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We begin by recalling some facts about cyclic groups that we proved on Wednesday.
• A group G is called cyclic if there exists a ∈ G such that G = 〈a〉 = {. . . , a−2, a−1, e, a1, a2, . . . }.

Any such a is called a generator (of G).
• If G is cyclic, so is every subgroup H ⊆ G.
• If G is cyclic and finite and H ⊆ G is a subgroup, then |H| divides |G| (recall |G| just

means the number of elements of G).
• If G = 〈a〉 and |G| = n < ∞, and m ∈ Z is such that gcd(n, m) = 1, then am generates G

as well.
• If G = 〈a〉 is cyclic and |G| = n <∞, then for every natural number k such that k|n, there

exists a unique subgroup H of G of order k. That subgroup is H = 〈an/k〉.
1. We never proved the last fact yesterday. Prove it now.

Solution: To show that H = 〈an/k〉 has order k, it is equivalent to show that an/k has order k.
Certainly (an/k)k = an = e. On the other hand, if m satisfies 0 < m < k, then (an/k)m = anm/k and
this cannot equal e since nm/k < n. Thus the order of an/k is indeed k as desired. In particular,
the existence claim is proven.

Now we prove uniqueness. Suppose that K is a subgroup of order k, we will prove that K = H.
Since K is a subgroup of a cyclic group, K is also cyclic. Thus K = 〈am〉. If we can show that
am ∈ H, then it follows that K ⊆ H (since every element of K is a power of am). In that case,
since K and H have the same number of elements, we would then have K = H. Therefore, it is
sufficient to show that am ∈ H.

We know amk = e since |am| = |K| = k. Thus n divides mk or in other words there exists an
integer t such that tn = mk. We then obtain m = t(n

k ). Thus am ∈ 〈an/k〉 = H as desired.

2. Suppose that you are given two groups A and B. Define a new group, A ⊕ B as follows.
The elements of A⊕B is the set of pairs

{(a, b)|a ∈ A, b ∈ B}.
The operation is defined as follows (a, b)(a′, b′) = (aa′, bb′). Show that A ⊕ B is a group. Further
prove that A⊕B is Abelian if and only if A and B are both Abelian.

Solution: First we show that A⊕B is indeed a group. For associativity notice that

(a, b)
(
(a′, b′)(a′′, b′′)

)
= (a, b)(a′a′′, b′b′′) = (a

(
a′a′′

)
, b

(
b′b′′

)
)

= (
(
aa′

)
a′′,

(
bb′

)
b′′) = (aa′, bb′)(a′′, b′′) =

(
(a, b)(a′, b′)

)
(a′′, b′′)

where the third comes from the associativity of A and B (since they are groups). Simple compu-
tations verify that (eA, eB) is the identity of A⊕B. Likewise, the inverse of (a, b) is (a−1, b−1) and
so A⊕B is a group.

For the second statement, suppose that A ⊕ B is Abelian. Choose a, a′ ∈ A and b, b′ ∈ B, thus
(aa′, bb′) = (a, b)(a′, b′) = (a′, b′)(a, b) = (a′a, b′b). Therefore aa′ = a′a, which implies that A is
Abelian and bb′ = b′b which implies that B is Abelian. Conversely, if A and B are Abelian, then
for any (a, b), (a′, b′) ∈ A ⊕ B we have that (a, b)(a′, b′) = (aa′, bb′) = (a′a, b′b) = (a′, b′)(a, b) as
desired.
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3. Suppose that A and B are groups of finite order. Show that |A ⊕ B| = |A||B|. Further show
that A ⊕ B has a subgroup H with order |A| and a different subgroup K of order |B| such that
H ∩K = {e}.

Solution: The number of pairs (a, b) is the number of possible as times the number of pos-
sible bs, in other words, |A||B|. Set H = {(a, eB)|a ∈ A} and set K = {(eA, b)|b ∈ B}, certainly
H ∩K = {e}. There may be other possible choices of H and K but those given always work.

4. Suppose that A and B are finite cyclic groups |A| = n and |B| = m.
(a) If n = 2 and m = 3, prove that A⊕B is cyclic.
(b) If n = 2 and m = 2, prove that A⊕B is not cyclic.
(c) Is A⊕B cyclic if n = 4 and m = 6?
(d) Find a condition on n and m which completely characterizes the n and m such that A⊕B

is cyclic. Prove your condition is correct.

Solution: Write A = 〈a〉 and B = 〈b〉.
(a) Then (a, b), (a, b)2 = (eA, b2), (a, b)3 = (a, eB), (a, b)4 = (eA, b), (a, b)5 = (a, b2), (a, b)6 =

(eA, eB). Thus (a, b) has order 6, and so A⊕B is cyclic.
(b) For any (a′, b′) ∈ A ⊕ B, (a′, b′)2 = (eA, eB) and so A ⊕ B has no elements of order 4 (all

are order 2), and so A⊕B is not cyclic.
(c) No, see the answer below.
(d) A⊕B is cyclic if and only if gcd(n, m) = 1. To see this, we first claim the order of an element

(a′, b′) ∈ A⊕B is lcm(|a′|, |b′|). This is easily seen since (a′, b′)k = (a′k, b′k) equals (eA, eB)
if and only if |a′| divides k and |b′| divides k, the smallest such integer is lcm(|a′|, |b′|). Of
course, A ⊕ B is cyclic if and only if it contains an element of order |A ⊕ B| = nm. Now,
since the order of (a′, b′) is lcm(|a′|, |b′|) and |a′| ≤ n and |b′| ≤ m, the only way |(a′, b′)| is
if lcm(n, m) = nm which happens if and only if gcd(n, m) = 1, as desired.

5. Suppose that A and B are cyclic groups but that A has infinitely many elements and B 6= {e}.
Prove that A⊕B is not cyclic.

Solution: Suppose on the contrary that A ⊕ B = 〈(a, b)〉 was cyclic. Thus for every element
g ∈ A and h ∈ B, there exists an n ∈ Z such that (a, b)n = (g, h). In particular, an = g and bn = h.
Thus 〈a〉 = A and 〈b〉 = B. Since A has infinitely many elements, this implies that a has infinite
order (ie, an 6= e for any n ∈ N). Consider now the element (a, eB) ∈ A⊕B, since A⊕B = 〈(a, b)〉,
this means that there exists n such that (an, bn) = (a, b)n = (a, eB) = (a1, eB). But then n = 1,
so b = b1 = eB also, but B = 〈b〉 so B = {eB}. However, we assumed B 6= {eB} at the start, a
contradiction.


