HW #3 – MATH 6320 SPRING 2015

DUE: TUESDAY FEBRUARY 17TH

- (1) Exhibit an *explicit* isomorphism between the splitting fields of $x^3 x + 1$ and $x^3 x 1$ over \mathbb{F}_3 .
- (2) Explicitly show that $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ is a simple extension of \mathbb{Q} by finding a generator.
- (3) Show that $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ is not a simple extension.
- (4) Is $\mathbb{Q}(2^{1/3})$ a subfield of a cyclotomic extension of \mathbb{Q} ?
- (5) Let K/F be any finite extension, let L be a Galois extension of F containing K and let $H \leq \operatorname{Gal}(L/F)$ be the subgroup corresponding to K. For any $\alpha \in K$ define the *norm* of α to be

$$N_{K/F}(\alpha) = \prod_{\overline{\sigma} \in G/H} \overline{\sigma}(\alpha).$$

Note here that G/H is just the set of cosets of H. Likewise we define the trace of α to be

$$\operatorname{Tr}_{K/F}(\alpha) = \sum_{\overline{\sigma} \in G/H} \overline{\sigma}(\alpha).$$

In other words, the norm is a product of Galois conjugates and the trace is a sum of Galois conjugates (if K/F is Galois, it is a product/sum over all Galois conjugates). Of course,

- (a) Show that $N_{K/F}(\alpha) \in F$ and $Tr_{K/F}(\alpha) \in F$.
- (b) Prove that the norm is multiplicative $(N_{K/F}(\alpha\beta) = N_{K/F}(\alpha)N_{K/F}(\beta))$ and that the trace is additive $(\text{Tr}_{K/F}(\alpha\beta) = \text{Tr}_{K/F}(\alpha) + \text{Tr}_{K/F}(\beta))$
- (c) If $K = L = F(\sqrt{c})$ is a degree two extension, find formulas for $N(a+b\sqrt{c})$ and $Tr(a+b\sqrt{c})$.
- (6) Let K/F be a finite separable extension. Then each element $\alpha \in K$ gives us an F-linear map $(\times \alpha) : K \to K$. We can of course pick a basis for K/F and so consider $(\times \alpha)$ as a matrix m_{α} . Then consider maps $t : K \to F$ and $n : K \to F$ defined by

$$t(\alpha) = \operatorname{trace}(m_{\alpha}), n(\alpha) = \det(m_{\alpha})$$

where here trace just means sum up the diagonal. Is it true that $t = \text{Tr}_{K/F}$ and $n = \text{N}_{K/F}$?

- (7) Fix notation as in the last two problems. If $\alpha \in F$, show that $N(\alpha) = \alpha^n$ and $Tr(\alpha) = n\alpha$ where n = [K : F].
- (8) Fix notation as in the last three problems. Let $F = \mathbb{Q}$, $K = \mathbb{Q}(2^{1/3})$ and $\alpha = 2^{1/3}$. Compute $N_{K/F}(2^{1/3})$ and $Tr_{K/F}(2^{1/3})$.