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1. Prime avoidance and regular local rings are domains

We will prove that regular rings are integral domains. Before continuing however, I need
a stronger form of prime avoidance.

Lemma 1.1 (Prime avoidance #2). Suppose that R is a ring and that P2, . . . , Pt ⊆ are prime
ideals and P1 is any other ideal that isnot necessarily prime. Suppose that I is an ideal such
that

I ⊆

(⋃
i

Pi

)
Then I is contained in at least one of the Pi.

Proof. The proof is by induction. If t = 1, there is nothing to prove. We now assume it for
t− 1 and so we may assume that I is not contained in the union of any proper subcollection

of the Pi. In particular, we may pick xi ∈ I \
(⋃

j 6=i Pj

)
for each i = 1, . . . , t. Consider

y = (x1 · · · · · xn−1) + xn noting that Pn is prime. This element is clearly in I, so it must be
in one of the Pi. There are two cased.

y ∈ Pn: Since xn ∈ I and xn /∈ Pj for j 6= n, we have that xn ∈ Pn. Then y − xn =
x1 · · · · · xn−1 ∈ Pn as well so at least one of the x1, . . . , xn−1 ∈ Pn. But that is a
contradiction.

y ∈ Pj , j 6= n: Now, xj ∈ I and so xj ∈ Pj and thus x1 · · · · · xn−1 ∈ Pj as well. So
xn = (x1 · · · · · xn−1)− y ∈ Pj which is also a contradiction.

We have proven our result. �

Remark 1.1. It is actually possible to prove the same result while assuming both P1 and P2

are NOT necessarily prime.

Theorem 1.2. Suppose that (R,m) is a regular local ring. Then R is an integral domain.

Proof. We proceed by induction on the dimension of R – the case of dimension zero being
obvious and the case of dimension 1 being clear from our previous work on DVRs. We thus
assume that dimR ≥ 1. Indeed, set P1, . . . , Pt to be the set of minimal primes of R. We
have m ) Pi by the minimality of the Pi and the fact that R is not zero dimensional. By
Nakayama’s lemma, we know that m ) m2.

Suppose now that m ⊆ (m2)∪(
⋃

i Pi), but then the previous lemma provides a contradiction
and so we may choose x ∈ m, x /∈ Pi for any i and x /∈ m2.

We have two claims:

(i) dimR/〈x〉 = (dimR)− 1. We prove this claim. Choose

Pi = Q0 ( Q1 ( · · · ( Qd = m.

to be a chain of primes of maximal length (in other words, dimR = d). This chain of
primes is also maximal length in R/Pi. Indeed, by the above, x is a regular element
on R/Pi and so dimR/(Pi + 〈x〉) = dim(R/Pi) − 1 = dimR − 1. In particular,
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dimR/〈x〉 ≥ dimR − 1. On the other hand, if dimR/〈x〉 = dimR, then we may
choose a chain of primes Q0 ( Q1 ( · · · ( Qd ⊆ R which remains a proper sequence
of primes after passing to R/〈x〉. But again, we can assume that Q0 = Pi for some i
(since Q0 must be some minimal prime). This sequence must stay a proper sequence
of primes after passing to (R/〈x〉)/Q0 = (R/〈x〉)/Pi

∼= (R/Pi)/〈x〉. But this is
impossible by the above argument. Thus we have proved (i).

(ii) R/〈x〉 is regular. This is easy dimR/〈x〉 = (dimR) − 1 and m/〈x〉 has (dimR) − 1
generators. This proves (ii)

Our inductive hypothesis then implies R/〈x〉 is an integral domain and in particular that
〈x〉 is prime. In particular, Pi ⊆ 〈x〉 for some i. Choose y ∈ Pi and write y = rx for some
r ∈ R. Since x /∈ Pi and rx = y ∈ Pi, we see that r ∈ Pi. It follows that x · Pi = Pi and so
m · Pi = Pi. This contradicts Nakayama’s Lemma and completes the proof. �


