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Schwarz Example
I H.A. Schwarz Example of a polyhedral surface

approximating a torus uniformly, but far from
smoothly,

�������



Details



Observe

I The triangles have their vertices on the cylinder.
I The triangles are nearly horizontal
I Same: the triangles are nearly perpendicular to the

cylinder
I The triangles are very thin: Their area much smaller

than the square of their diameter.



Schwarz Inequality and Norm on ⇤2(Rn)



Change of variables formula

I Suppose E ,D domains in Rk , � : E ! D bijective,
ds� invertible for all s 2 E . (t = �(s))

I Then for all continuous functions f : D ! R
Z

E
f (�(s)) | det(ds�)| ds1 . . . , dsk =

Z

D
f (t)dt1 . . . dtk

I Note how the absolute vaue | det(d�)| appears,
rathen than det(d�). Results from orientation.





Integration in R2

I R = [a, b]⇥ [c, d ] a rectangle in R2.

I f : R ! R continuous function

I Then
R

R f (x , y)dxdy can be defined

I By limit of Riemann sums.

I As an iterated integral

Z b

a

⇣Z d

c
f (x , y)dy

⌘
dx =

Z d

c

⇣Z b

a
f (x , y)dx

⌘
dy

I This equality holds for f 2 C(R). It’s needed for the

definition to make sense.

I Rudin proves this quickly from special case

f (x , y) = g(x)h(y) and Stone-Weierstrass theorem

 



I Will take the iterated integral definition.

I Recall the support of f is

supp(f ) = {x : f (x) 6= 0}

I Let Cc(R2) ⇢ C(R2) denote the space of continuous

functions with compact support
I If f 2 Cc(R2) can define

Z

R2

f dxdy to be

Z

R
f dxdy

where R is any rectangle containing supp(f ) in its

interior.

I Easily seen independent of R.



I Let D ⇢ R2 be a “domain of integration”

I A compact set with non-empty interior, boundary a

finite union of C1 curves

I Examples:

I Rectangle [a, b]⇥ [c, d ]
I Disk x2 + y2  r2

I Triangle 0  x  y  1

I x2 + y2  4, |x |  1



I If supp(f ) ⇢ D0 (interior of D) and R is a rectangle

containing D, define

Z

D
f dxdy =

Z

R
f dxdy

I Good definition for f 2 Cc(Do).

I Too restrictive: want
R

D f dxdy for all f 2 C(D).

I A sensible definition: f̃ = extension of f to R by 0 on

R \ D Z

D
f dxdy =

Z

R
f̃ dxdy

Riemann integral of the discontinuous function f̃ over

R.



Change of variables formula in R2

I Suppose E ,D domains in R2, F : E ! D is of class

C1, is bijective, and d(u,v)F invertible for all (u, v) 2 E .

I (Thus (x , y) = F (u, v) = (f (u, v), g(u, v)) is a

“change of variables”)

I Then for all continuous functions � : D ! R
Z

E
�(F (u, v))) | det(d(u,v)F )| dudv =

Z

D
�(x , y)dxdy

I Note the absolute value | det(dF )| appears, rather

than det(dF ).



I Will only prove under the assumption � 2 Cc(D0)

I Why is this difficult to prove?

I In one dimension, if f : [c, d ] ! [a, b] is strictly

increasing, surjective, then

Z d

c
�(g(u))f 0(u)du =

Z b

a
�(x)dx

is easily proved from Riemann sums

X
�(⇠i)(xi � xi�1) =

X
�(g(⇠̂i))g0(⌘i)(ui � ui�1)

for some ⇠̂i , ⌘i 2 [ui�1, ui ]





I This is easy because g takes intervals to intervals.

I But in R2, F does not take rectangles to rectangles.

I F takes rectangular grids to “curvilinear” grids.

I Same for F�1.

I A direct proof will have to take this into account.



I Two special transformations where change of

variable formula is easy

I “Primitive transformation”

F (u, v) = (u, g(u, v)) or F (u, v) = (f (u, v), v)

moves at most one variable at a time (same in Rk )

I “Flip” interchanges two coordinates

F (u, v) = (v , u)



Primitive Transformations

I Picture:

F (u, v) = (u, g(u, v)) maps each vertical line to itself.

F (u, v) = (f (u, v), v) maps each horizontal line to

itself.



I Look at (x , y) = F (u, v) = (u, g(u, v))
I

dF =

✓
1 0
@g
@u

@g
@v

◆

I Jacobian determinant det(dF ) = @g
@v 6= 0.

I F�1 is also primitive:

F�1(x , y) = (x , h(x , y))

where, for each x = u, h(x , y) is the inverse of g(x , v)

g(x , h(x , y)) = y and h(u, g(u, v)) = v



I If E = [a, b]⇥ [c, d ], then D = F (E) is

a  x  b, g(x , c)  y  g(x , d)

I If F (E) ⇢ [a, b]⇥ [c0, d 0] for some c0, d 0.

I If supp(�) ⇢ D0, then

Z

[a,b]⇥[c0,d 0]

�(x , y) dxdy =

Z b

a

⇣Z g(x ,d)

g(x ,c)
�(x , y) dy

⌘
dx





I Finally, for each u 2 [a, b], the one-variable change of

variables formula gives

Z d

c
�(u, g(u, v))|@g

@v
| dv =

Z g(u,d)

g(u,c)
�(u, y)dy

I Thus

Z b

a

⇣Z d

c
�(u, g(u, v))| det(d(u,v)F )|dv

⌘
du

equals Z b

a

⇣Z d 0

c0
�(x , y)dy

⌘
dx

which is the change of variable formula for F .



I Same argument gives change of variable formula for

F (u, v) = (f (u, v), v)

I Change of variables formula holds for all primitive

transformations.

I It also holds for flips. It is equivalent to

Z b

a

⇣Z d

c
�(x , y)dy

⌘
dx =

Z d

c

⇣Z b

a
�(x , y)dx

⌘
dy



The reduction to primitives and flips

I F : E ! D, F (u, v) = (f (u, v), g(u, v)) as above,

p 2 E .

I

dpF =

✓
@f
@u

@f
@v

@g
@u

@g
@v

◆

I dpF invertible ) at least one of
@f
@u ,

@g
@u 6= 0

I Suppose
@f
@u 6= 0.

I Let G(u, v) = (f (u, v), v)
(a primitive map)



I Then

dG =

✓
@f
@u

@f
@v

0 1

◆

I Inverse function theorem ) G invertible in a nbd of p,

and

G�1(x , y) = (h(x , y), y)

where h(f (u, v), v) = u, f (h(x , y), y) = x .
I Therefore

F (G�1(x , y)) = (f (h(x , y), y), g(h(x , y), y)) = (x , g2(x , y))

is a primitive map.



I Conclusion: Let F̃ = F � G�1.

I Then, restricted to a nbd of p,

F = F̃ � G

is the composition of two primitive maps.



I Suppose
@f
@u = 0.

I Then
@g
@u 6= 0.

I Let G(u, v) = (g(u, v), v)



I As before G is invertible in nbd of p and

G�1(x , y) = (h(x , y), y)

where g(h(x , y), y) = x
I Let B be the flip. Then

(B � F )(u, v) = (g(u, v), f (u, v))

I Let F̃ = B � F � G�1.

I Then

F̃ (x , y) = (g(h(x , y), y), f (h(x , y , y))) = (x , func(x , y))

is primitive.



I Rewrite the last equation

F = B � F̃ � G

where B is a flip, F̃ and G are primitive

I Put the two cases together:

F = B � F̃ � G

where B is either the identity or a flip, F̃ and G are

primitive.



Main Theorem

Theorem

Let E ,D be domains in R2 and let F : E ! D be C1,
bijective, and dpF invertible for all p 2 E0. Then every
p 2 E0 has a nbd Up such that there exist maps B,F1,G1

where

I B = the identity or a flip.
I F1 and G1 are primitive.
I F |Up = B � F1 � G1



Change of Variables Theorem

Theorem

Let E ,D be domains in R2 and let F : E ! D be C1,
bijective, and dpF invertible for all p 2 E0. Let � 2 Cc(D0).
Then

Z

E
�(F (u, v))) | det(d(u,v)F )| dudv =

Z

D
�(x , y)dxdy



Proof

I Let {Up}p2supp(F⇤�) be the open cover of supp(F ⇤�) by

the open sets Up of the Main Theorem.

I Let {Upi} be a finite subcover

I There are functions �i 2 Cc(F (Upi )) such that

� =
P

�i . (Standard “partition of unity” argument.)

I Suffices to prove theorem for � with

supp(�i) ⇢ F (Upi ) for a single i .
I In Upi can write F as a composition of flips and

primmitive mappings.

I Since the change of variables formula for two maps

implies the fomula for their composition, we’re done.



Summary of Differential Forms

I U ⇢ Rn open, 0  k  n
I Ak(U) = differential k -forms on U
I Each ↵ 2 Ak(U) has unique expression

↵ =
X

I

aI(x)dxI

over all stricltly increasing multi-indeces of length k .

I I = {i1, . . . , ik} where 1  i1 < · · · < ik  n.

I dxI = dxi1 ^ · · · ^ dxik
I aI : U ! R smooth functions.



I May write simply A(U) for the collection of all k -forms

for all k .

I Say deg(↵) = k () ↵ 2 Ak(U).

I Mulriplication Ak(U)⇥ A`(U) ! Ak+`(U) as defined in

class.

I Multiplication ↵ ^ � satisfies

� ^ ↵ = (�1)deg(↵)deg(�)↵ ^ �



Operations on forms

I Since A(U) is generated by A0(U)and the

dx1 2 A1(U), operations with reasonable

multiplicative properties are uniquely determined by

their values on A0(U) and the dxi

I Two main examples:

I Exterior derivative d : Ak (U) ! Ak+1(U).
I Pull-back f ⇤ : Ak (U) ! Ak (V ) for a smooth map

f : V ! U



Exterior Derivative d : Ak(U) ! Ak+1(U)

I Uniquely determined by requiring:

I If f 2 A0(U) a smooth function, then df is the usual

derivative.

df =
nX

1

@f
@xi

dxi

I d(dxi) = 0

I This version of the Leibnitz rule (product rule)

d(↵ ^ �) = d↵ ^ � + (�1)deg(↵)↵ ^ d�

I Must have for each stricly increasing multi-index I

d(aIdxI) = (daI) ^ dxI



d2 = 0

I d(df ) = d(
Pn

1

@f
@xi

dxi) =
Pn

1
d( @f

@xi
) ^ dxi

I Expand
nX

i=1

nX

j=1

@2f
@xj@xi

dxj ^ dxi

I Group i , j and j , i together:

d2f =
X

i<j

(
@2f

@xi@xj
� @2f

@xj@xi
)dxi ^ dxj

I If f is of class C2, d2f = 0.



I If f 2 A0(U), f is smooth, so d2f = 0.

I In other words, the map

d2 : A0(U) ! A2(U)

is the zero map.

I It follows that for all k

d2 : Ak(U) ! Ak+2(U)

is always zero

I If a dxI 2 Ak(U), then

d(d(a dxi)) = d(da ^ dxi) = d2a ^ dxi = 0



Pull-back

I If V ⇢ Rm open and f : V ! U smooth, where

x = f (t), written explicitly is

(x1, . . . , xn) = (f1(t1, . . . , tm), . . . , fn(t1, . . . tm)),

then

f ⇤ : Ak(U) ! Ak(V )

is uniquely determined by

I (f ⇤a)(t) = a(f (t)) for all a 2 A0(U)
I f ⇤(dxi) = dfi
I f ⇤(↵ ^ �) = f ⇤↵ ^ f ⇤�

for all ↵ 2 Ak (U),� 2 A`(U)

I Must have

f ⇤(a dxI) = (f ⇤a) dfi1 ^ · · · ^ dfik



I Finally two important identities:

I For all ↵ 2 Ak (U)

f ⇤(d↵) = d(f ⇤↵)

briefly

df ⇤ = f ⇤d

I If W ⇢ R` is open and g : W ! V smooth,

(f � g)⇤↵ = g⇤(f ⇤↵)

for all ↵ 2 Ak (U)
briefly

(f � g)⇤ = g⇤ � f ⇤



Cubical Chains

I Let Ik = {(t1, . . . tk) 2 Rk : 0  ti  1 be the standard
cube.

I If U ⇢ Rn is open, a singular k- cube in U is a smooth

map

� : Ik ! U

I Let Qk(U) denote the set of all singular k -cubes in U.

I Let Sk(U) be the R-vector space with basis Qk(U)

I Thus the elements of Sk(U) are finite linear

combinations X

�2Qk (U)

a��

with a� 2 R and a� 6= 0 for only finitely many �.





I
P

�2Qk (U) a�� =
P

�2Qk (U) b��
()
a� = b� for all � 2 Qk(U)

I
P

a�� +
P

b�� =
P

(a� + b�)�

I a(
P

a��) =
P

(aa�)�.

I The elements of Sk(U) are called singular cubical
chains in U.



I id : Ik ! Ik is an element of Qk(Ik).

I Faces of Ik come in pairs: as subsets

Ik
i,✏ = {t1, . . . .ti�1, ✏, ti+1, . . . .tk) 2 Ik} for ✏ = ±1

I As singular k � 1– cubes in Ik the maps �k
i,✏

�k
i,✏(t1, . . . , tk�1) = (t1, . . . , ti�1.✏, ti , . . . , tk�1)

I Define @(Ik), the boundary of Ik , to be

@Ik =
X

(�1)i+✏�k
i,✏ 2 Sk�1(Ik)



I If � : Ik ! U is a singular k cube in U, define its

boundary to be

@� =
X

i,✏

(�1)i+✏� � �k
i,✏

I If c =
P

� a�� is a singular k -chain in U, define its

boundary to be

@c = @(
X

a��) =
X

a�@�

I Check @2 = 0



I If ↵ 2 Ak(U) is a k -form and c =
P

a�� 2 Sk(U) is a

k -chain, define

Z

c
↵ =

X

�

a�

Z

�

↵ =
X

�

a�

Z

Ik
�⇤↵

I Theorem (Stokes’s Theorem)

For all ↵ 2 Ak�1(U) and for all c 2 Sk(U)
Z

c
d↵ =

Z

@c
↵






