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History

Consider rings R of characteristic p > 0.
No resolution of singularities (in general).
Kunz proved:

Theorem (Kunz)
R is regular if and only if Frobenius is flat.

We can measure singularities with Frobenius!
How flat is Frobenius?
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History, part 2

Because we are working with computers, domain finite
type over Fq.
Kunz says Frobenius is flat if and only if R1/pe

is locally free
over R.
We can weaken being locally free.

Definition (Hochster-Roberts, Mehta-Ramanathan)

R is F-pure if and only if R → R1/pe
splits.

F -pure is analogous to log canonical singularities.
F -pure implies SLC.
SLC in char 0 conjecturally implies F -pure for many p.
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Fedder

Checking F -purity can be pretty easy.
Fedder’s Criterion. R = S/I, S is polynomial.

Theorem (Fedder)

R is F-pure at m if and only if I[p] : I 6⊆ m[p].

If I = (f ), then I[p] : I = (f p−1). (BOARD)
For example.
i5 : S = ZZ/7[x,y,z];
i6 : f = x^3 + y^3 + z^3;
i8 : isSubset(ideal(f^6), ideal(x^7, y^7, z^7))
o8 = false
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Macaulay2

We have written a package TestIdeals.m2 that computes
whether a ring (or pair) is:

F -pure
Analog of SLC.

F -regular
Analog of KLT.

F -rational
Analog of rational.

F -injective
Analog of Du Bois.

Test ideals
Analogs of multiplier ideals

F -pure thresholds (with FThresholds.m2).
Analogs of log canonical thresholds.
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Fedder, part 2

Fedder’s criterion works because maps

φR : R1/pe → R

come from maps
φS : S1/pe → S

such that φS(I1/pe
) ⊆ I.

In fact,

I[p
e] : I ∼= {φ ∈ HomS(S1/pe

,S) | φ(I1/pe
) ⊆ I}.

Translates questions on R into questions in polynomial ring
S.
Note {φR 6= 0} ↔ {∆ ≥ 0 Q-log boundary}. (BOARD)
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Frobenius trace

One more big tool.
There exists Φ : S1/pe → S.

Φ
(

x
pe−1

pe

1 · · · x
pe−1

pe
n

)
= 1

Other monomials to 0.
Φ generates HomS(S1/pe

,S).
Φ is Grothendieck dual to Frobenius.
Φ(J1/pe

) ⊆ I if and only if

I[p
e] ⊆ J.

Theorem (Fedder restated)

Φ((I[p
e] : I)1/pe

) ≡I Image(HomR(R1/pe
,R)

@1−→ R)

defines locus where R = S/I is not F-pure.
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Implementation

We compute some Macaulay2 examples. Φ(J) is called the
Frobenius root of J.

i12 : I =ideal(x^3 + y^3 + z^3);
i13 : frobeniusRoot(1, I^7 : I)
o13 = ideal 1
i14 : isFPure(S/I)
o14 = true
i15 : J = ideal(x^4+y^4+z^4);
i16 : frobeniusRoot(1, J^7 : J)

2 2 2
o16 = ideal (z , y*z, x*z, y , x*y, x )
i19 : isFPure(S/J)
o19 = false
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More examples

i20 : T = ZZ/5[a,b,c,d,e];
i21 : B = ZZ/5[x,y];
i22 : f = map(B, T, {x^4, x^3*y, x^2*y^2, x*y^3, y^4})

4 3 2 2 3 4
o22 = map(B,T,{x , x y, x y , x*y , y })
o22 : RingMap B <--- T
i23 : I = ker f

2 2 2
o23 = ideal (d - c*e, c*d - b*e, b*d - a*e, c - a*e, b*c - a*d, b - a*c)
o23 : Ideal of T
i24 : isFPure(T/I)
o24 = true
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F -regularity and test ideals

Analog of KLT.

Definition
R is strongly F-regular if for every (interestinga) c ∈ R, there is
some e and φ : R1/pe → R so that φ(c1/pe

) = 1.
aIn Jacobian ideal is good enough

If translated by Fedder’s methods,

Theorem
R = S/I is strongly F-regular if and only if

I + Φ((c(I[p
e] : I))1/pe

) = S.

R is KLT if and only if (R, cε) is SLC.
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F -regularity checking

i3 : S = ZZ/7[x,y,z];
i4 : R = S/ideal(x^2-y*z)
i5 : isFRegular(R);
o5 = true
i20 : A = ZZ/7[x,y,z]/(y^2*z - x*(x-z)*(x+z));
i21 : C = ZZ/7[a,b,c,d,e,f];
i22 : g = map(A, C, {x^2, x*y, x*z, y^2, y*z, z^2})
i23 : I = ker g;
i26 : isFRegular(C/I);
o26 = false

We can only show that Q-Gorenstein rings are not
F -regular.
The QGorensteinIndex=>infinity option can prove a
non-Q-Gorenstein ring is F -regular.
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F -regularity of pairs

i3 : S = ZZ/7[x,y,z];
i4 : R = S/ideal(x^2-y*z)
i6 : h = y;
i7 : isFRegular(1/2, y)
o7 = false
i8 : isFRegular(1/3, y)
o8 = true

The pair (R,h1/2) is not F -regular but (R,h1/3) is.
The FThresholds package can even compute F -pure
thresholds.
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F -rationality

Analog of rational singularities.
Implies (pseudo-)rational singularities in a fixed
characteristic.

OX ' Rπ∗OY

Here’s our definition:

Definition
R has F-rational singularities if it is

Cohen-Macaulay

(c1/pe · ωR1/pe )
F e−dual−−−−−→ ωR surjects.
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Implementation

The tricky part is writing the map:

F − dual : ωR1/pe → ωR.

Trick (Katzman) is to embed ωR as an ideal in R.
Extend F − dual to φR : R1/pe → R.
Extend further to φS : S1/pe → S. (R = S/I)
Represent φS ∈ I[p

e] : I.
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F -rational examples

Here is an example of an F -rational (but not F -regular) ring.

i8 : S = ZZ/3[a,b,c,d,t]; m = 4; n = 3;
i11 : M = matrix{ {a^2 + t^m, b, d},

{c, a^2, b^n-d} };
2 3

o11 : Matrix S <--- S
i12 : I = minors(2, M);
i13 : R = S/I;
i14 : isFRational(R)
o14 = true

Appeared in work of Anurag Singh (deform F -regularity)
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Characteristic zero applications

Characteristic p > 0 conclusions imply results in characteristic
zero.

Theorem (Ma-•)
Suppose R is a ring of mixed characteristic finite type over Z.
Suppose p ∈ Z is a regular element and Q ⊆ R is a prime not
containing any nonzero prime of Z so that (p) + Q 6= R.

If R/pR is F-rational, then RQ = RQ ⊗Q has rational
singularities.

Analogous statement for log terminal/F -regular
singularities, if the Q-Gorenstein not divisible by p.
Not known for log canonical/F -pure singularities (need
mixed char inversion of adjunction).

BeBoBrElHeKaKaMaMaMoRoScSmTeWi



Characteristic zero applications

Characteristic p > 0 conclusions imply results in characteristic
zero.

Theorem (Ma-•)
Suppose R is a ring of mixed characteristic finite type over Z.
Suppose p ∈ Z is a regular element and Q ⊆ R is a prime not
containing any nonzero prime of Z so that (p) + Q 6= R.

If R/pR is F-rational, then RQ = RQ ⊗Q has rational
singularities.

Analogous statement for log terminal/F -regular
singularities, if the Q-Gorenstein not divisible by p.
Not known for log canonical/F -pure singularities (need
mixed char inversion of adjunction).

BeBoBrElHeKaKaMaMaMoRoScSmTeWi



Characteristic zero applications

Characteristic p > 0 conclusions imply results in characteristic
zero.

Theorem (Ma-•)
Suppose R is a ring of mixed characteristic finite type over Z.
Suppose p ∈ Z is a regular element and Q ⊆ R is a prime not
containing any nonzero prime of Z so that (p) + Q 6= R.

If R/pR is F-rational, then RQ = RQ ⊗Q has rational
singularities.

Analogous statement for log terminal/F -regular
singularities, if the Q-Gorenstein not divisible by p.
Not known for log canonical/F -pure singularities (need
mixed char inversion of adjunction).

BeBoBrElHeKaKaMaMaMoRoScSmTeWi



F -injective

We can also study F -injective singularities (analog of Du Bois).

Definition
R is F-injective if

H−iω•R1/p → H−iω•R

surjects for all i .

If R is CM, this just means

(ωR1/pe )
F e−dual−−−−−→ ωR

surjects.
Example
i10 : R = ZZ/[x,y,z]/ideal(x^3+y^3+z^3);
i11 : isFInjective(R)
o11 = true
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Test ideals

We can compute test ideals too. Including of pairs.
In a Q-Gorenstein ring.
τ(R, f t ) equals sum of images of maps

φ : (cf dt(p
e−1)eR)1/pe → R.

c as before.
We use it to check F -regularity.

(R, f t ) is F -regular if and only if τ(R, f t ) = R.

Trick is stabilize image sums above.
Can compute parameter test modules and parameter test
ideals too.
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Example

i2 : R = ZZ/5[x,y];
i3 : f = y^2-x^3;

3 2
o3 = - x + y
i4 : testIdeal(4/5, f);
o4 = ideal (y, x)
i5 : testIdeal(4/5-1/10000, f)
o5 = ideal 1

We can compute τ(R, f t−ε), which is used to compute
jumping numbers and F -pure thresholds.
Needs HSLGModule function.
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F -pure thresholds

We conclude with a discussion of the FThresholds package.
If R is F -regular, F -pure threshold (FPT) is the smallest
t ≥ 0 where τ(R, f t ) 6= R.
We do a binary-style search to a certain depth.
However, if f is a special form, we have other algorithms.
We also guess + check.
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Example FPT

i2 : R = ZZ/5[x,y,z]
i3 : f = x^5 - y^6 + x^3*z^5 + 2*z^8

3 5 8 6 5
o3 = x z + 2z - y + x
i4 : fpt(f)

1
o4 = -

5

FPT of the cusp (in a nonstandard form).

i1 : R = ZZ/7[x,y]
i4 : fpt((x+y)^3 - y^2)

5
o4 = -

6
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Thanks!

You can go to:

http://www.math.utah.edu/~schwede/M2.html

to try it yourself!
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