WS #8 - MATH 6310 FALL 2019

Throughout we fix R to be a commutative ring and suppose M is an R-module.

Definitions. Suppose we take $P_{\bullet} \to M$ (... $\to P_1 \to P_0 \to M \to 0$) a projective resolution of M. Let P_{\bullet} be the projective resolution itself (without the augmentation map to M), here we set $P_{-1} = 0$. For another other module N, we define a functor $\operatorname{Ext}^i(\bullet, N)$:

$$\operatorname{Ext}^{i}(M,N) = \frac{\ker\left(\operatorname{Hom}(P_{i},N) \to \operatorname{Hom}(P_{i+1},N)\right)}{\operatorname{image}\left(\operatorname{Hom}(P_{i+1},N) \to \operatorname{Hom}(P_{i-1},N)\right)}$$

and we define a functor $Tor_i(\bullet, N)$:

$$Tor_{i}(M, N) = \frac{\ker (P_{i} \otimes N \to P_{i-1} \otimes N)}{\operatorname{image} (P_{i+1} \otimes N \to P_{i} \otimes N)}$$

It can be shown that $\operatorname{Tor}_i(M, N)$ is isomorphic to $\operatorname{Tor}_i(N, M)$ (ie, we can take a projective resolution of either M or N).

Furthermore, if $N \to I^{\bullet}$ $(0 \to N \to I^0 \to I^1 \to I^2 \to ...)$ is an injective resolution of N, with I^{\bullet} the unaugmented resolution with $I^{-1} = 0$, we can alternately define a functor $\operatorname{Ext}^i(M, \bullet)$:

$$\operatorname{Ext}^i(M,N) = \frac{\ker\left(\operatorname{Hom}(M,I^i) \to \operatorname{Hom}(M,I^{i+1})\right)}{\operatorname{image}\left(\operatorname{Hom}(M,I^{i-1}) \to \operatorname{Hom}(M,I^i)\right)}$$

Ext defined this way is isomorphic to the Ext above.

Finally, if for any ideal $J \subseteq R$ (you normally need this ideal to be finitely generated) we define the functor $\Gamma_J(N) = \{x \in N \mid J^n x = 0 \text{ for } x \gg 0\}$. The the *i*th local cohomology of N with respect to J is defined to be the functor $H_J^i(\bullet)$:

$$H_J^i(N) = \frac{\ker \left(\Gamma_J(I^i) \to \Gamma_J(I^{i+1})\right)}{\operatorname{image}\left(\Gamma_J(I^{i-1}) \to \Gamma_J(I^i)\right)}$$

All these definitions are independent of the projective or injective resolution chosen, by an argument similar to the one in the worksheet.

Facts. We have natural transformations of functors.

- $\operatorname{Ext}^0(M,N) \cong \operatorname{Hom}(M,N)$.
- $\operatorname{Tor}_0(M,N) \cong M \otimes N$.
- $H_J^0(N) \cong \Gamma_J(N)$.

We have the following vanishing results.

- (a) If M is projective or N is injective, then $\operatorname{Ext}^i(M,N)=0$ for all i>0.
- (b) If N is injective, then $H_J^i(N) = 0$ for all i > 0.
- (c) If M or N is projective, then $Tor_i(M, N) = 0$ for all i > 0.

If $0 \to A \to B \to C \to 0$ is a short exact sequence of R-modules, then we have the following long exact sequences (where most maps are just the ones induced by the functorial nature of Ext, Tor, etc.).

- $(1) \qquad 0 \to \operatorname{Hom}(C,N) \to \operatorname{Hom}(B,N) \to \operatorname{Hom}(A,N) \to \operatorname{Ext}^1(C,N) \to \operatorname{Ext}^1(B,N) \to \operatorname{Ext}^1(A,N) \to \operatorname{Ext}^2(C,N) \to \dots$
- $(2) \quad 0 \rightarrow \operatorname{Hom}(M,A) \rightarrow \operatorname{Hom}(M,B) \rightarrow \operatorname{Hom}(M,C) \rightarrow \operatorname{Ext}^{1}(M,A) \rightarrow \operatorname{Ext}^{1}(M,B) \rightarrow \operatorname{Ext}^{1}(M,C) \rightarrow \operatorname{Ext}^{2}(M,A) \rightarrow \dots$
- $(3) \qquad \cdots \to \operatorname{Tor}_2(C,N) \to \operatorname{Tor}_1(A,N) \to \operatorname{Tor}_1(B,N) \to \operatorname{Tor}_1(C,N) \to A \otimes N \to B \otimes N \to C \otimes N \to 0$
- $(4) 0 \to \Gamma_J(A) \to \Gamma_J(B) \to \Gamma_J(C) \to H^1_J(A) \to H^1_J(B) \to H^1_J(C) \to H^2_J(A) \to \dots$

We also saw that elements of $\operatorname{Ext}^1(M,N)$ correspond to extensions $0 \to N \to E \to M \to 0$ with the zero element of Ext^1 corresponding to the trivial = split extension.

1. Suppose R is an integral domain, that M is an R-module and $0 \neq x \in R$. Show that the map $M \xrightarrow{\cdot x} M$

is injective (ie M is x-torsion-free) if and only if $\text{Tor}_1(R/x, M) = 0$. In this case, x is called an M-regular element (sometimes people also assume that M-regular means also that the above move is not surjective).

2. Suppose R is an integral domain and $W \subseteq R$ is a multiplicative set. Prove that for any R-module M, that

$$Tor_i(W^{-1}R, M) = 0$$

for i>0. Here we view $W^{-1}R$ as an R-module via the map $R\to W^{-1}R$, $r\cdot \frac{a}{b}=\frac{ra}{b}$. Hint: First show it for i=1 by taking a short exact sequence $0\to K\to P\to M\to 0$ where P is projective/free. You'll want to prove that if $0\to A\to B$ is exact, then so is $0\to W^{-1}A\to W^{-1}B$ is also exact, and then use problem 5. from the previous homework (you may assume that isomorphism is actually a natural transformation of functors).

3. Fix some element $r \in R$. For any R-module M this induces a multiplication map $M \xrightarrow{\cdot r} M$. Prove that the induced map $\operatorname{Ext}^i(M,N) \xrightarrow{\operatorname{Ext}^i(\cdot r,N)} \operatorname{Ext}^i(M,N)$ can also be identified with multiplication by r. The analogous statement holds for the other functors above (you don't need to prove it).

4. Suppose that $\langle x_1, x_2 \rangle \subseteq R$ is an ideal. Suppose that M is an R-module such that x_1 is not a zero divisor on M and x_2 is not a zero divisor on M/x_1M . Prove that $H^i_{\langle x_1, x_2 \rangle}(M) = 0$ for i = 0, 1.

Hint: First show that $H^0_{\langle x_1, x_2 \rangle}(M/x_1M) = 0$. Then show that any element of $H^1_{\langle x_1, x_2 \rangle}(M)$ is annihilated by a high enough power of x_2 .

A module is called *Cohen-Macaulay* at a maximal ideal \mathfrak{m} if there elements $x_1, \ldots, x_n \subseteq \mathfrak{m}$ with $\mathfrak{m}^N \subseteq \langle x_1, \ldots, x_n \rangle$ (for some $N \gg 0$) and such that x_{i+1} is a non-zero divisor on $M/\langle x_1, \ldots, x_i \rangle M$ for each e. This is equivalent to various vanishing of Ext or local cohomology groups, as you might even imagine. For example, it is not difficult to see that if $R = \mathbb{Q}[x,y]$, then R is a Cohen-Macaulay module at $\langle x,y \rangle$.