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@ Consider rings R of characteristic p > 0.
@ No resolution of singularities (in general).
@ Kunz proved:

Theorem (Kunz)
R is regular if and only if Frobenius is flat.

@ We can measure singularities with Frobenius!
@ How flat is Frobenius?
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History, part 2

@ Because we are working with computers, domain finite
type over [Fg.
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History, part 2

@ Because we are working with computers, domain finite
type over [g.

@ Kunz says Frobenius is flat if and only if R'/P° is locally free
over R.

@ We can weaken being locally free.

Definition (Hochster-Roberts, Mehta-Ramanathan)

Ris F-pureif and only if R — R'/P° splits.

@ F-pure is analogous to log canonical singularities.

e F-pure implies SLC.
e SLC in char 0 conjecturally implies F-pure for many p.
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Checking F-purity can be pretty easy.
@ Fedder’s Criterion. R = S/I, S is polynomial.

Theorem (Fedder)
R is F-pure atm if and only if P! : | ¢ mlP!,

@ If / = (f), then /Pl . | = (fP=1). (BOARD)
@ For example.

i5 : S = Z2Z2/7([%x,vy,2];

i6 ¢ £ = x"3 + y*"3 + z"3;

i8 : isSubset (ideal (f"6), ideal (x"7, y*~7, z°7))
08 = false
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Macaulay?2

We have written a package TestIdeals.m2 that computes
whether a ring (or pair) is:
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Macaulay?2

We have written a package TestIdeals.m2 that computes
whether a ring (or pair) is:
@ F-pure
e Analog of SLC.
@ F-regular
e Analog of KLT.
@ F-rational
e Analog of rational.
@ F-injective
e Analog of Du Bois.
@ Testideals
e Analogs of multiplier ideals
@ F-pure thresholds (with FThresholds.m2).
e Analogs of log canonical thresholds.
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Fedder, part 2

@ Fedder’s criterion works because maps
¢r: R/ - R

come from maps
os : 81/’06 — S

such that ¢g(/'/P%) C I.
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@ Fedder’s criterion works because maps

¢r: R/ - R
come from maps

os : 81/’06 — S
such that ¢g(/'/P%) C I.

@ In fact,
P71 12 {¢ € Homg(S"P", 8) | o(/'/P°) C I}.

@ Translates questions on R into questions in polynomial ring
S.
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Fedder, part 2

@ Fedder’s criterion works because maps

¢r: R/ - R
come from maps

os : 81/’06 — S
such that ¢g(/'/P%) C I.

@ In fact,
P71 12 {¢ € Homg(S"P", 8) | o(/'/P°) C I}.

@ Translates questions on R into questions in polynomial ring
S.

@ Note {¢g # 0} ++ {A > 0 Q-log boundary}. (BOARD)
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Frobenius trace

One more big tool.
@ There exists ¢ : S'/P° — 8.

pC—1 pC—1
° <I><x1’°e X ):1
@ Other monomials to 0.
@ ¢ generates Homg(S'/7°, S).
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Frobenius trace

One more big tool.
@ There exists ¢ : S'/P° — 8.

pC—1 pC—1
° <I><x1’°e X ):1
@ Other monomials to 0.
@ ¢ generates Homg(S'/7°, S).

@ ¢ is Grothendieck dual to Frobenius.
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Frobenius trace

One more big tool.

@ There exists ¢ : SV/P° — S.

€1 pe—1

<I><x1 Pox,” ):1
Other monomials to 0.
¢ generates Homg(S'/7°, S).
& is Grothendieck dual to Frobenius.
®(J'/P°) C Iif and only if

[P C .

Theorem (Fedder restated)

O((IP1: 1)1/P%) = Image(Homa(R'/P°, R) <% R)

defines locus where R = S/ is not F-pure.
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Implementation

We compute some Macaulay2 examples. ®(J) is called the
Frobenius root of J.

i12
113
ol3
i14
ol4d
115
il6
olb

119
0l9

I =ideal (x"3 + y*3 + z73);
frobeniusRoot (1, I"7 : I)
ideal 1

isFPure (S/I)

true

J = ideal (x"4+y"™4+z74);
frobeniusRoot (1, J"7 : J)

2 2 2
ideal (z , y*z, X*z, y , X*y, X )
isFPure (S/J)
false
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More examples

i20
i21
i22

022
022
i23

023
023
i24
024

|_]
Il

7%/5[a,b,c,d, el;
B = 72Z/5[x%x,v];

f = map(B, T, {x"4, x"3*xy, x"2%xy"*2, x*xy*3, y*
4 3 2 2 3 4
map(B,T,{x , Xy, Xy , X*xy , vV })
RingMap B <-——-= T
I = ker £
2 2
ideal (d - c*e, cxd — b*e, b*d - axe, ¢ - a
Ideal of T
isFPure (T/I)
true
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F-regularity and test ideals

@ Analog of KLT.

Definition

R is strongly F-regular if for every (interesting?) ¢ € R, there is
some e and ¢ : R'/P° — R so that ¢(c'/P°) = 1.

4In Jacobian ideal is good enough
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R = S/I is strongly F-regular if and only if
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F-regularity and test ideals

@ Analog of KLT.

Definition

R is strongly F-regular if for every (interesting?) ¢ € R, there is
some e and ¢ : R'/P° — R so that ¢(c'/P°) = 1.

4In Jacobian ideal is good enough

@ If translated by Fedder’s methods,

R = S/I is strongly F-regular if and only if

I+ o((c(IP1: )1/P') = 8.

@ Ris KLT if and only if (R, c) is SLC.
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F-regularity checking

i3 : S = Z2Z2/7(%x,y,2];

i4 : R = S/ideal (x"2-y*z)

i5 : isFRegular (R);

05 = true

120 : A = Z22/7[%x,y,2]/(y 2%z — x*x(x—2)*(x+2));

i21 : ¢ = zZ/7[a,b,c,d,e, f];

i22 : g = map (A, C, {x"2, xxy, X%z, y*2, y*xz, z"2})
i23 : I = ker g;

i26 : isFRegular(C/I);

026 = false
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F-regular.
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F-regularity checking

i3 : S 722/7[%x,v,2];

i4 : R S/ideal (x"2-y*z)

i5 : isFRegular (R);

05 = true

120 : A = Z22/7[%x,y,2]/(y 2%z — x*x(x—2)*(x+2));

i21 : ¢ = zZ/7[a,b,c,d,e, f];

i22 : g = map (A, C, {x"2, xxy, X%z, y*2, y*xz, z"2})
i23 : I = ker g;

i26 : isFRegular(C/I);

026 = false

@ We can only show that Q-Gorenstein rings are not
F-regular.

@ The QGorensteinIndex=>infinity option can prove a
non-Q-Gorenstein ring is F-regular.
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F-regularity of pairs

i3 : S 7272/7(%,y,2]1;

i4 : R S/ideal (x"2-y*z)
i6 : h = vy;

i7 : isFReqgular(1l/2, vy)

o7 = false
i8 : isFRegular(1/3, vy)
08 = true
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F-regularity of pairs

i3 : S 7272/7(%,y,2]1;

i4 : R S/ideal (x"2-y*z)
i6 : h = vy;

i7 : isFReqgular(1l/2, vy)

o7 = false
i8 : isFRegular(1/3, vy)
08 = true

@ The pair (R, h'/?) is not F-regular but (R, h'/3) is.
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F-regularity of pairs

i3
i4
i6
17
o7
i8
08

S = 7272/7[x,y,2];
: R = S/ideal (x"2-y*z)
:h =vy;
isFRegular (1/2, vy)
= false
isFRegular(1/3, vy)
= true

The pair (R, h'/?) is not F-regular but (R, h'/3) is.
The FThresholds package can even compute F-pure
thresholds.
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F-rationality

@ Analog of rational singularities.
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Definition
R has F-rational singularities if it is
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F-rationality
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o Ox ~ Rm.Oy
@ Here’s our definition:
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R has F-rational singularities if it is

e Cohen-Macaulay
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F-rationality

@ Analog of rational singularities.

@ Implies (pseudo-)rational singularities in a fixed
characteristic.

o Ox ~ Rm.Oy
@ Here’s our definition:

Definition
R has F-rational singularities if it is

e Cohen-Macaulay

F€—dual

o (/P - whi/pme) ——= wp surjects.
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Implementation

The tricky part is writing the map:

F —dual : wgi/pe — wpg.
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Implementation

The tricky part is writing the map:

F —dual : wgi/pe — wpg.

@ Trick (Katzman) is to embed wg as an ideal in R.
@ Extend F — dual to ¢5 : R'/P° — R.

@ Extend furtherto ¢g: SV/P° — S. (R=S/I)

@ Represent ¢g € Pl : /.
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F-rational examples

Here is an example of an F-rational (but not F-regular) ring.

i8 : s = 7ZZ/3[a,b,c,d,t]; m = 4; n = 3;

ill : M = matrix{ {a”2 + t"m, b, d},
{c, a2, b"n-d} };
2 3
oll : Matrix S <-——— S
i12 I = minors (2, M);

i13 : R = S/I;
il1l4 : isFRational (R)
0l4d = true

Appeared in work of Anurag Singh (deform F-regularity)
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Characteristic zero applications

Characteristic p > 0 conclusions imply results in characteristic
zero.

Theorem (Ma-e)

Suppose R is a ring of mixed characteristic finite type overZ.
Suppose p € Z is a regular element and Q C R is a prime not
containing any nonzero prime of Z so that (p) + Q # R.

If R/pR is F-rational, then Rq = Rq ® Q has rational
singularities.
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Suppose p € Z is a regular element and Q C R is a prime not
containing any nonzero prime of Z so that (p) + Q # R.

If R/pR is F-rational, then Rq = Rq ® Q has rational
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@ Analogous statement for log terminal/F-regular
singularities, if the Q-Gorenstein not divisible by p.
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Characteristic zero applications

Characteristic p > 0 conclusions imply results in characteristic
zero.

Theorem (Ma-e)

Suppose R is a ring of mixed characteristic finite type overZ.
Suppose p € Z is a regular element and Q C R is a prime not
containing any nonzero prime of Z so that (p) + Q # R.

If R/pR is F-rational, then Rq = Rq ® Q has rational
singularities.

@ Analogous statement for log terminal/F-regular
singularities, if the Q-Gorenstein not divisible by p.

@ Not known for log canonical/F-pure singularities (need
mixed char inversion of adjunction).
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We can also study F-injective singularities (analog of Du Bois).

Definition
R is F-injective if

—i —i
H w,l.?1/P — H CL),.:{

surjects for all i.
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We can also study F-injective singularities (analog of Du Bois).

Definition
R is F-injective if

—i —i
H w,l.?1/P — H CL),.:{

surjects for all i.

@ If Ris CM, this just means

F€—dual
(whtpe) — wR

surjects.
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We can also study F-injective singularities (analog of Du Bois).

Definition

R is F-injective if ' .
H_le.q1/p — H_ICL),.:{

surjects for all i.

@ If Ris CM, this just means

F€—dual
(whtpe) — wR

surjects.
@ Example

110 : R = Z2Z/[x,y,z]/ideal (x"3+y"3+2z"3);
i1l : isFInjective(R)
oll = true
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We can compute test ideals too. Including of pairs.
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Test ideals

We can compute test ideals too. Including of pairs.
@ In a Q-Gorenstein ring.
e 7(R, f) equals sum of images of maps

¢ : (cflP=DIR)/P" 5 R,

c as before.
@ We use it to check F-regularity.
e (R, f!)is F-regular if and only if 7(R, f') = R.
@ Trick is stabilize image sums above.

BeBoBrEIHeKakaMaMaMoRoScSmTeWi



Test ideals

We can compute test ideals too. Including of pairs.
@ In a Q-Gorenstein ring.
e 7(R, f) equals sum of images of maps

¢ : (cflP=DIR)/P" 5 R,

c as before.
@ We use it to check F-regularity.
e (R, f!)is F-regular if and only if 7(R, f') = R.
@ Trick is stabilize image sums above.

@ Can compute parameter test modules and parameter test
ideals too.
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i2 : R = 2Z2/5[%x,v];
i3 ¢ £ = y"2-x"3;

3 2
03 = - x + vy

i4 : testIdeal (4/5, f);

04 = ideal (y, X)

i5 : testIdeal (4/5-1/10000, f)
05 = ideal 1
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i2 : R = 2Z2/5[%x,v];
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03 = -x +y

i4 : testIdeal (4/5, f);

04 = ideal (y, X)

i5 : testIdeal (4/5-1/10000, f)
05 = ideal 1

@ We can compute (R, f=¢), which is used to compute
jumping numbers and F-pure thresholds.
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i2 : R = 2Z2/5[%x,v];
i3 ¢ £ = y"2-x"3;

3 2
03 = - x + vy

i4 : testIdeal (4/5, f);

04 = ideal (y, X)

i5 : testIdeal (4/5-1/10000, f)
05 = ideal 1

@ We can compute (R, f=¢), which is used to compute
jumping numbers and F-pure thresholds.

@ Needs HSLGModule function.
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We conclude with a discussion of the FThresholds package.
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F-pure thresholds

We conclude with a discussion of the FThresholds package.

@ If Ris F-regular, F-pure threshold (FPT) is the smallest
t > 0 where (R, f!) # R.

@ We do a binary-style search to a certain depth.
@ However, if f is a special form, we have other algorithms.
@ We also guess + check.
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Example FPT

i2 : R 727/5(%,y,2]
i3 : £ = x"5 - y*6 + x"3%xz"5 + 2%z"8

35 8 6 5
o3 =xz + 2z -y + X
i4 : fpt(f)
1
o4 = -
5

FPT of the cusp (in a nonstandard form).

il : R = Z2Z/7[x%,¥]

i4 : fpt((x+y)"3 - y*2)
5

o4 = -
6
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You can go to:
http://www.math.utah.edu/~schwede/M2.html

to try it yourself!
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