gor. & R/p is strongly F-regular = R is pseudo-KLT.
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Computational application

We can prove rings have rational singularities using a computer
now!

Linquan Ma,Karl Schwede



Computational application

We can prove rings have rational singularities using a computer
now!

@ Start out with (R, m) char. 0, say over Q.

(Q[X1,...,Xn]/(f1,...,fn))m
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fie Z[xq, ..., Xn)-

Linquan Ma,Karl Schwede



Computational application

We can prove rings have rational singularities using a computer
now!

@ Start out with (R, m) char. 0, say over Q.

(Q[X1,...,Xn]/(f1,...,fn))m

0

fie Z[xq, ..., Xn)-
@ Check if
(Fp[Xh,Xn]/(fhafn))mo

is F-rational for some small p.
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Computational application

We can prove rings have rational singularities using a computer
now!

@ Start out with (R, m) char. 0, say over Q.

(Q[X1,...,Xn]/(f1,...,fn))m

0

fie Z[xq, ..., Xn)-
@ Check if
(FplXt, ... xnl/(f1, .o, F2))mg
is F-rational for some small p.
@ If yes, then R has rational singularities.
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Use the new Test Ideals package (in build tree).
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Macaulay?2

Use the new Test Ideals package (in build tree).

Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralC
LLLBases, PrimaryDecomposition, ReesAlgeb

zz/3la,b,c,d,t]l; m = 4; n = 3;

matrix{ {a”2 + t”m, b, d}, {c, a2, b n-d} };

il : S
i4 : M

i5 : I = minors (2, M);

05 : Ideal of S

i6 : loadPackage "TestIdeals";
i7 : isFrational (S/I)

o7 = true




Macaulay?2

Use the new Test Ideals package (in build tree).

Macaulay2, version 1.10

with packages: ConwayPolynomials, Elimination, IntegralC
LLLBases, PrimaryDecomposition, ReesAlgeb

il : s 7z72/3[a,b,c,d,t]; m = 4; n = 3;

i4 : M matrix{ {a”2 + t"m, b, d}, {c, a*2, b"n-d} };

i5 : I = minors (2, M);

05 : Ideal of S

i6 : loadPackage "TestIdeals";

i7 : isFrational (S/I)

o7 = true

This is from Singh’s example of non-F-regular deformation.
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