WORKSHEET #1 – MATH 536 SPRING

DUE MONDAY, FEBRUARY 3RD

Theorem 0.1 (Jordan-Hölder Theorem). If G is a finite group with $G \neq \{1\}$ the

- (1) G has a composition series
- (2) The composition factors in a composition series are unique up to ordering.

First we prove the following.

1. Assume G has two composition series:

$$\{1\} = N_0 \unlhd N_1 \unlhd \ldots \unlhd N_r = G \text{ and } \{1\} = M_0 \unlhd M_1 \unlhd M_2 = G$$

Prove that r=2 and that the list of composition factors is the same.

Hint: There are several steps (which to a certain extent can be done in various orders). For what i is it possible that $N_i \supseteq M_1$? Next intersect the first composition series with M_1 , what can we conclude? Finally, multiply the first composition series by M_1 and then mod out by M_1 . Use the second isomorphism theorem.

Solution: Now, it is easy to see that $H = M_1 \cap N_{r-1}$ is a proper normal subgroup of G (for normality, see 3.). It is also a normal subgroup of the simple group M_1 so $H = M_1$ or $\{1\}$.

If $H = M_1$ then $N_{r-1} \supseteq M_1$ which implies that N_{r-1}/M_1 is a proper normal subgroup of the simple group G/M_1 , hence $N_{r-1} = M_1$ and the statement is obvious.

If $H = \{1\}$ we clearly see that M_1N_{r-1} is a normal subgroup of G properly containing M_1 and so $M_1N_{r-1} = G$ by the simplicity of G/M_1 again. Then $N_{r-1} \cong N_{r-1}/H \cong M_1N_{r-1}/M_1 = G/M_1$ and so N_{r-1} is simple and hence r = 2. We also see that the composition factors of the $\{N_i\}$ composition series are simply the composition factors of the M_i composition series in reverse order.

2. Prove the existence of composition series. In fact, prove more generally that if $H \leq G$, then there is a composition series of G where H is one of the terms.

Hint: This should be easy.

Solution: We may assume that $H \subsetneq G$ as the case where H = G is equivalent to the case where $H = \{1\}$. We proceed by induction on |G|, the base case that |G| = 2 is obvious and then |G| is already simple. Next, let N be a largest proper normal subgroup of G which contains H. Note that G/N is simple since if it isn't, and $M \subseteq G/N$, $M \neq \{1\}$, G/N, then $\pi^{-1}(M)$ normal and is not equal to G or N. Since |N| < |G| and $H \subseteq N$, our inductive hypothesis completes the proof.

3. Prove an intersection of normal subgroups is normal.

Solution: Suppose that $\{N_{\gamma}\}_{{\gamma}\in\Gamma}$ is a collection of normal subgroups of G. Consider the diagonal map $G\to\prod_{{\gamma}\in\Gamma}(G/N_{\gamma})$ sending $g\mapsto (\ldots,g+N_{\gamma},\ldots)$. The kernel of this map is easily seen to be $\bigcap_{{\gamma}\in\Gamma}N_{\gamma}$.

4. Now prove the uniqueness result of the Jordan-Hölder theorem. In particular, assume that

$$\{1\} = N_0 \leq N_1 \leq \ldots \leq N_r = G \text{ and } \{1\} = M_0 \leq M_1 \leq \ldots \leq M_s = G$$

are two composition series, prove that r = s and that the composition factors are the same.

Hint: Proceed by induction on $\min\{r, s\}$. Apply the inductive hypothesis to $H = N_{r-1} \cap M_{s-1}$ (which we note is still normal). You can use a similar strategy to what was done in **2.**

Solution: We can assume $r, s \geq 2$ and also that the N_i form a composition series of minimal length (the base case is done) so that $r \leq s$. Note we can also assume that $N_{r-1} \not\subseteq M_{s-1}$ and $M_{s-1} \not\subseteq N_{r-1}$ otherwise we would be done by hypothesis. Hence $H \subsetneq N_{r-1}, M_{s-1}$. This also implies that $N_{r-1}M_{s-1} = G$ just as in 1. Next observe that $N_{r-1}/H \cong M_{s-1}N_{r-1}/M_{s-1} = G/M_{s-1}$ is simple (as is $M_{s-1}/H \cong G/N_{r-1}$). Let $\{1\} \subseteq N'_1 \subseteq \ldots \subseteq N'_{r-2} = H \subseteq N_{r-1}$ be a composition series for N_{r-1} . Note that this must be of length r-1 by induction. In particular, every composition series H has the same length of r-2. But we can construct a similar composition series for H using

$$\{1\} \leq M'_1 \leq \dots H = M_{s'-1} = M_{s'} = M_{s-1}.$$

but this also produces a composition series for H of length s'-1. Hence s'-1=r-2 and so M_{s-1} has a composition series of length r-1 and thus r=s as claimed. For the composition factors, using the inductive hypothesis to see that the composition factors of M_{s-1} are those of H concatenated with $M_{s-1}/H = G/N_{r-1}$. Hence the composition factors of $\{M_i\}$ are equal to

(composition factors of
$$H, G/N_{r-1}, G/M_{s-1}$$
)

and likewise the composition factors of $\{N_j\}$ are simply

(composition factors of
$$H, G/M_{s-1}, G/N_{r-1}$$
)

and hence the two sets coincide.