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1. PRIME AVOIDANCE AND REGULAR LOCAL RINGS ARE DOMAINS

We will prove that regular rings are integral domains. Before continuing however, I need
a stronger form of prime avoidance.

Lemma 1.1 (Prime avoidance #2). Suppose that R is a ring and that Py, ..., P, C are prime
ideals and Py is any other ideal that isnot necessarily prime. Suppose that I is an ideal such

that
(v

Then I is contained in at least one of the P;.
Proof. The proof is by induction. If ¢ = 1, there is nothing to prove. We now assume it for
t — 1 and so we may assume that I is not contained in the union of any proper subcollection
of the P;. In particular, we may pick x; € I\ (U#i Pj) for each i = 1,...,t. Consider
y=(xy---- Zn—1) + x, noting that P, is prime. This element is clearly in I, so it must be
in one of the P;. There are two cased.

y € Pp: Since z, € I and z,, ¢ P; for j # n, we have that x,, € P,. Then y —z,, =

T Tp_1 € P, as well so at least one of the z,...,z,_1 € P,. But that is a
contradiction.
y € Pj,j#mn: Now, z; € I and so x;j € P; and thus 1 ----- 2,1 € P; as well. So
Ty = (1> Zp—1) — Yy € P; which is also a contradiction.
We have proven our result. O]

Remark 1.1. It is actually possible to prove the same result while assuming both P; and P
are NOT necessarily prime.

Theorem 1.2. Suppose that (R, m) is a reqular local ring. Then R is an integral domain.

Proof. We proceed by induction on the dimension of R — the case of dimension zero being
obvious and the case of dimension 1 being clear from our previous work on DVRs. We thus
assume that dim R > 1. Indeed, set Pi,...,P; to be the set of minimal primes of R. We
have m 2 F; by the minimality of the P; and the fact that R is not zero dimensional. By
Nakayama’s lemma, we know that m 2 m?.

Suppose now that m C (m?)U(lJ; P), but then the previous lemma provides a contradiction
and so we may choose z € m, z ¢ P; for any i and ¢ m?.

We have two claims:

(i) dim R/{(z) = (dim R) — 1. We prove this claim. Choose
P=QC@Q1 S-S Qa=m
to be a chain of primes of maximal length (in other words, dim R = d). This chain of
primes is also maximal length in R/P;. Indeed, by the above, z is a regular element
on R/P; and so dim R/(P; + (x)) = dim(R/P;) — 1 = dim R — 1. In particular,
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dim R/(x) > dim R — 1. On the other hand, if dim R/(z) = dim R, then we may
choose a chain of primes Qo C Q1 C -+ C Q¢ € R which remains a proper sequence
of primes after passing to R/(z). But again, we can assume that Qo = P; for some i
(since Qo must be some minimal prime). This sequence must stay a proper sequence
of primes after passing to (R/(x))/Qo = (R/{(z))/P; = (R/P;)/(Z). But this is
impossible by the above argument. Thus we have proved (i).

(ii) R/(x) is regular. This is easy dim R/(x) = (dim R) — 1 and m/(z) has (dimR) — 1
generators. This proves (ii)

Our inductive hypothesis then implies R/(z) is an integral domain and in particular that
(x) is prime. In particular, P; C (x) for some i. Choose y € P; and write y = rz for some
r € R. Since x ¢ P; and rx = y € P,, we see that r € P;. It follows that = - P, = P; and so
m - P; = P;. This contradicts Nakayama’s Lemma and completes the proof. ([l



