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We will give a presentation of the following theorem we proved in class. This slightly differs from
the presentation in the book.

Theorem 0.1. Suppose that R is a PID and suppose that

M =R%" & R/(p{") & R/(p3*) & ... & R/(py")
and

M'=R®™ & R/{q") ® R/{ax*) & ... ® R/(qy7)

are R-modules with ag,bg > 0 and the other a;,b; > 0 and the p; and q; prime elements. Then if
M = M’ we have that ag = by and the other terms in the direct sum are the same up to reordering
(note that multiplying p; by a unit doesn’t change the ideal (p}*) and so such modifications are

allowed — and ignored).
Proof. We notice that the rank of M is equal to ag. To see this suppose that p = [[p;" then
pM = (pR)®** ©0@...0 0= RP%,

It follows easily then the terms in the non-free summands of R cannot contribute to a set being
linearly independent and so the rank of M is ag and likewise the rank of M’ is by. Hence since
M = M’ we see that ag = bg.

Next we claim that we can in fact assume that ag and by are zero. Let

torsion(M) := {z € M | rz = 0 for some nonzero r € R}.

Then in fact torsion(M) = R/(p{*)BR/(p3?)®. . .BR/(ptr) (nonzero elements in the free summands

can’t show up in the torsion part of M since R is an integral domain). Likewise torsion(M’) =
R/ @ R/(¢3) @ ... ® R/(¢4r). Therefore if M 22 M’ we see that

R/(p{") & R/(p3?) & ... & R/(p%) 2 R/(¢}") & R/(qy) & ... & R/ (¢l

hence we can assume that ag = by = 0 as claimed.
Next we make a definition, for any r € R define Ann, (M) = {x € M | rz = 0}. We likewise
define Ann,ec (M) = {x € M | r¥z = 0 for some k € Z~q}.

Claim 0.2. If p € R (a PID) is irreducibile then Annye (M) = @, B/ (p*)

Proof of claim. It is an exercise left to the reader that Annye(A @ B) = Annpye (A) ® Annye(B).
Assuming this observe that Annpy~(R/(p’)) = R/(p') since every element is killed by a power of p.

On the other hand if ¢ € R is an irreducible element such that (p) # (g) then we assert that
Annye (R/(q")) = 0. Indeed consider the coset =+ (¢') and suppose that p*(z+ (¢%)) = p*z +(¢*) =
0+ (¢"). Then p*z € (¢’). This implies that ¢|p*z and since (p) # (q) we see that g|z. Hence
x + (g is the zero coset as asserted.

Applying our this to each term in the direct sum consecutively proves the claim. (|
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We return to the main proof.

By applying the claim to both M and M’ we may assume that all the p;s also appear as ¢;s and
vice versa. We may also assume that all the p; and ¢; are equal to the same irreducible element p.
Hence we may assume that

M=R/(p")®...®R/(p™)
and
=R/(p™)@®...® R/(p").
Consider now Anny,(M) = {x € M | px = 0}.

Claim 0.3. Ann,(M) = @} ,(R/(p))

Proof of claim. We will again leave it to the reader to show that the formation of Ann, (M) com-
mutes with direct sums. Hence it remains to show that Anny,(R/(p*)) = R/(p). Note that

Ann,(R/(p")) ={r+ (") | r € R,pr € p*} = {p* s+ (p*) | s € R}.

Consider the map ¢ : R — {p®~!s + (p?) | s € R} which sends s — p?~!s + (p%). The kernel of ¢
is clearly (p) and ¢ is surjective so by the first isomorphism theorem Ann,(R/(p*)) = R/(p). This
proves the claim. ]

It follows that Ann, (M) is a n-dimensional R/(p)-vector space. Hence applying the claim to M’
we see that

(0.3.1) m=n.
Next for each integer k > 0 consider
pFM and pF M’
We claim that
Claim 0.4. p*M = @, 1R/ (p®~F)

Proof of claim. We leave it to the reader to check that p ¥(A® B) = ( ) (p*B) and so we only
need to verify the case that M = R/(p®). If a < k then p*(z + (p®)) = p*z + (p®) = 0+ (p®). Hence
pFM = 0. On the other hand, if a > k then it is easy to see that

p*M = {p*r + (p%) | r € R}.

Consider the map ¢ : R — pFM which sends 7 +— p*r + (p®). This obviously surjects onto p*M
and so we simply observe what the kernel is. It is those r such that p*r € (p®) which is exactly
those ~ which are divisible by p®~*. Hence ker ¢ = (p®*). The the first isomorphism theorem
shows that p* M = pF(R/{(p®)) = R/{p®>~*) which proves the claim. O

Fix an integer k and consider p* M. The number of summands in p¥M (which is a constant by
is equal to #{a; | a; > k}. Since p*M = p* M’ we see that
#{ai | a; > k} = #{b; | b; > k}
By applying this for successive values of k we see immediately that
#{a; | ai =k} = #{bi | b; = k}

for all values of k. This is enough to conclude the theorem. ([l



