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Differentiable Functions of Several Variables

I Simplest Example:
Linear transformations A : Rm ! Rn

I Recall Linear algebra vocabulary:

I Vector space
I Linear combinations
I Linear independence
I Span
I Basis, dimension









Examples of (R-)VectorSpaces

I Main example: Rn:
I dim(Rn) = n
I Every n-dimensional vector space is isomorphic to Rn

I Another example: Pn ⇢ C(R,R), the space of
polynomials of degree  n.

Pn = {a0 + a1x + a2x2 + · · ·+ anxn : a0, . . . an 2 R}



I Similarly T N ⇢ C(R/Z,R), the space of trigonometric
polynomials of degree  N:

T N = {a0+
NX

n=1

(an cos(nt)+bn sin(nt)) : a0, an, bn 2 R}

I What are the dimensions of Pn, T N?

I C-versions (complex vector spaces)
I Take ai 2 C in definition of Pn.

I Take
PN

�N cneint to define T N .





Some Infinite Dimensional Vector Spaces





Linear Transformations

I X ,Y vector spaces.
I A : X ! Y is a Linear Transformation



Examples



Linear Transformations and Matrices

I X ,Y finite dimensional with bases
{e1, . . . , em} for X , {f1, . . . , fn} for Y .

I A : Rm ! Rn





Invertible LinearTransformations
I X ,Y finite dimensional,
I dim(X ) = dim(Y ),
I A : X ! Y linear.
I Then A is one-to-one , A is onto.





The Space L(X ,Y )



Norm of A 2 L(Rm,Rn)





I A 2 L(Rm,Rn) ) A is uniformly continuous.
(In fact A is Lipschitz,with Lipschitz constant||A||.)

I A,B 2 L(Rm,Rn) ) ||A + B||  ||A||+ ||B||.

I A 2 L(RM ,Rn), B 2 L(Rn,Rk) ) ||BA||  ||B|| ||A||





I L(Rm,Rn) is a normed vectorspace.

I L(Rn,Rn) is a normed algebra



Inversion

I Let ⌦ = {A 2 L(Rn,Rn) : A is invertible }.

I Then ⌦ is open.





I The map ⌦ ! ⌦ defined by A ! A�1 is continuous.



Recall Norm of A 2 L(Rm,Rn)

I ||A|| = sup{ |Ax |
|x | : x 2 Rm, x 6= 0}

I Equivalent: ||A|| = sup{|Ax | : x 2 Rm, |x | = 1}

I Characterization:

||A|| = inf{C > 0 : |Ax |  C|x | for all x 2 Rm}



Comparison with other norms

I Suppose A 2 L(Rm,Rn) has matrix (ai,j)

I A takes the column vector x with entries (x1, . . . , xm)
to the column vector y with entries (y1, . . . , yn) given

by the matrix product:

yi =
mX

j=1

ai,j xj

I Schwarz inequality gives, for each i 2 {1, . . . , n}

y2

i 
� mX

j=1

a2

i,j
�� mX

j=1

x2

j
�



I summing over i get

nX

i=1

y2

i 
� n,mX

i=1,j=1

a2

i,j
�� mX

j=1

x2

j
�

I Thus

||A|| 
� n,mX

i=1,j=1

a2

i,j
� 1

2

I This inequality almost never an equality.



Natural Questions

I When is the last inequality an equality?

I Is there a formula for ||A|| ?





I A 2 L(Rm,Rn) ) A is uniformly continuous.

(In fact A is Lipschitz,with Lipschitz constant||A||.)

I A,B 2 L(Rm,Rn) ) ||A + B||  ||A||+ ||B||.

I A 2 L(Rm,Rn), B 2 L(Rn,Rk) ) ||BA||  ||B|| ||A||

I L(Rm,Rn) is a normed vector space.

I L(Rn,Rn) is a normed algebra



Invertible Transformations

I Write L(Rn) for L(Rn,Rn).

I Suppose A 2 L(Rn) is invertible, so A�1 exists.

I AA�1 = I (the unit matrix)

I Then || I ||  ||A|| ||A�1|| gives

||A�1|| � 1

||A||

I Warning: almost never equality!



I Since x = A�1Ax , get |x |  ||A�1|| |Ax |
I Equivalently

|Ax | � 1

||A�1|| |x | for all x 2 Rn.



I We see:

Theorem

I A is invertible ()
there exists a constant C > 0 so that

|Ax | � C |x | for all x 2 Rn

I If � is the supremum of all such C, then

||A�1|| = 1

�



Inversion

I Let ⌦ = {A 2 L(Rn,Rn) : A is invertible }.

I Then ⌦ is open.

I More precisely:

A 2 ⌦ and ||A � B|| < 1

||A�1|| ) B 2 ⌦

I In other words, A 2 ⌦ ) B(A, 1

||A�1||) ⇢ ⌦





I Write

B = A + (B � A) = A(I + A�1(B � A))

I Thus

B�1 = (I + A�1(B � A))�1)A�1

I The geometric series, if convergent, gives

B�1 = (I � (A�1(B � A) + (A�1(B � A))2 � . . . )A�1



I The norms of the partial sums are majorized by

1X

0

(�1)n(||A�1|| ||B � A||)n =
1

1 � ||A�1|| ||B � A||

I Converges by the assumption ||B � A|| < 1

||A�1|| .

I We also get the estimate (Rudin, proof of Thm 9.8)

||B�1||  ||A�1||
1 � ||A�1|| ||B � A||



I The map ⌦ ! ⌦ defined by A ! A�1 is continuous.

I Fix A 2 ⌦ and for B 2 B(A, 1

||A�1||) write

B�1 � A�1 = B�1(A � B)A�1

I Get

||B�1 � A�1|| < ||A�1||2 ||A � B||
1 � ||A�1|| ||B � A||

which converges to 0 as ||A � B|| ! 0



Inversion is Rational

I From Linear Algebra we know more facts about A�1.

I For example, if A has matrix (ai,j), there is a

polynomial det(A) of degree n in the ai,j called the

determinant.

I A 2 ⌦ () det(A) 6= 0

I Shows ⌦ is (Zariski) open.





Formula for A�1

I Given a 2 L(Rn), let C(A) denote the matrix of
cofactors of A.

I The entries of C(A) are polynomials (of degree n � 1)

in the entries of A.

I Classical formula

A�1 =
1

det(A)
Ct



I If n = 2 and

A =

✓
a b
c d

◆

I Then

A�1 =
1

ad � bc

✓
d �b
�c a

◆



Differentiation in Several Variables

I Setting: U ⇢ Rm open, f : U ! Rn, x 2 U.

I What does it mean for f to be differentiable at x?

I What is the multi-variable analogue of

f 0(x) = lim
h!0

f (x + h)� f (x)
h

I Problem: can’t divide by h 2 Rm for m > 1.





I Let r(h) = f (x + h)� f (x)� f 0(x)h

I Then

f (x + h) = f (x) = f 0(x)h + r(h)

where r(h) is “small”.

I How small?





I Need

lim
h!0

r(h)
h

= 0

I means r(h) ! 0 faster than any linear function of h.

I Another notation:

r(h) = o(|h|)



Definition of differentiability, derivative

I Let U ⇢ Rm be open, let f : U ! Rn, let x 2 U.

I f is differentiable at x if there exists a linear

transformation

A : Rm ! Rn

so that

f (x + h)� f (x) = Ah + o(|h|)
I Equivalent formulation:

lim
h!0

f (x + h)� f (x)� Ah
|h| = 0



I If A exists, it is unique

I If A exists, it is called the derivative of f at x

I Notation: dxf or (Rudin) f 0(x).





Partial Derivatives, Jacobian Matrix





Chain Rule







Recall:Definition of differentiability, derivative

I Let U ⇢ Rm be open, let f : U ! Rn, let x 2 U.
I f is differentiable at x if there exists a linear

transformation
A : Rm ! Rn

so that
f (x + h)� f (x) = Ah + o(|h|)

I Picture





I If A exists, it is unique

I If A exists, it is called the derivative of f at x

I Notation: dxf or (Rudin) f 0(x).

I dxf is the best linear approximation to f at x .

I f differentiable at x ) f continuous at x .





Partial Derivatives, Jacobian Matrix

I f differentiable at x ) all partial derivatives of f at x
exist.

I In fact.
@f
@xi

(x) = dxf (ei)



I Warning: Existence of partials ; differentiable.
I Example: f : R2 ! R defined by

f (x , y) =

(
xy

x2+y2 if (x , y) 6= (0, 0),
0 if (x , y) = (0, 0).

I f (x , 0) = 0 for all x ) @f
@x (0, 0) = 0.

I Similarly @f
@y (0, 0) = 0.

I But f (x , x) = 1
2 for x 6= 0 ) f not continuous at (0, 0).





I Suppose f is differentiable at x .

I dxf (ei) =
@f
@xi

)the matrix of dxf is the Jacobian
matrix

0

BBB@

@f1
@x1

@f1
@x2

. . . @f1
@xm

@f2
@x1

@f2
@x2

. . . @f2
@xm

. . . . . . . . . . . .
@fn
@x1

@fn
@x2

. . . @fn
@xm

1

CCCA

I Note that the i th column is the vector dxf (ei), where
{e1, . . . , em} is the standard basis of Rm.

I More precisely, the entries of the columns are the
components of dxf (ei) in the standard basis of Rn.



Chain Rule







The Gradient









||df || bounded) Lipschitz

Theorem
U ⇢ Rm open and convex, f : U ! Rn differentiable.
Suppose there is constant M such that

||dxf ||  M for all x 2 U

then
|f (y)� f (x)|  M|y � x | for all x , y 2 U.









Theorem
U ⇢ Rm open and convex, f : U ! Rn differentiable.
Suppose that

dx f = 0 for all x 2 U

then f is constant.





Functions of class C1







Inverse Function Theorem




