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We will give a presentation of the following theorem we proved in class. This slightly differs from
the presentation in the book.

Theorem 0.1. Suppose that R is a PID and suppose that

M = R⊕a0 ⊕R/〈pa11 〉 ⊕R/〈p
a2
2 〉 ⊕ . . .⊕R/〈p

an
n 〉

and

M ′ = R⊕b0 ⊕R/〈qb11 〉 ⊕R/〈q
b2
2 〉 ⊕ . . .⊕R/〈q

bm
m 〉

are R-modules with a0, b0 ≥ 0 and the other ai, bi > 0 and the pi and qi prime elements. Then if
M ∼= M ′ we have that a0 = b0 and the other terms in the direct sum are the same up to reordering
(note that multiplying pi by a unit doesn’t change the ideal 〈paii 〉 and so such modifications are
allowed – and ignored).

Proof. We notice that the rank of M is equal to a0. To see this suppose that p =
∏
paii then

pM = (pR)⊕a0 ⊕ 0⊕ . . .⊕ 0 ∼= R⊕a0 .

It follows easily then the terms in the non-free summands of R cannot contribute to a set being
linearly independent and so the rank of M is a0 and likewise the rank of M ′ is b0. Hence since
M ∼= M ′ we see that a0 = b0.

Next we claim that we can in fact assume that a0 and b0 are zero. Let

torsion(M) := {x ∈M | rx = 0 for some nonzero r ∈ R}.

Then in fact torsion(M) ∼= R/〈pa11 〉⊕R/〈p
a2
2 〉⊕. . .⊕R/〈pann 〉 (nonzero elements in the free summands

can’t show up in the torsion part of M since R is an integral domain). Likewise torsion(M ′) ∼=
R/〈qb11 〉 ⊕R/〈q

b2
2 〉 ⊕ . . .⊕R/〈qbmm 〉. Therefore if M ∼= M ′ we see that

R/〈pa11 〉 ⊕R/〈p
a2
2 〉 ⊕ . . .⊕R/〈p

an
n 〉 ∼= R/〈qb11 〉 ⊕R/〈q

b2
2 〉 ⊕ . . .⊕R/〈q

bm
m 〉

hence we can assume that a0 = b0 = 0 as claimed.
Next we make a definition, for any r ∈ R define Annr(M) = {x ∈ M | rx = 0}. We likewise

define Annr∞(M) = {x ∈M | rkx = 0 for some k ∈ Z>0}.

Claim 0.2. If p ∈ R (a PID) is irreducibile then Annp∞(M) =
⊕
〈p〉=〈pi〉R/〈p

ai〉

Proof of claim. It is an exercise left to the reader that Annp∞(A ⊕ B) ∼= Annp∞(A) ⊕ Annp∞(B).
Assuming this observe that Annp∞(R/〈pi〉) = R/〈pi〉 since every element is killed by a power of p.

On the other hand if q ∈ R is an irreducible element such that 〈p〉 6= 〈q〉 then we assert that
Annp∞(R/〈qi〉) = 0. Indeed consider the coset x+ 〈qi〉 and suppose that pk(x+ 〈qi〉) = pkx+ 〈qi〉 =

0 + 〈qi〉. Then pkx ∈ 〈qi〉. This implies that q|pkx and since 〈p〉 6= 〈q〉 we see that q|x. Hence
x+ 〈qi〉 is the zero coset as asserted.

Applying our this to each term in the direct sum consecutively proves the claim. �
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We return to the main proof.
By applying the claim to both M and M ′ we may assume that all the pis also appear as qjs and

vice versa. We may also assume that all the pi and qi are equal to the same irreducible element p.
Hence we may assume that

M = R/〈pa1〉 ⊕ . . .⊕R/〈pan〉
and

M ′ = R/〈pb1〉 ⊕ . . .⊕R/〈pbm〉.
Consider now Annp(M) = {x ∈M | px = 0}.

Claim 0.3. Annp(M) ∼=
⊕n

i=1(R/〈p〉)

Proof of claim. We will again leave it to the reader to show that the formation of Annp(M) com-
mutes with direct sums. Hence it remains to show that Annp(R/〈pa〉) ∼= R/〈p〉. Note that

Annp(R/〈pa〉) = {r + 〈pa〉 | r ∈ R, pr ∈ pa} = {pa−1s+ 〈pa〉 | s ∈ R}.
Consider the map φ : R −→ {pa−1s+ 〈pa〉 | s ∈ R} which sends s 7→ pa−1s+ 〈pa〉. The kernel of φ
is clearly 〈p〉 and φ is surjective so by the first isomorphism theorem Annp(R/〈pa〉) ∼= R/〈p〉. This
proves the claim. �

It follows that Annp(M) is a n-dimensional R/〈p〉-vector space. Hence applying the claim to M ′

we see that

(0.3.1) m = n.

Next for each integer k > 0 consider

pkM and pkM ′

We claim that

Claim 0.4. pkM ∼= ⊕ai>kR/〈pai−k〉

Proof of claim. We leave it to the reader to check that pk(A⊕B) ∼= (pkA)⊕ (pkB) and so we only
need to verify the case that M = R/〈pa〉. If a ≤ k then pk(x+ 〈pa〉) = pkx+ 〈pa〉 = 0 + 〈pa〉. Hence
pkM = 0. On the other hand, if a > k then it is easy to see that

pkM = {pkr + 〈pa〉 | r ∈ R}.
Consider the map φ : R −→ pkM which sends r 7→ pkr + 〈pa〉. This obviously surjects onto pkM
and so we simply observe what the kernel is. It is those r such that pkr ∈ 〈pa〉 which is exactly
those r which are divisible by pa−k. Hence kerφ = 〈pa−k〉. The the first isomorphism theorem
shows that pkM = pk(R/〈pa〉) ∼= R/〈pa−k〉 which proves the claim. �

Fix an integer k and consider pkM . The number of summands in pkM (which is a constant by
(0.3.1)) is equal to #{ai | ai > k}. Since paM ∼= paM ′ we see that

#{ai | ai > k} = #{bi | bi > k}
By applying this for successive values of k we see immediately that

#{ai | ai = k} = #{bi | bi = k}
for all values of k. This is enough to conclude the theorem. �
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