WORKSHEET # 3

MATH 435 SPRING 2011

We begin by recalling some facts about cyclic groups that we proved on Wednesday.

- A group G is called *cyclic* if there exists $a \in G$ such that $G = \langle a \rangle = \{\dots, a^{-2}, a^{-1}, e, a^1, a^2, \dots\}$. Any such a is called a generator (of G).
- If G is cyclic, so is every subgroup $H \subseteq G$.
- If G is cyclic and finite and $H \subseteq G$ is a subgroup, then |H| divides |G| (recall |G| just means the number of elements of G).
- If $G = \langle a \rangle$ and $|G| = n < \infty$, and $m \in \mathbb{Z}$ is such that $\gcd(n, m) = 1$, then a^m generates G as well.
- If $G = \langle a \rangle$ is cyclic and $|G| = n < \infty$, then for every natural number k such that k|n, there exists a unique subgroup H of G of order k. That subgroup is $H = \langle a^{n/k} \rangle$.
- 1. We never proved the last fact yesterday. Prove it now.

Solution: To show that $H = \langle a^{n/k} \rangle$ has order k, it is equivalent to show that $a^{n/k}$ has order k. Certainly $(a^{n/k})^k = a^n = e$. On the other hand, if m satisfies 0 < m < k, then $(a^{n/k})^m = a^{nm/k}$ and this cannot equal e since nm/k < n. Thus the order of $a^{n/k}$ is indeed k as desired. In particular, the existence claim is proven.

Now we prove uniqueness. Suppose that K is a subgroup of order k, we will prove that K = H. Since K is a subgroup of a cyclic group, K is also cyclic. Thus $K = \langle a^m \rangle$. If we can show that $a^m \in H$, then it follows that $K \subseteq H$ (since every element of K is a power of a^m). In that case, since K and H have the same number of elements, we would then have K = H. Therefore, it is sufficient to show that $a^m \in H$.

We know $a^{mk} = e$ since $|a^m| = |K| = k$. Thus n divides mk or in other words there exists an integer t such that tn = mk. We then obtain $m = t(\frac{n}{k})$. Thus $a^m \in \langle a^{n/k} \rangle = H$ as desired.

2. Suppose that you are given two groups A and B. Define a new group, $A \oplus B$ as follows. The elements of $A \oplus B$ is the set of pairs

$$\{(a,b)|a\in A,b\in B\}.$$

The operation is defined as follows (a,b)(a',b')=(aa',bb'). Show that $A\oplus B$ is a group. Further prove that $A\oplus B$ is Abelian if and only if A and B are both Abelian.

Solution: First we show that $A \oplus B$ is indeed a group. For associativity notice that

$$(a,b) ((a',b')(a'',b'')) = (a,b)(a'a'',b'b'') = (a (a'a''),b (b'b''))$$
$$= ((aa') a'', (bb') b'') = (aa',bb')(a'',b'') = ((a,b)(a',b')) (a'',b'')$$

where the third comes from the associativity of A and B (since they are groups). Simple computations verify that (e_A, e_B) is the identity of $A \oplus B$. Likewise, the inverse of (a, b) is (a^{-1}, b^{-1}) and so $A \oplus B$ is a group.

For the second statement, suppose that $A \oplus B$ is Abelian. Choose $a, a' \in A$ and $b, b' \in B$, thus (aa', bb') = (a, b)(a', b') = (a', b')(a, b) = (a'a, b'b). Therefore aa' = a'a, which implies that A is Abelian and bb' = b'b which implies that B is Abelian. Conversely, if A and B are Abelian, then for any $(a, b), (a', b') \in A \oplus B$ we have that (a, b)(a', b') = (aa', bb') = (a'a, b'b) = (a', b')(a, b) as desired.

1

3. Suppose that A and B are groups of finite order. Show that $|A \oplus B| = |A||B|$. Further show that $A \oplus B$ has a subgroup H with order |A| and a different subgroup K of order |B| such that $H \cap K = \{e\}$.

Solution: The number of pairs (a, b) is the number of possible as times the number of possible bs, in other words, |A||B|. Set $H = \{(a, e_B)|a \in A\}$ and set $K = \{(e_A, b)|b \in B\}$, certainly $H \cap K = \{e\}$. There may be other possible choices of H and K but those given always work.

- **4.** Suppose that A and B are finite cyclic groups |A| = n and |B| = m.
 - (a) If n=2 and m=3, prove that $A\oplus B$ is cyclic.
 - (b) If n=2 and m=2, prove that $A\oplus B$ is not cyclic.
 - (c) Is $A \oplus B$ cyclic if n = 4 and m = 6?
 - (d) Find a condition on n and m which completely characterizes the n and m such that $A \oplus B$ is cyclic. Prove your condition is correct.

Solution: Write $A = \langle a \rangle$ and $B = \langle b \rangle$.

- (a) Then $(a,b), (a,b)^2 = (e_A,b^2), (a,b)^3 = (a,e_B), (a,b)^4 = (e_A,b), (a,b)^5 = (a,b^2), (a,b)^6 = (e_A,e_B)$. Thus (a,b) has order 6, and so $A \oplus B$ is cyclic.
- (b) For any $(a',b') \in A \oplus B$, $(a',b')^2 = (e_A,e_B)$ and so $A \oplus B$ has no elements of order 4 (all are order 2), and so $A \oplus B$ is not cyclic.
- (c) No, see the answer below.
- (d) $A \oplus B$ is cyclic if and only if $\gcd(n,m) = 1$. To see this, we first claim the order of an element $(a',b') \in A \oplus B$ is $\operatorname{lcm}(|a'|,|b'|)$. This is easily seen since $(a',b')^k = (a'^k,b'^k)$ equals (e_A,e_B) if and only if |a'| divides k and |b'| divides k, the smallest such integer is $\operatorname{lcm}(|a'|,|b'|)$. Of course, $A \oplus B$ is cyclic if and only if it contains an element of order $|A \oplus B| = nm$. Now, since the order of (a',b') is $\operatorname{lcm}(|a'|,|b'|)$ and $|a'| \leq n$ and $|b'| \leq m$, the only way |(a',b')| is if $\operatorname{lcm}(n,m) = nm$ which happens if and only if $\gcd(n,m) = 1$, as desired.
- **5.** Suppose that A and B are cyclic groups but that A has infinitely many elements and $B \neq \{e\}$. Prove that $A \oplus B$ is not cyclic.

Solution: Suppose on the contrary that $A \oplus B = \langle (a,b) \rangle$ was cyclic. Thus for every element $g \in A$ and $h \in B$, there exists an $n \in \mathbb{Z}$ such that $(a,b)^n = (g,h)$. In particular, $a^n = g$ and $b^n = h$. Thus $\langle a \rangle = A$ and $\langle b \rangle = B$. Since A has infinitely many elements, this implies that a has infinite order (ie, $a^n \neq e$ for any $n \in \mathbb{N}$). Consider now the element $(a,e_B) \in A \oplus B$, since $A \oplus B = \langle (a,b) \rangle$, this means that there exists n such that $(a^n,b^n) = (a,b)^n = (a,e_B) = (a^1,e_B)$. But then n=1, so $b=b^1=e_B$ also, but $B=\langle b \rangle$ so $B=\{e_B\}$. However, we assumed $B \neq \{e_B\}$ at the start, a contradiction.