Algebraic Geomtery vs. Algebraic Number Theory

Notes on talk by Aaron Bertram

Utah: March 2010

Sonya Leibman

Review of the Gaussian Integers.

Definition.

- The Gaussian Integers $\mathbb{Z}[i]$ are the complex numbers of the form: a+bi for $a,b\in\mathbb{Z}$
- The Gaussian Rationals $\mathbb{Q}[i]$ are the complex numbers of the form: $\alpha + \beta i$ for $\alpha, \beta \in \mathbb{Q}$ Note: $\mathbb{Q}(i)$ is a field, while $\mathbb{Z}[i]$ is not.

Properties.

- 1. Gaussian Integers have unique factorization.
- 2. Ordinary primes factor in $\mathbb{Z}[i]$ as follows:

$$2 = (1+i)(1-i) = (-i)(1+i)^{2}$$
$$5 = (2+i)(2-i)$$
$$13 = (3+2i)(3-2i)$$

In general,

- (a) if $p \equiv 1 \mod 4$, then $p = a^2 + b^2 = (a + bi)(a bi)$,
- (b) if $p \equiv 3 \mod 4$, then p remains irreducible in $\mathbb{Z}[i]$,

and the factors (of the integer primes) are the primes in $\mathbb{Z}[i]$.

3. The units in $\mathbb{Z}[i]$ are $\pm 1, \pm i$

Trivial Fact:

Gaussian Integers are roots of monic polynomials with integer coefficients.

If
$$a + bi \in \mathbb{Z}[i]$$
, then it is a root of $p(x) = (x - (a + bi))(x - (a - bi)) = x^2 - 2ax + (a^2 + b^2)$.

Cool Fact:

Converse!

A Gaussian Rational that is a root of a monic polynomial with integer coefficients is necessarily a Gaussian Integer.

What is Algebraic Number Theory?

Definition.

A number field is a finite field extension of the rationals:

$$\mathbb{Q}\subset K;\ [K:\mathbb{Q}]=d<\infty$$

In fact, every number field is $\mathbb{Q}(\alpha)$ for some algebraic number $\alpha \in \mathbb{C}$, (that is a root of an irreducible plynomial $a_d x^d + a_{d-1} x^{d-1} + ... + a_o$ with rational coefficients), and $\mathbb{Q}(\alpha)$ is a vector space over \mathbb{Q} with basis $1, \alpha, \alpha^2, ..., \alpha^{d-1}$.

Algebraic Number Theory seeks an understanding of number fields. Do this by studying:

Definition.

The ring $\mathcal{O}_K \subset K$ of algebraic integers consists of the numbers that are roots of monic polynomials with integer coefficients.

Remark:

We may study K by studying its ring of integers.

Sample Questions:

- What is $(\mathcal{O}_K, +)$ as an abelian group? (Easy: \mathbb{Z}^d).
- What is the group of units in \mathcal{O}_K ? (Dirichlet Unit Theorem).
- Does \mathcal{O}_K have unique factorization? And if not, "how far" is it from having unique factorization? (Hard. A central open question!).

Examples:

- $\mathbb{Q}(\sqrt{d})$, quadratic fields
- $\mathbb{Q}(e^{\frac{2\pi i}{p}})$
- $K = \mathbb{Q}(\sqrt{5})$.

We know
$$\mathcal{O}_K \neq \mathbb{Z}[\sqrt{5}]$$
, since $\frac{-1 \pm \sqrt{5}}{2}$ is a root of $x^2 + x - 1 = 0$, but $\frac{-1 \pm \sqrt{5}}{2} \notin \mathbb{Z}(\sqrt{5})$. In fact,

$$\mathcal{O}_K = \{\frac{1}{2}(a+b\sqrt{5}); a, b \in \mathbb{Z}\}$$

As a lattice in the 1, $\sqrt{5}$ -plane, this is spanned by

$$\varphi, \psi = \frac{1}{2}(\pm 1 + \sqrt{5})$$

which are inverses of each other! Notice that

...,
$$\psi$$
, 1, φ , $\varphi^2 = \frac{1}{2}(3 + \sqrt{5})$, $\varphi^3 = 2 + \sqrt{5}$, $\varphi^4 = \frac{1}{2}(7 + 3\sqrt{5})$, ...

are all units, so the group of units is infinite.

This is a feature of all the quadratic fields $\mathbb{Q}(\sqrt{d})$ when d is a squarefree positive integer, and it generates the infinite set of integer solutions to Pell's equation: $x^2 - dy^2 = 1$

• $K = \mathbb{Q}(\sqrt{-5})$

The ring of integers is $\mathbb{Z}[\sqrt{-5}]$.

However, this does not have unique factorization, since, for example: $6 = 2 \times 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$, so there are two different ways of factoring 6 into irreducible algebraic integers.

Although 2 is irreducible, it is not prime, since 2 divides $(1+\sqrt{-5})^2 = -4 + 2\sqrt{-5}$, but 2 does not divide $1+\sqrt{-5}$. Instead, the ideal $(2, 1+\sqrt{-5})$ is prime (but not principal), and $(2) = (2, 1+\sqrt{-5})^2$ as ideals.

What is Birational Complex Algebraic Geometry?

Instead of a number field, we study fields of finite transcendence degree over \mathbb{C} , or, what is the same thing, fields K that are a finite extension of a field of rational functions:

$$\mathbb{C}(t_1,...,t_n) \subset K; [K:\mathbb{C}(t_1,...,t_n)] \leq \infty$$

The analogue of the ring of integers is:

There are inclusions $\mathbb{C}[t_1,...t_n] \subset \mathbb{C}(t_1,...,t_n) \subset K$, which gives $\mathcal{O}_K \subset K$ as the roots of monic polynomials with coefficients in $\mathbb{C}[t_1,...t_n]$. However, the inclusion $\mathbb{C}(t_1,...,t_n) \subset K$ is not canonical, so \mathcal{O}_K depends on the choice of $t_1,...t_n$.

$$\begin{array}{ccc}
\mathcal{O}_K & \subset & K \\
 & \cup & & \cup \\
\mathbb{C}[t_1, ...t_n] & \subset & \mathbb{C}(t_1, ...t_n)
\end{array}$$

Geometry is used to study \mathcal{O}_K .

Hilbert's Theorem:

The maximal ideals in $\mathbb{C}[x_1,...x_n]$ are of the form $((x_1-a_1),...,(x_n-a_n))$.

Wonderful Propery of Algebraic Geometry:

 $Spec(\mathcal{O}_K) = \{\text{maximal ideals in } \mathcal{O}_K\}$ has a natural "projective" compactification.

Example: n=1

Let
$$K = (\mathbb{C}(t))(\alpha)$$
, where α is a root of $x^2 - \prod_{i=1}^d (t - a_i)$.

$$\begin{array}{ccc}
\mathcal{O}_K & \subset & K \\
 & \cup & & \cup \\
 & \mathbb{C}[t] & \subset & \mathbb{C}(t)
\end{array}$$

$$\begin{array}{ccc}
C & \supseteq & Spec(\mathcal{O}_K) \\
 & \downarrow d & & \downarrow \\
S^2 = \mathbb{CP}^1 & \supset & \mathbb{C} = Spec(\mathbb{C}[t]),
\end{array}$$

where C is a Riemann surface.

The Riemann surface does not depend on the choice of t!

C being a genus 0 surface, i.e. a Riemann Sphere, corresponds to \mathcal{O}_K being a UFD.

C is a Riemann sphere $\Leftrightarrow K \simeq \mathbb{C}(s) \Leftrightarrow d = 1, 2$ where α is a root of $x^2 - \prod_{i=1}^{n} (t - a_i)$.

If n > 1, $Spec(\mathcal{O}_K)$ might not be a manifold.

Theorem(Hironaka):

Given K, there are choices of $t_1, ..., t_n$ s.t. X (the compactification of $Spec(\mathcal{O}_K)$) is a smooth, compact, complex manifold.

$$\begin{array}{ccc} \mathcal{O}_{K} & \subset & K \\ \cup & & \cup \\ \mathbb{C}[t_{1},...,t_{n}] & \subset & \mathbb{C}(t_{1},...t_{n}) \\ X & \supseteq & Spec(\mathcal{O}_{K}) \\ \downarrow d & & \downarrow \\ \mathbb{CP}^{n} & \supset & \mathbb{C} = Spec(\mathbb{C}[t_{1},...t_{n}]) \end{array}$$

There are infinitely many possible isomorphism types!