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DOMINGO TOLEDO

Abstract. Let M be a closed Riemann surface, N a Riemannian manifold
of Hermitian non-positive curvature, f : M → N a continuous map, and E
the function on the Teichmüller space of M that assigns to a complex struc-
ture on M the energy of the harmonic map homotopic to f . We show that
E is a plurisubharmonic function on the Teichmüller space of M . If N has
strictly negative Hermitian curvature, we characterize the directions in which
the complex Hessian of E vanishes.

1. Introduction

LetM be a closed oriented surface, letN be a (compact) manifold of non-positive
curvature, and fix a homotopy class of continuous maps from M to N . For each
complex structure J on M there exists a harmonic map fJ : (M,J) → N in the
given homotopy class. In situations where this map is unique it varies smoothly
with J and its energy E(fJ) defines a smooth function on the space of complex
structures on M , which descends to a smooth function on the Teichmüller space of
M . See [3, 10, 15] for proofs of smooth dependence in several contexts.

Suppose now that the target manifold N satisfies the stronger condition that
it has non-positive Hermitian sectional curvature. This is the curvature condition
introduced by Siu [12] and Sampson [11] in order to apply harmonic mappings to
rigidity theory. By definition, it means that R(X,Y, X̄, Ȳ ) ≤ 0 for all X,Y ∈ TN⊗

C, where R denotes the complex multilinear extension of the Riemann curvature
tensor of N . In particular, by choosing X and Y real, we see that the sectional
curvatures R(X,Y,X, Y ) ≤ 0, so N has non-positive sectional curvature. See,
for example, [1] for an exposition of how this condition is can be used in Kähler
geometry.

The purpose of this paper is, first of all, to prove that under the non-positive
Hermitian curvature condition, this energy function is a plurisubharmonic function
on Teichmüller space. We state this formally as:

Theorem 1. Let M be a compact Riemann surface, let N be a compact manifold

of non-positive Hermitian sectional curvature. Fix a homotopy class of maps from

M to N , and assume that for every complex structure J on M there is a unique

harmonic map fJ : (M,J) → N in this class. Let E be the function on the Te-

ichmüller space of M that assigns to the equivalence class of the complex structure

J the energy E(fJ). Then E is plurisubharmonic.

Date: March 28, 2012.
2010 Mathematics Subject Classification. 32G15,58E20.
Author partially supported by NSF grants DMS 0200877, DMS-0600816 and by a grant from

the Simons Foundation 208853.

1



2 DOMINGO TOLEDO

We remark that the uniqueness assumption is typically satisfied. For instance, if
the sectional curvature of N is strictly negative, then the harmonic map is unique
unless its image is either a point or a closed geodesic [5]. If N is a locally symmetric
space of non-compact type, then f is unique unless f∗(π1(M)) is centralized by a
semi-simple element in the group of isometries of the universal cover of N [14].
These locally symmetric spaces all satisfy KC ≤ 0 [11] and are the natural setting
for our applications.

We also give sufficient conditions for this function to be strictly plurisubhar-
monic, see Theorem 3. Briefly, if the Hermitian sectional curvature of the target
is strictly negative and we have a family of harmonic maps with non-equal images,
then the function is stricly plurisubharmonic, see Corollary 2.

But the main applications that we have presently in mind involve situations
where the function is not strictly plurisubhamonic. It is natural to characterize the
tangent directions to Teichmüller space in which the complex Hessian of E vanishes.
We partially do this in the case that the Hermitian curvature of the target is strictly
negative, see Theorem 4, which suggests a possible characteriztion that would be
more complete and geometric, see Remark 3

A significant special case of the plurisubharmonicity result is due to Tromba [15].
He proves that this function is strictly plurisubharmonic in case that N is also a
negatively curved Riemann surface and the homotopy class consists of homotopy
equivalences. We follow Tromba’s method, but a new ingredient is needed. For
a surface N sectional (= Gaussian) curvature and Hermitian sectional curvature
are equivalent, but they differ in higher dimensions. The new ingredient that we
need is the Micallef-Moore formula for the Laplacian of a complex variation. It is
interesting that this formula seems to be the only other appearance of Hermitian
curvature in the literature, and its applications have been mainly to positively
curved situations.

It is clear that Theorem 1 also holds in more general situations. We have chosen
N to be a compact manifold for simplicity in quoting existence theorems, but it will
be clear from the proofs that it holds whenever we have existence and uniqueness
theorems. In particular it holds under suitable technical conditions for non-compact
N , and, more generally, for harmonic maps f : M̃ → Ñ equivariant under suitable
representations ρ : π1(M) → G, where G is the group of isometries of Ñ , the
universal cover of N , and M̃ is the universal cover of M .

The motivation for this paper is an idea of Gromov that plurisubharmonicity
of energy should give an alternative formulation of the rigidity theory of Siu and
Sampson. Recall that this theory shows that harmonic maps from a compact Kähler
manifold to a quotient N of a bounded symmetric domain D are pluriharmonic,
and that pluriharmonic maps of sufficiently large rank (where sufficiently large is a
function of D), are holomorphic. Gromov’s idea is best explained when the domain
V is a smooth projective algebraic surface, decomposed as a “curve of curves”,
that is, suppose we have an algebraic map V → Q to some parameter algebraic
curve Q with fibres Vq, which are smooth and connected for q ∈ Q \ Σ for some
finite set Σ ⊂ Q (the set of critical values). Let f : V → N be a harmonic, hence
pluriharmonic map. Theorem 1 shows that E(fq) is a subharmonic function on
Q\Σ. To illustrate how this can be put to work, we discuss a special case of results
in §4.6 of [4]. Namely, if the Vq form a Lefschetz pencil and if one fq is holomorphic,
then f is holomorphic.
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This paper grew out of conversations with Misha Gromov. I am very grateful
to him for suggesting that this result should be true, for many interesting conver-
sations, and for his encouragement to write up this paper. I am also grateful to
Arnaud Beauville for some helpful suggestions, and to the referrees for suggestions
that greatly improved the presentation of the paper/

2. Plurisubharmonicity

Let M be a closed oriented surface and J a compatible complex structure on M .
If α is a one-form on M , we write Jα for the one form α ◦ J

−1 = −α ◦ J . More
generally, if A is an endomorphism of TM , we will write Aα for −α ◦ A. Then
Jα = ∗α where ∗ denotes the Hodge ∗-operator of any Riemannian metric in the
conformal class of J . In particular,

�
M α ∧ Jα =

�
M α ∧ ∗α is the square of the

L
2-norm of α. If f : M → N is a smooth map, let < df∧Jdf > denote the two-form

on M obtained by combining the wedge product in M with the Riemannian metric
< , > on f

∗
TN . Then

(1) E(f, J) =
1

2

�

M
< df ∧ Jdf >

is the energy of f , which is a function of f and J . In other words, if C ⊂

C
∞(M,End(TM)) denotes the space of complex structures on M :

(2) C = {J ∈ C
∞(M,End(TM)) : J2 = −id},

and C
∞(M,N) denotes the space of C∞ maps from M to N , then the energy is a

function E : C∞(M,N)× C → R.
Now fix a compact manifold N of non-positive Hermitian sectional curvature (in

particular, of non-positive sectional curvataure), and fix homotopy class of maps
from M to N , that is, fix a connected component of C∞(M,N). For every complex
structure J ∈ C there exists a harmonic map M → N in this component. Under
situations in which this map is unique it depends smoothly on J and we can denote
this harmonic map by fJ and we let E(J) = E(fJ , J). Then E : C → R is a function
that descends to Teichmüller space. To prove Theorem 1, that E is plurisubhar-
monic on Teichmüller space, is equivalent to proving that it is plurisubharmonic
on C which means that its restriction to every germ of a complex curve in C is
subharmonic. This last statement can be checked in the following way.

Let D be a small disk in C centered at 0, and let J(s, t) be a family of complex
structures on M compatible with the orientation and depending holomorphically
on the complex parameter u = s + it ∈ D. Explicitly, this means that for each
u = s+ it, J(s, t) ∈ C satisfying the Cauchy-Riemann equations

(3) J(s, t)2 = −id and
∂J

∂t
= J

∂J

∂s
.

Let E(s, t) = E(f(s, t), J(s, t)), where we write f(s, t) for fJ(s,t) Then E is plurisub-
harmonic on C if and only of, for all such disks D and families J(s, t), we have
∆E(0, 0) ≥ 0. This is what we prove:

Theorem 2. Let E : D → R be the function just defined. Then ∆E(0, 0) ≥ 0.

An alternative and useful formulation of such a family J(s, t) is the following.
Give M×D the complex structure J̃ which is the direct sum of J(s, t) on M×(s, t)
and the standard complex structure on x×D for each x ∈ M . Explicitly, J̃(X+Y ) =
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JX+IY , whereX ∈ TM , Y ∈ TD, JX = J(s, t)X and IY is the standard complex
structure on D, that is, multiplication by i on TD. It is straightforward to check,
since J a holomorphic function of s + it (and since J is integrable), that J̃ is an
integrable almost complex structure on M ×D.

The harmonic maps f(s, t) : (M,J(s, t)) → N can be assembled into a single
map f : M ×D → N which we think of as a variationf the map f |M×{0} : M → N .
We will perform computations on M × D using the following notation. We will
write simply TM for the bundle pr

∗
M (TM) over M ×D, and df for the section of

T
∗
M ⊗ f

∗
TN which is the differential of f restricted to directions tangent to M .

Then the energy function E : D → R under consideration

(4) E(s, t) =
1

2

�

M
< df ∧ Jdf > .

Recall that, for each (s, t) ∈ D, f( , (s, t)) is harmonic with respect to J(s, t):

(5) d∇Jdf = 0

where d∇ : C
∞(T ∗

M ⊗ f
∗
TN) → C

∞(
�2

T
∗
M ⊗ f

∗
TN) denotes the exterior

derivative associated to the connection ∇ on f
∗
TN induced by f from the Levi-

Civita connection on N .

Proof of Theorem 2. We derive a formula for ∂2E
∂s2 (similarly for ∂2E

∂t2 ) by using the
following general principle:

Lemma 1. Suppose g = g(x, y) is a function of two variables that is linear in y, and

that (x(s), y(s)) is a curve in the domain of g so that for each s, x(s) is a critical

point of the function g(x, y(s)), that is, ∂g
∂x (x(s), y(s)) = 0. Define a function φ by

φ(s) = g(x(s), y(s)). Then

∂
2
φ

∂s2
=

∂
2
g

∂x∂y

∂x

∂s

∂y

∂s
+

∂g

∂y

∂
2
y

∂s2
(6)

= −
∂
2
g

∂x2
(
∂x

∂s
)2 +

∂g

∂y

∂
2
y

∂s2
,(7)

where the derivatives of g are evaluated at (x(s), y(s)).

Proof. The first formula is clear, the second follows from the first by differentiating
∂g
∂x (x(s), y(s)) = 0. �

Applying this lemma to our function E(J) = E(fJ , J), Equation 6 gives

(8)
∂
2
E

∂s2
=

�

M
(< d∇

∂f

∂s
∧

∂J

∂s
df > +

1

2
< df ∧ (

∂
2
J

∂s2
df) >),

(where the first term is obtained by differentiating (1) separately in each variable:
in direction f keeping J fixed (first variation of energy, before doing an integration
by parts) and in direction J keeping f fixed), while Equation (7) gives

(9)
∂
2
E

∂s2
= −I(

∂f

∂s
,
∂f

∂s
) +

1

2

�

M
< df ∧ (

∂
2
J

∂s2
df) >,

where I(∂f∂s ,
∂f
∂s ) is the Index Form or Second Variation Form of the energy E (with

respect to its first variable, for fixed J), that is
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I(
∂f

∂s
,
∂f

∂s
) = −

�

M
<

∂f

∂s
, d∇(Jd∇

∂f

∂s
) + R̂(

∂f

∂s
) >(10)

=

�

M
(< d∇

∂f

∂s
∧ Jd∇

∂f

∂s
> − <

∂f

∂s
, R̂(

∂f

∂s
) >).

where R̂(∂f∂s ) is the f
∗
TN -valued two form on M defined by

(11) R̂(
∂f

∂s
)(X ∧ Y ) = R(

∂f

∂s
, df(X))df(JY )−R(

∂f

∂s
, df(Y ))df(JX)

for all X,Y ∈ TxM . Observe that

< R̂(
∂f

∂s
)(X ∧ JX),

∂f

∂s
> = R(

∂f

∂s
, df(X),

∂f

∂s
, df(X))(12)

+ R(
∂f

∂s
, df(JX),

∂f

∂s
, df(JX)),

where R(X,Y, Z,W ) =< R(X,Y )Z,W > is the curvature tensor of N . In partic-
ular, it has the same sign as sectional curvature. The curvature assumption on N

implies that I is a positive (semi-) definite symmetric bilinear form.
Going back to formula (8) and adding to it the same formula for the second

derivative with respect to t, we obtain the following formula for the Laplacian
∆ = ∂2

∂s2 + ∂2

∂t2 :

(13) ∆E =

�

M
(< d∇

∂f

∂s
∧

∂J

∂s
df > + < d∇

∂f

∂t
∧

∂J

∂t
df > +

1

2
< df ∧ (∆J)df >).

Doing the same with formula (9) we obtain

(14) ∆E = −I(
∂f

∂s
,
∂f

∂s
)− I(

∂f

∂t
,
∂f

∂t
) +

1

2

�

M
< df ∧ (∆J)df > .

Writing

(15) W =
∂f

∂t
+ i

∂f

∂s
,

(the reason for the choice will be clear later; note that W = 2i∂f∂u , where u = s+it),
the first two terms of formula (14) are the same as −I(W,W ) = −I(W,W ) where,
for complex vector fields U, V , I(U, V ) denotes the complex bilinear extension of I.
Thus an equivalent form of (14) is

(16) ∆E = −I(W,W ) +
1

2

�

M
< df ∧ (∆J)df >= −a+ b,

where −a and b are the first and second terms, respectively.
Note that, differentiating the second equation (3) with respec to s and to t and

combining some terms we get

(17) ∆J = J (
∂J

∂s
)2.

It is easy to see that (∂J∂s )
2 is a non-negative multiple of the identity, thus b ≥ 0.

But the non-positive curvature assumption forces, as remarked above, a ≥ 0. So
proving the positivity of b−a will require some work. We will need both expressions
(13) and (16): a suitable combination of an upper bound for the first two terms of
(13) and a lower bound for I(W,W ) in (16) will give the desired inequality.
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To simplify the notation define J0 and H to be:

(18) J0 = J(0, 0), H =
∂J

∂s
(0, 0).

Then the equations (3) and (17) give

(19)
∂J

∂t
(0, 0) = J0H, (∆J)(0, 0) = J0H

2
,

therefore the formulas (13) and (16) become:

(20) ∆E(0, 0) =

�

M
(< d∇

∂f

∂s
∧Hdf > + < d∇

∂f

∂t
∧J0Hdf > + < df∧J0H

2
df >),

and

(21) ∆E(0, 0) = −I(W,W ) +

�

M
< df ∧ J0H

2
df >= −a+ b,

where, as before, −a and b are the first and second terms, and −a is also the sum
of the first two terms of (20). Explicitly,

a = −

�

M
(< d∇

∂f

∂s
∧Hdf > + < d∇

∂f

∂t
∧ J0Hdf >) = I(W,W )

b =

�

M
< df ∧ J0H

2
df >,(22)

where the first expression for a is minus the sum of the first two terms of (20), and
the second expression for a is from (16).

To prove that ∆E(0, 0) ≥ 0 is the same as proving a ≤ b which is the same as

(23) |

�

M
(< d∇

∂f

∂s
∧Hdf > + < d∇

∂f

∂t
∧ J0Hdf >)| ≤

�

M
< df ∧ J0H

2
df > .

The most straightforward estimate, obtained by applying Schwarz’s inequality to
each term on the left hand side, is too weak, because it treats the two terms on the
left as separate entities. To derive an efficient estimate we need to recognize this
sum as a single inner product of two complex tensors.

Decompose, as usual, the complexified tangent space TM
C = T1,0M ⊕ T0,1M

and the complexified cotangent space T ∗
M

C = T
1,0

M⊕T
0,1

M into ±i eigenspaces
for J0. Write d

�
f for the restriction of the complexified differential df : TMC →

f
∗
TN

C to T1,0M and d
��
f for its restriction to T0,1M . Thus d

�
f is a section of

T
1,0

M⊗f
∗
TN

C and d
��
f is a section of T 0,1

M⊗f
∗
TN

C. The complexified covariant
derivative d∇ splits as a sum d∇ = d

�
∇+d

��
∇. In this notation, the harmonic equation

for f at M,J0 is d��∇d
�
f = 0.

The complexification of the endomorphism H of TM anti-commuting with J0 is
of the form H = µ+µ̄, where µ is a section of T 0,1

M⊗T1,0M (and consequently µ̄ a
section of T 1,0

M ⊗T0,1M). Thus, in terms of a local complex coordinate z = x+ iy

for M with complex structure J0.

(24) H = m
∂

∂z
⊗ dz̄ + m̄

∂

∂z̄
⊗ dz,

where m is a smooth complex-valued function. Consequently we also have J0H =
iµ− iµ̄. In this notation, the integrand in the first term of (23) is

< (d�∇ + d
��
∇)

∂f

∂s
∧ (µd�f + µ̄d

��
f) >,
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where, in accordance with our earlier notation, µd
�
f = −d

�
f ◦ µ and µ̄d

��
f =

−d
��
f ◦ µ̄. Note that µd

�
f is a form of type (0, 1), given by −m

∂f
∂z dz̄ in local

coordinates, while µ̄d��f is of type (1, 0), and locally given by −m̄
∂f
∂z̄ dz. The bracket

< , > denotes the complex bilinear extension of the inner product. Therefore the
Hermitian products will involve complex conjugation.

Expanding the above expression, we get the expression

< d∇
∂f

∂s
∧Hdf >=< d

�
∇
∂f

∂s
∧ µd

�
f > + < d

��
∇
∂f

∂s
∧ µ̄d

��
f > .

Similarly, the second term is

< d∇
∂f

∂t
∧ J0Hdf >=< d

�
∇
∂f

∂t
∧ iµd

�
f > + < d

��
∇
∂f

∂t
∧ (−i)µ̄d��f >,

thus their sum is

< d
�
∇(

∂f

∂s
+ i

∂f

∂t
) ∧ µd

�
f > + < d

��
∇(

∂f

∂s
− i

∂f

∂t
) ∧ µ̄d

��
f >

which can be rewritten as

< d
�
∇W ∧ µd

�
f > + < d

��
∇W̄ ∧ µ̄d

��
f >= 2Re < d

�
∇W ∧ J0µd

�
f >,

where W = ∂f
∂s + i

∂f
∂t as in (15). We summarize:

(25) < d∇
∂f

∂s
∧Hdf > + < d∇

∂f

∂t
∧ J0Hdf >= 2Re < d

�
∇W ∧ J0µd

�
f > .

Note that the hermitian form
�
M < α∧ J0β̄ > is positive definite, and therefore

so is the real form
�
M Re < α ∧ J0β̄ >. Applying the Schwarz inequality to this

bilinear form, and then applying the inequality of arithmetic and geometric means
gives the inequality
(26)

|2

�

M
Re < d

�
∇W ∧J0µd

�
f > | ≤

�

M
< d

�
∇W ∧J0d

��
∇W > +

�

M
< µd

�
f ∧J0µ̄d

��
f >,

with equality if and only if d��∇W and µd
�
f are linearly dependent over R (for the

Schwarz inequality) and they have the same length (for equality of the arithmetic
and geometric means), thus if and only if

(27) d
��
∇W = ±µd

�
f,

One easily checks, say using the local coordinate expression (24), that the second
term on the right-hand side of (26) is

(28)

�

M
< µd

�
f ∧ J0µ̄d

��
f >=

1

2

�

M
< df ∧ JoH

2
df >,

which is one of the terms we want in our desired inequality (20). Thus we turn to
the first term on the right hand side of (26). First observe that

�

M
< d

�
∇W ∧ J0d

��
∇W >=

�

M
< d

��
∇W ∧ J0d

�
∇W >= 2

�

M
|∇z̄W |

2
dx ∧ dy,

the factor of 2 resulting from idz ∧ d̄z = 2dx ∧ dy. Compare now with the basic
formula (2.3) of Micallef and Moore [9], (which, by the appearance of this factor of
2, requires changing their coefficient of 4 in the first term to a 2). In our notation
it reads:

(29) I(W,W ) = 2

�

M
< d

�
∇W ∧ J0d

��
∇W > − 4

�

M
R(

∂f

∂z
,W,

∂f

∂z
,W )dx ∧ dy.
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Observe that the integrand in the second term is Hermitian sectional curvature.
Thus this curvature makes its appearance through the Micallef-Moore formula.

We now have all the ingredients that we need. In order to have reasonable
formulas to display, let us use the following notation

a = −

�

M
(< d∇

∂f

∂s
∧Hdf > + < d∇

∂f

∂t
∧ J0Hdf >) = I(W,W )

α =

�

M
< d

�
∇W ∧ J0d

��
∇W >

b =

�

M
< df ∧ J0H

2
df >

ρ =

�

M
R(

∂f

∂z
,W,

∂f

∂z
,W )dx ∧ dy,

where a and b are as defined before in (22). Note that the first three of these
quantities are non-negative, while the fourth, being Hermitian sectional curvature,
is, by assumption, non-positive.

The inequality (23) that we want to prove is a ≤ b. The inequality (26) proves
that a ≤ α + b

2 . The Micallef-Moore formula (29) and the equality a = I(W,W )
show that α = a

2 + 2ρ. Thus

a ≤
1

2
(a+ b) + 2ρ

equivalently,

(30) a ≤ b+ 4ρ

which implies the desired inequality a ≤ b since ρ ≤ 0 by the assumption that N

has non-positive Hermitian curvature. �

3. Strict Plurisubharmonicity

Now we look at situations when the inequality (23) must be strict. One such
situation is as follows.

Theorem 3. Suppose that R(X,Y, X̄, Ȳ ) < 0 whenever X∧Y �= 0, in other words,

N has strictly negative Hermitian curvature. Suppose that df is never zero, and

suppose that the complex structure varies to first order, in other words, the class

of µ is non-zero in H
1(M,T1,0M). Equivalently, suppose µ represents a non-zero

tangent vector to Teichmüller space. Then ∆E(0) > 0 for the variation (18).

Note that the following Corollary includes the result of Tromba mentioned in
the introduction:

Corollary 1. Suppose that N is a Riemann surface with a metric of strictly neg-

ative curvature, and that the harmonic map f : M → N has at most generic

singularities, in other words, f is either non-singular or has only folds and cusps,

and suppose µ is as above. Then ∆E(0) > 0 for the variation (18).

Proof. To prove the theorem, suppose that equality holds in (23). Then we must
have that equality holds in (26) and in (30). If equality holds in (26) we must have
that the condition (27) holds, namely

(31) d
��
∇W = ±µd

�
f,
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and if equality holds in (30), we must have ρ = 0, which means that ∂f
∂z ∧W = 0.

Since, by assumption, d�f never vanishes, this implies that

(32) W = λd
�
f

for some smooth section λ of the bundle T1,0M . Then

(33) d
��
∇W = ∂̄λd

�
f + λd

��
∇d

�
f = ∂̄λd

�
f

because f is harmonic: d
��
∇d

�
f = 0. Comparing this equation with (31) we must

have µ = ±∂̄λ, contradicting that µ �= 0 in H
1(M,T1,0M).

To prove the Corollary, just obseve that for a non-singular map or a map with
only folds or cusps, the rank of df is at least one at each point, so df is never 0 and
the Theorem applies. �

This argument generalizes easily to the situation when df has zeros. The vector
field λ then has singularities, but defines a current which localizes the deformation
class µ.

Fix J0 as before and a direction H at J0, or, what is the same by (24), choose
µ ∈ A

0,1(M,T1,0M), (where A
p,q denotes smooth forms of type (p, q)). The class

[µ] ∈ H
1(M,T1,0M) represents a tangent vector to Teichmüller space at J0. We

want to give a necessary and sufficient condition for the complex hessian of E at
J0 to vanish in the direction [µ]: ∂̄∂jJ0E(µ) = 0.

If f is not constant then df has isolated zeros. Namely, dxf = 0 if and only if
d
�
xf = 0 an the latter is a holomorphic section of T 1,0

M ⊗ f
∗
TN

C. If dxf = 0,
choose a local holomorphic coordinate z centered at x and a local holomorphic
trivialization of f∗

TN
C. Then d

�
f = ∂f

∂z dz and

(34)
∂f

∂z
= z

m
v(z)

where v(z) is a holomorphic vector function of z with v(0) �= 0 and m ≥ 1. Let
x1, . . . , xk be the zeros of d�f , and let mi be the exponent m for this zero (the
multiplicity of xi), and let

(35) Z =
�

i

mi xi

be the zero divisor of d
�
f . We write |Z| = {x1, . . . , xk} for the (set-theoretic)

support of Z, we write O(Z) for the line bundle over (M,J0) with canonical section
σ that defines the divisor Z.

Theorem 4. Suppose that, as in Theorem 3, N has strictly negative Hermitian

curvature, and suppose that at a point J0 ∈ C and tangent direction µ ∈ TJ0C with

[µ] �= 0 ∈ H
1(M,T1,0M), the complex Hessian of E vanishes: ∆E(0) = 0 for the

variation (18). Then

(1) The zero set |Z| of df is not empty.

(2) The closure of d
�
f(T1,0M) in f

∗
TN

C
is a line sub-bundle L ⊂ f

∗
TN

C
,

L ∼= O(Z)⊗ T1,0M .

(3) The variation field W is a C
∞

section of L, and the equation (32) holds

for a smooth section λ of T1,0(M \ |Z|). In particular, W is tangent to

f(M). In other words, the image of M does not move to first order under

the deformation.
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(4) At each xi ∈ |Z| the section λ of T1,0(M \ |Z|) defines a residue current αi.

The variation field W does not vanish identically on Z in the sense that

not all of these currents αi can vanish.

(5) The section λ on M \ |Z| extends to a current on M and we have the

equation of currents

(36) ∂̄λ = ±µ−

�
αi.

In particular, [µ] has a representative with support in Z.

(6) The derivative of E vanishes at J0 in the direction µ: dJ0E(µ) = 0.

Corollary 2. Suppose that N has strictly negative Hermitian sectional curvature

and that in the variation (18) the image of f varies to first order, in other words,

W is not tangent to f(M). Then ∆E(0, 0) > 0.

Remark 1. The conclusions of the Theorem are easier to state in the case that
all the multiplicities mi = 1. Then the fourth statement says that we cannot have
W (xi) = 0 for all i, in other words, some of the zeros of df have to move under the
deformation. The fifth statement says that µ is cohomologous, as a current, to a
sum of delta functions at the xi for which W (xi) �= 0, in other words, the variation
of complex structure can be concentrated at the zeros of df that move under the
deformation.

Remark 2. The situation described in the theorem does occur, and there is a
classical example: branched covers and Schiffer variations. Namely, let N be itself
a hyperbolic Riemann surface, and let f : (M,J0) → N be a holomorphic branched
cover. Suppose, for simplicity, that f is a double cover, so that all the zeros of d�f
have multiplicity one and we are in the situation of Remark 1. Let p ∈ M be one of
the branch points, and let q = f(p) ∈ N . If we move q and we take replace (M,J0)
by the double branched cover of N branched over q, we get a family (M,Jq) where
the variation µ is concentrated at the point p that moves under the deformation.
This is called a (first order, global) Schiffer variation, see, say, Example 1 of Chapter
2, section 3 of [8]. The harmonic map fq is still holomorphic, and having constant
degree as q varies, it has constant energy and thus dE = ∆E = 0 in this family.
This is the motivating example behind the theorem. Examples for zeros of arbitrary
order are given by higher order Schiffer variations.

Remark 3. More genrally, suppose N has strictly negative Hermitian sectional
curvature but it is of any dimension, and suppose that N0 is a hyperbolic Riemann
surface. Suppose that f0 : (M,J0) → N0 is a branched cover as in Remark 2, and,
for simplicity, assume it to be a double cover. Let (f0)q : (M,Jq) → N0 be as
in Remark 2. Suppose further that g : N0 → N is a harmonic map. Define maps
fq = g◦(f0)q : (M,Jq) → N . We get a family of harmonic maps of constant energy.
It is natural to ask if (in the case that d

�
f has simple zeros), this is the only way

to obtain directions in which the complex Hessian vanishes (and the corresponding
construction for zeros of any order). I this were true, it would give a new proof of
some well-known theorems on factorization theorems for harmonic maps through
holomorphic maps of Riemann surfaces. See, for example, the discussion of the
fibrations and of factorizations in Chaptes 2, 4, 6 of [1] and the references given
there. In fact a localized version of some of these theorems in which a compact
Kähler manifold is replaced by a neighborhood of a suitable complex curve in it.
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Proof of Theorem 4. The first statement follows from Theorem 3: if df never van-
ishes then ∆E(0) > 0. For the second statement, the line sub-bundle L ⊂ f

∗
TN

C

is spanned, in M \ |Z|, by the vectors ∂f/∂z, and in a neighborhood of each xi,
by the vectors v(z) in (34). It is clear that the image of d�f coincides with L on
M \ |Z|, and from (34) that over the domain of the local coordinate z, the closure
of the image of d�f coincides with L. It is also clear that L ∼= T1,0M ⊗ O(Z), in
fact, under this isomorphism, the bundle map d

�
f : T1,0 → T1,0 ⊗ O(Z) coincides,

up to a constant factor, with multiplication by the canonical section σ of O(Z).
The third statement follows, as before, from the strict negativity of Hermitian

curvature, that forces ∂f
∂z ∧W = 0, hence W lies in L since it does in the dense open

set where ∂f
∂z �= 0. This means that (32) holds on M \ |Z|, for some smooth section

of λ of T1,0(M \ |Z|), but we have to examine it more closely on |Z|. Fix a zero of
d
�
f and let z be a local coordinate centered at this zero and write λ(z) = l(z) ∂

∂z
for some smooth function l defined for z �= 0. Then, using (34), (32) becomes

(37) W = λd
�
f = l(z)zmv(z) = η(z)v(z),

where η is smooth for all z. Moreover, we get that (31) becomes

(38) ∂̄lz
m
v(z) = ±m(z)zmv(z)dz̄.

and therefore we get an equality of differential forms on {z �= 0}:

(39) ∂̄λ = ∂̄(l
∂

∂z
) = ±m

∂

∂z
⊗ dz̄ = ±µ for z �= 0.

but we need to check what the distributional derivative is at 0. To this end, fix a
disk Dρ = {|z| < ρ} centered at 0. On Dρ (37) gives that λ = l(z) ∂

∂z where

l(z) =
η(z)

zm
where η is smooth.

This type of singularity of λ, even though it is not integrable for m > 1, still defines
a principal value current, namely the linear functional on A

0,1
c (Dρ, T

1,0 ⊗ T
1,0) ⊂

A
0,1(M,T

1,0 ⊗ T
1,0) that assigns to φ(z)dz2d̄z, where φ ∈ C

∞
c (Dρ), the number

λ[φdz2d̄z] = lim
r→0

1

2πi

�

r<|z|<ρ

η(z)

zm
φ(z)dzd̄z.

It is standard that this principal value limit exists. Its distributional derivative is
the linear functional ∂̄λ on the space of compactly supported quadratic differentials
defined by

(∂̄λ)[φdz2] = − lim
r→0

1

2πi

�

r<|z|≤ρ

η(z)

zm
∂̄φdz

Integrating by parts we get

∂̄λ[φdz2] = lim
r→0

� 1

2πi

�

|z|=r

η(z)

zm
φ(z)dz +

1

2πi

�

r≤|z|≤ρ
∂̄l(z)φ(z)dz

�

The second integral converges to 1
2πi

�
|z|≤ρ m(z)φ(z)dzdz̄, while the first integral

converges to what is called the residue current

(40) α[φdz2] = lim
r→0

1

2πi

�

|z|=r
λ · φdz

2 = lim
r→0

1

2πi

�
l(z)φ(z)dz.
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It is standard and easy to see that this limit exists and has an explicit formula:

(41) α[φ] =
�

j+l=m−1

cj
∂
j
η

∂zj
(0)

∂
l
φ

∂zl
(0),

for suitable constants cj , in other words, a sum of derivatives of delta functions at
0 with coefficients multiples of the z-derivatives of η at 0. Doing this at each zero
xi of df , calling the resulting current (40, 41) αi, we get the equation of currents:

(42) ∂̄λ = ±µ−

�
αi

These formulas prove the fourth and fifth statements. Namely, (42) and (40,41)
prove statement (5), and, if all residue currents of statement (4) vanished, then we
would get all αi = 0, hence ∂̄λ = µ, contradicting the assumption [µ] �= 0.

Observe that formula (41) shows that statement (5) of the theorem is equivalent

to saying: not all partial derivatives ∂jηi

∂zj (0), 0 ≤ j ≤ mi − 1, 1 ≤ i ≤ k, vanish,
where ηi is as in (37) for the zero xi of d�f .

Finally, for the last statement, recall the well-known formula

(43) dJ0E(µ) = c �

��

M
µ ·Q

�
,

(for some constant c �= 0 that is not important here) which is obtained by differen-
tiating (4) with respect to J , and where Q is the holomorphic quadratic differential
(Hopf differential) of f , namely Q = (f∗

h)(2,0) =< d
�
f, d

�
f > where h is the metric

tensor of N and µ · Q denotes the natural pairing with values in (1, 1)-forms. See
Theorem 3.1.3 of [15] for a proof and [16] for a more general statement as well as
a history of this fomrula.

Since ∂̄Q = 0, (42) gives ∂̄(λ ·Q) = µ ·Q− (
�

αi) ·Q, hence
�

M
µ ·Q =

�
αi(Q).

Since Q =< d
�
f, d

�
f > vanishes at the zeros xi of d�f , to multiplicity at least 2mi,

we get αi(Q) = 0 for all i, thus dJ0E(µ) = 0.
�

4. An application to rigidity theory

We now sketch an application, due to Gromov [4], of the plurisubharmonicity
of energy to the Siu-Sampson rigidity theory. Recall that the theory originated in
Siu’s method for showing that a harmonic map f : V → N is holomorphic, where V
is a compact Kähler manifold and N is a Hermitian manifold with universal cover
is a bounded symmetric domain D. For any harmonic f : V → N as above, Siu
proves several theorems, including:

• The map f is pluriharmonic: its restriction to any (germ of a) complex
curve is harmonic.

• If D is irreducible and not the hyperbolic plane, and the rank of f equals
the dimension of D, then f is holomorphic or anti-holomorphic.

• If D = B
n, the unit ball in Cn, n ≥ 2, and the rank of f is > 2, then f is

holomorphic or anti-holomorphic.
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• For each irreducible D other than the hyperbolic plane there is an integer
r(D) < dimR(D) so that if the rank of f is > r(D), then f is holomorphic
or anti-holomorphic.

Unlike the case of Bn, where r(Bn) = 2, the number r(D) can be rather large.
For example, let D = Dp,q, 1 ≤ p ≤ q be the generalized ball (the symmetric space
of SU(p, q),) of complex p by q matrices Z with Z

∗
Z < Ip. Then there is a totally

geodesically embedded Dp−1,q−1 ×D1,1 ⊂ Dp,q of block-diagonal matrices, and it
is easy to find a discrete group Γ acting freely and co-compactly on Dp,q with a
subgroup of the form Γ1 × Γ2, each factor acting discretely and co-compactly on
Dp−1,q−1, D1,1 respectively. Letting V = V1×V2 be the quotient manifold with the
corresponding product decomposition, we obtain a holomorphic map f : V1×V2 →

W = Γ\X. Now deform the complex structure on V2 to V
�
2 so that the harmonic

map in the homotopy class f |V2 is not holomorphic for the complex structure of
V

�
2 to obtain a harmonic map g : V1 × V

�
2 of rank 2((p − 1)(q − 1) + 1) that is not

holomorphic. Thus r(Dp,q) ≥ 2((p− 1)(q − 1) + 1) (and in fact equality holds, see
[13]).

This example is extremely special, and we would like to have theorems to the
effect that harmonic maps of low rank substantially different from this example are
holomorphic or anti-holomorphic. One way of excluding this example would be to
require that f∗(π1(V )) be Zariski dense in G, the group of biholomorphisms of X.
We illustrate how plurisubharmonicity of energy can be used by sketching a proof
of the next theorem, which is a special case of Gromov’s results in §4.6 of [4].

Theorem 5. Let V be a smooth projective algebraic surface, let N be a Hermitian

manifold with universal cover an irreducible bounded symmetric domain D, let f :
V → N be a harmonic map. Let V̂ → P1

be a Lefschetz pencil, and suppose

that there is a generic fiber Vq, q ∈ P1
, so that f |Vq is holomorphic. Then f is

holomorphic.

Recall that if V ⊂ Pm is a smooth surface, a Lefschetz pencil is the family
of cuves obtained by fixing a linear Pm−2 ⊂ Pm transverse to V and taking the
intersection of V with the pencil of Pm−1’s containing the fixed Pm−2. This gives a
family Vq of curves parametrized by a ∈ Q = P1. The map V → Q is only a rational
map, not defined at the basepoints of the pencil, namely the d points x1, . . . , xd

(where d is the degree of V ) where Pm−2 intersects V . If V̂ is the blow-up of V at
these points, then there is a well-defined holomorphic map V̂ → Q = P1 which fits
our original setting. This point will be mostly ignored.

Corollary 3. Let V , V̂ → P1
, N and D be as above. Let g : V → N be a smooth

map and assume:

(1) g∗(π1(V )) is Zariski dense in the group G of biholomorphisms of D.

(2) For a generic fiber Vq of the Lefschetz pencil, g|Vq is homotopic to a holo-

morphic map.

Then g is homotopic to a holomorphic map.

Sketch of Proof of Theorem 5:

(1) By [12] the map f is pluriharmonic, thus for q ∈ P1 \Σ, the map fq = f |Vq

is harmonic.
(2) Strictly speaking, Theorem 1 applies to the maps fq̃ : Vq̃ → N for q̃ ∈

� �� �
P1

\ Σ, the universal cover of P1 \Σ to Teichmüller space, giving that E(fq̃)
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is plurisubharmonic on
� �� �
P1

\ Σ. But the map q̃ → Vq̃ of
� �� �
P1

\ Σ to Teichmüller
space is invariant under the subgroup of the mapping class group of Vq̃ that
preserves the homotopy class of fq̃, thus it descends to P1\Σ, thus Theorem
1 applies.

(3) By Theorem 1, E(q) = E(fq) is a plurisubharmonic function on P1 \ Σ.
(4) E extends to a continuous function on P1. This requires some work, see

§4.6 of [4].
(5) Suppose that for some q0 ∈ Q \ Σ the map fq0 is holomorphic, and denote

this map simply by f0. A simple argument based on Wirtinger’s inequality
gives that all fq, q ∈ Q, are holomorphic. Namely, for each q ∈ Q \ Σ we
have the inequalities

�

Vq

f
∗
q ω ≤ A(fq) ≤ E(fq)

where ω is the Kähler form of N and A is area. The quantity on the left
is constant and the first equality occurs if and only if fq is holomorphic. If
the quantity on the right is also constant and equal to the left at q0, then
equalities hold for all q.

(6) Let G(f) ⊂ V ×N be the graph of f . To prove that f is holomorphic, Gro-
mov constructs a closed, irreducible algebraic surface in V ×N that contains
G(f), thus must equal G(f), thereby proving that f is holomorphic. We
explain one possible construction.
(a) Assume, for simplicity, that N is compact, hence projective. Let Z ⊂

V ×N ⊂ PK be the union of all algebraic curves C ⊂ M ×N with the
following properties:

(i) (x1, y1), . . . , (xd, yd) ∈ C, where x1, . . . , xd ae the basepoints of
the Lefschetz pencil and yi = f(xi).

(ii) There exists q ∈ Q so that pV |C maps C biholomorphically onto
Vq.

(iii) The degree of C equals the degree of G(fq), the graph of fq.
(b) To prove that Z is algebraic, let X be the Chow variety of curves of

degree d
� in PK , where d

� is the degree of G(fq0) in this embedding.
See, for example, Chapter I of [6] for a detailed construction of the
Chow variety. This is an algebraic variety parametrizing algebraic
cycles of degree d

� in PK , and there is a universal cycle C → X . The
curve G(fq0) defines a point in X , and the conditions (i) to (iii) above
define a closed subvariety Z of X . The projection of C|Z to PK is a
closed subvariety Z ⊂ V ×N .

(c) Let Z0 be the irreducible component of Z containing G(f0), the graph
of f0. If C ⊂ Z0 is one of the curves near G(f0), it is the graph of
a holomorphic map from some Vq to N in the same homotopy class
as fq and taking x1 to y1. By uniqueness we must have C = G(fq),
from which it follows that a neighborhood of G(f0) in Z0 concides
with a neighborhood of G(f0) in G(f). Since G(f) ⊂ Z0, it follows
that G(f) = Z0. Sine the latter is algebraic, it follows that f is
holomorphic, as desired.

(d) If N is not compact, it is still Kähler and we can use Barlet’s Chow
scheme [2] and Lieberman’s compactness theorem [7] in the same way
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to prove that Z0 is analytic, hence f is holomorphic. In the algebraic
case, the Hilbert scheme could be used, instead of the Chow variety,
to the same effect.

This completes the sketch of proof of Theorem 5.
To prove Corollary 3, we first note that it is a consequence of the proof of The-

orem 5 rather than its statement. Zariski density of the image of the fundamental
group implies that for each complex structure in the domain (V or one of the Vq),
the harmonic map in the homotopy class is unique, see [14] or the “split deformation
property” of §4.6 of [4]. For the proof of the corollary one deforms g to a harmonic,
hence pluriharmonic, map f , then obseves that by uniqueness fq0 is holomorphic,
then proceeds with the same proof as before, at the last step appealing again to
Zariski density for uniqueness.
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