
> restart;

> with(Student[Calculus1]):

> with(LinearAlgebra):

The goal of this project is to help you learn some of the basics of Maple.
The first problem asks you to find the roots of a quadratic polynomial.

We begin by defining the polynomial.
The symbol := is used to define something. For example, if we wanted

to define the letteruas the number 7, we write

> u:=7;

u := 7

Also, if you end a line with a semicolon (;), your output will display on the
screen. If you end with a colon, the output will not display.

If we want to define a functionp(x ), the following notation is used:

> p:= unapply(a*x^2 + b*x + c,x);

The computer can now evaluate this polynomial at anyx. For example,

> p(2);

4 a + 2 b + c

In order to compute the roots of this polynomial, we need to definea, b,andcas
real numbers. This can be done as follows:

> a:=-1; b:= 3; c:= 4;

a := −1

b := 3

c := 4

The polynomialp(x ) is now

> p(x);

−x2 + 3 x + 4

We can find the roots of this polynomial using the ’Roots’ command: the
first argument,p(x ), is the polynomial whose roots we wish to find. The second
argument tells Maple which variable is the independent variable–we can use any
letter we like.

> Roots(p(x),x);

[−1, 4]

> Roots(p(z),z);

[−1, 4]

> Roots(p(alpha),alpha);

[−1, 4]

We can also plot the polynomial.

> plot(p(x),x = -3..5);



The second argument of the ’plot’ function is the domain over which the
function will be plotted. The ’plot’ command contains other options as well;
using these options, you can change the color and add a title, among other
things. These can be explored by typing the command ’? plot’. For example,

> plot(p(x), x = -3..5, color = green, thickness = 3, title = "Quadratic
Polynomial");

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
We will now discuss vectors and how to work with them. We begin by

defining 2 vectors inRˆ7.

> restart;



> with(LinearAlgebra):

> v := Vector([1,-2,3,-4,5,-6,7]); w := Vector([0,1,2,3,4,5,6]);

v :=
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w :=
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We can find the dot product and the norm of the vectors. We can then use
this information to find the angle between these two vectors. We need to use the
option ’Euclidean’ for reasons that are explained in upper level math classes.

> a := DotProduct(v,w);

a := 24

> nv := VectorNorm(v,Euclidean); nw := VectorNorm(w,Euclidean);

nv := 2
√

35

nw :=
√

91

> theta := arccos(a/(nv*nw));

θ := arccos

(

12

3185

√
35
√

91

)

We can convert this to a decimal number (in radians) using the command
’evalf’.

> theta := evalf(theta);

θ := 1.356529607

To convert this to degrees we simply multiply by 180/Pi. Note that we need
to use a capital P if we want to use the decimal approximation of pi.

> thetadegrees := evalf(180*theta/Pi);

thetadegrees := 77.72342126



We can also check the Cauchy-Schwarz inequality |v · w| ≤ ‖v‖ ∗ ‖w‖ and
the triangle inequality ‖v + w‖ ≤ ‖v‖ + ‖w‖.

> abs(a);

24

> evalf(nv*nw);

112.8716085

> u := v+w;

u :=
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> un := VectorNorm(u,Euclidean);

un := 3
√

31

> un := evalf(un);

un := 16.70329309

> evalf(nv + nw);

21.37155158

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
This next section will provide an introduction to working with matrices.

We begin by creating our 3 by 3 matrix A.

> restart;

> with(LinearAlgebra):

> A := Matrix([[-2, 1, -1],[1, -2, -4],[-1, 2, 3]]);

A :=









−2 1 −1

1 −2 −4

−1 2 3









One of the nice things about Maple is that it can deal with large matrices.
We will stick to the 3 by 3 case for the time being, just so we can plot some of
the results.

Remember, one of the most important problems in linear algebra is solv-
ing the systemAx=b. Let’s see what happens when we try to do this with
our matrix A. Suppose the vectorbthat we are given is

> b := Vector([1,0,0]);



b :=









1

0

0
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



Is there anx so thatAx=b? There are multiple ways to answer this question.
One way is to look at an arbitrary vectord= Awand see if we can find any
patterns in this vector that will give us a clue as to what sort of vectorsxwill
solve the system.

> w := Vector([x,y,z]);

w :=









x

y

z









> d := MatrixVectorMultiply(A,w);

d :=









−2x + y − z

x − 2y − 4z

−x + 2y + 3z









In this case, it is hard to see much of a pattern. We can, however, do
Gaussian elimination to determine what is going on. We begin by creating
anaugmentedmatrix that is of the form [A,b]. We can then perform Gaussian
elimination on this matrix, and it will give us a system of the formU x=c. Then
back substitution will be straightforward. We first create our augmented matrix:

> AA := Matrix([A,b]);

AA :=









−2 1 −1 1

1 −2 −4 0

−1 2 3 0









Notice the matrixAin the first 3 by 3 portion of this matrix andbis in the
final column. We can perform Gaussian elimination as follows:

> ENA := GaussianElimination(AA);

ENA :=









−2 1 −1 1

0 −3/2 −9/2 1/2

0 0 −1 0









We can find the solution using the following command:

> xx := BackwardSubstitute(ENA);

xx :=









−2/3

−1/3

0











This means that the columns of the matrixAare independent, so linear com-
binations of these columns fill all of three dimensional space.

What if the columns are not linearly independent? Then there is either
no solution or there are infinitely many solutions toAx=b, depending on the
vectorb. In the next example, we’ll look at the row picture of a matrix to
see what happens.

> restart;

> with(LinearAlgebra):

Consider the vectorsu ,v ,andw , given below.

> u := Vector([-2,1,-1]); v:= Vector([1,-2,2]); w:= Vector([-1,-4,4]);

u :=









−2

1

−1
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





v :=









1

−2

2
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





w :=









−1

−4

4
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





Notice thatw=2u +3v , so these vectors are dependent. Consider the ma-
trixA= [u v w ]. We want to see if there are any vectorsx so thatAx=b, wherebis
given.

> A := Matrix([u,v,w]);

A :=









−2 1 −1

1 −2 −4

−1 2 4









We will consider the following vectorb:

> b := Vector([1,0,0]);

b :=









1

0

0









We will do the same procedure as before, where we create an augmented
matrix and then use Maple to perform Gaussian elimination followed by back
substitution.

> AA := Matrix([A,b]);



AA :=









−2 1 −1 1

1 −2 −4 0

−1 2 4 0









> ENA:= GaussianElimination(AA);

ENA :=









−2 1 −1 1

0 −3/2 −9/2 1/2

0 0 0 0









Notice that the last line gives us the equation 0 = 0. Thusz is afree variable,
so there are infinitely many solutions.

> xx := BackwardSubstitute(ENA);

xx :=









−2/3− 2 t1

−1/3− 3 t1

t1









We pick the third component of this vector to be any number, sayt 1. Then
the first component is -2/3 - 2*t 1, and the second component is -1/3-3*t 1.

Let’s first determine the row picture of this system. The three equations
are:

-2x + y - z =1
x -2y -4z =0
-x +2y +4z =0

We can solve each of these equations forz to obtain 3 planes. They are
z =-2x + y -1
z = x/ 4 - y/2
z = x/ 4 -y/2

We can plot these planes and see what is happening.

> plot3d([-2*x+y-1,x/4-y/2],x=-1..1,y=-1..1,axes = boxed, title
= "Intersecting Planes",glossiness = 0.9);



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

> restart;

> with(LinearAlgebra):

Finally, we can also perform row operations using the elementary matrices
we discussed in class on Wednesday. Suppose we want to solve the systemAx=b,
whereAandbare (the matrixAis called atridiagonalmatrix):

> A := Matrix([[-2, 1, 0],[1, -2, 1],[0, 1, -2]]);

A :=









−2 1 0

1 −2 1

0 1 −2









> b := Vector([-1, 1, 2]);

b :=









−1

1

2









> AA := Matrix([A,b]);

AA :=









−2 1 0 −1

1 −2 1 1

0 1 −2 2









Our first pivot is -2, and we would like to eliminate the 1 in the second row
ofAA, so we will use the elimination matrix E 21, with the multiplier L 21 =
1/(-2) = -1/2. Remember, this means we start with the identity matrix and
then insert the number -L 21 into the (2,1) entry of E 21.

> E_21 := Matrix([[1,0,0],[1/2,1,0],[0,0,1]]);



E 21 :=









1 0 0

1/2 1 0

0 0 1









> AA1 := MatrixMatrixMultiply(E_21,AA);

AA1 :=









−2 1 0 −1

0 −3/2 1 1/2

0 1 −2 2









The second pivot is -3/2, and the mulitplier we would like to use is L 32 =
1/(-3/2) = -2/3. The elimination matrix E 32 is, in this case, given by:

> E_32 := Matrix([[1,0,0],[0,1,0],[0,2/3,1]]);

E 32 :=









1 0 0

0 1 0

0 2/3 1









> AA2 := MatrixMatrixMultiply(E_32,AA1);

AA2 :=









−2 1 0 −1

0 −3/2 1 1/2

0 0 −4/3 7/3









We now have an upper triangular systemU x=c, whereU andcare:

> U := SubMatrix(AA2,[1..3],[1..3]);

U :=









−2 1 0

0 −3/2 1

0 0 −4/3









> c := SubMatrix(AA2,[1..3],[4]);

c :=









−1

1/2

7/3









In the ’SubMatrix’ command, the syntax [1..3],[1..3] tells Maple to build a
submatrix from rows 1 through 3 and columns 1 through 3 of the matrix AA2.
The command [1..3],[4] tells Maple to build a vector from rows 1 through 3 and
column 4 of the matrix AA2.

We can find the solution to our system by using the ’BackwardSubstitute’
command.

> x := BackwardSubstitute(AA2);



x :=









−1/4

−3/2

−7/4









Let’s check our answer–we need to make sure thatAx=b.

> MatrixVectorMultiply(A,x);








−1

1

2










