
1. Short answer questions (3 points each).

(a) How many elements are in the group A5?

Solution: 5!/2 = 60

(b) Give an example of a simple group with more than 2 elements.

Solution: Z/3Z.

(c) What does the Jordan-Hölder theorem say?

Solution: For any finite group G, there exists a composition series G = Gn ≥ Gn−1 ≥ · · · ≥ G1 ≥ G0 =
{e} where each Gi+1 ≥ Gi is normal and Gi+1/Gi is simple. Furthermore, the length of such a composition
series is independent of the series chosen, furthermore, the factors Gi+1/Gi are independent up to ordering
and isomorphism.

(d) What does the class equation say?

Solution: If G is a finite group then |G| = |Z(G)| +
∑

x[G : CG(x)] where the sum is over x in distinct
conjugacy classes of size ≥ 2.

(e) Give an example of a group G acting on a set S such that S 6= G.

Solution: The invertible 2× 2 matrices acting on vectors in R2 by left multiplication.

(f) Is every finite subgroup of the multiplicative monoid of an integral domain cyclic?

Solution: yes.

(g) Compute the inverse of x + 1 in the field (Z/2Z)[x]
/

(x2 + x + 1).

Solution: x

(h) Give two equivalent definitions of a prime ideal in a commutative ring.

Solution: An ideal P ⊆ R is prime f ab ∈ P implies a ∈ P or b ∈ P . Equivalently, P is prime if R/P is
an integral domain.

(i) What is the stabilizer of (12) ∈ S3 where S3 acts on itself by conjugation?

Solution: {1, (12)}

2. Suppose G acts transitively in a finite set X and let H be a normal subgroup of G. Let O1, . . . , Or denote
the distinct orbits of H.

(a) Prove that G acts transitively on {Oi} by left multiplication. Use this to deduce that all the orbits have
the same cardinality. (10 points)

Solution: Fix some ai ∈ Oi. We define g · Oi = {g.x | x ∈ Oi}. We need to show that g · Oi = Oj for
some j. But

{g.x | x ∈ Oi} = {gh.ai | h ∈ H} = {h′.(g.ai) | h′ ∈ H}

where the second equality comes from normality of H. But g.ai is in some orbit Oj and hence the right side
is exactly that orbit.

(b) Prove that if a ∈ O1 then |O1| = |H : H ∩ StabG(a)| and show that r = |G : H · StabG(a)|. (16 points)

Solution: We know that |O1| = |H|/|StabH(a)| since H acts transitively on O1 but StabH(a) =
StabG(a) ∩H. So the first part follows.

For the second part, H ·StabG(a) as a goal, viewed as the stabilizer of Gs action on an orbit. Certainly H
stabilizes any orbit, but we need to show that H · StabG(a) does as well. Choose an arbitrary y = h · a ∈ O1

and h′g ∈ H · StabG(a). Thus

(h′g).y = (h′gh).a = (h′h′′g).a = (h′h′′).(g.a) = (h′h′′).a ∈ H.a = O1

where we used normality of H in the second equality and we used that g ∈ StabG(a) in the 4th equality. So
H · StabG(a) ⊆ StabG(O1). For the other containment, choose g ∈ StabG(O1). Hence g.a = h.a for some
h ∈ H. Thus h−1g.a = a. So h−1g ∈ StabG(a) and hence g ∈ H · StabG(a).
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3. Show there is no simple group of order 224 = 25 · 7. (21 points)

Solution: Suppose G is simple of order 224. Then n7 is 1 mod 7 and divides 32. The possibilities are
1, 8. If 8, then there are 6 · 8 = 48 elements. Next note n2 is equal to 1 mod 2 and divides 7. So there are 7.
This gives a map G→ S7. But 7! is divisible by at most 24.

4. (a) Find all the prime ideals of Z[x]/(6, x2 + 1). (16 points)

Solution: This is the same as finding the primes of Z[x] that contain (6, x2 + 1). Suppose Q is such a
prime. If Q contains 2 then x2 + 1 ∈ Q, so x2 + 2x + 1 ∈ Q so x + 1 ∈ Q and Q = (2, x + 1). Next if Q
contains 3, then Q contains x2 + 1 which is irreducible mod 3. So then Q = (3, x2 + 1). Thus the primes are

{(3, x2 + 1), (2, x + 1)}.

(b) Suppose that R is an integral domain and Q ⊆ R is a prime ideal and let W = R \Q be a multiplicative
set. Show that W−1R has a unique maximal ideal. (10 points)

Solution: Recall that the bijection from primes in R that intersect W trivially with those primes of W−1

is order preserving since the bijection is either given by Q 7→ W−1Q or P ⊆ W−1R is mapped to P ∩ R.
Now, suppose that Q′ ⊆ R is a prime such that Q′ ∩W = ∅. Since W is the complement of Q, we see that
Q′ ⊆ Q, thus W−1Q′ ⊆W−1Q and so W−1Q is the unique maximal ideal of W−1R.
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