ALTERNATE PROOF OF UNIQUENESS OF DECOMPOSITION OF MODULES OVER PIDS – MATH 536 SPRING

KARL SCHWEDE

We will give a presentation of the following theorem we proved in class. This slightly differs from the presentation in the book.

Theorem 0.1. Suppose that R is a PID and suppose that

$$M = R^{\oplus a_0} \oplus R/\langle p_1^{a_1} \rangle \oplus R/\langle p_2^{a_2} \rangle \oplus \ldots \oplus R/\langle p_n^{a_n} \rangle$$

and

$$M' = R^{\oplus b_0} \oplus R/\langle q_1^{b_1} \rangle \oplus R/\langle q_2^{b_2} \rangle \oplus \ldots \oplus R/\langle q_m^{b_m} \rangle$$

are R-modules with $a_0, b_0 \ge 0$ and the other $a_i, b_i > 0$ and the p_i and q_i prime elements. Then if $M \cong M'$ we have that $a_0 = b_0$ and the other terms in the direct sum are the same up to reordering (note that multiplying p_i by a unit doesn't change the ideal $\langle p_i^{a_i} \rangle$ and so such modifications are allowed – and ignored).

Proof. We notice that the rank of M is equal to a_0 . To see this suppose that $p = \prod p_i^{a_i}$ then

$$pM = (pR)^{\oplus a_0} \oplus 0 \oplus \ldots \oplus 0 \cong R^{\oplus a_0}.$$

It follows easily then the terms in the non-free summands of R cannot contribute to a set being linearly independent and so the rank of M is a_0 and likewise the rank of M' is b_0 . Hence since $M \cong M'$ we see that $a_0 = b_0$.

Next we claim that we can in fact assume that a_0 and b_0 are zero. Let

$$torsion(M) := \{ x \in M \mid rx = 0 \text{ for some nonzero } r \in R \}.$$

Then in fact torsion $(M) \cong R/\langle p_1^{a_1} \rangle \oplus R/\langle p_2^{a_2} \rangle \oplus \ldots \oplus R/\langle p_n^{a_n} \rangle$ (nonzero elements in the free summands can't show up in the torsion part of M since R is an integral domain). Likewise torsion $(M') \cong R/\langle q_2^{b_1} \rangle \oplus R/\langle q_2^{b_2} \rangle \oplus \ldots \oplus R/\langle q_m^{b_m} \rangle$. Therefore if $M \cong M'$ we see that

$$R/\langle p_1^{a_1}\rangle \oplus R/\langle p_2^{a_2}\rangle \oplus \ldots \oplus R/\langle p_n^{a_n}\rangle \cong R/\langle q_1^{b_1}\rangle \oplus R/\langle q_2^{b_2}\rangle \oplus \ldots \oplus R/\langle q_m^{b_m}\rangle$$

hence we can assume that $a_0 = b_0 = 0$ as claimed.

Next we make a definition, for any $r \in R$ define $\operatorname{Ann}_r(M) = \{x \in M \mid rx = 0\}$. We likewise define $\operatorname{Ann}_{r^{\infty}}(M) = \{x \in M \mid r^k x = 0 \text{ for some } k \in \mathbb{Z}_{>0}\}$.

Claim 0.2. If
$$p \in R$$
 (a PID) is irreducible then $\operatorname{Ann}_{p^{\infty}}(M) = \bigoplus_{\langle p \rangle = \langle p_i \rangle} R/\langle p^{a_i} \rangle$

Proof of claim. It is an exercise left to the reader that $\operatorname{Ann}_{p^{\infty}}(A \oplus B) \cong \operatorname{Ann}_{p^{\infty}}(A) \oplus \operatorname{Ann}_{p^{\infty}}(B)$. Assuming this observe that $\operatorname{Ann}_{p^{\infty}}(R/\langle p^i \rangle) = R/\langle p^i \rangle$ since every element is killed by a power of p. On the other hand if $q \in R$ is an irreducible element such that $\langle p \rangle \neq \langle q \rangle$ then we assert that $\operatorname{Ann}_{p^{\infty}}(R/\langle q^i \rangle) = 0$. Indeed consider the coset $x + \langle q^i \rangle$ and suppose that $p^k(x + \langle q^i \rangle) = p^k x + \langle q^i \rangle = 0 + \langle q^i \rangle$. Then $p^k x \in \langle q^i \rangle$. This implies that $q|p^k x$ and since $\langle p \rangle \neq \langle q \rangle$ we see that q|x. Hence $x + \langle q^i \rangle$ is the zero coset as asserted.

Applying our this to each term in the direct sum consecutively proves the claim.

We return to the main proof.

By applying the claim to both M and M' we may assume that all the p_i s also appear as q_j s and vice versa. We may also assume that all the p_i and q_i are equal to the same irreducible element p. Hence we may assume that

$$M = R/\langle p^{a_1} \rangle \oplus \ldots \oplus R/\langle p^{a_n} \rangle$$

and

$$M' = R/\langle p^{b_1} \rangle \oplus \ldots \oplus R/\langle p^{b_m} \rangle.$$

Consider now $\operatorname{Ann}_p(M) = \{x \in M \mid px = 0\}.$

Claim 0.3.
$$\operatorname{Ann}_p(M) \cong \bigoplus_{i=1}^n (R/\langle p \rangle)$$

Proof of claim. We will again leave it to the reader to show that the formation of $\operatorname{Ann}_p(M)$ commutes with direct sums. Hence it remains to show that $\operatorname{Ann}_p(R/\langle p^a \rangle) \cong R/\langle p \rangle$. Note that

$$\operatorname{Ann}_p(R/\langle p^a\rangle)=\{r+\langle p^a\rangle\mid r\in R, pr\in p^a\}=\{p^{a-1}s+\langle p^a\rangle\mid s\in R\}.$$

Consider the map $\phi: R \to \{p^{a-1}s + \langle p^a \rangle \mid s \in R\}$ which sends $s \mapsto p^{a-1}s + \langle p^a \rangle$. The kernel of ϕ is clearly $\langle p \rangle$ and ϕ is surjective so by the first isomorphism theorem $\operatorname{Ann}_p(R/\langle p^a \rangle) \cong R/\langle p \rangle$. This proves the claim.

It follows that $\operatorname{Ann}_p(M)$ is a *n*-dimensional $R/\langle p \rangle$ -vector space. Hence applying the claim to M' we see that

$$(0.3.1) m = n.$$

Next for each integer k > 0 consider

$$p^k M$$
 and $p^k M'$

We claim that

Claim 0.4.
$$p^k M \cong \bigoplus_{a_i > k} R/\langle p^{a_i - k} \rangle$$

Proof of claim. We leave it to the reader to check that $p^k(A \oplus B) \cong (p^k A) \oplus (p^k B)$ and so we only need to verify the case that $M = R/\langle p^a \rangle$. If $a \leq k$ then $p^k(x + \langle p^a \rangle) = p^k x + \langle p^a \rangle = 0 + \langle p^a \rangle$. Hence $p^k M = 0$. On the other hand, if a > k then it is easy to see that

$$p^k M = \{ p^k r + \langle p^a \rangle \mid r \in R \}.$$

Consider the map $\phi: R \to p^k M$ which sends $r \mapsto p^k r + \langle p^a \rangle$. This obviously surjects onto $p^k M$ and so we simply observe what the kernel is. It is those r such that $p^k r \in \langle p^a \rangle$ which is exactly those r which are divisible by p^{a-k} . Hence $\ker \phi = \langle p^{a-k} \rangle$. The the first isomorphism theorem shows that $p^k M = p^k (R/\langle p^a \rangle) \cong R/\langle p^{a-k} \rangle$ which proves the claim.

Fix an integer k and consider p^kM . The number of summands in p^kM (which is a constant by (0.3.1)) is equal to $\#\{a_i \mid a_i > k\}$. Since $p^aM \cong p^aM'$ we see that

$$\#\{a_i \mid a_i > k\} = \#\{b_i \mid b_i > k\}$$

By applying this for successive values of k we see immediately that

$$\#\{a_i \mid a_i = k\} = \#\{b_i \mid b_i = k\}$$

for all values of k. This is enough to conclude the theorem.