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Fundamental Theory

1.1 ODEs and Dynamical Systems

Ordinary Differential Equations

An ordinary differential equation (or ODE) is an equatiomdlving derivatives
of an unknown quantity with respect to a single variable. déanecisely, suppose
j.n € N, E is a Euclidean space, and

n + 1 copies

F:domF)CRXEx---x E —R/. (1.1)
Then armth order ordinary differential equatiois an equation of the form
F(t,x(1), £(1), £(0), x® @), ,.xM(0)) = 0. (1.2)

If Z C Ris an interval, therx : 7 — E is said to bea solution of(1.2) onZ if
x has derivatives up to orderat everyr € 7, and those derivatives satisfy (1.2).
Often, we will use notation that suppresses the dependdncern:. Also, there
will often be side conditions given that narrow down the detodutions. In these
notes, we will concentrate dnitial conditionswhich prescribex® (zy) for some
fixedzy € R (called theinitial time) and some choices éfe {0, 1,...,n}. Some
ODE texts examinéwo-point boundary-value problemis which the value of a
function and its derivatives at two different points areuiegd to satisfy given
algebraic equations, but we won't focus on them in this one.
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1. FUNDAMENTAL THEORY

First-order Equations

Every ODE can be transformed into an equivalent first-ordeagon. In partic-
ular, givenx : Z — E, suppose we define

y1i=x
Y2 =X
y3 =X
yp o= x"D,

and lety : Z — E” be defined by = (y1,...,yn). FOri =1,2,...,n—1,
define
Gi :RxE"xE" - E

by

Gl(t7uvp) = p1r— Uz
G2(t7uvp) = p2— U3
Gs(t,u, p) := p3 —uy

Gn-1(t,u, p) := pp—1 — Un,

and, givenF as in (1.1), defing,, : dom(G,) C R x E" x E" — R/ by
Gn(t,u,p) = F(t,uy,...,un, pn),
where
dom(G,) = {(t,u.p) e Rx E" x E" | (t,u1,...,un, pp) € dom(F)}.
Letting G : dom(G,) € R x E" x E" — E"~! x R/ be defined by

G
G,
G:=|Gs

Gn
we see that satisfies (1.2) if and only if satisfiesG(z, y(¢), y(¢)) = 0.



ODEs and Dynamical Systems

Equations Resolved with Respect to the Derivative

Consider the first-order initial-value problem (or IVP)

F(t.x.%) =0
x(to) = Xo (1.3)
x(to) = po,

whereF : dom(F) C R x R"” x R" — R", andxy, po are given elements @&”
satisfying F'(t9, xo, po) = 0. The Implicit Function Theorem says that typically
the solutiond, x, p) of the (algebraic) equatioA(z, x, p) = 0 near(zg, xo, Po)
form an(n + 1)-dimensional surface that can be parametrized hy). In other
words, locally the equatio¥' (¢, x, p) = 0 is equivalent to an equation of the
form p = f(¢,x) for somef : dom(f) € R x R" — R” with (¢9, x¢) in the
interior of dom( /). Using this f, (1.3) is locally equivalent to the IVP

X = f(,x)

x(tg) = Xo.

Autonomous Equations
Let f :dom(f) C R x R® — R". The ODE

%= f(t,x) (1.4)

isautonomousf f doesn'’t really depend ani.e., if dom( /) = R x 2 for some
Q C R” and there is a functiog : 2 — R” such thatf'(z,u) = g(u) for every
t € Randeveryu € Q.

Every nonautonomous ODE is actually equivalent to an aumus ODE.
To see why this is so, givem : R — R”, definey : R — R*T! by y(¢) =
(t,x1(t),...,x,(t)), and givenf : dom(f) € R x R® — R”", define a new
function / : dom( /) € R"*1 — R**1 py

1

Fip) = fl(Pl,(pZ»‘---»Pn—H))

Fo 1 (P2 Put)
where f = (fi...., f,)T and
dom(f) = {p e R"™' | (p1.(p2..... Pus1)) € dOM(f)}.

Thenx satisfies (1.4) if and only if satisfiesy = f(y).



1. FUNDAMENTAL THEORY

Because of the discussion above, we will focus our study sirdider au-
tonomous ODEs that are resolved with respect to the demuafihis decision
is not completely without loss of generality, because byeding other sorts
of ODEs into equivalent ones of this form, we may be neglgciame special
structure that might be useful for us to consider. This traffietween abstract-
ness and specificity is one that you will encounter (and hawbagbly already
encountered) in other areas of mathematics. Sometimes) tndnesforming the
equation would involve too great a loss of information, Wsflecifically study
higher-order and/or nonautonomous equations.

Dynamical Systems

As we shall see, by placing conditions on the functipn @ € R” — R" and
the pointxy € Q we can guarantee that the autonomous IVP

=10 (1.5)
x(0) = xo
has a solution defined on some interZatontaining0 in its interior, and this so-
lution will be unique (up to restriction or extension). Fhatmore, it is possible
to “splice” together solutions of (1.5) in a natural way, aiv fact, get solu-
tions to IVPs with different initial times. These considaras lead us to study a
structure known as dynamical system
GivenQ2 C R”, a continuous dynamical system (dit@w) on €2 is a function
¢ : R x Q — Q satisfying:

1. ¢(0,x) = x for everyx € Q;
2. o(s,0(t,x)) = (s + t, x) for everyx € Q and every,t € R;
3. ¢ is continuous.

If f and Q are sufficiently “nice” we will be able to define a functian :

R x Q — Q by letting ¢(-, xo) be the unique solution of (1.5), and this defi-
nition will make ¢ a dynamical system. Conversely, any continuous dynamical
systemp(z, x) that is differentiable with respect tds generated by an IVP.

Exercise 1Suppose that:

e Q CR":




ODEs and Dynamical Systems

¢ : R x Q — Qis acontinuous dynamical system;

. dp(t, x)

exists for every € R and everyx € Q;

Xxo € Q is given;

y : R — Qis defined byy(¢) := ¢(t, x0);

dp(s, p)

e f:Q — R"isdefined byf(p) := %

Show thaty solves the IVP

y=r
y(0) = xp.

In these notes we will also discudgscrete dynamical system&iven2 C
R”", a discrete dynamical system €nis a functiong : Z x Q2 — Q satisfying:

1. ¢(0,x) = x for everyx € Q;
2. oL, p(m,x)) = ¢l + m,x) for everyx € Q@ and everyl,m € Z;
3. ¢ is continuous.

There is a one-to-one correspondence between discretentbalaystems and
homeomorphismg&ontinuous functions with continuous inversds} Q@ — Q,
this correspondence being given pgl,-) = F. If we relax the requirement of
invertibility and take a (possibly noninvertible) contous functionF : Q — Q
and definep : {0,1,...} x Q — Q by

n copies

e
@(n,x) = F(F(---(F(x))--)),

then ¢ will almost meet the requirements to be a dynamical systée,only
exception being that property 2, known as treup propertymay fail because
¢(n, x) is not even defined for < 0. We may still call this a dynamical system;
if we're being careful we may call it semidynamical system

In a dynamical system, the s@tis called thephase spaceDynamical sys-
tems are used to describe the evolution of physical systamich the state
of the system at some future time depends only on the initéé ©f the sys-
tem and on the elapsed time. As an example, Newtonian mexshparmits us
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to view the earth-moon-sun system as a dynamical systenithéuyihase space

is not physical spac®3, but is instead an 18-dimensional Euclidean space in
which the coordinates of each point reflect the position andhentum of each

of the three objects. (Why isn’t a 9-dimensional space esponding to the three
spatial coordinates of the three objects, sufficient?)

1.2 Existence of Solutions

Approximate Solutions
Consider the IVP
{x = %) (1.6)

x(to) = a,

where f : dom(f) € R x R® — R” is continuous, andz,a) € dom(f) is
constant. The Fundamental Theorem of Calculus implies(ihéj} is equivalent
to the integral equation

t
x(t)=a+ / f(s,x(s))ds. 1.7)
to

How does one go about proving that (1.7) has a solution ifkarthe case
with so many IVPs studied in introductory courses, a fornfataa solution can-
not be found? One idea is to construct a sequence of “appateinsolutions,
with the approximations becoming better and better, in seemse, as we move
along the sequence. If we can show that this sequence, orsacudnce, con-
verges to something, that limit might be an exact solution.

One way of constructing approximate solutionfisard iteration Here, we
plug an initial guess in fox on the right-hand side of (1.7), take the resulting
value of the left-hand side and plug that in folagain, etc. More precisely, we
can setx;(¢) := a and recursively defing ., in terms ofxy for k > 1 by

t
Nepr (1) i=a + /t Fls,xi(5)) ds.

Note that if, for some, x; = x;, then we have found a solution.
Another approach is to constructTanelli sequence For eachk € N, let
X (t) be defined by

a, ifto<t<ty+1/k

_ —1/k
wO=9, /t Flsxp(s)) dx, (1> 10+1/k (18)
t

0



Existence of Solutions

for t > ty, and definex; (¢) similarly for¢ < ty.

We will use the Tonelli sequence to show that (1.7) (and foezd1.6)) has a
solution, and will use Picard iterates to show that, undeadtitional hypothesis
on f, the solution of (1.7) is unique.

Existence

For the first result, we will need the following definitionscetheorems.

Definition. A sequence of functiong; : / € R — R” is uniformly boundedf
there existsWf > 0 such thatgy (r)| < M for everyt € U/ and everyk € N.

Definition. A sequence of functiong; : &/ € R — R” is uniformly equicontin-
uousif for everye > 0 there exists anumbér> 0 such thatgy (t1)—gx (t2)| < ¢
for everyk € N and every, t, € U satisfying|t; — t,| < 6.

Definition. A sequence of functiong;, : &/ € R — R” converges uniformljo a
functiong : 4 € R — R” if for every ¢ > 0 there exists a numbéy € N such
thatifk > N andr € U then|g, () — g(?)| < e.

Definition. If a € R” andf > 0, then theopen ball of radiuss centered atz,
denotedB(a, B), is the set

{x eR" | |x —al < B}.

Theorem. (Arzela-Ascoli) Every uniformly bounded, uniformly equicontinuous
sequence of functiong, : &/ € R — R” has a subsequence that converges
uniformly on compact (closed and bounded) sets.

Theorem. (Uniform Convergence)lf a sequence of continuous functiols :
[b, c] — R”" converges uniformly té : [b, c] — R”, then

k“TrQo/b hk(s)ds:/b h(s)ds.

We are now in a position to state and prove the Cauchy-PeaisieBge
Theorem.

Theorem. (Cauchy-PeanoBupposef : [to — o,t0 + o] X B(a,f) — R”
is continuous and bounded Y > 0. Then(1.7) has a solution defined on
[to — b, to + b], whereb = min{o, B/ M }.
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Proof. For simplicity, we will only consider € [ty, o + b]. For eachk € N, let
Xr - [to,to + b] — R” be defined by (1.8). We will show thét; ) converges to
a solution of (1.6).

Step 1 Eachxy is well-defined.
Fix k € N. Note that the pointzy, a) is in the interior of a set on whiclf is
well-defined. Because of the formula fog(z) and the fact that it is, in essence,
recursively defined on intervals of widily & moving steadily to the right, ik
failed to be defined ofro, 7o + b] then there would bg € [to + 1/ k, 19 + b) for
which |x; (1) — a| = B. Pick the first such,. Using (1.8) and the bound ofy,
we see that

Xk (1) —al =

t1—1/k
< / S (5. x5 (5))] ds

0

t—1/k
/t (5. x(5)) ds

0

t—1/k
5/ Mds = Mty —to — 1/k) < M(b—1/k)
t

0

=B-M/k <p =|x(t1) —al,

which is a contradiction.
Step 2 (xy) is uniformly bounded.
Calculating as above, we find that (1.8) implies thatkfer 1/b,

b+to—1/k
(0] < lal +/ f 5.5 ()] dx < Ja] + (b — 1/K)M < la] + .

to

Step 3 (xx) is uniformly equicontinuous.
If t1,60 >ty + 1/k, then

<

[}
S (s, xp(s))ds

5]
<Mlt; —1q].

|xk (1) — Xk (12)| =

[}
/t £ 5.k (5))] ds

1

Sincexy, is constant oritg, fp + 1/k] and continuous ay + 1/k, the estimate
|xx (11) — x1 (22)| < M|t2 — t1] holds for everyty, 1> € [to,to + b]. Thus, given
e > 0, we can sef = ¢/ M and see that uniform equicontinuity holds.
Step 4 Some subsequendey,) of (x;) converges uniformly, say te, on
the interval[zg, 1o + b].
This follows directly from the previous steps and the Arz&&roli Theorem.
Step 5 The function f(-, x(-)) is the uniform limit of ( f(-, x¢,(-))) on the
interval [to, to + b].
Let e > 0 be given. Sincef is continuous on a compact set, it is uniformly
continuous. Thus, we can pidk> 0 such that f (s, p) — f(s,q)| < e whenever




Unigueness of Solutions

|p — gl < . Since(xg,) converges uniformly toc, we can pickV € N such
that |xg,(s) — x(s)| < & whenevers € [tg, 70 + b] and{ > N. If £ > N, then
| f (5. Xk, () — (5. x(5))] <e.

Step 6 The functionx is a solution of (1.6).

Fix t € [to,t0 + b]. If t = 19, then clearly (1.7) holds. If > #y, then for{
sufficiently large

t t
w0 =a+ [ fomds— [ foxends @9
to t—1/ke
Obviously, the left-hand side of (1.9) convergestio) asf 1 co. By the Uni-
form Convergence Theorem and the uniform convergendgf 6f x,(-))), the
first integral on the right-hand side of (1.9) converges to

t f(s,x(s)) ds,
to

and by the boundedness ¢fthe second integral converges to 0. Thus, taking
the limit of (1.9) asl 1 co we see thak satisfies (1.7), and therefore (1.6), on

[0, 10 + D). 0

Note that this theorem guarantees existence, but not readgsmiqueness,
of a solution of (1.6).

Exercise ZHow many solutions of the IVP

X =2./|x|
x(0) =0,

on the interval—oo, co) are there? Give formulas for all of them.

1.3 Uniqueness of Solutions

Uniqueness

If more than continuity off is assumed, it may be possible to prove that

*= /%) (1.10)
x(to) = a, '
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has auniquesolution. In particular Lipschitz continuity of (¢, -) is sufficient.
(Recall thatg : dom(g) € R" — R” is Lipschitz continuousf there exists a
constantL. > 0 such that|g(x;) — g(x2)| < L|x1 — x3| for everyx,x, €
dom(g); L is called aLipschitz constantor g.)

One approach to unigueness is developed in the followingcesee which
uses what are know &ronwall inequalities

Exercise 3Assume that the conditions of the Cauchy-Peano Theorlem
hold and that, in additionf(z,-) is Lipschitz continuous with Lipschitz
constantL for everyt. Show that the solution of (1.10) is unique [og o +
b] by completing the following steps. (The solution can sinjidne shown
to be unique orfy — b, 7], but we won'’t bother doing that here.)

(&) If x; andx, are each solutions of (1.10) ¢m, to + b] andU : [tg, to +
b] — Ris defined byU(¢) := |x1(¢) — x2(¢)|, show that

t

U@t) < L / U(s) ds (1.11)

0

for everytr € [to, 29 + b].

(b) Picke > 0 and let

V(i) :=¢e+ L/t U(s) ds.

to

Show that
V'(t) < LV(t) (1.12)

for everyr € [to, 29 + b], and thatV(z9) = &.

(c) Dividing both sides of (1.12) by/(¢) and integrating fromr = ¢ to
t =T, showthatV(T) < eexgL(T — tp)].

(d) By using (1.11) and letting | 0, show thatU(T) = O forall T €
[fo. o + b], SOX1 = x2.

We will prove an existence-unigueness theorem that coratiheresults of
the Cauchy-Peano Theorem and Exercise 3. The reason fagpaently re-
dundant effort is that the concepts and techniques intesiircthis proof will be
useful throughout these notes.



Unigueness of Solutions

First, we review some definitions and results pertaining ébrim spaces.

Definition. A metric spaceés a setX together with a functio@ : X x X — R
satisfying:

1. d(x,y) = 0foreveryx, y € X, with equality if and only ifx = y;
2. d(x,y) =d(y,x)foreveryx,y € X;
3.d(x,y)+d(y,z) > d(x,z)foreveryx,y,z € X.

Definition. A normed vector spacis a vector space together with a function
I -] : X = R satisfying:

1. ||x|| = O for everyx € X, with equality if and only ifx = 0;
2. ||Ax|| = |A|||x|| for everyx € X and every scalat;

3. [lx + yll < llx[l + lly[l for everyx, y € X.
Every normed vector space is a metric space with mé{tic y) = || x — y||.

Definition. An inner product spaces a vector space together with a function
(-,-) : X x X — R satisfying:

1. (x,x) > 0 for everyx € X, with equality if and only ifx = 0;
2. (x,y) = (y,x) foreveryx,y € &;

3. (Ax + puy,z) = A{x,z) + u(y,z) for everyx, y,z € X and all scalars
W, A

Every inner product space is a normed vector space with flatfrequal to

Vx, x).

Definition. A sequencgx,) in a metric spaceY’ is said to be (ajCauchy(se-
quence) if for every > 0, there existsV € N such thati/(x,,, x,) < ¢ whenever
m,n > N.

Definition. A sequence(x,) in a metric spaceY convergesto x if for every
¢ > 0, there existsV € N such thatd(x,, x) < e whenevem > N.

11
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Definition. A metric space is said to lmmpletaf every Cauchy sequence ii
converges (inY). A complete normed vector space is calleBanach spaceA
complete inner product space is calleHitbert space

Definition. A function f : X — Y from a metric space to a metric space is
said to belipschitz continuou# there existsL. € R such thatd( f(u), f(v)) <
Ld(u,v) for everyu,v € X. We call L aLipschitz constantand write Lig /)

for the smallest Lipschitz constant that works.

Definition. A contractionis a Lipschitz continuous function from a metric space
to itself that has Lipschitz constant less than 1.

Definition. A fixed pointof a function” : X — X is a pointx € X such that
T(x) = x.

Theorem. (Contraction Mapping Principle) If X' is a nonempty, complete met-
ric space andl’ : X — X is a contraction, therf” has a unique fixed point in
X.

Proof. Pick A < 1 such thatd(T(x),T(y)) < Ad(x,y) for everyx,y € X.
Pick any pointxg € X. Define a sequendgey) by the recursive formula

Xe+1 = T (xg). (1.13)
If Kk >4{ > N,then

d(xg,xg) < d(xg, Xg—1) +d(Xg—1, Xk—2) + -+ + d(xg41.x¢)
< Ad(Xg—1, Xg—2) + Ad(Xg_, Xp—3) + -+ + Ad(xg, X¢—1)

< A Vd(xy, x0) + A*72d(x1, x0) + -+ + AYd(x1, x0)
)LN
= md(xl,xo)-
Hence,(xy) is a Cauchy sequence. Singeis complete(x;) converges to some
x € X. By lettingk 1 oo in (1.13) and using the continuity df, we see that
x = T(x), sox is a fixed point ofT".
If there were another fixed pointof T, then

d(x,y) =d(T(x).T(y)) = Ad(x.y),

sod(x,y) = 0, which meansx = y. This shows unigueness of the fixed
point. O



Picard-Lindelof Theorem

1.4 Picard-Lindelof Theorem

Theorem. The spac€([a, b]) of continuous functions frof, ] to R” equipped
with the norm

1/ lloo = sup{l f () | x € [a, b]}

is a Banach space.

Definition. Two different normg|-||; and||-||> on a vector spac& areequivalent
if there exist constants, M > 0 such that

m|xlly < [lxll2 = Mllx]h
for everyx € X.

Theorem.If (X, ] - ||1) is a Banach space anjf |, is equivalent td| - ||; on X,
then(X, || - ||2) is a Banach space.

Theorem. A closed subspace of a complete metric space is a completie met
space.

We are now in a position to state and prove the Picard-LofdeKistence-
Unigueness Theorem. Recall that we are dealing with the IVP

*=70x) (1.14)
x(ty) = a.
Theorem. (Picard-Lindeldf) Supposef : [t — o, to + «] x B(a,B) — R" is
continuous and bounded by . Suppose, furthermore, th#t(z, -) is Lipschitz
continuous with Lipschitz constantfor everyr € [ty — o, t9p + «]. Then(1.14)
has a unique solution defined ¢ — b, 1o + b], whereb = min{c, 8/ M }.

Proof. Let X be the set of continuous functions frdr — b, to + b] to B(a, B).
The norm

lgllw := supfe2EIl|gt)] | 1 € [to — b, 1o + b]}

is equivalent to the standard supremum ndjrile, ONC([to — b, to + b]), SO this
vector space is complete under this weighted norm. Th& ssidowed with this
norm/metric is a closed subset of this complete Banach szac& equipped
with the metricd (x1, x2) := ||x1 — x2||lw iS @ complete metric space.
13
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Givenx € X, defineT (x) to be the function oty — b, ¢y + b] given by the
formula

t
Tx)(t)=a+ /t f(s,x(s))ds.

Step 1 If x € X thenT (x) makes sense.
This should be obvious.

Step21If x € XthenT(x) € X.
If x € X, then it is clear thaf"(x) is continuous (and, in fact, differentiable).
Furthermore, for € [ty — b, ty + D]

|T(x)(t) —al = < <Mb<B8,

t f(s,x(s))ds
to

t
/, | f (s, x(s)] ds

soT(x)(t) € B(a, B). Hence,T'(x) € X.
Step 3 T is a contraction ori’.
Letx,y € X, and note thall 7' (x) — T (y) ||w IS

Sup§ e—2L|t—t0\

For afixedr € [to — b, 19 + b],

t
t [f(s,x(s)) = f(s,y(s))] ds

t €to—b,tyg + b]

e—2L\t—to|

/t [f(s,x(s)) = f(s,y(s))] ds

< e—2L|t—t0\

/tlf(s,X(S))—f(S»y(S))lds

t
< 2Ll / Lix(s) — y(s)|ds
t

0

t
Ix = yllweE 0l ds
to
_ lx = yllw (1 _e—zL\t—tol)
2

< Le—2L|t—t0\

= || X y .
— 2 w

Taking the supremum over alle [¢zo — b, o + b], we find thatT is a contraction
(with A = 1/2).

By the contraction mapping principle, we therefore knovt thdas a unique
fixed point inX’. This means that (1.14) has a unique solutioR’ifwhich is the
only place a solution could be). O
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1.5 Intervals of Existence

Maximal Interval of Existence

We begin our discussion with some definitions and an impobtteorem of real
analysis.

Definition. Given f : D € RxR" — R”, we say thatf (¢, x) is locally Lipschitz
continuous with respect toon D if for each(zy, a) € D there is a numbet and
a product sef x U/ C D containing(zo, a) in its interior such that the restriction
of f(t,-) toU is Lipschitz continuous with Lipschitz constahtfor everyt € 7.

Definition. A subsetX of a topological space isompactf wheneverk is con-
tained in the union of a collection of open sets, there is &fisubcollection of
that collection whose union also contaikis The original collection is called a
coverof IC, and the finite subcollection is callediaite subcovepf the original
cover.

Theorem. (Heine-Borel)A subset oR” is compact if and only if it is closed and
bounded.

Now, suppose thab is an open subset & x R”, (t9,a) € D,andf : D —
R” is locally Lipschitz continuous with respect stoon D. Then the Picard-
Lindelof Theorem indicates that the IVP

X = f(t,x)

<o) — o (1.15)

has a solution existing on some time interval containgi its interior and that
the solution is unique on that interval. Let’s say thairgarval of existencés an
interval containingy on which a solution of (1.15) exists. The following theorem
indicates how large an interval of existence may be.

Theorem. (Maximal Interval of Existence) The IVP(1.15) has a maximal in-
terval of existence, and it is of the for(w_, w4 ), with w_— € [—o00,00) and
w4 € (—o00,00]. There is a unique solutiom(¢) of (1.15)on (w—,w+), and
(z,x(t)) leaves every compact subebf D ast | w—_ and ast 1 w4.

Proof.
Step 1 If Z; andZ, are open intervals of existence with corresponding solu-
tionsx; andx,, thenx; andx, agree ori; N Z5.
LetZ = 7; N1Z,, and letZ* be the largest interval containingand contained in
15
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7 onwhichx; andx, agree. By the Picard-Lindel6f Theoref; is nonempty. If
T* # T,thenZ* has an endpoin in Z. By continuity, x; (¢1) = x2(f1) =: a;.
The Picard-Lindeldf Theorem implies that the new IVP

X = f(t,x)

1.16
x(t1) = a1 (1.16)

has a local solution that is unique. But restrictionsxgfand x, neart; each
provide a solution to (1.16), se; and x, must agree in a neighborhood %t
This contradicts the definition of and tells us thal™* = 7.

Now, let(w—, w4+ ) be the union of all open intervals of existence.

Step 2 (w—, w4+ ) is an interval of existence.

Givent € (w_,w4), pick an open interval of existencethat containg, and
let x(r) = %(r), wherex is a solution to (1.15) of. Because of step 1, this
determines a well-defined function: (w—, w+) — R”; clearly, it solves (1.15).

Step 3 (w—, w4 ) is the maximal interval of existence.
An extension argument similar to the one in Step 1 shows theatyanterval of
existence is contained in an open interval of existence.ryeepen interval of
existence is, in turn, a subset@_, wy ).

Step 4 x is the only solution of (1.15) ofw—, w4 ).
This is a special case of Step 1.

Step 5 (¢, x(¢)) leaves every compact subs€ét C D asr | w_ and as
t T W4
We only treat what happens as} w.; the other case is similar. Furthermore,
the case whem = oo is immediate, SO supposge; is finite.

Let a compact subseéf of D be given. SinceD is open, for each point
(t,a) € K we can pick numberg(z,a) > 0 andf(t,a) > 0 such that

[t —2a(t,a),t + 2a(t,a)] x B(a,2B(t,a)) C D.
Note that the collection of sets
{(t —a(t,a),t +a(t,a)) x Ba, B(t,a)) ‘ (t,a) € IC}
is a cover offC. SincekC is compact, a finite subcollection, say
{(t; —a(tiai). ti + ot a;)) x Blai, Bt ai)}i,.

coverskC. Let

m

K= ([li —2a(ti,ai) t; + 20(t;, a;)] % B(ai,2,3(fi,ai))) :

i=1
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let

m

= minfa(y,ai)f;_,,

Q

and let

=

= min{B(ti. xi) ),
Since K’ is a compact subset @, there is a constam4 > 0 such thatf is
bounded byM on K’. By the triangle inequality,

[to — &, 10 + @] x B(a, B) € K,

forevery(ty,a) € IC, so f is bounded by on each such product set. According
to the Picard-Lindelof Theorem, this means that for eMe§ya) € K a solution
tox = f(¢,x) starting at(zo, @) exists for at least mi{r&,,@/M} units of time.
Hencex(r) ¢ K fort > w, —min{a, B/M}. O

Corollary. If D" is a bounded set an® = (¢, d) x D’ (with ¢ € [—o0, 00) and
d € (—o00,0]), then eithero; = d or x(t) — 9D’ ast 1 w4, and either
w— =corx()— 0D astr | w_.

Corollary. If D = (c,d) x R* (with ¢ € [—o00,00) andd € (—oo, o0]), then
eitherwy = d or |x(¢)| 1 oo ast 1 w4, and eitherw_ = c or |x(¢)| 1 oo as
tl w_.

If we're dealing with an autonomous equation on a boundedtsen the first
corollary applies to tell us that the only way a solution cbfail to exist for all
time is for it to approach the boundary of the spatial doméhote that this is
not the same as saying thafr) converges to a particular point on the boundary;
can you give a relevant example?) The second corollary $egsatitonomous
equations on all oR” have solutions that exist until they become unbounded.

Global Existence

For the solution set of the autonomous ORE= f(x) to be representable by
a dynamical system, it is necessary for solutions to exist@afiotime. As the
discussion above illustrates, this is not always the caskensolutions do die
out in finite time by hitting the boundary of the phase sp&aer by going off to
infinity, it may be possible to change the vector figldo a vector fieldf that
points in the same direction as the original but has solstibat exist for all time.
For example, if2 = R”, then we could consider the modified equation

fo
I+ TGP

17
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Clearly,|x| < 1, so it is impaossible fofx| to approach infinity in finite time.
If, on the other hand2 # R”, then consider the modified equation

io_Jw  daR\Q)
VIHIfME JVT+dx R\ Q)2

whered(x,R"” \ Q) is the distance fromx to the complement of2. It is not
hard to show that it is impossible for a solutianof this equation to become
unbounded or to approach the complemerfan finite time, so, again, we have
global existence.

It may or may not seem obvious that if two vector fields pointhiea same
direction at each point, then the solution curves of theesponding ODESs in

phase space match up. In the following exercise, you areldskarove that this
is true.

Exercise 4Suppose thaf2 is a subset oRR”, that f : @ — R” and
g . Q — R are (continuous) vector fields, and that there is a contiaupu
function’ : Q — (0, 00) such thatg () = h(u) f(u) for everyu € Q. If x
is the only solution of
X = f(x)
x(0)=a

(defined on the maximal interval of existence) anig$ the only solution of
y=2g(y)
y(0) =a,

(defined on the maximal interval of existence), show thatethe an in-
creasing functionj : dom(y) — dom(x) such thaty(z) = x(j(z)) for
everyr € dom(y).

1.6 Dependence on Parameters

Parameters vs. Initial Conditions

Consider the IVP
X = f(t,x)

o) — a. (1.17)

18
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and the paramterized IVP

{x =[x (1.18)

x(to) = a,

whereu € R¥. We are interested in studying how the solution of (1.17)etiels

on the initial condition: and how the solution of (1.18) depends on the parameter
. In a sense, these two questions are equivalent. For exainplsolves (1.17)
and we lett := x —a and f (1, %,a) := f(t,X + a), thenx solves

soa appears as a parameter rather than an initial conditioon ffhe other hand,
x solves (1.18), and we let := (x,u) and f(¢,X) := (f(t,x,n),0), thenx
solves

X(t0) = (a, ),

so u appears as part of the initial condition, rather than as ampater in the
ODE.
We will concentrate on (1.18).

§5'e = f(t,%)

Continuous Dependence

The following result can be proved by an approach like thélired in Exercise
3.

Theorem. (Grownwall Inequality) Suppose thakX(z) is a nonnegative, contin-
uous, real-valued function dry, 7] and that there are constants, K > 0 such

that
t

X)) <C+K | X(s)ds

to
for everyt € [to, T]. Then
X(t) < CeK@—t0)

for everyr € [to, T'].

Using the Grownwall inequality, we can prove that the solutof (1.18)
depends continuously qn.
19
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Theorem. (Continuous Dependenceluppose
foilto—ato+a] x Q2 xQy CRxR” x R¥ s R”

is continuous. Suppose, furthermore, thdt, -, 1) is Lipschitz continuous with
Lipschitz constanL{ > 0 for every(z, i) € [to — a,to + o] X Q5 and f(z, x, )
is Lipschitz continuous with Lipschitz constdig > 0 for every(z, x) € [to —
o, tg +a] x Q. Ifx; : [to—a,tg + o] > R* (i = 1,2) satisfy

Xi = f(t, xi, jii)
xi(fo) = a,
then I
|x1(t) — x2(0)] < L—jml — pal(ekrli=rol 1) (1.19)

fort € [to — ., to + «].

This theorem shows continuous dependence on parametersadfdition to
the hypotheses of the Picard-Lindelof Theorem, the rigirid side of the ODE
in (1.18) is assumed to be Lipschitz continuous with respeettie parameter (on
finite time intervals). The connection between (1.17) and8)Lshows that the
hypotheses of the Picard-Lindeldf Theorem are sufficierguarantee continu-
ous dependence on initial conditions. Note the exponedéakendence of the
modulus of continuity ort — #o]|.

Proof. For simplicity, we only consider > #y. Note that

[x1() = x2(0)| =

/ :ms, $1), 1) — 15, ¥2(5), 2] ds
< / £ (s x1(8), 1) = £, x2(8), ) ds
< / £, 51(5), 1) — £(5. %1(5). 12) | ds
+ [ £(5.51(5). 12) — £ (5. x2(8), 12)|

t
< / [L2|p1 — p2] + Lilx1(s) — x2(s)|] ds
1

0

Let X(¢) = La|p1 — pa| + Li|x1(r) — x2(2)]. Then
t
X0) = Lol = pal + L1 [ X() s

to
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so by the Gronwall Inequalit) (1) < Lo|u1 — paleL1@=%) This means that
(1.19) holds. O

Exercise 5Suppose thaff : RxR — Randg : RxR — R are
continuous and are each Lipschitz continuous with resmetiidir second
variable. Suppose, also, thais a global solution to

X = f(t,x)
x(to) = a,
andy is a global solution to

y=2g(ty)
y(to) = b.

@) If f(t,p) < g(¢, p) for every(t, p) € R x R anda < b, show that
x(t) < y(¢) for everyt > 1.

(b) If f(z,p) < g(z, p) for every(t,p) € R x Randa < b, show that
x(t) < y(¢) for everyt > to. (Hint: You may want to use the result$
of part (a) along with a limiting argument.)

Differentiable Dependence

Theorem. (Differentiable Dependencepupposef : Rx R xR — Ris a
continuous function and is continuously differentiabléhwespect tax and p.
Then the solution (-, i) of

X = ft,x, 1) (1.20)
x(to) = a
is differentiable with respect ta, andy = x, := dx/du satisfies
y = fX(t7x(tvl‘L)vl’L)y +f,b6([7x([vu)7“) (121)
y(t0) = 0.

Thatx,, if it exists, should satisfy the IVP (1.21) is not terriblyrprising;
(1.21) can be derived (formally) by differentiating (1.2Gith respect tqu. The
real difficulty is showing that,, exists. The key to the proof is to use the fact
21
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that (1.21) has a solutiop and then to use the Gronwall inequality to show that
difference quotients far,, converge toy.

Proof. Givenp, itis not hard to see that the right-hand side of the ODE i21(}L.
is continuous irr and y and is locally Lipschitz continuous with respect o
so by the Picard-Lindelof Theorem we know that (1.21) hasigue solution
y(,w). Let
x(t, o+ Ap) —x(t, p)

Aup )
We want to show thaw (¢, u, Ap) — y(t, u) asAu — 0.

Letz(z, u, Ap) := w(t, u, Ap) — y(t,0). Then

w(t, u, Ap) =

d d
T AR) = T D) = flt X ) WY () = fult X (). ).

and

— f(l‘,X(l‘,,bL + AM)?M’ + A/’L) - f(l,.X(l,pL),,bL)
Ap
_Sex@p+ A e+ Ap) — fx(@ 1), 1+ Ap)
Ap
4 S x@, 1), m+ Ap) — f(t,x(t, 1), 1)
Ap
= fx(t,x(t, 1) + 01Ax, pu + Apw(t, u, Ap) + fu @, x(t pw), nw + AwR),

dw
—(t, ., A
dl( Wy Ap)

for somef, 6> € [0, 1] (by the Mean Value Theorem), where
Ax :=x(t,u+ Ap) —x(, pw).

Hence,

d
‘d—f@,u, A < [ fult x () i+ OaAp) — fult. x(t. 12). 10)|

+ [ fx(t, x(t, 1) + 01Ax, u + Ap)| - |z(t, u, Ap)l
+ 1 fx@x(t, 1) + 01Ax, o+ Ap) — fx@ x(@ 1), 1+ Ap)| - |y, wi
+ St x (@, 1), o+ Ap) — fx (@, x(@ 1), W - |y wl
< p, pm, Ap) + (I fx @, x @ p), ) + p(e, s Az (2, e, A,

wherep(t, u, Ap) — 0 asAu — 0, uniformly on bounded sets.
Letting X(z) = ¢ 4+ (K + ¢)|z|, we see that if

| et x(t, p), )| = K (1.22)
22
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and
lp(, p, Ap)| <e, (1.23)
then
t dZ t
|z(t, . Ap)| 5/ —(s,u,AM)’ dSS/ X(s)ds
to dS to
SO

X(t)y<e+(K+e¢ tX(s)ds,

to

which givesX (1) < se!K+8 (1) phy Gronwall’s inequality. This, in turn, gives

8(e(K+8)(t—t0) _ 1)

lz| <
K+ ¢

Givenr > 1y, pick K so large that (1.22) holds. Asu — 0, we can takes
arbitrarily small and still have (1.23) hold, to see that

lim t,, An) =0.
AWOZ( M, A )

23






Linear Systems

2.1 Constant Coefficient Linear Equations

Linear Equations

Definition. Given
f:RxR" - R",

we say that the first-order ODE
X = f(t,x) (2.1)

is linear if every linear combination of solutions of (2.1) is a soduttiof (2.1).

Definition. Given two vector space8” and), L(X,)) is the space of linear
maps fromX to ).

Exercise 6S5how that if (2.1) is linear (ang’ is continuous) then there
is a function4 : R — L(R",R") such thatf(z, p) = A(¢t)p, for every
(t,p) € RxR".

ODEs of the formx = A(t)x + g(¢) are also often called linear, although
they don't satisfy the definition given above. These areedatihomogeneoys
ODEs satisfying the previous definition are callemmogeneous

Constant Coefficients and the Matrix Exponential
Here we will study the autonomous IVP
X = Ax

x(0) = xo,
25

(2.2)
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whereA € L(R",R"), or equivalently4 is a (constanty x n matrix.

If n = 1, then we're dealing withc = ax. The solution isx(r) = e’?xy.
Whenn > 1, we will show that we can similarly definé4 in a natural way, and
the solution of (2.2) will be given by (1) = ¢*4xy.

Given B € L(R",R"™), we define its matrix exponential

k!
k=0

eB .=

We will show that this series converges, but first we specifgran onL(R”, R").

Definition. The operator nornfj B|| of an elemenB € L(R”,R") is defined by

|Bx|
| Bl = sup—— = sup |Bx]|.
x20 1XI x=1

L(R*,R") is a Banach space under the operator norm. Thus, to show that
the series foe converges, it suffices to show that

can be made arbitrarily small by takimg> ¢ > N for N sufficiently large.
SupposeB, B> € L(R",R") and B, does not map everything to zero. Then

BB BB B
||Blel|=SUp| 1Bax| _ sup |B1Byx| |Bax]|
x#0 |)C| Box#0,x#0 |32x| |x|
|B1y| | B2x|
<|sup sup = [|B1] - [| B2]-
y#0 |y| x#0 |X|
If B, does map everything to zero, théB,| = ||B1Bz| = 0, SO||B1Bz|| <

IIB1] - | B2]l, obviously. Thus, the operator normsisbmultiplicative Using this
property, we have

m m

| B||*
=2

k=t

foy! k!

Bk Bk
! k!

m
=)
k={

Since the regular exponential series (for real argumerds)am infinite radius
of convergence, we know that the last quantity in this edtngges to zero as
£,m 1 oo.

Thus, eB makes sense, and, in particulaf4 makes sense for each fixed
t € R and eac € £L(R”,R"). But doesx (7) := e!4x, solve (2.2)? To check
that, we’ll need the following important property.
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Lemma.lf By, B, € L(R",R") and B1 B> = B, B, theneB11B2 = ¢BioB2,

Proof. Using commutativity, we have

© B/ \ (& BF > &, B! Bk B/ Bk
oB1 B> _ Z]_l. (Zk_f)zzz T Z > .l!k!z
=0 k=0 j=0k=0 i=0j+k=i
B B]B(l J) B oo i i B{Bg_])
_ Z (B1 + By) B +B>
O

Now, if x : R — R” is defined byx (¢) := e’4xq, then

x(t+h)—x@) ettM Ay, _ otAx,
N h—0 h

_ e(t—i—h)A _ etA ehA —7 A
=[lim —— | xo={ lim e xg
h—0 h h—0 h

e RETARN tA
= lIzILnOkZI A e'xg = Ae'“xg = Ax(1),

d .
0= jm,

sox(t) = e'4xq really does solve (2.2).

2.2 Understanding the Matrix Exponential

Transformations

Now that we have a representation of the solution of lineaistamt-coefficient
initial-value problems, we should ask ourselves: “Whatdymit?” Does the
power series formula for the matrix exponential provide #itient means for
calculating exact solutions? Not usually. Is it an efficiamty to compute ac-
curate numerical approximations to the matrix exponéehtidlot according to
Matrix Computationdy Golub and Van Loan. Does it provide insight into how
solutions behave? It is not clear that it does. There areetervtransformations

that may help us handle these problems.

27
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Suppose thaB, P € L(R",R") are related by a similarity transformation;
i.e, B = QPQ~! for some invertibleQ. Calculating, we find that

— BF¥ X (opPo~HF & oprko!
ef=) T T
k=0 k=0 k=0

_ OOP_k -1 _ P -1
=0 X r)e =00

k=0

It would be nice if, givenB, we could choos& so thatP were a diagonal
matrix, since (as can easily be checked)

AP 1, p25 s P} — diag{e?!, P2, ... ePr}.

Unfortunately, this cannot always be done. Over the nextdegtions, we will
show that what can be done, in general, is to gitko thatP = S + N, where

S is asemisimplamatrix with a fairly simple formN is anilpotentmatrix with

a fairly simple form, ands and N commute. (Recall that a matrix is semisimple
if it is diagonalizable over the complex numbers and that &imes nilpotent if
some power of the matrix i8.) The forms ofS and N are simple enough that
we can calculate their exponentials fairly easily, and tvercan multiply them
to get the exponential o + N.

We will spend a significant amount of time carrying out thejgcbdescribed
in the previous paragraph, even though it is linear alggimagome of you have
probably seen before. Since understanding the behavioordtant coefficient
systems plays a vital role in helping us understand more Goatpd systems,
| feel that the time investment is worth it. The particulapagach we will take
follows chapters 3, 4, 5, and 6, and appendix 3 of Hirsch andl&fairly closely.

Eigensystems

Given B € L(R",R"), recall that thaf € C is aneigenvalueof B if Bx = Ax
for some nonzera € R” or if Bx = Ax for some nonzera € C", whereB is
thecomplexificatiorof B; i.e., the element of (C", C") which agrees witlB on
R”. (Just as we often identify a linear operator with a matrpxresentation of it,
we will usually not make a distinction between an operatoa ogal vector space
and its complexification.) A nonzero vectorfor which Bx = Ax for some
scalari is aneigenvectar An eigenvaluel with corresponding eigenvectar
form aneigenpair(A, x).

If an operatord € L(R”, R") were chosen at random, it would almost surely
haven distinct eigenvalue$iq,...,A,} andn corresponding linearly indepen-
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dent eigenvectoréxy, ..., x, }. If this is the case, thed is similar to the (possi-
bly complex) diagonal matrix

Ay 0 -~ 0
0 )
SO
0 0 An
More specifically,
A1 O 0
-1
A=|x1 Xn 0 X1 Xn
0
A

If the eigenvalues ofl are real and distinct, then this means that

thy 0 - 0 »
0
tAn

and the formula for the matrix exponential then yields

e 0 ... 0
-1
0
etA— X1 Xn X1 Xn
0
0 --- 0 ettn

This formula should make clear how the projectiong’@¥x, grow or decay as
t — Fo0.

The same sort of analysis works when the eigenvalues aré&ifnalty) com-
plex, but the resulting formula is not as enlightening. Iditidn to the difficulty
of a complex change of basis, the behavioedf is less clear whei is not
real.

One way around this is the following. Sort the eigenvalues @genvectors)
of 4 so that complex conjugate eigenvalyes, A1, . ... A, A} come first and
are grouped together and so that real eigenvaliigs 1, . .., A} come last. For
k < m, setay, = ReAp € R, by = ImA, € R, yp = Rex; € R", and

29
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zr = Imx € R*. Then
Ayr = ARex; = Redx, = Redpx, = (ReAp)(Rexy) — (Im Ag)(Im xi)
= agyr — brzk,
and
Az = Almx, = ImAxg = ImAgx = (ImAg)(Rexy) + (ReAr)(Im xg)
= bxyk + agzg-

Using these facts, we have= QPQ~!, where

Q: Zl yl Y Zm ym xm+1 xr

and P is the(m +r) x (m +r) block diagonal matrix, whose first diagonal
blocks are the x 2 matrices

_lax —bx
A= [bk ak }
fork = 1,...,m, and whose last — m diagonal blocks are the x 1 matrices
[Ag]fork =m+1,...,r.

In order to compute“‘ from this formula, we’ll need to know how to com-
pute ¢4k, This can be done using the power series formula. An altemat

approach is to realize that
[xm] — i H
v d

is supposed to solve the IVP

X =apx —bry

y =brx +ary

x(0)=c

y(0) =d.

Since we can check that the solution of (2.3) is
x(2)] _ [e?!(c cosbgt — d sinbyr)
y(t)] %! (d cosbit + csinbgt) |’

we can conclude that

(2.3)

oAk _ e coshpt —e? ! sinbyt
T | e%!sinbit %! coshyt
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Putting this all together and using the form®f we havee’4 = Qe'f 071,
wheree'® is the(m + r) x (m + r) block diagonal matrix whose first diagonal
blocks are th@ x 2 matrices

e%! coshyt —e! sinbyt
|:e”k’ sinbgr  e%! coshyt ]
fork = 1,...,m, and the last —m diagonal blocks are thex 1 matricesje*+?]
fork=m+1,...,r.
This representation af4 shows that not only may the projectionsedf' x,
grow or decay exponentially, they may also exhibit sinualbydoscillatory be-
havior.

2.3 Generalized Eigenspace Decomposition

Eigenvalues don’t have to be distinct for the analysis ofrttarix exponential
that was done last time to work. There just needs to be a bbsigenvectors for
R” (or C"). Unfortunately, we don’t always have such a basis. Forréeason,
we need to generalize the notion of an eigenvector.

First, some definitions:

Definition. Thealgebraic multiplicityof an eigenvalué. of an operato is the
multiplicity of A as a zero of the characteristic polynomial(diet x7).

Definition. Thegeometric multiplicityof an eigenvalué. of an operatoi is the
dimension of the corresponding eigenspdae, the dimension of the space of
all the eigenvectors ofl corresponding td.

It is not hard to showd.g, through a change-of-basis argument) that the ge-
ometric multiplicity of an eigenvalue is always less tharequal to its algebraic
multiplicity.

Definition. A generalized eigenvectaf A is a vectorx such tha(4 —AI)kx =
0 for some scalat and some& € N.

Definition. If A is an eigenvalue oft, then thegeneralized eigenspace dfbe-
longing to A is the space of all generalized eigenvectorsdiaiorresponding to
A

Definition. We say a vector space is thedirect sumof subspaced, ...,V
31
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of ¥V and write

V=V1®---@Vy
if for eachv € V there is a uniquévy,...,v,) € Vi X --- X V,, such that
V=01 + -+ Uy

Theorem. (Primary Decomposition Theorem)Let B be an operator or€,
wheref is a complex vector space, or el§ds real and B has real eigenvalues.
Then¢ is the direct sum of the generalized eigenspaceB.of he dimension of
each generalized eigenspace is the algebraic multiplicftyhe corresponding
eigenvalue.

Before proving this theorem, we introduce some notationsate and prove
two lemmas.
GivenT : V — V), let

N(T) = {x € V | T¥x = 0 for somek > 0},
and let
R(T) = {x € V| T*u = x has a solution for everyk > 0}.

Note thatN(T') is the union of the null spaces of the positive powerg adnd
R(T) is the intersection of the ranges of the positive power& ofThis union
and intersection are each nested, and that implies tha thernumber € N
such thatR(T') is the range of ™ and N(T) is the nullspace of ™.

Lemma.lf 7 :V — V,thenV = N(T) & R(T).

Proof. Pick m such thatR(T) is the range off” and N(T) is the nullspace
of T™. Note thatT'|gry : R(T) — R(T) is invertible. Givenx € V, let

y = (T|R(T))_m T™mx andz = x — y. Clearly,x = y + z, y € R(T), and
Tz =TMx—-T™y =0,s0z € N(T). If x = y 4+ Z for some othefy € R(T)
andz € N(T)thenT™y =T"x —T™Z =T"x,s0y = y andzZ = z. O
Lemma. If A;, A are distinct eigenvalues @f : V — V, then

N(T —A;1) € R(T — Ax1).
Proof. Note firstthat(T — Ax I)N(T —A;1) € N(T — A;I). We claim that, in
fact,(T' — Ax I)N(T — A;1) = N(T —A;1); i.e, that

(T = A DIne—a;n : N(T = A1) = N(T — A;1)
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is invertible. Suppose it isn’t; then we can pick a nonzere N(T — A;I) such
that(7 —Axl)x = 0. Butif x € N(T —A;1) then(T —A;1)™ x = 0 for some
m; > 0. Calculating,

(T—Ai1)x = Tx—Ajx = x —Ajx = (A —Aj)x,
(T —A;1)*x = Tr—A)x =4k —A)x = A —A;)%x,

(T—)le)mjx = ---:()Lk—lj)mjx#o,

contrary to assumption. Hence, the claim holds.
Note that this implies not only that

(T = A )N(T = A, 1) = N(T = A1)

but also that
(T —AD)"N(T — AjI) = N(T — A;1)

for everym € N. This means that
N(T —A;1) € R(T — Agl).
O

Proof of the Principal Decomposition Theorerihe claim is obviously true if
the dimension of is 0 or 1. We prove it for dim€ > 1 by induction on din€.

Suppose it holds on all spaces of smaller dimension thabetA{,1,,..., 44
be the eigenvalues @ with algebraic multiplicities:,n», ..., n4. By the first
lemma,

E=N(B—20)® R(B—A,1).

Note that dimR(B — A,1) < dim&, andR(B — A41) is (positively) invariant
under B. Applying our assumption tcB|R(B_Aq1) : R(B—2A41) — R(B —
Aql), we get a decomposition ®(B — A, 1) into the generalized eigenspaces
of Blr(g—1,1)- BY the second lemma, these are just

N(B —AI),N(B—XI),....N(B—Ag 1),
SO

E=NB—-MI)SNB—-I) G- &NB—ry11)d N(B—Al).
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Now, by the second lemma, we know thBY yp_,, 1y hasi, as its only
eigenvalue, so dilW(B — Ax 1) < ny. Since

q q
Y ne=dmE =" dimN(B — A1),
k=1 k=1

we actually have dintW (B — Ax 1) = ny. O

2.4 Operators on Generalized Eigenspaces

We've seen that the space on which a linear operator acts ealedomposed
into the direct sum of generalized eigenspaces of that tgrerd he operator
maps each of these generalized eigenspaces into itselfcansequently, solu-
tions of the differential equation starting in a generalizégenspace stay in that
generalized eigenspace for all time. Now we will see how tiiet®ns within
such a subspace behave by seeing how the operator behaves subspace.

It may seem like nothing much can be said in general sincengifinite-
dimensional vector spadé we can define a nilpotent operatbron)’ by

1. picking a basigvy, ..., v,} for V;

2. creating a graph by connecting the nodes, ..., v, 0} with directed
edges in such a way that from each node there is a unique etirgetth
to 0;

3. definingS(v;) to be the unique node; such that there is a directed edge
fromv; to vg;

4. extendingS linearly to all of V.

By adding any multiple of to S we have an operator for whidhis a generalized
eigenspace. It turns out, however, that there are really ardmall number of
different possible structures that may arise from this segimgeneral process.

To make this more precise, we first need a definition, some ¢&tian, and
alemma.

Definition. A subspaceZ of a vector spac®’ is acyclic subspace aof onV if
S Z C Z and there is some € Z such thatZ is spanned byx, Sx, S%x,...}.

Given S, note that every vectat € V generates a cyclic subspace. Call
it Z(x) or Z(x,S). If S is nilpotent, write ni(x) or nil(x, S) for the smallest
nonnegative intege such thatS¥x = 0.
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Lemma. The sef{x, Sx, ..., SM®~1x1is a basis forZ (x).

Proof. Obviously these vectors spaf(x); the question is whether they are lin-
early independent. If they were not, we could write down adincombination
a1 SPlx 4 +apSPhx,witha; # 0and0 < p; < pa <--- < pr < nil(x)—1,
that added up to zero. Applying™®)—P1~1 tg this linear combination would
yield a S"I®)~1yx = 0, contradicting the definition of nik). O

Theorem.If S : V — V is nilpotent then) can be written as the direct sum of
cyclic subspaces &f onV. The dimensions of these subspaces are determined
by the operatorS.

Proof. The proof is inductive on the dimension¥f It is clearly true if dimy =
0 or 1. Assume it is true for all operators on spaces of dimensisstlean diny .

Step 1:The dimension oV is less than the dimension of
If this weren’t the case, thef would be invertible and could not possibly be
nilpotent.

Step 2:For somek € N and for some nonzerg; € SV, j =1,...,k,
SV=Z(1)® & Z()- (2.4)
This is a consequence of Step 1 and the induction hypothesis.
Pickx; € VsuchthatSx; = y;,forj =1,..., k. Suppose that; € Z(x;)

for eachj and
Z1+ -+ 2z =0. (2.5)

We will show thatz; = 0 for eachj. This will mean that the direct sum
Z(x1) @ -+ ® Z(xy) exists.

Step 3:Szy 4+ -+ Sz = 0.
This follows from applyingS to both sides of (2.5).

Step 4:For eachj, Sz; € Z(y;).
The fact that; € Z(x;) implies that

Zj = aoXj +orSx; + -0+ Olni|(xj)_1Sn”(xj)_1xj (2.6)
for somew; . Applying S to both sides of (2.6) gives

Szj = aoy; +e1Syj + -+ + i 28" 2y € Z(y)).
35



2. LINEAR SYSTEMS

36

Step 5:For eachj, Sz; = 0.
This is a consequence of Step 3, Step 4, and (2.4).

Step 6:For eachj, z; € Z(y;).
If
zj = aox; +o1Sx; + -0+ Oln”(xj)_lSn”(xj)_lx]-

then by Step 5
0= Sz = agyj + 18y + - + pige;)—2S™ 2y,

Since nilx;)—2 = nil(y;)—1, the vectors in this linear combination are linearly
independent; thugy; = 0fori = 0,...,nil(x;) — 2. In particular,cg = 0, so

)—2

Step 7:For eachj, z; = 0.
This is a consequence of Step 6, (2.4), and (2.5).

We now know thatZ (x1) @ --- ® Z(x;) =: V exists, but it is not necessarily
all of V. Choose a subspat® of Null(S) such that NulS) = (VN Null(S)) &
W. Choose abaskuy, ..., wg} for W and note thatV = Z(w1)®---D Z(wy).

Step 8:The direct sUNZ(x1) ®--- B Z(xx) & Z(w1) & --- D Z(wy) exists.
This is a consequence of the fact tpat the direct sdis) & --- b Z(xy) and
Z(wy1) @ --- ® Z(wy) exist and that’ N W = {0}.

Step9V =Z(x1)D---® Z(x) ® Z(w1) & -+ D Z(wy).
Let x € V be given. Recall thafx € SV = Z(y1) ® --- ® Z(yr). Write
Sx =s1 4+ s Withs; € Z(y;). If

sjp =y +a1Sy; +---+ O5ni|(yj)—1*S‘n”(yj)_lij

let

u; =aox; +a1Sx; +---+ Otnn(yj)_lSn”(yj)_lxj,
and note thaSu; = s; and thatu; € Z(x;). Settingu = uy + -+ + ug, we
have

S(x—u)=Sx—Su=(s1++5t) =51+ +5) =0,
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sox —u € Null(S). By definition of W, that means that
Xx—u€Z(x) @ @ Z(xp) ® Z(w1) &+ ® Z(wy).
Sinceu € Z(x1) @ --- ® Z(xx), we have
X E€Z(x1) @ Z(x) & Z(w1) @ --- @ Z(wy).
This completes the proof of the first sentence in the theoréhe second
sentence follows similarly by induction. O
2.5 Real Canonical Form

Real Canonical Form

We now use the information contained in the previous thesrnfind simple
matrices representing linear operators. Clearly, a reipiodbperatolS on a cyclic
spaceZ(x) can be represented by the matrix

o --. ... .- 0
1
0 - 0 1 0

with the corresponding basis beidg, Sx, ..., SM®=1x} " Thus, if A is an
eigenvalue of an operatdr, then the restriction of” to a cyclic subspace of
T — A1 onthe generalized eigenspai¢7 — A1) can be represented by a matrix
of the form

2 0 . ... 0]

1

0 (2.7)
: .. .. . 0

[0 -~ 0 1 A]

If A =a+ bi € C\ Ris an eigenvalue of an operatbre L(R",R"), and
Z(x, T—AlI)is one of the cyclic subspaces whose direct SUM({ig — A7), then
Z(x,T — AI) can be taken to be one of the cyclic subspaces whose direct sum
is N(T —AI). If we setk = nil(x,T —Al)—1andy; = Re((T — AI)/x) and
zj =Im((T = Al)/x)for j =0,... k, then we gel'y; = ay; —bz; + y;+1
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andTz; =byj +azj+zjy1forj =0,....k =1, andTy,r = ayx — bzg

and Tz = byr + azx. The2k + 2 real vectors{zy, yo,...,Zk, Y&} Span
Z(x, T —AI)® Z(x,T —AI) over C and also span &k + 2)-dimensional
space oveR that is invariant undef’ . On this real vector space, the action7of
can be represented by the matrix

a —b| 0 0 0 0
b alo o0 0 0
10
0 1
00 2.8)
0 0
0 0
0 0
0 0 0 01 0 a —b
[0 0 0 0|0 1|b a |

The restriction of an operator to one of its generalized redgaces has a
matrix representation like

- -

1 A
1 A
A
A e

if the eigenvaluéel is real, with blocks of the form (2.7) running down the diag-
onal. If the eigenvalue is complex, then the matrix reprizg&m is similar to
(2.9) but with blocks of the form (2.8) instead of the form7A(2on the diagonal.

Finally, the matrix representation of the entire operatoblock diagonal,
with blocks of the form (2.9) (or its counterpart for compleigenvalues). This
is called thereal canonical form If we specify the order in which blocks should
appeatr, then matrices are similar if and only if they havestirae real canonical
form.
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2.6 Solving Linear Systems

Exercise 7Classify all the real canonical forms for operatorskh In
other words, find a collection dfx 4 matrices, possibly with (real) variablg
entries and possibly with constraints on those variables) that

1. Only matrices in real canonical form match one of the roaiin
your collection.

2. Each operator oR* has a matrix representation matching one of the
matrices in your collection.

3. No matrix matching one of your matrices is similar to a matratch-
ing one of your other matrices.

For example, a suitable collection of matrices for opesatoR? would be:
A0 A0 a —b
HE N O A A e

Computing e’4

Given an operatod € L(R"”,R"), let M be its real canonical form. Write
M = S + N,whereS hasM’s diagonal elements; and diagonal blocks

a —b
A
and0’s elsewhere, and/ hasM''s off-diagonall’s and2 x 2 identity matrices. If
you consider the restrictions Sfand N to each of the cyclic subspacesA+ A7
into which the generalized eigenspabéA — A1) of A is decomposed, you'l
probably be able to see that these restrictions commute.cAssequence of this
fact (and the wayR” can be represented in terms of these cyclic subspases),

andN commute. ThugM = ¢!SetN,
Now, e’ hase*** whereS hasly, and has

e cosht —e%! sinbyt
ektsinbyt  e%! coshyt

ap —bg
by ar |

whereS has
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The series definition can be used to compeft®, since the fact than is
nilpotent implies that the series is actually a finite sume Ehtries ok will
be polynomials irr. For example,

0 1
1 . t
H
1 0 m 1

and

Ry

e 0

Identifying A with its matrix representation with respect to the standsrd
sis, we haved = PM P! for some invertible matrixP. Consequentlye“‘ =
PeM p~1 Thus, the entries of’4 will be linear combinations of polynomials
times exponentials or polynomials times exponentials sitngonometric func-
tions.

Exercise 8Computee’4 (and justify your computations) if

0 0 0O
1 0 01
1A= 1 0 01
0 -1 10
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AW N =
AW N =
AW N =
AW N =

Linear Planar Systems

A thorough understanding of constant coefficient lineatesysx = Ax in the
plane is very helpful in understanding systems that areimesal and/or higher-

dimensional.

There are 3 main categories of real canonical forms for amatgeA in

L(R?,R?):
J[r o

10 n
L[ o
1 A

a —b

a

. |} } (b # 0)

We will subdivide these 3 categories further into a total 4fchtegories and
consider the correspondimhase portraitsi.e., sketches of some of theajec-
toriesor parametric curves traced out by solutions in phase space.

a0
_[0 M]
A<0<p)

saddle

Uz

Ui
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A0
A:[O u]
A<u<0)

stable node

A0
AZ[O M]
A=u<0)

stable node

A0
AZ[O M]
O<pu<?)

unstable node

42
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Ui

)

Ui
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4
A0
A:[O M]

O<A=p) Ui

unstable node

IEI Uz
-

(L < 1= 0) Uy

degenerate

4
A0
AZ[O M]

O=pnu<d) ui

degenerate
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A0
A:[O u]
O=wpn=21)

degenerate

9]

A0
=l
(r <0)

stable node

A0
=]

(0<A)

unstable node

Uz
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A0
=[]
A =0)
degenerate

a —b
=i 7]
(a<0<b)
stable spiral

a —b
=[5 7]
(b<0<a)

unstable spiral

u

2

~

Z

A
NS

2

J U1
U1

Z

AR

4
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a —b
=]
(a=0,b>0)

center

Uz

h

N

If A is not in real canonical form, then the phase portrait shtndé (topo-
logically) similar but may be rotated, flipped, skewed, andtretched.

2.7 Qualitative Behavior of Linear Systems

Parameter Plane

Some of the information from the preceding phase portraitslie summarized
in a parameter diagram. In particular, tet= traced and let§ = detA, so the
characteristic polynomial 52—t + §. Then the behavior of the trivial solution
x(t) = 0is given by locating the corresponding point in thed)-plane:

46

stable node

stable spiral

sa

JOJU9J

ddle

unstable spiral

D

unstable node
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Growth and Decay Rates
GivenA € L(R",R"), let

&% = {@N(A—M)

A>0

@

P (Reu|ueNUA-AD} @ D {Imu|ueNUA-AID}E,

ReA>0 ReA>0
ImA#£0 ImA#0
& = {EBN(A—M) @
A<0
P (Reu|ueNUA-AD} @ @ {Imu|ueNUA-AD}},
ReA<0 ReA<0
ImA#0 ImA#0
and
EC=NA®

P (Reu|ueNUA-AD} @1 E {Imu |ueNA-LD}
ReA=0 ReA=0
ImA#0 ImA#0

From our previous study of the real canonical form, we knaoat th
RP =" & & &°.

We call £ theunstable spacef 4, £ the stable spac®f A, and&€ the center
spaceof A.
Each of these subspacesiif is invariant under the differential equation

X = Ax. (2.10)

In other words, ifx : R — R” is a solution of (2.10) and (0) is in &%, &%,
or £°, thenx(z) is in &Y, £°%, or £°, respectively, for alk € R. We shall see
that each of these spaces is characterized by the growthcay dates of the
solutions it contains. Before doing so, we state and provasickfact about
finite-dimensional normed vector spaces.

Theorem. All norms onR” are equivalent.
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Proof. Since equivalence of norms is transitive, it suffices to prthat every
normAN : R" — R is equivalent to the standard Euclidean ngrm

Given an arbitrary nornvV, and lettingx; be the projection ok € R” onto
theith standard basis vectey, note that

Ny = N (Zx,-e,-) <3N < Y IxIN )

i=1 i=1 i=1
< (Z N(ei)) x].
i=1

This shows half of equivalence; it also shows tiats continuous, since, by the
triangle inequality,

IN(x) =N = N(x—y) < (ZN(ei)) |x =yl

i=1

The setS := {x € R" \ |x] = 1} is clearly closed and bounded and, therefore,
compact, so by the extreme value theore¥nmust achieve a minimum oS.
Since N is a norm (and is, therefore, positive definite), this minimmust be
strictly positive; call itk. Then for anyx # 0,

Ny = (1125 ) = el () = ke,
|x| |x]
and the estimaté&/(x) > k|x| obviously holds ifx = 0, as well. O

Theorem.Given A € L(R”,R") and the corresponding decompositi®f =
E¥ dES ®E°, we have

g = J{xeR"| lim |e™e'x| =0}, (2.11)
c>0 ty—oo
£ = J{x eR" | lim [e“e" x| = 0}, (2.12)
c>0 tfoo
and
c _ n : ct tA T —ct tA _
g =(|{xeR \ti@ww e x|—t||TrDo|e x| = 0}. (2.13)

c>0

Proof. By equivalence of norms, instead of using the standard &egti norm
onRR” we can use the norm

[xll := supl| Prx]......|Pnx]},
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whereP; : R" — R represents projection onto tii basis vector corresponding
to the real canonical form. Because of our knowledge of thecttre of the real
canonical form, we know thak;e’4x is either of the form

p()e™, (2.14)
wherep(t) is a polynomial irr andA € R is an eigenvalue ofl, or of the form
p(t)e® (a cosht + B sinbt), (2.15)

wherep(t) is a polynomial ir¢, a + bi € C\ R is an eigenvalue ofl, ande and
B are real constants. Furthermore, we know that the conétant: is positive if
P; corresponds to a vector &t , is negative ifP; corresponds to a vector &7,
and is zero ifP; corresponds to a vector &f.

Now, letx € R” be given. Suppose first thate £5. Then eachP;e’4x is
either identically zero or has as a factor a negative exg@ievhose constant is
the real part of an eigenvalue dfthat is to the left of the imaginary axis in the
complex plane. Let(A) be the set of eigenvalues df and set

Imax{ReA | 1 € 0(4) and Rel < 0}
CcC =
2

Thene®? P;e'4x is either identically zero or decays exponentially to zeso &
Q.

Conversely, suppose ¢ £°. ThenP;x # 0 for someP; corresponding to a
real canonical basis vectordi¥ or in £¢. In either caseP;e’4 x is not identically
zero and is of the form (2.14) wheie> 0 or of the form (2.15) where > 0.
Thus, ifc > 0 then

lim sup|e®? Pie'4x| = oo,
t1oo
o)
lim sup||e€‘e’4
t1oo

The preceding two paragraphs showed that (2.12) is coriig@gtapplying
this fact to the time-reversed problein= —Ax, we find that (2.11) is correct,
as well. We now consider (2.13).

If x € £¢, then for eachi, P;e’“x is either a polynomial or the product of a
polynomial and a periodic function. ¢ > 0 and we multiply such a function of
t by e’ and letr | —oo or we multiply it bye—¢? and letz 1 oo, then the result
converges to zero.

If, on the other handy ¢ £¢ then for some, P;e'4x contains a nontrivial
exponential term. It > 0 is sufficiently small then eithes¢’ P;e’4x diverges
ast |, —oo or e~ P;e!4x diverges as 1 oo. This completes the verification of
(2.13). O

x|| = oo.
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2.8 Exponential Decay

Definition. If £ = R”, we say that the origin is sourceande’4 is anexpan-
sion

Definition. If £ = R”, we say that the origin is sinkande’4 is acontraction

Theorem.

(&) The origin is a source for the equatioh = Ax if and only if for a given
norm|| - || there are constants, » > 0 such that

le" x| < ke'?||x|
for everyr < 0andx € R”.

(b) The origin is a sink for the equatioh = Ax if and only if for a given norm
|| - || there are constants, b > 0 such that

lle" x|l < ke™P||x]|

for everyr > 0 andx € R”.

Proof. The “if” parts are a consequence of the previous theorem.“dihly if”
parts follow from the proof of the previous theorem. O

Note that a contraction does not always “contract” thingsediately;i.e.,
le!4x| £ |x|, in general. For example, consider

[-1/4 0
A_[l —1/4]

x(t) = [Xl(f)]

x2(1)
is a solution ofx = Ax, then

J _
E|x(l)|2 =2(x, %) =2[x xz][ 11/4 _?/4} [g]

1 1 1
= —Exf + 2x1x2 — Exg = X1X2 — E(X1 —x2)2,

which is greater than zero if, for exampbg, = x, > 0. However, we have the
following:
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Theorem.

(@) If e’ is an expansion then theressmenorm | - | and some constaibt > 0
such that

le™ x| < e®|x]|

for everyr < 0andx € R”.

(b) If ¥4 is a contraction then there somenorm|| - | and some constaibt > 0
such that

le™ x|l < e™||x|

for everyr > 0 andx € R”.

Proof. The idea of the proof is to pick a basis with respect to whicls rep-
resented by a matrix like the real canonical form but with e@mall constant
¢ > 0 in place of the off-diagonal’s. (This can be done by rescaling.) If the
Euclidean norm with respect to this basis is used, the dksstimates hold. The
details of the proof may be found in ChaptegZ, of Hirsch and Smale. O

Exercise 9

(a) Show that ife’4 ande’® are both contractions dR”, andBA = AB,
thene!(4+8) js a contraction.

(b) Give a concrete example that shows t{@tcan fail if the assumption
thatAB = BA is dropped.

Exercise 1@Problem 5 on page 137 of Hirsch and Smale reads:
“For any solution tax = Ax, A € L(R",R"), show that exactly one of
the following alternatives holds:

(@) lim x(r) =0and lim |x(z)] = oo;
t1oo t—o0

(b) lim |x(z)] = coand lim x(z) = 0;
t1oo ty—oo0

(c) there exist constant8?, N > 0 such thatM < |x(¢)| < N for all
teR”
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Is what they ask you to prove true? If so, prove it. If not, deiee what
other possible alternatives exist, and prove that you hegeumted for all
possibilities.

2.9 Nonautonomous Linear Systems

We now move from the constant coefficient equationr= Ax to the nonau-
tonomous equation

% = A(t)x. (2.16)

For simplicity we will assume that the domain afis R.

Solution Formulas

In the scalar, or one-dimensional, version of (2.16)
X =a(t)x (2.17)
we can separate variables and arrive at the formula

t
x(1) = xoeftoa(r)dr

for the solution of (2.17) that satisfies the initial conalitix (zo) = xg.
It seems like the analogous formula for the solution of (2.x4@h initial
conditionx (zp) = x¢ should be

t
x(t) = el 4@ 4ty (2.18)
Certainly, the right-hand side of (2.18) makes sense (asgutinat A is continu-

ous). But does it give the correct answer?
Let's consider a specific example. Let

=}

andry = 0. Note that

! 0 0 2To0 0
/0 A()dr = [z 12/2} Y [2/1 1]’
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[t 0] 2270 o0 0 0
¢ _[0 li|+5[2/t 1]+ 2! [2/: 1]+"'

2 1 0
= |:(1) (l)i| + (el /2 _ 1) |:2(;t (l)i| = |:% (et2/2_ 1) et2/2i|.

On the other hand, we can solve the corresponding system

X1 =0

Xp = X1 +1tx2

directly. Clearlyx;(z) = « for some constant. Plugging this into the equation
for x,, we have a first-order scalar equation which can be solvednidynfy an
integrating factor. This yields

t
x2(t) = Be'’/? ¢ aet2/2/ ™12 g
0

for some constant. Sincex; (0) = « andx,(0) = 8, the solution of (2.16) is
x1(t)| _ 1 0 1 [x1(0)
xa2(t)] T L2 fLem 2 ds 2] [x2(0)]

t
t2/2 —s2/2 z t2/2
e /0 e ds # ; (e 1)

(2.18) doesn't work? What went wrong? The answer is that

Since

t-‘rhA d " A d
ief(; A@dr _ fim &2 Mdt _ oJo Al)dz
dt h—0 A
ol A dt [e' 1 gy de _ 1]
lim ’
# h—0 h

in general, because of possible noncommutativity.

Structure of Solution Set

We abandon attempts to find a general formula for solving6(2.4nd instead
analyze the general structure of the solution set.
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Definition. If xM,x@ ... x® are linearly independent solutions of (2.16)
(i.e., no nontrivial linear combination gives the zero functitimn the matrix

X(@t) := [x(l)(t) x(n)([)]

is called aflundamental matrixor (2.16).
Theorem. The dimension of the vector space of solution§2016)is .

Proof. Pick n linearly independent vectors®) € R” k = 1,...,n, and let
x%®) pe the solution of (2.16) that satisfies the initial conditid®) (0) = v®).
Then thesen solutions are linearly independent. Furthermore, we cldiat
any solutionx of (2.16) is a linear combination of thegesolutions. To see
why this is so, note that(0) must be expressible as a linear combination of
v .. v®}. The corresponding linear combination{af, ..., x®}is, by
linearity, a solution of (2.16) that agrees withats = 0. SinceA is continuous,
the Picard-Lindelof Theorem applies to (2.16) to tell us olutions of IVPs are
unique, so this linear combination ot ..., x} must be identical tar. [

Definition. If X(¢) is a fundamental matrix an&d (0) = 7, then it is called the
principal fundamental matrix(Unigueness of solutions implies that there is only
one such matrix.)

Definition. Given n functions (in some order) fromk to R”, their Wronskian
is the determinant of the matrix that has these functiongsasolumns (in the
corresponding order).

Theorem. The Wronskian of solutions of(2.16)is identically zero if and only
if the solutions are linearly dependent.

Proof. Supposex?), ..., x™ are linearly dependent solutioris.,
n
Z akx(k) =0
k=1
for some constantsy, ... o, with >3 _; o # 0. Then} j_; ax® (1) is 0

for everyt, so the columns of the Wronskidir(z) are linearly dependent for
everyt. This meandV = 0.

Conversely, suppose that the Wronski&nhof n solutionsx®, ..., x® is
identically zero. In particular’(0) = 0, sox(0),...,x™(0) are linearly
dependent vectors. Pick constamis. . ., «,, with Zﬁﬂ a,% nonzero, such that
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S axx®(0) = 0. The function)_7_, axx®) is a solution of (2.16) that is
0 whent = 0, but so is the function that is identically zero. By uniquenef
solutions,> 7 _; axx® = 0;i.e, xM, ... x™ are linearly dependent. [

Note that this proof also shows that if the Wronskiam &olutions of (2.16)
is zero for some, then it is zero for alt.

What if we're dealing withn arbitrary vector-valued functions (that are not
necessarily solutions of (2.16))? If they are linearly defmnt then their Wron-
skian is identically zero, but the converse is not true. Kangple,

o] el

have a Wronskian that is identically zero, but they are nudrly dependent.
Also, n functions can have a Wronskian that is zero for ssraed nonzero for
othert. Consider, for example,

o] el

Given a fundamental matriX'(z) for (2.16), defineG(z, #y) to be the quantity
X(1)[X(t)]~L. We claim thatx (¢) := G(t, to)v Solves the IVP

Initial-Value Problems

%= A(t)x

x(tg) = v.

To verify this, note that
d d
7= E(X(t)[X(to)]_lv) = A(O)X(O)[X (1) 'v = A(1)x,

and
x(t0) = G(to.10)v = X(10)[X(10)] "'v = v.

Inhomogeneous Equations

Consider the IVP
X =A@)x + f(t)
x(fo) = Xo.

In light of the results from the previous section whgmwas identically zero, it's
reasonable to look for a solution of (2.19) of the formx(¢) := G(¢, 1) y(?),
whereG is as before, ang is some vector-valued function.

(2.19)
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Note that

2(1) = AOXO[X (1) y (1) + G(t,10) 3 (1) = AW)x(1) + G(1,10) 3 (1);

therefore, we nee@(z,1y)y(t) = f(¢). Isolating,y(¢), we need
y(t) = X)X f(1) = Glto, 1) £ (1) (2.20)
Integrating both sides of (2.20), we see thathould satisfy

y() = y(to) = / G(to. s) f(s) ds.

to

If x(z) is to bexg, then, sinceG(ty,t9) = I, we needy(ty) = xo, SO y(?)
should be

X0 —i—/ G(to,s) f(s)ds,

[¢]
or, equivalentlyx () should be

t
Gt 10)x0 + / G(1.5)f(s) ds.
to

sinceG(t,t9)G(to,s) = G(t,s). This is called the Variation of Constants for-
mula or the Variation of Parameters formula.

2.10 Nearly Autonomous Linear Systems

SupposeA(t) is, in some sense, close to a constant matrixThe question we
wish to address in this section is the extent to which sahgtiof the nonau-
tonomous system

X = A(t)x (2.21)

behave like solutions of the autonomous system
X = Ax. (2.22)

Before getting to our main results, we present a pair of lemma

Lemma. The following are equivalent:
1. Each solution 0f2.22)is bounded as 1 oc.

2. The functiorr — |le?4| is bounded as 1 oo (where| - | is the usual
operator norm).



Nearly Autonomous Linear Systems

3. ReA < 0for every eigenvalug of A and the algebraic multiplicity of each
purely imaginary eigenvalue matches its geometric midiigl

Proof. That statement 2 implies statement 1 is a consequence oéfimition of
the operator norm, since, for each solutioof (2.22),

Ix(@)] = [e"Ax(0)] < 4] - |x(0)].

That statement 1 implies statement 3, and statement 3 isnglisgement 2 are
consequences of what we have learned about the real cahfomiozof A, along
with the equivalence of horms d@kr*. O

Lemma. (Generalized Gronwall Inequality) SupposeX and ¢ are nonnega-
tive, continuous, real-valued functions pg, 7] for which there is a nonnegative
constantC such that

X(t)<C+ / t O(s) X (s) ds,

to

for everyt € [ty, T]. Then
X(1) < Celio @) ds,

Proof. The proof is very similar to the proof of the standard Grorvedquality.
The details are left to the reader. O

The first main result deals with the case whin) converges tof sufficiently
quickly ast 1 oo.

Theorem. Suppose that each solution (#.22) remains bounded as{ oo and
that, for some, € R,
o0
/ |A(t) — Al dt < oo, (2.23)
11

0

where|| - || is the standard operator norm. Then each solutior{zZx21)remains
bounded as 1 oco.

Proof. Letzy be such that (2.23) holds. Given a solutiowof (2.21), letf(¢) =
(A(t) — A)x(¢), and note that satisfies the constant-coefficient inhomogeneous
problem
X =Ax+ f(¢t). (2.24)
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Since the matrix exponential provides a fundamental matintion to constant-
coefficient linear systems, applying the variation of cantt formula to (2.24)
yields
t
x(t) = e (19) + / T4 A(s) — A)x(s) ds. (2.25)
to
Now, by the first lemma, the boundedness of solutions of jar2forward
time tells us that there is a constalt > 0 such that|e’4|| < M for every
t > to. Taking norms and estimating, gives (for #y)

t
Ix(@)] < [leYTO4) L x(1o)] + / [eC=4) - [ A(s) — Al - |x(s)| ds
to

t
< Mlx(0)] + / MIAGs) — Al - [x(s)]| ds.

Setting X(t) = |x(¢)], ®(t) = M| A(t) — A|, andC = M]|x(tp)|, and
applying the generalized Gronwall inequality, we find that
t
X(0)] < Mx(tg)[e™ o 14=414s.
By (2.23), the right-hand side of this inequality is boundedzy, o), sox(z) is
bounded as 1 oc. O

The next result deals with the case when the origin is a sinkX@2). Will
the solutions of (2.21) also all converge to the origim dsoo? Yes, if| A(z)—A||
is sufficiently small.

Theorem. Suppose all the eigenvalues Athave negative real part. Then there
is a constant > 0 such that if| A(r) — A| < ¢ for all  sufficiently large then
every solution of{2.21)converges t® ast 1 oo.

Proof. Since the origin is a sink, we know that we can choose corsstaht> 0
such that|e’4| < ke™* for all ¢ > 0. Pick a constant € (0, b/ k), and assume
that there is a timegy € R such that|A(r) — A|| < ¢ for everyr > t,.

Now, given a solutionx of (2.21) we can conclude, as in the proof of the
previous theorem, that

t
Ix(@)] < e - x(10)| + / 1eC™4) ) A(s) — Al - [x(s)| ds
to
forall t > 9. This implies that

t
Ix (1) < ke 21| x (10)] + f ke U g|x(s)| ds

to
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for all t > #o. Multiplying through bye?@—%0) and settingy (¢) := 20| x(¢)|
yield

t

ﬂnskumn+kg/y@wh

to
for all > #9. The standard Gronwall inequality applied to this estingites

(1) < k|x(t)|ekeC =0

for all t > 19, or, equivalently,
Ix(1)] < klx(tg)]|e*e2)E—10)

forall r > ¢y. Sincee < b/k, this inequality implies thak () — 0 ast 1
0. O

Thus, the origin remains a “sink” even when we pertdriby a small time-
dependent quantity. Can we perhaps just look at the (pgssilnle-dependent)
eigenvalues ofA(¢) itself and conclude, for example, that if all of those eigen-
values have negative real part for athen all solutions of (2.21) converge to the
origin ast 1 co? The following example of Markus and Yamabe shows that the
answer is “No”.

Exercise 11Show that if

—1+32cogs 11— 3sintcost
A@) = —1—3sinrcost —1+ 2sin?¢
2 2

then the eigenvalues of(¢) both have negative real part for everg R,

but
__|—cost| ;2
x(1) = [ sint }e ’

which becomes unbounded ras> oo, is a solution to (2.21).

2.11 Periodic Linear Systems

We now consider

X = A(t)x (2.26)
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when A4 is a continuous periodie x n matrix function ofz; i.e., when there is a
constantl” > 0 such thatd(t + T') = A(z) for everyt € R. When that condition
is satisfied, we say, more precisely, thhis T-periodic If T is the smallest
positive number for which this condition holds, we say tifats the minimal
period of A. (Every continuous, nonconstant periodic functimes a minimal
period).

Let A be T -periodic, and letX (¢) be a fundamental matrix for (2.26). Define
X : R — LR R") by X(t) = X(t + T). Clearly, the columns o are
linearly independent functions of Also,

%X(z) = %X(z +T)=X'(t+T)=At +T)X(t +T) = A()X (1),

so X solves the matrix equivalent of (2.26). Hendé,is a fundamental matrix
for (2.26).

Because the dimension of the solution space of (2.26) this means that
there is a nonsingular (constant) mattixsuch thatX(r + 7)) = X(¢z)C for every
t € R. C is called anonodromymatrix.

Lemma. There exists3 € £(C",C") such thatC = 75,

Proof. Without loss of generality, we assume tiat= 1, since if it isn't we can
just rescaleB by a scalar constant. We also assume, without loss of géyeral
thatC is in Jordan canonical form. (If it isn't, then use the factt® ~!CP =

eB implies thatC = ¢PBP™')) Furthermore, because of the way the matrix
exponential acts on a block diagonal matrix, it suffices towslthat for each

p x p Jordan block

A0 0
1

¢=lo ,
: oo o 0
0 -~ 0 1 A

C = e for someB e £(CP?,CP).

Now, an obvious candidate fa8 is the natural logarithm o€, defined in
some reasonable way. Since the matrix exponential was ddfiyna power se-
ries, it seems reasonable to use a similar definition for aixnagarithm. Note
thatC = AI+N = AI(I +A~1N), whereN is nilpotent. (Since& is invertible,
we know that all of the eigenvaluédsare nonzero.) We guess

B = (logA)I + log( + A7IN), (2.27)
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where
(—M)*
k 9

o0
log(/ + M) :=—-)"
k=1
in analogy to the Maclaurin series for Idg+ x). SinceN is nilpotent, this
series terminates in our application of it to (2.27). Dirsgbstitution shows that

eB = C, as desired. 0

The eigenvaluep of C are called thd-loquet multipliers(or characteristic
multipliers) of (2.26). The corresponding numbérsatisfyingp = ¢*T are
called theFloquet exponentgor characteristic exponents) of (2.26). Note that
the Floguet exponents are only determined up to a multipl@of)/ T. Given
B for which C = ¢T8 the exponents can be chosen to be the eigenvaluBs of

Theorem. There exists & -periodic functionP : R — L(R",R") such that

X(t) = P(t)e'B.

Proof. Let P(t) = X(t)e *B. Then
Pt+T)=Xt+T)e DB = x(t + T)e TBe™B = X(1)Ce B8
= X(1)eTBe ™ TBe™B — X (1)e™'B = P(1).
O

The decomposition ok (¢) given in this theorem shows that the behavior of
solutions can be broken down into the composition of a pat it periodic in
time and a part that is exponential in time. Recall, howetreat B may have
entries that are not real numbers, B¢t) may be complex, also. If we want
to decomposeX (7) into areal periodic matrix times a matrix of the formf?
where B is real, we observe thak (¢ + 2T) = X(t)C?, whereC is the same
monodromy matrix as before. It can be shown thatdbeareof a real matrix
can be written as the exponential ofeal matrix. WriteC2 = 78 with B real,
and letP(r) = X(t)e '8 as before. ThenX(r) = P(t)e’® where P is now
2T -periodic, and everything is real.

The Floquet multipliers and exponents do not depend on thepiar fun-
damental matrix chosen, even though the monodromy matgs.dbhey depend
only on A(zr). To see this, leiX (¢) andY(¢) be fundamental matrices with corre-
sponding monodromy matric&s and D. BecauseX (¢) andY (¢) are fundamen-
tal matrices, there is a nonsingular constant maftrsuch that’'(r) = X(¢)S for
all t € R. In particular,Y(0) = X(0)S andY(T) = X(T)S. Thus,C =

(X)) 'X(T) = S[YO) 'y(1)s~! = S[Y©0) 'y(0)ps~! =sps~ L.
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This means that the monodromy matrices are similar andefibrer, have the
same eigenvalues.

Interpreting Floquet Multipliers and Exponents

Theorem. If p is a Floquet multiplier of(2.26)and A is a corresponding Floquet
exponent, then there is a nontrivial solutianof (2.26) such thatx(z + T) =
px (1) for everyr € R andx(r) = e* p(r) for someT -periodic vector function

p.

Proof. Pick x¢ to be an eigenvector aB corresponding to the eigenvalue
whereX(t) = P(t)e'B is the decomposition of a fundamental matkixs). Let
x(t) = X(t)xo. Then, clearlyx solves (2.26). The power series formula for the
matrix exponential implies thaty is an eigenvector of'Z with eigenvalues?".
Hence,

x(t) = X(t)xo = P(1)e'Bxo = P(1)eM xo = M p(2),

wherep(t) = P(t)xo. Also,

x(t+T)=e*Ter pt + T) = pe* p(t) = px(0).

Time-dependent Change of Variables

Let x solve (2.26), and lep(t) = [P(¢)]"'x(¢), whereP is as defined previ-
ously. Then

d d
2 POy0] = —x(t) = AD)x (@) = AO POy (@)
= A X0)e Py ().

But

d
SPOYO] = POy + P0)y' (1)
= [X'(t)e B — X(1)e "B Bly(t) + X(1)e "By (1)
= AOX (e By(t) — X(1)e " BBy(1) + X(1)e B/ (1),

SO
X(0)e By (t) = X(t)e BBy (1),

which implies thaty’(r) = By(t); i.e, y solves a constant coefficient linear
equation. SinceP is periodic and, therefore, bounded, the growth and decay of
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x andy are closely related. Furthermore, the growth or decay isfdetermined
by the eigenvalues aB, i.e., by the Floguet exponents of (2.26). For example,
we have the following results.

Theorem. If all the Floquet exponents qR.26)have negative real parts then all
solutions of(2.26)converge to 0 as 1 oo.

Theorem. If there is a nontrivialT-periodic solution of(2.26) then there must
be a Floquet multiplier of modulus 1.

Computing Floquet Multipliers and Exponents

Although Floquet multipliers and exponents are determibgd(z), it is not
obvious how to calculate them. As a previous exercise ithistl, the eigenvalues
of A(z) don’'t seem to be extremely relevant. The following resulpse little
bit.

Theorem.If (2.26)has Floquet multipliers, ..., p, and corresponding Flo-
quet exponent, ..., A,, then
T
Pl Pn = exp(/ traceA(r) dt (2.28)
0
and

T

1 2mi
Aot d, = ?/ traceA(r) dr mod = (2.29)

0

Proof. We focus on (2.28). The formula (2.29) will follow immedibtdrom
(2.28).

Let W(¢) be the determinant of the principal fundamental makix). Let
S» be the set of permutations ¢f,2,...,n} and lete : S, — {—1,1} be the
parity map. Then

W(t) = Z (o) l_[ Xi o)

g€eS, i=1

whereX; ; is the(i, j)-th entry of X (7).
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Differentiating yields

dW([) Z (0)_ l_IXl o(i)

UGSn l—1

= Z > e(o)[ /am] [T Xo0
j=10€S, i#j

= Z Z €(0) |:Z A/ k(1) Xk 0(]):| 1_[ Xi 0 ()
j=10€S, i#j

= Z Z Aj () Z €(0) Xk 0()) l_[ Xio()

j=1k=1 o€eS, i)

If j # k,the inner sum is the determinant of the matrix obtained plaging
the jth row of X(¢) by its kth row. This new matrix, having two identical rows,
must necessarily have determinant 0. Hence,

dW(t) "
ke ; 4;,(1) detX (1) = [traced ()] W ().
Thus,
W(r) = ejg traceA(s) ds W(0) = efé traceA(s) ds
In particular,

elo 1aceA® ds — yy/(T) = detX(T) = de( P(T)e”®) = det P(0)e”®)
= dete”® = detC = p1p2-+- pn.

Exercise 1ZConsider (2.26) where

A(t) = [ — CcoSt b }

3 .
3 +sins

anda andb are constants. Show that there is a solution of (2.26) that pe
comes unbounded as} oco.
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3.1 Invariant Sets and Limit Sets

We will now begin a study of the continuously differentialalgtonomous system

X = f(x)
or, equivalently, of the corresponding dynamical systgim x). We will denote
the phase spac and assume that it is an open (not necessarily proper) subset
of R”.
Orbits

Definition. Givenx € 2, the(complete) orbithroughx is the set
y(x) :={p(t,x) |t € R},

the positive semiorbithroughx is the set
y T (x) = {o(t.x) |t = 0},

and thenegative semiorbithroughx is the set
y~(x) = {o(t,x) | 1 <0}.

Invariant Sets

Definition. A set M C Q is invariant underg if it contains the complete orbit
of every point of M. In other words, for every € M and everyr € R,
o(t,x) e M.

Definition. A set M C Q is positively invariantundery if it contains the positive
semiorbit of every point oM. In other words, for every € M and every > 0,
o(t,x) € M.
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Definition. A set M C Q is negatively invarianunderg if it contains the nega-
tive semiorbit of every point oM. In other words, for every € M and every
t <0, 0 x) e M.

Limit Sets
Definition. Givenx € Q, thew-limit set ofx, denotedwv(x), is the set
{y € Q | liminf |o(t,x) — y| = 0}
t1oo
= {y e ‘ dt1.t5,... > coS.t.o(ty,x) > yask 1 oo}.
Definition. Givenx € Q, thea-limit set ofx, denotedx(x), is the set
{y e ‘ liminf |p(t,x) — y| = 0}
tl—o0
= {y € Q ‘ dt1,t5,... > —oco S.t.e(ty, x) - y ask 1 oo}.

Lemma. If, for each.A € 2, we letA represent the topological closure gf in
Q, then

o(x) = () y+(pE.x) (3.1)
TeR
and
a(x) = [y~ (o(x,x)). (3-2)
TeR

Proof. It suffices to prove (3.1); (3.2) can then be establishedrog tieversal.
Lety € w(x) be given. Pick a sequencg 1, ... — oo such thap(, x) —
y ask 1 oo. Lett € R be given. Pickk € N such that, > 7 forall k > K.
Note thatp(t, x) € y T (¢(r, x)) forallk > K, so
y € yH(p(z.x)).

Since this holds for alt € R, we know that

ye )yt (3.3)

T€R

Since (3.3) holds for each € w(x), we know that

o(x) S () yHp(r.x). (3.4)

teR
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Now, we prove the reverse inclusion. Let

ye () rHex)

TeER

be given. This implies, in particular, that

ye () rte(rx).

TeN

For eacht € N, we have
y € yT(p(k, x))

so we can pickzy € yT(¢(k,x)) such that|zy — y| < 1/k. Sincez; €
yT(p(k,x)), we can picksy, > 0 such thatzy = ¢(sg, o(k,x)). If we set
1 = k + s, we see that, > k, so the sequenag, 1,, . .. goes to infinity. Also,
since

lp(te, x) — y| = |p(sk +k,x) —y| = |o(sk, ok, x)) — y| = |z — y|
<1/k,

we know thatp(t;, x) — y ask 1 oco. Hence,y € w(x). Since this holds for
every

ye ) rHex),

T€R
we know that

(7T (e(r.x) S o).

teR

Combining this with (3.4) gives (3.1). O

We now describe some properties of limit sets.

Theorem. Givenx € Q, w(x) anda(x) are closed (relative t62) and invariant.
If yT(x) is contained in some compact subsethf then w(x) is nonempty,
compact, and connected. ¥ (x) is contained in some compact subsetf
thena(x) is nonempty, compact, and connected.

Proof. Again, time-reversal arguments tell us that it is only neaeg to prove
the statements abouft(x).

Step Liw(x) is closed.
This is a consequence of the lemma and the fact that the éctese of closed
sets is closed.
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Step 2:.w(x) Is invariant.
Let y € w(x) andz € R be given. Choose a sequence of tinigg converging
to infinity such thatp(t;, x) — y ask 1 oco. Foreachk € N, lets,y = 1 + ¢,
and note thats; ) converges to infinity and

(k. X) = ot +1,x) = @(t, p(tx, X)) = (1, y)

ask 1 oo (by the continuity ofp(z, -)). Hencep(t, y) € w(x). Sincet € R and
y € w(x) were arbitrary, we know thai(x) is invariant.

Now, suppose that™ (x) is contained in a compact subgéof Q.

Step 3w(x) iIs nonempty.
The sequence(l, x), ¢(2,x), ... is contained iy (x) € K, so by the Bolzano-
Weierstrass Theorem, some subsegereg x), ¢(¢2, x), . .. converges to some
y € K. By definition,y € w(x).

Step 4.w(x) Is compact.
By the Heine-Borel Theoreni is closed (relative t&R"), so, by the choice of
K, o(x) € K. Since, by Step lp(x) is closed relative t@2, it is also closed
relative to/C. SinceK is compact, this means(x) is closed (relative t@R").
Also, by the Heine-Borel Theorenk is bounded so its subset(x) is bounded,
too. Thusw(x) is closed (relative t®R") and bounded and, therefore, compact.

Step 5:w(x) is connected.
Supposew(x) were disconnected. Then there would be disjoint open ssibset
andH of Q such that; Nw(x) andHNw(x) are nonempty, and(x) is contained
in GUH. Then there would have to be a sequengs,, ... — oo and a sequence
t1,t2,... = oo such thaip(sg, x) € G, ¢(tr, x) € H, andsg < tx < sg4 for
eachk € N. Because (for each fixdd e N)

{o@t,x) | t € [sk. 1]}

is a (connected) curve going from a pointgrnto a point in, there must be a
time 7 € (sg, ;) such thatp(zx,x) € K\ (G U H). Pick such ar; for each
k € N and note thaty, 15, ... — oo and, by the Bolzano-Weierstrass Theorem,
some subsequence @ (zx, x)) must converge to a pointin K\ (G UH). Note
thaty, being outside off U H, cannot be inv(x), which is a contradiction.

O

Examples of emptw-limit sets are easy to find. Consider, for example, the
one-dimensional dynamical systertr, x) := x+¢ (generated by the differential
equationx = 1.



Regular and Singular Points

Examples of dynamical systems with nonempty, noncompastpdnected
w-limit sets are a little harder to find. Consider the plandoaamous system

X =-y(-x?
y=x+y(l—x?).

After rescaling time, this differential equation genesagedynamical system on
R? with

o(x) ={(=1,) [y eRfU{(1,y) | y e R}
for everyx in the punctured strip

{(x.y) e R*| x| < 1andx? + y* > 0}.

3.2 Regular and Singular Points

Consider the differential equation= f(x) and its associated dynamical system
@(t, x) on a phase space.

Definition. We say that a point € 2 is anequilibrium pointor asingular point
or acritical pointif f(x) = 0. For such a pointp(z, x) = x for all ¢ € R.

Definition. A point x € Q that is not a singular point is calledregular point

We shall show that all of the interesting local behavior obatmuous dy-
namical system takes place close to singular points. Wédhahis by showing
that in the neighborhood of each regular point, the flow iy &#milar to unidi-
rectional, constant-velocity flow.

One way of making the notion of similarity of flows precisehg following.

Definition. Two dynamical systemg : Rx Q@ — Qandy : Rx 0 — ©
aretopologically conjugatef there exists a homeomorphisme(, a continuous
bijection with continuous inversé) : 2 — © such that

h(g(t,x)) = ¥ (1. h(x)) (3.5)

for everyt € R and everyx € Q. In other wordsy(¢,-) = ho ¢(t,-) o h™ 1, or,
equivalently, the diagram

Q (D(t,') Q

v ()

® ——
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commutes for each € R. The function/ is called atopological conjugacyIf,
in addition,s andh~! arer-times continuously differentiable, we say thaand
Y areC’"-conjugate

A weaker type of similarity is the following.

Definition. Two dynamical systemg : Rx Q@ — Qandy : Rx® — ©
aretopologically equivalentf there exists a homeomorphisin: @ — ® and
a time reparametrization functian : R x  — R such that, for each € €,
a(-,x) : R — Ris an increasing surjection and

h(gp(a(t. x), x)) = ¥ (1. h(x))

for everyt € R and everyx € Q. If, in addition, & is r-times continuously
differentiable, we say that andy areC’-equivalent

A topological equivalence maps orbits to orbits and pressetkie orientation
of time but may reparametrize time differently on each il orbit.

As an example of the difference between these two concepisider the
two planar dynamical systems

sint  cost

pt,x) = [

cost —sinz}

and
cos2t — sinZZ}

y(t.y) = [sinzz cos2t

generated, respectively, by the differential equations
. [0 -1
X = 1 0 X
. |0 =2

The functionsi(x) = x anda(¢, x) = 2t show that these two flows are topolog-
ically equivalent. But these two flows are not topologicalbnjugate, since, by
settingt = & we see that any functioh : R? — R? satisfying (3.5) would have
to satisfyh(x) = h(—x) for all x, which would mean thai is not invertible.

Because of examples like this, topological equivalencensee be the pre-
ferred concept when dealing with flows. The following thenréowever, shows
that in a neighborhood of a regular point, a smooth flow satisdi local version
of C"-conjugacy with respect to a unidirectional, constanteiy flow.

and
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Theorem. (C" Rectification Theorem)Supposef : 2 — R” is r-times contin-
uously differentiable (witlh > 1) andx, is a regular point of the flow generated
by

x = f(x). (3.6)
Then there is a neighborhood of x(, a neighborhoodV of the origin inR”,
and aC" mapg : V — W witha C” inverse such that, for each solutianof
(3.6)inV, y(¢) := g(x(¢)) satisfies the equation

y=1. 3.7

in W.

Proof. Without loss of generality, we shall assume that= 0 and f(x¢) =
f(0) = aey for somea > 0. Let )V be a small ball centered étin R”,
and defineG(y) := G((y1.....vn)T) = (1.0, y2,....yn)T), wherey is
the flow generated by (3.6). (While might not be a genuine dynamical system
because it might not be defined for all time, we know that it Isa@st defined long
enough thatG is well-defined ifWW is sufficiently small.) In wordsG(y) is the
solution obtained by projecting onto the plane through the origin perpendicular
to £(0) and locating the solution of (3.6) that starts at this prgjdgoint after
y1 units of time have elapsed.

Step Lip(-, p)isC™ 1,
We know that

d
Ew(t,p) = f(e(t, p)). (3.8)

If f is continuous then, sinag(-, p) is continuous, (3.8) implies that(-, p) is
CL. If fisC!, then the previous observation implies tdt, p) is C!. Then
(3.8) implies that%q)(z, p) is the composition o€ ! functions and is, therefore,
C; this means thap(-, p) is CZ. Continuing inductively, we see that, sin¢e
isC”, ¢(-, p)isC™ 1,

Step 2:p(t,-) isC”.
This is a consequence of applying differentiability witlspect to parameters in-
ductively.

Step3:GisC’.
This is a consequence of Steps 1 and 2 and the formul@ farterms of.
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Step 4:DG(0) is an invertible matrix.

Since G() 5
V= To0)| = /(0) = ae
I |y—p O =0
G (y) ) dp
3 = a—w(O, P) ek =5 ex = e,

for k # 1, we have

DG(O)=|:ael ey --- en:|,

which is invertible sincex # 0.

Step 5:If W is sufficiently small, ther; is invertible.
This is a consequence of Step 4 and the Inverse Function gimeor

Setg equal to the (locally defined) inverse 6f. SinceG is C”, so isg.
The only thing remaining to check is thatifsatisfies (3.6) theg o x satisfies
(3.7). Equivalently, we can check thatifsatisfies (3.7) thety o y satisfies (3.6).

Step 6:If y satisfies (3.7) thely o y satisfies (3.6).
By the chain rule,

d 0
EG(y(Z)) = $<p(s, 0,y2,..-,yn))

V1
s=y1
0
B V2
+ a—w(yl, P) :
P P=0.y2.90) |
Yn

= fle(»1.(0,y2,...,¥n))) = f(G(Y)).

3.3 Definitions of Stability

In the previous section, we saw that all the “interestingalobehavior of flows
occurs near equilibrium points. One important aspect ofbsgavior of flows
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has to do with whether solutions that start near a givenisolstay near it for all
time and/or move closer to it as time elapses. This questibith is the subject
of stability theory is not just of interest when the given solution correspdieds
an equilibrium solution, so we study it—initially, at least a fairly broad context.

Definitions

First, we define some types of stability for solutions of thessibly) nonau-
tonomous equation

%= f(t,x). (3.9)

Definition. A solutionx(z) of (3.9) is(Lyapunov) stabléf for eache > 0 and
to € R there exists$ = §(e,19) > 0 such that ifx(z) is a solution of (3.9) and
|x(to) — X (to)| < & then|x(¢z) —x(t)| < eforallz > t,.

Definition. A solutionx(¢) of (3.9) isasymptotically stabléf it is (Lyapunov)
stable and if for every, € R there exist$ = 4(¢9) > 0 such that ifx(z) is a
solution of (3.9) andx (t9) — X ()| < é then|x(¢) —X(t)| — 0 ast 1 oo.

Definition. A solutionx(z) of (3.9) isuniformly stableif for eache > 0 there
existsé = §(e) > 0 such that ifx(¢) is a solution of (3.9) angi (o) —x(t9)| < §
for somery € R then|x(r) —x(¢z)| < e forall t > 1.

Some authors use a weaker definition of uniform stability thens out to
be equivalent to Lyapunov stability for autonomous equmegtioSince our main
interest is in autonomous equations and this alternatifi@iien is somewhat
more complicated than the definition given above, we willusH it here.

Definition. A solutionx(z) of (3.9) isorbitally stableif for every ¢ > 0 there
existsé = §(e) > 0 such that ifx(z) is a solution of (3.9) angi (1) — X (t9)| < §
for somery, 11 € R then

L x» c | BE@).2).

1=t =10

Next, we present a couple of definitions of stability for stbsof the (open)
phase spac& < R” of a dynamical systemp(z, x). (In these definitions, a
neighborhoodof a set4 C Q2 is an open subset @t that contains4.)

Definition. The setA is stableif every neighborhood ofd contains a positively
invariant neighborhood ofl.
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Note that the definition implies that stable sets are padjtiinvariant.
Definition. The setA is asymptotically stabléf it is stable and there is some

neighborhood’ of A such thatw(x) € A for everyx € V. (If V can be chosen
to be the entire phase space, thérs globally asymptotically stablg

Examples

We now consider a few examples that clarify some properfidsese definitions.

y

X =-y/2
y = 2x. \
j X

Orbits are ellipses with major axis along thexis. The equilibrium solution
at the origin is Lyapunov stable even though nearby orbitsetisnes move away
from it.

y

D x
The solution moving around the unit circle is not Lyapunosbt, since

nearby solutions move with different angular velocitigsis| however, orbitally
stable. Also, the set consisting of the unit circle is stable

LN

or, equivalently,

§ = (242,

R

{)’c =—(x?+y?)y
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y

F=r(l—r)

6 = sir?(0/2). K x
A\

d

The constant solutiorix, y) = (1,0) is not Lyapunov stable and the set
{(1,0)} is not stable. However, every solution beginning nga6) converges to
(1,0) ast 1 oo. This shows that it is not redundant to require Lyapunoviktyab
(or stability) in the definition of asymptotic stability ofsmlution (or a set).

Stability in Autonomous Equations

When we are dealing with a smooth autonomous differentiahggn
x = f(x) (3.10)

on an open se C R”, all of the varieties of stability can be applied to essen-
tially the same object. In particular, Igtbe a function that solves (3.10), and
let

AX) = {x(t) | t € R}

be the corresponding orbit. Then it makes sense to talk abeutyapunov,
asymptotic, orbital, or uniform stability 6f, and it makes sense to talk about the
stability or asymptotic stability ofd(x).

In this context, certain relationships between the varitypgs of stability
follow from the definitions without too much difficulty.

Theorem. Letx be a function that solvg8.10), and letA(x) be the correspond-
ing orbit. Then:

If X is asymptotically stable thenis Lyapunov stable;
If X is uniformly stable theR is Lyapunov stable;

If X is uniformly stable them is orbitally stable;

A W dpoE

If A(X) is asymptotically stable theA(x) is stable;
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5. If A(¥) contains only a single point, then Lyapunov stabilitycpbrbital
stability ofx, uniform stability ofx, and stability ofA(x) are equivalent.

We will not prove this theorem, but we will note that parts H &ware imme-
diate results of the definitions (even if we were dealing v@ithonautonomous
equation) and part 4 is also an immediate result of the digist{(even ifA were
an arbitrary set).

Exercise 13n items 1-18, an autonomous differential equation, a phase
spacef? (that is an open subset &), and a particular solutiow of the
equation are specified. For each of these items, state whtble éollowing
statements is/are true:

(a) x is Lyapunov stable;

(b) ¥ is asymptotically stable;
(c) x is orbitally stable;

(d) ¥ is uniformly stable;

(e) A(x) is stable;

(H A(x) is asymptotically stable.

You do not need to justify your answers or show your work. It mgy
convenient to express your answers in a concise fam, (in a table of
some sort). Use of variablesand 8 signifies that the equation (as well &
the particular solution) is to be interpreted as in polamfor

(7]

1.x=x, Q=R X(t):=0

n

x=x,Q=R,x(t) := ¢’
3. {X1 =1+x3,% =0}, 2 =R2,X(t) := (1,0

=00 =72}, Q =R2, %) := (1,1)

4

5. x=x,2 =(0,00),x(t) := ¢’

6. i = 1,5 = —x102), @ = R2, X(1) := (1,0)
7

. % = tanhx, Q = R, X(¢) := sinh 1 (e?)
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8. {x; = tanhxy, X, = 0}, Q = (0,00) x R, X(¢) := (sinh !(¢?),0)
9. x = tanhx, Q = (0, 00), X(¢) := sinh~!(¢%)

10. {).61 = sechxy, xo = —x1x2 sechxl}, Q= Rz,
X(t) := (sinh 1 (z), 0)

11. x = x2/(1 +x2), Q = R, X(¢) 1= —2/(t + V12 + 4)

12. {%; = sechxy, X, = —x2}, @ = R?, %(¢) := (sinh 1(¢),0)
13. % = sechy, @ = R, X(¢) := sinh 1(¢)

14. {X; = 1,x, =0}, Q = R?,X(t) := (£,0)

15. x=0,Q =R, X(t) := 0

16. x=1,Q =R, X(@) .=t

17. {%1 = —x1, X2 = —x2}, R = R%, X(¢) := (¢7*,0)

18. x = —x, Q =R, %(t) :=0

3.4 Principle of Linearized Stability

Supposef is a continuously differentiable function such that

x = f(x) (3.11)

generates a continuous dynamical systeron 2 C R”. Suppose, moreover,
thatxo € Q is a singular point of. If x solves (3.11) and we set:= x — xg
andA := Df(xo), we see that, by the definition of derivative,

U= f(u+xo9) = f(xo) + Df(x0)u + R(u) = Au + R(u), (3.12)

whereR(u)/|lu| — 0 as|u| | 0. BecauseR(u) is small whenu is small, it is
reasonable to believe that solutions of (3.12) behave ailpito solutions of

= Au (3.13)

for u near0. Equivalently, it is reasonable to believe that solutiong3o11)
behave like solutions of
X = A(x — x9) (3.14)
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for x nearxg. Equation (3.13) (or sometimes (3.14)) is called lihearization
of (3.11) atxy.

Now, we've defined (several types of) stability for equilin solutions of
(3.11) (as well as for other types of solutions and sets),weihaven't really
given any tools for determining stability. In this lecture wresent one such tool,
using the linearized equation(s) discussed above.

Definition. An equilibrium pointxq of (3.11) ishyperbolicif none of the eigen-
values ofDf(xq) have zero real part.

If x¢ is hyperbolic, then either all the eigenvalues Af:= Df(xo) have
negative real part or at least one has positive real parthdrfdrmer case, we
know that0 is an asymptotically stable equilibrium solution of (3.1i8)the latter
case, we know thad is an unstable solution of (3.13). The following theorem
says that similar things can be said about the nonlineartiequgs.11).

Theorem. (Principle of Linearized Stability) If xq is a hyperbolic equilibrium
solution of (3.11), thenxy is either unstable or asymptotically stable, and its sta-
bility type (with respect t§3.11) matches the stability type 6fas an equilibrium
solution of (3.13)(whereA := Df(xy)).

This theorem is an immediate consequence of the followirganepositions.
Proposition. (Asymptotic Stability) If x¢ is an equilibrium point of(3.11)and
all the eigenvalues ofl := Df(x¢) have negative real part, thery is asymptot-

ically stable.

Proposition. (Instability) If x¢ is an equilibrium point 0f3.11)and some eigen-
value of4 := Df(xo) has positive real part, themy is unstable.

Before we prove these propositions, we state and prove adetmmhich we
have referred before in passing.

Lemma. Let V be a finite-dimensional real vector space andlet L(V,V).
If all the eigenvalues of. have real part larger tharc, then there is an inner
product(-, -} and an induced nornj - || onV such that

(v, Lv) = c|lv|?

for everyv € V.
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Proof. Letn = dimV, and picke > 0 so small that all the eigenvalues bfhave
real part greater than + ne. Choose a basifvy, ..., v,} for V that putsL in
“modified” real canonical form with the off-diagonal 1's taped bye’s, and let
(-,+) be the inner product associated with this bases (v;,v;) = J;;) and let
| - || be the induced norm oM.

Givenv = Y 7_, a;v; € V, note that (ifL = (¢;;))

n n n n O{2+a2
(v, Lv) = Zﬁiiaiz—i-ZZEijaiaj > Zﬁiia?—228< ! 5 J)
i=1 i=1

i=1j#i i=1j#i

n n n n
> Zﬁiiaiz — Zneaiz = Z(ﬁii —ns)ozi2 > aniz = c||v||2.
i=1 i=1 i=1 i=1

O

Note that applying this theorem teL also tells us that, for some inner prod-

uct,
(v. Lv) <c|v|? (3.15)

if all the eigenvalues of. have real part less than
Proof of Proposition on Asymptotic Stabilityithout loss of generality, assume
thatxo = 0. Pickc < 0 such that all the eigenvalues dfhave real part strictly
less tharr. Because of equivalence of norms and because of the lemntgwe
work with a norm|| - || and a corresponding inner prodyet:) for which (3.15)

holds, withL = A. Letr > 0 be small enough thatR(x)| < —c/2|x]|| for all
x satisfying||x|| < r, and let

B, = {x e Q ‘ x|l <r}.
If x(¢) is a solution of (3.11) that starts 1. at timetr = 0, then as long as(¢)
remains ini3,
d
EIIX(I)II2 = 2(x(1), x(1)) = 2(x(1), f(x(1)))
= 2(x(1), Ax(1)) + 2{x (1), R(x(2)))

< 2cllx@I” + 2[lx @l - |1RC:(@))]
< 2cx@)|? = clx@)I* = clx@)]>.

This means that(¢) € B, for all > 0, andx (z) converges t® (exponentially
quickly) ast 1 oo. O

The proof of the second proposition will be geometric and gghtain ideas
that will be used to prove stronger results later in this.text
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Proof of Proposition on InstabilityWe assume again thay = 0. If &%,£°,
and&e€ are, respectively, the unstable, stable, and center spacesponding to
(3.13), set€™ = ES @ £° andET = &%, ThenR" = £1 @ £, all of the
eigenvalues ofi* := A|.+ have positive real part, and all of the eigenvalues
of A := A|¢— have nonpositive real part. Pick constamts- » > 0 such that
all of the eigenvalues ofl ™ have real part larger than and note that all of the
eigenvalues off~ have real part less than Define an inner produgt, -) . (and
induced norn| - ||+) on&™ such that

2
(v, Av) 4 = allv[l}

for all v € £, and define an inner produ¢t-)_ (and induced nornfj - |—) on
£~ such that

(w, Aw)— < bllw||>

forallw € £~. Define(-,-) onE* & £~ to be thedirect sumof (-, -) + and{(-,-)_;
e, let

(V1 + w1, v2 + w2) = (V1, v2) 4 + (W1, w2)-
for all (vy, wy), (v2,w7) € ET xE™. Let|| - || be the induced norm, and note that
v+ wl® = lvll3 + [wli2 = Jo]? + w]?
forall (v,w) € ET x &~
Now, take (3.11) and project it ont6™ and £~ to get the corresponding

system for(v,w) € £ x £~

b=A% v+ RT(v,w)

. (3.16)
w=A"w+ R (v,w),

with ||RE (v, w)||/||v + w]| converging to 0 agv + w| | 0. Picke > 0 small
enough that: — b —2+/2¢ > 0, and pickr > 0 small enough thatR* (v, w)| <
g|lv + wl whenever
vtweB ={v+tweftdE | v+w|<r}
Consider the truncated cone

Kr={v+weEtede ||v]>wl}nB.

(See Figure 1.) Suppose= v + w is a solution of (3.16) that starts Iq, at
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Figure 3.1: The truncated cone.

timet = 0. For as long as the solution remainskip,

Dol = 200.9) = 200, A7) + 200, R (0. 0)

> 2av]? =2l - |RF (v, w)|| > 2a|[v]|® = 2¢[v] - v + w]|
1/2

= 2a|[v)|® = 2¢|v]| (vl + llw]?) '~ = 2alv|?® — 2+ 2¢|v|?

=2(a — V2¢)||v|?,

and

d

Ellwllz = 2w, W) = 2(w, A”w) + 2(w, R~ (v, w))
<2b|w|? + 2llw|l - [R™(v. w)|
<2b|lw|? + 2¢|w] - [lv + w|
= 2b[lw|* + 2¢[w| (Ilv]* + llw]?)
<2b|v]|* + 2v2¢]jv|?
=2(b + V2¢)|]v]%.

1/2

The first estimate says that as long as the solution stags ,ifjv| grows expo-
nentially, which means that the solution must eventualawésC,. Combining
the first and second estimates, we have

d
(I = wl?) = 2(a = b = 2v28) o] > 0,
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sog(v + w) := ||v||*> — |lw|? increases as increases. Bug is 0 on the lat-
eral surface ofC, and is strictly positive iriC,, so the solution cannot leavé,
through its lateral surface. Thus, the solution leakigsby leavingB3,. Since
this holds for all solutions starting iK,, we know thatxo must be an unstable
equilibrium point for (3.11). O

3.5 Lyapunov’s Direct Method

Another tool for determining stability of solutions ligapunov’s direct method
While this method may actually seem rather indirect, it dwesk directly on the
equation in question instead of on its linearization.

We will consider this method for equilibrium solutions ob§sibly) nonau-
tonomous equations. L& < R” be open and contain the origin, and suppose
that /' : R x Q@ — R” is a continuously differentiable function. Suppose, fur-
thermore, thatf (z,0) = 0 for everyt € R, sox(¢) := 0 is a solution of the
equation

%= f(tx). (3.17)

(The results we obtain in this narrow context can be applkeddtermine the
stability of other constant solutions of (3.17) by trarisiaf)

In this section, a subset @t that contains the origin in its interior will be
called aneighborhoodbf 0.

Definition. Suppose thaD is a neighborhood ob and thatW : D — R is
continuous and satisfid&(0) = 0. Then:

o If W(x) > 0foreveryx € D, thenW is positive semidefinite
o If W(x) > 0foreveryx € D\ {0}, thenW is positive definite
o If W(x) < 0foreveryx € D, thenW is negative semidefinite

o If W(x) < 0foreveryx € D\ {0}, thenW is negative definite

Definition. Suppose thab is a neighborhood dd and thatl’ : R x D — R is
continuous and satisfids(z, 0) = 0 for everyt € R. Then:

e If there is a positive semidefinite functid#i : D — R such that/(z, x) >
W(x) for every(z, x) € R x D, thenV is positive semidefinite

o If there is a positive definite functioW’ : D — R such thatV (¢, x) >
W(x) for every(z, x) € R x D, thenV is positive definite
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e Ifthere is a negative semidefinite functidin : D — R such that/(z, x) <
W(x) for every(t, x) € R x D, thenV is negative semidefinite

e If there is a negative definite functiol’ : D — R such thatV/(z, x) <
W(x) for every(z, x) € R x D, thenV is negative definite

Definition. If V : R x Dis continuous}y differentiable then itbital derivative
(with respect to (3.17)) is the functidn : R x D — R given by the formula

. av oV
Vit x):= E(t,x) + g(t,x) - f(t, x).

(Here "9V (¢, x)/0x” represents the gradient of the functibftz, -).)

Note that ifx(¢) is a solution of (3.17) then, by the chain rule,

d .
o V(t, x(t) =V, x(@)).

A function whose orbital derivative is always nonpositigesbometimes called a
Lyapunov function

Theorem. (Lyapunov Stability) If there is a neighborhoo@® of 0 and a con-
tinuously djfferentiable positive definite functidh: R x D — R whose orbital
derivative V' is negative semidefinite, thehis a Lyapunov stable solution of
(3.17)

Proof. Lete > 0 andzy € R be given. Assume, without loss of generality, that
B(0, ¢) is contained irD. Pick a positive definite functioW : D — R such that
V(t,x) = W(x) for every(t,x) e R x D. Let

m = min{W(x) ‘ x| = 8}.
SinceW is continuous and positive definite, is well-defined and positive. Pick
8 > 0 small enough that < ¢ and

maX{V(ZO,x) ‘ lx| < 5} <m.

(SinceV is positive definite and continuous, this is possible.)
Now, if x(¢) solves (3.17) antl (z9)| < § thenV (g, x(t9)) < m, and

d .
EV([’X(Z)) =V(t.x() <0,

for all ¢, soV(t,x(¢t)) < m for everyt > to. Thus,W(x(t)) < m for every
t > to, SO, for everyr > 19, |x(t)] # e. Since|x(t)| < &, this tells us that
|x(2)| < e for everyt > 1. O
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Theorem. (Asymptotic Stability) Suppose that there is a neighborho®dof

0 and a continuously differentiable positive definite fumetl’ : R x D —

R whose orbital derivativd’ is negative definite, and suppose that there is a
positive definite functiod : D — R such thatV(z,x) < W(x) for every
(z,x) € R x D. Then0 is an asymptotically stable solution ¢8.17)

Proof. By the previous theorent) is a Lyapunov stable solution of (3.17). Let
to € R be given. Assume, without loss of generality, tats compact. By
Lyapunov stability, we know that we can choose a neighbatfioof 0 such that

if x(z) is a solution of (3.17) and(z9) € U, thenx(t) € D for everyr > ty. We
claim that, in fact, ifx(¢) is a solution of (3.17) and(¢y) € U, thenx(¢) — 0 as

t 1 oo. Verifying this claim will prove the theorem.

Suppose tha¥/ (¢, x(¢r)) does not converge t6 ast 1 oo. The negative
definiteness o’ implies thatV(-, x(-)) is nonincreasing, so, sindé > 0, there
must be a number > 0 such thatV (¢, x(¢)) > c for everyt > t9. Then
W (x(t)) = ¢ > 0 for everyt > to. SinceW (0) = 0 andW is continuous,

inf{|x(0)| |t =10} = ¢ (3.18)

f(_)r some constard > 0. Pick a negative definite functiohi : D — R such that
V(t,x) < Y(x)for every(z, x) € R xD. The compactness @ \ B(0, ¢), along
with (3.18), implies that

{Y(x () |t =10}

is bounded away from 0. This, in turn, implies that

Ve.x(@) |t =10}

is bounded away from 0. In other words,
SV x0) = Ve x(0) < - (3.19)

for some constant > 0. Clearly, (3.19) contradicts the nonnegativity l6ffor
larger.

That contradiction implies that(z, x(t)) — 0 ast 1 oo. Pick a positive def-
inite function W : D — R such thatV/(¢, x) > W (x) for every(t,x) € R x D,
and note that¥ (x(z)) — 0 ast 1 cc.

Letr > 0 be given, and let

w, = min{W(p) ‘ p €D\ BO.r)},

which is defined and positive by the compactnes®aind the continuity and
positive definiteness di. SinceW (x(t)) — 0 ast 1 oo, there exists" such
that W(x(¢)) < w, for everyt > T. Thus, forr > T, it must be the case that
x(t) € B(0,r). Hence is asymptotically stable. O

84



LaSalle’s Invariance Principle

It may seem strange that we ned to bountdy a time-independent, positive
definite functionW from above Indeed, some textbooks (seeg, Theorem 2.20
in Stability, Instability, and Chaoby Glendinning) contain asymptotic stability
theorems omitting this hypothesis. There is a counterel@imp Massera that
demonstrates the necessity of the hypothesis.

Exercise 14Show, by means of a counterexample, that the theoreny on
asymptotic stability via Lyapunov’s direct method failstlife hypothesis
aboutW is dropped.

(You may, but do not have to, proceed as follows. ¢etR — R be a
function that is twice continuously differentiable andisfésg(r) > e’
for everyr € R, g(¢) < 1 for everyr > 0, g(t) = e~* for every

t¢ | Jo—27"n+27),

neN

andg(n) = 1 foreveryn € N. Let f : R x R — R be the function defined
by the formula

g
S0 ="

and letV : R x R — R be the function defined by the formula

X,

X ' 2
Vit x):= W |:3 —/0 [g(D)] d‘L’:| .

Show that, forx near0, V(z, x) is positive definite and’ (¢, x) is negative
definite, but the solution 0 of (3.17) is not asymptoticaligtde.)

3.6 LaSalle’s Invariance Principle

Linearization versus Lyapunov Functions

In the previous two lectures, we have talked about two diffetools that can be
used to prove that an equilibrium poing of an autonomous system

%= f(x) (3.20)

is asymptotically stable: linearization and Lyapunovsedt method. One might
ask which of these methods is better. Certainly, linedomaseems easier to
apply because of its straightforward nature: Compute tpersalues oD f(xo).
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The direct method requires you to find an appropriate Lyapdmoction, which
doesn't seem so straightforward. But, in fact, anytimednmation works, a
simple Lyapunov function works, as well.

To be more precise, supposg = 0 and all the eigenvalues of := Df(0)
have negative real part. Pick an inner prod{ict) and induced norn - || such
that, for some: > 0,

(x. Ax) < —cl|x|?

forall x € R™. Pickr > 0 small enough that f(x)—Ax| < (c¢/2)| x| whenever
x|l <r,let
D={xeR"||x| <r}

and defind/ : R x D — R by the formulaV/(¢, x) = ||x||%. Since]| - || is a norm,
V is positive definite. Also

V(t,x) = 2(x, (%)) = 2({x, Ax) + (x, f(x) = Ax))
< 2(=cllx | + [Ix [l f (x) = Ax]) < —cllx|%,

soV is negative definite.

On the other hand, there are very simple examples to illigstrat the direct
method works in some cases where linearization doesn’teXample, consider
x = —x3 onR. The equilibrium point at the origin is not hyperbolic, so-li
earization fails to determine stability, but it is easy teck thatx? is positive
definite and has a negative definite orbital derivative, gnsuring the asymp-
totic stability of 0.

A More Complicated Example

The previous example is so simple that it might make one mresthether the
direct method is of any use on problems where stability cahaaetermined by
linearizationor by inspection. Thus, let’'s consider something more corafeid.
Consider the planar system
Xx=—y—x3
y = x°.
The origin is a nonhyperbolic equilibrium point, with O bgitine only eigenvalue,
so the principle of linearized stability is of no use. A skett the phase portrait
indicates that orbits circle the origin in the countercloide direction, but it is
not obvious whether they spiral in, spiral out, or move orsetbcurves.
The simplest potential Lyapunov function that often turnsto be useful is
the square of the standard Euclidean norm, which in this isage= x? + y2.
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The orbital derivative is
V =2xx+2yy =2x"y —2xy — 2x*. (3.21)

For some pointgx, y) near the origin€.g, (8,8)) V < 0, while for other points
near the origin€.g, (6, —4§)) V > 0, so this function doesn’t seem to be of much
use.

Sometimes when the square of the standard Euclidean noram’'t@erk,
some other homogeneous quadratic function does. Supposg the function
V := x? + axy + By?, with « and to be determined. Then

V = @2x +ay)x + (ax +2By)y
= —(2x +ay)(y + x°) + (@x +28y)x°
= 2x* +ax® —2xy —ax3y +2Bx°y —ay?.

Setting(x, y) = (8, —8§2) for § positive and small, we see thHtis not going to
be negative semidefinite, no matter what we pickndg to be.

If these quadratic functions don’t work, maybe somethingt@mized for the
particular equation might. Note that the right-hand sid¢heffirst equation in
(3.21) sort of suggests thaf andy should be treated as quantities of the same
order of magnitude. Let's try := x® + ay?, for somex > 0 to be determined.
Clearly, V is positive definite, and

V =6x°x +2ayy = (2a — 6)x°y — 6x5.

If « # 3, thenV is of opposite signs fofx, y) = (8, 8) and for(x, y) = (8, —5)
whens§ is small. Hence, we should set= 3, yielding V = —6x8 < 0. Thus

V is positive definite and’ is negative semidefinite, implying that the origin is
Lyapunov stable.

Is the origin asymptotically stable? Perhaps we can makenammodifica-
tion to the preceding formula fdr so as to maké strictly negative in a deleted
neighborhood of the origin without destroying the positilefiniteness of/. If
we added a small quantity whose orbital derivative waststricegative when
x = 0 and|y| is small and positive, this might work. Experimentation gests
that a positive multiple of y3 might work, since this quantity changes from pos-
itive to negative as we cross theaxis in the counterclockwise direction. Also,
it is at least of higher order thady? near the origin, so it has the potential of
preserving the positive definitenesslof

In fact, we claim that’ := x% + xy3 + 3y?2 is positive definite with negative
definite orbital derivative nedr. A handy inequality, sometimes called Young'’s
inequality, that can be used in verifying this claim (and thes circumstances,
as well) is given in the following lemma.
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Lemma. (Young's Inequality) If a, b > 0, then

ab < —+ —, (3.22)

= 1. (3.23)

Proof. Assume that (3.23) holds. Clearly (3.22) hold$ it= 0, so assume that
b > 0, and fix it. Defineg : [0, o0) by the formula

Note thatg is continuous, ang’(x) = x?~! — b for everyx € (0, 00). Since
limyy08'(x) = —=b < 0, limyso g'(x) = 00, andg’ is increasing on0, co),

we know thatg has a unique minimizer aty = b/(P=1_ Thus, for every
x € [0, 00) we see, using (3.23), that

p/(p—1) q
g(r) = g0y = P L P i (l T 1) b9 =0,
p q P 4

In particular,g(a) > 0, so (3.22) holds. O

Now, letV = x® 4 xy3 + 3y2. Applying Young’s inequality withu = |x|,
b =yl p = 6,andg = 6/5, we see that

6 18/5 1 3
3 _ 3<|x| 5[y 16,202
lxy?| = |x||y] S et Sty
if |[y|]<1,so
5 13
V>=z 6 T2
> 6x + G
if |y| < 1. Also,

V = —6x% + y3x +3xy%y = —6x8 — y3(y + x3) + 3x5y2
= —6x% — x3y3 4+ 3x5y% — y4.
Applying Young’s inequality to the two mixed terms in thisdbial derivative, we

have 8 24/5
3|x] 5|y] 3 5
353 — v Blvl3 < <28, 2.4
| =x7y7 = [x|”|y]” < s T~ g Sg¥ Tty
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if |y]<1,and
3x| |y® 9 3 9 3
3x0v2| = 3|x[6v|? < 3 wry_Z.8,2.8_2.8, 2 4
3x”y%| = 3[x[P|y]” < 2 T X Ty Sty
if |y| < 1/2. Thus,
. 27 ¢ 21 ,
V<—"x——y
8 64

if |y| < 1/2, so, in a neighborhood @ V' is positive definite and’ is negative
definite, which implies thab is asymptotically stable.

LaSalle’s Invariance Principle

We would have saved ourselves a lot of work on the previousiplaif we could
have just stuck with the moderately simple functién= x° + 3y?2, even though
its orbital derivative was only negative semidefinite. Metihat the set of points
wherel” was 0 was small (thg-axis) and at most of those points the vector field
was not parallel to the set. LaSalle’s Invariance Pringipleich we shall state
and prove for the autonomous system

x = f(x), (3.24)

allows us to use suchla to prove asymptotic stability.

Theorem. (LaSalle’s Invariance Principle) Suppose there is a neighborhofd
of 0 and a continuously differentiable (time-independent)itpes definite func-
tion V : D — R whose orbital derivativé’ (with respect to(3.24) is negative
semidefinite. LeT be the union of all complete orbits contained in

{xeD|V(x)=0}.

Then there is a neighborhoadd of 0 such that for everyg € U, w(xg) C Z.

Before proving this, we note that when applying itifo= x¢ + 3y2 in the
previous example, the s&tis a singleton containing the origin and, sirlRecan
be assumed to be compact, each solution beginniggantually converges to
ast 1 oo.

Proof of LaSalle’s Invariance PrincipleLet ¢ be the flow generated by (3.24).
By a previous theorem) must be Lyapunov stable, so we can pick a neighbor-
hoodi/ of 0 such that (¢, x) € D for everyxy € U and every > 0.
Letxg € U andy € w(xp) be given. By the negative semidefiniteness of
V, we know thatV(¢(z, x¢)) is a nonincreasing function of By the positive
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definiteness oft’, we know thatV(¢(z, xo)) remains nonnegative, so it must
approach some constant> 0 ast 1 oco. By continuity of IV, V(z) = ¢ for
everyz € w(xg). Sincew(xg) is invariant,V(e(t, y)) = ¢ for everyt € R. The
definition of orbital derivative then implies th&t(¢(z, y)) = 0 for everyr € R.
Hence,y € 7. O

Exercise 155how that(x(¢), y(¢)) = (0,0) is an asymptotically stable
solution of
x=—-x3+ 2y3
y = —2xy2.




Conjugacies

4.1 Hartman-Grobman Theorem: Part 1

The Principle of Linearized Stability indicates one way ihigh the flow near
a singular point of an autonomous ODE resembles the flow dihgrization.
The Hartman-Grobman Theorem gives further insight intoetkient of the re-
semblance; namely, there is a local topological conjugatwéen the two. We
will spend the next 5 sections talking about the various foafrthis theorem and
their proofs. This amount of attention is justified not onlythe significance of
the theorem but the general applicability of the techniqueesd to prove it.

Let Q € R” be open and leff' : @ — R”" be continuously differentiable.
Suppose thaty € Q2 is a hyperbolic equilibrium point of the autonomous equa-
tion

X = f(x). (4.1)

Let B = Df(xo), and letp be the (local) flow generated by (4.1). The version of
the Hartman-Grobman Theorem we’re primarily interesteid the following.

Theorem. (Local Hartman-Grobman Theorem for Flows)Let 2, f, xo, B,
and ¢ be as described above. Then there are neighborhébdadV of xo and
a homeomorphisr : U/ — V such that

(1, h(x)) = h(xo + €"P (x = x0))

whenever € U andxg + '8 (x — xq) € U.

It will be easier to derive this theorem as a consequence ftmbtheorem
for maps than to prove it directly. In order to state that \erof the theorem,
we will need to introduce a couple of function spaces and aitiefi.

Let

C)(R") = {w e C(R",R") | s%p lw(x)| < oo}.
x€R”
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When equipped with the norm

lwllo := sup lw(x)l],

x€R”
where|| - || is some norm oR”, C,?(R”) is a Banach space. (We shall pick a
particular norm|| - || later.)
Let

Ch(R") = {w e C'R",R") N CYR") | s%p [Dw(x)| < oo},
xXeR”?

where| - || is the operator norm corresponding to some norniR&n Note that
the functional
L) = sup IWCDZ w02

Xx1,x2€ER" ||X1 —X2||
X1#£x2

is defined orC,} (R"). We will not define a norm o’} (R"), but will often use
Lip, which is not a norm, to describe the size of elementé’bbGR”).

Definition. If A € £(R",R") and none of the eigenvalues dflie on the unit
circle, then4 is hyperbolic

Note that ifx¢ is a hyperbolic equilibrium point of (4.1) andl = ¢2/(x0),
then A is hyperbolic.

Theorem. (Global Hartman-Grobman Theorem for Maps) Suppose that the
map A € L(R",R") is hyperbolic and invertible. Then there exists a number
& > 0 such that for every € Cbl(IR{") satisfyingLip(g) < ¢ there exists a
unique functiorv € C,?(]R{") such that

F(h(x)) = h(Ax)

for everyx € R"*, whereF = A+ g andh = I +v. Furthermore) : R* — R”
is @ homeomorphism.

4.2 Hartman-Grobman Theorem: Part 2

Subspaces and Norms

We start off with a lemma that is analogous to the lemma inlrec2l, except
this one will deal with the magnitude, rather than the real, gd eigenvalues.
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Lemma. LetV be a finite-dimensional real vector space andllet £(V, V). If
all the eigenvalues af have magnitude less thanthen there is a nornjj - | on
V such that

[Lv] = c|lv]

for everyv € V.

Proof. As in the previous lemma, the norm will be the Euclidean noomre:
sponding to the modification of the real canonical basis ghats a matrix rep-
resentation of. that has’s in place of the off-diagonal’s. With respect to this
basis, it can be checked that

LTL = D + R(¢),

whereD is a diagonal matrix, each of whose diagonal entries is lessc, and
R(¢) is a matrix whose entries converget@ase | 0. Hence, as in the proof of
the earlier lemma, we can conclude that i§ sufficiently small then

ILv]* = (v. LT Lv) < 2 |v|?
for everyv € V (where(:, -) is the inner product that inducds |). O

Note that if L is a linear operator, all of whose eigenvalues have magaitud
greaterthanc, then we get the reverse inequality

[Lv]| = c|lvll

for some norm|| - ||. This follows trivially in the case when < 0, and when
¢ > 0 it follows by applying the lemma td.—! (which exists, sinc® is not an
eigenvalue ofl).

Now, suppose that € L(R",R") is hyperbolic. Then, sincd has only
finitely many eigenvalues, there is a numlaer (0, 1) such that none of the
eigenvalues oft are in the closed annulus

B(0,a= 1)\ B(0,a).

Using the notation developed when we were deriving the r@abical form, let

&= @ NA-iD} e
A€(—a,a)

P (Reu|ueNUA-AD} @ D {Imu|ueNUA-ID}E,
|Al<a [A|<a
ImA#0 ImA#0
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and let

5*{ ey N(A—u)}ea

A€(—o0,—a—HU(a—1,00)

P (Reu|ueNA-I1D}r & @ {Imu|ueNA-2D)}

[Al>a~! [A|>a~!

ImA#0 ImA#0
ThenR” = £ @ £T, andEé~ and T are both invariant unded. Define
P~ € L(R", &) and PT € L(R",£T) to be the linear operators that map
eachx € R” to the unique element® " x € £~ and Ptx € £ such that
P~ x+ Ptx = x.

Let A~ € L(E™.E7)andAt € L(ET,ET) be the restrictions oft to £~
and£T, respectively. By the lemma and the discussion immedidtelyeafter,
we can find a nornf - || for £~ and a normj| - ||+ for £* such that

[A”x]- < allx]-
for everyx € £, and
-1
1A x]4 = a™ x|+

for everyx € £T. Define a nornj| - || onR” by the formula
x| = max{[| P~ x[|—, [| P x4}, (4.2)

This is the norm orR” that we will use throughout our proof of the (global)
Hartman-Grobman Theorem (for maps). Note that = ||x|— if x € £7, and
]l = llx[l+ if x € £F.

Recall that we equippedl?(]R{”) with the norm|| - ||o defined by the formula

lwllo := sup [lw(x)]|.
x€RN

The norm onR” on the right-hand side of this formula is that given in (4.2).
Recall also that we will use the functional Lip defined by thevula

Lipw) i= sup b)) Zwxal

Xx1,x2€ER" ||X1 —X2||
X17#x2

The norm orR” on the right-hand side of this formula is also that given ir2)4
Let
CHET) = {w e CR",E7) | sup w(x)|- < oo},
xX€ER"
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and let
C,?(S*) = {w € C(]R{”,EJ“) \ sup |lwx) ||+ < oo}.
x€R?

SinceR” = £~ @ £, it follows that
CP(R") = CP(ET) @ CLET),
and the corresponding decomposition of an elemeatC,?(]R{") is
w=P ow+ P ow.
We equipC(£7) and C(ET) with the same nornf - o that we used on

Cl? (R™), thereby making each of these two spaces a Banach spaceotthard
to see that

lwllo = max{| P~ owlo, | PT o wllo}.

4.3 Hartman-Grobman Theorem: Part 3

Linear and Nonlinear Maps

Now, assume that is invertible, so that

[l Ax]|
inf >0
x#0 x|

Choose, and fix, a positive constant

. . A
e <min{l —a, inf x| .
x#0 [l x]|

Choose, and fix, a functiog € (C}j(R”) for which Lip(g) < e. The (global)
Hartman-Grobman Theorem (for maps) will be proved by corsing a map®
from C?(R") to C; (R") whose fixed points would be precisely those objects
which, when added to the identitl;, would yield solutions: to the conjugacy
equation

(A+g)oh=hoA, (4.3)

and then showing thad is a contraction (and thatis a homeomorphism).
Pluggingh = I + v into (4.3) and manipulating the result, we can see that
that equation is equivalent to the equation

Lv = W(v), (4.4)
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where¥(v) ;== go (I +v)o A~ and
Lv=v—AovoA ! =:(id=A)v.

Since the composition of continuous functions is contiraj@and the composi-
tion of functions is bounded if the outer function in the camsion is bounded,
itis clear that¥ is a (nonlinear) map frong'? (R”) to C2 (R™). Similarly, A and,
therefore,L are linear maps fronﬁ?lf (R*) to le (R™). We will show thatl can
be inverted and then apply~! to both sides of (4.4) to get

v =LY (W) =: O) (4.5)

as our fixed point equation.

Inverting £

SinceA behaves significantly differently ofi~ than it does o€+, A and, there-
fore, £ behave significantly differently o’ (£7) than they do orC?(£Y).
For this reason, we will analyz& by looking at its restrictions t(i,’}?(é’_) and
to CP(€T). Note thatC?(£7) and C)(E™) are invariant underd and, there-
fore, underL. Therefore, it makes sense to ldt < E(le(é’_),C,?(é’_)) and
At e L(CQ(E), CQ(ET)) be the restrictions afl to C(£€7) andC(ET), re-
spectively, and leL™ € L(C)(ET), CH(ET)) andLT € LICH(ET), CAE™))
be the corresponding restrictionsf ThenL will be invertible if and only if£~
and L™ are each invertible. To inved™ and£™* we use the following general
result about the invertibility of operators on Banach space

Lemma. Let X be a Banach space with norjn || x and corresponding operator
norm||-||zcx,x)- LetG be alinear map frond’ to X', and letc < 1 be a constant.
Then:

@ |Gl zcx,x) < ¢, thenid —G is invertible and

id—G)~! < .
ll( ) ||£(X,X)_1_C

(b) If G is invertible and||G ! I z(x,x) < c, thenid —G is invertible and

id—G)™! < )
[l (i ) lee,x) < -

Proof. The space of bounded linear maps fréimo X is a Banach space using
the operator norm. In caga), the bound onG || z(x,x), along with the Cauchy
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convergence criterion, implies that the series
o0
> G6*
k=0

converges to a bounded linear map framto X’; call it H. In fact, we see that
(by the formula for the sum of a geometric series)

H < .
1H e < ——

Itis not hard to check thall o (id —G) = (id —G)oH =id, soH = (id—G)~!.
In case(b), we can apply the results (&) with G~ in place ofG to deduce
that id—G~! is invertible and that

1
id—G~H)~! <.
II( ) lz,x) < -

Since id-G = —G(id—G~!) = —(id—G~1)G, it is not hard to check that
—(@id—=G~1H~1G~! is the inverse of id-G and that
c

I=(d=G"H7'G ey < -

O

The first half of this lemma is useful for inverting small petiations of the
identity, while the second half is useful for inverting largerturbations of the
identity. It should, therefore, not be too surprising thatwill apply the first half
with G = A~ and the second half with = A™ (sinceA compresses things in
the £~ direction and stretches things in the direction).

First, considetd ™. If w € C)(£7), then

lATwllo = [Aowo A7 o = sup [Aw(A™'x)|| = sup [Aw(y)]|
x€R” y€eR”?

< a sup [lw(y)ll = allwllo,
yERn?
so the operator norm o4~ is bounded by:. Applying the first half of the lemma
with X = CZ?(S_), G = A7, andc = a, we find that™ is invertible, and its
inverse has operator norm bounded(by- a)~!.
Next, considerA™. It is not too hard to see thatl™ is invertible, and
AN 7lw = AT owo A If w € CQ(EY), then (since the eigenvalues of
the restriction of4~! to £ all have magnitude less tha)

1A wllo = A owo Allg = sup A~ w(Ax)]|

xX€R”
-1
= sup [[A7 w(y)ll <a sup [w(y)ll = alwllo,
yER” y€ER”?
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so the operator norm @f4*)~! is bounded by:. Applying the second half of the
lemma withX = C2(£T), G = AT, ande = a, we find thatC T is invertible,
and its inverse has operator norm bounded by— a)~!.

Putting these two facts together, we see ih&t invertible, and, in fact,

Ll'=)toP +(LN) ToP™.

If w e C)(R"), then

1L wllo = sup [£7 w(x)|

X€ER”

= sup max{||P~L w() |, |PTL w(x)|)}
x€R”

= Sli%p max{[|(£7) ™" PTw@)|. L) P w (x|}
x€eR”

1 a
= supmax) — wx)|, ——lw(x)||
xeR" —d 1 —da

1 1
= — sup [[w(x)[| = ———wllo,
l—axeRn l1—a

so the operator norm a~! is bounded by(1 —a)~!.

4.4 Hartman-Grobman Theorem: Part 4

The Contraction Map

Recall that we are looking for fixed pointsof the map® := £~ o W, where
Y(v) := go (I +v)o A", We have established that ! is a well-defined
linear map fromC?(R") to C?(R") and that its operator norm is bounded by
(1 —a)~L. This means tha® is a well-defined (nonlinear) map frod}f(}R”) to
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CJ (R™); furthermore, ifv, v, € C2(R"), then

1
[©(v1) — O2)]lo = L7 (W(v1) — ¥(v2))]lo < mﬂ‘p(vl) —¥(v2)llo

1 _ _
=——llgo( +v)oA ' —go(l +v2)oA o

1—a
1 _ _ _ _
=1 sup [lg(A7 " x + vi(A7x) — g(A™ x + v (A7)
— a xeRrn
=< sup (A7 x + v (A7 %) — (A7 x + va (471 0)|
1—a x€ERM
__ ¢ -1 -1
=1 sup flvi (A7 x) —va(A4™ )|
— ad xeRn
& &
=1 sup [[v1(y) —vaW)|| = [vr — v2lo.
—a yeRrn 1—a

This shows that is a contraction, since was chosen to be less than- a.
By the contraction mapping theorem, we know tlahas a unique fixed point
v € CP(R"); the functionh := I + v satisfiesF oh = ho A, whereF := A+g.

It remains to show that is a homeomorphism.

Injectivity

Before we show thak itself is injective, we show thaf’ is injective. Suppose
it weren’'t. Then we could choose, x, € R” such thaty; # x, but F(x;) =
F(x3). This would mean thatlx; + g(x1) = Axz + g(x2), SO

[AGxr —x2)  Ax1 — Axa|  lg(x1) — g(x2)|l

= = < Lip(g)
x1 — X2 lx1 — x2] lx1 — x2
. Ax
< ¢ inf 4] ,
x#0 x|

which would be a contradiction.
Now we show that is injective. Letx, x, € R” satisfyingh(xy) = h(xz)
be given. Then

h(Axy) = F(h(x1)) = F(h(x2)) = h(Ax2),
and, by induction, we havie(A" x1) = h(A"x,) for everyn € N. Also,

F(h(A™'x1)) = h(AA™ x1) = h(x1) = h(x2) = h(AA7 ' xy)
= F(h(A™'x2)).
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so the injectivity of F implies thath (A~ 'x;) = h(A™'x,); by induction, we
haveh(A™"x1) = h(A™"x,) foreveryn € N. Setz = x;—x5. Sincel = h—v,
we know that for any: € Z

[A"z]| = [|A"x1 — A" x2||
= [[(h(A"x1) —v(A"x1)) — (h(A"x2) — v(A"x2))||
= [[v(A"x1) — v(A"x2) || < 2]v]lo.

Because of the way the norm was chosen, we then know that*$o06
IPFz]| <a™|A"PTz|| < a®||A"z|| < 24" |[v]lo — O,
asn 1 oo, and we know that for < 0
[P7z| <a " A" P z|| <a™"[| A"z < 2a7"|[v]lo — O,

asn | —oo. Hencez = P~z + Pz =0, s0x; = x,.

Surjectivity

It may seem intuitive that a map like that is a bounded perturbation of the
identity is surjective. Unfortunately, there does not ape be a way of proving
this that is simultaneously elementary, short, and corapl&Ve will therefore
rely on the following topological theorem without provirtg i

Theorem. (Invariance of Domain)Every continuous injective map froRf* to
R™ maps open sets to open sets.

In particular, this theorem implies thatR") is open. If we can show that
h(R"™) is closed, then (sincé(R") is clearly nonempty) this will mean that
h(R™) = R”,i.e, h is surjective.

So, suppose we have a seque(ioe)) of points ink(R") that converges to
a pointy € R". Without loss of generality, assume that

12Cee) =yl <1

for everyk. This implies that|z(xx)| < |ly|l + 1, which in turn implies that
Ixell < Iyl + llvllo + 1. Thus, the sequende) is bounded and therefore
has a subsequencey,) converging to some pointy € R”. By continuity of
h, (h(xk,)) converges tdi(xo), which means thak(xo) = y. Henceh(R") is
closed.
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Continuity of the Inverse

The bijectivity of/ implies thath ! is defined. To complete the verification that
h is a homeomorphism, we need to confirm that is continuous. But this is an
immediate consequence of the the Invariance of Domain Emeor

45 Hartman-Grobman Theorem: Part 5

Modifying the Vector Field

Consider the continuously differentiable autonomous ODE

X = fx) (4.6)

with an equilibrium point that, without loss of generalitylocated at the origin.
For x near0, f(x) ~ Bx, whereB = Df(0). Our goal is to come up with
a modification / of  such thatf(x) = f(x) for x near 0 andf (x) ~ Bx
for all x. If we accomplish this goal, whatever information we obtaliout the
relationship between the equations

= f(x) (4.7)

and
X = Bx (4.8)

will also hold between (4.6) and (4.8) farsmall.
Pick S : [0, 00) — [0, 1] to be aC*° function satisfying

1 ifs<l
plo) = 0 ifs>2,

and letC = supc(o,o0) |B'(s)|- Givene > 0, pick r > 0 so small that

IDf(x) = B| <

&
2C +1
whenever x| < 2r. (We can do this sinc®(0) = B andDf is continuous.)
Define f by the formula

[l

; [
Fo =g+ () (10 - .
Note that/ is continuously differentiable, agrees withfor ||x|| < r, and agrees
with B for || x| = 2r. We claim thatf — B has Lipschitz constant less than
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Assuming, without loss of generality, thiat|| and||y|| are less than or equal to
2r, we have (using the Mean Value Theorem)

I(f(x) = Bx) = (f (y) — By)||
“ﬁ (”x”) (f(x) - Bx)— B (”y”) (f(y)—By)“

<8 (” ”) I(F(x) = Bx) = (f () — By

‘ﬂ(llxn) (Ilyll)‘”f(y) By

& |[|x || Iyl
< - C
S sl ”%c+1

<elx—yl.

Now, consider the difference betweefi and ¢(1,-), whereg is the flow
generated byf. Let g(x) = ¢(1,x) — eBx. Then, sincef (x) = B(x) for
all largex, g(x) = 0 for all largex. Also, g is continuously differentiable, so
gEe€ Cb1 (R™). If we apply the variation of constants formula to (4.7) réten as

% = Bx + (f(x) — Bx),

we find that

1 ~
g(x) = /0 (U8 F(o(s.x)) — Be(s. x)] ds.

SO
lg(x) —g(y)l
1 ~ ~
5/0 le MBI (9(s, %)) — Bo(s, x)) — (f(@(s, ) — Bo(s, »))| ds

1
< /0 1e=B llp(s. x) — g (s. )| ds

1
<lx—yle /0 le =B j||UBIFes 1) g5,

by continuous dependence on initial conditions. Since
1
e [ 1B 1eIBIOs 1 ds -0
0

ase | 0, we can make the Lipschitz constantgofs small as we want by making
¢ small (through shrinking the neighborhood of the origin ohick f and f
agree).

102



Hartman-Grobman Theorem: Part 5

Conjugacy forr =1

If 0 is a hyperbolic equilibrium point of (4.6) (and therefore(4f7)) then none

of the eigenvalues oB are imaginary. Settingl = ¢?Z, it is not hard to show
that the eigenvalues of are the exponentials of the eigenvaluesBoto none of
the eigenvalues aofl have modulus 1i.e., A4 is hyperbolic. Also,A is invertible
(sinceA™! = ¢~ B), so we can apply the global Hartman-Grobman Theorem for
maps and conclude that there is a homeomorplisi®” — R” such that

(1, h(x)) = h(eBx) (4.9)

for everyx € R" (whereg is the flow corresponding to (4.7)).

Conjugacy for ¢ # 1
For the Hartman-Grobman Theorem for flows, we need
o(t, h(x)) = h(e'Bx)

for everyx € R” andevery: € R. Fixs € R, and consider the functiondefined
by the formula 3

h(x) = o(t, h(e "B x)). (4.10)
As the composition of homeomorphism:sis a homeomorphism. Furthermore,
the fact that: satisfies (4.9) implies that

o(1,h(x)) = o(1,0(t, h(e "B x))) = o(t, p(1, h(e "B x)))
= ot h(eBe B x)) = p(t,h(e BeBx))) = h(eBx),

s0 (4.9) holds ifs is replaced byi.
Now,

h—1 =<p(t,-)ohoe_tB—1
= (p(t,)—eByohoe B y e Bo(h—T)oe B = v + v,.

The fact thaty(z, x) and ¢’Bx agree for largex implies thatp(t, ) — '8 is
bounded, sm; is bounded, as well. The fact thlat- / is bounded implies that
v, is bounded. Hencé;, — I is bounded.

The unigueness part of the global Hartman-Grobman Thearemdps now
implies thath and/ must be the same function. Using this fact and substituting
y = e Bx in (4.10) yields

h(e'By) = o(t, h(y))

for everyy € R" and every € R”. This means that the flows generated by (4.8)
and (4.7) are globally topologically conjugate, and the §@gnerated by (4.8)
and (4.6) are locally topologically conjugate.
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4.6 Constructing Conjugacies

The Hartman-Grobman Theorem gives us conditions underhadniconjugacy
between certain maps or between certain flows may exist. $iomtations of
the theorem are:

e The conditions it gives are sufficient, but certainly notessary, for a
conjugacy to exist.

e It doesn’t give a simple way to construct a conjugacy (in etbform, at
least).

e It doesn’t indicate how smooth the conjugacy might be.

These shortcomings can be addressed in a number of diffeegst but we won't
really go into those here. We will, however, consider sonpees of conjuga-
cies.

Differentiable Conjugacies of Flows

Consider the autonomous differential equations

%= f(x) (4.11)

and
X =g(x), (4.12)
generating, respectively, the flowsandys. Recall that the conjugacy equation
for ¢ andy is
o(t, h(x)) = h(y (1, x)) (4.13)

for everyx and:z. Not only is (4.13) somewhat complicated, it appears toirequ
you to solve (4.11) and (4.12) before you can look for a comjydi. Suppose,
however, that: is a differentiable conjugacy. Then, we can differentiab¢hb
sides of (4.13) with respect tato get

S, h(x))) = Dh(y (1. x)g (¥ (1. x)). (4.14)

Substituting (4.13) into the left-hand side of (4.14) anettiheplacingy (¢, x) by
X, we get the equivalent equation

f(h(x)) = Dh(x)g(x). (4.15)

Note that (4.15) involves the functions appearing in théedintial equations,
rather than the formulas for the solutions of those equatioNote, also, that
(4.15) is the same equation you would get if you took a satutief (4.12) and
required the functiot o x to satisfy (4.11).
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An Example for Flows

As the simplest nontrivial example, letb € R be distinct constants and con-
sider the equations
X =ax (4.16)

and
X = bx (4.17)

for x € R. Under what conditions oan andb does there exist a topological
conjugacyh taking solutions of (4.17) to solutions of (4.16)? Equat{dml5)
tells us that ifk is differentiable then

ah(x) = h'(x)bx. (4.18)

If b # 0, then separating variables in (4.18) implies that on irglsnavoiding
the origin must be given by the formula

h(x) = C|x|*/® (4.19)

for some constant'. Clearly, (4.19) does not define a topological conjugacy for
a single constant’, because it fails to be injective d&; however, the formula

x|x|¢/b=1 ifx #£0
h(x) = 4.20
D=1 if x =0, (4.20)

which is obtained from (4.19) by taking = 1 for positivex andC = —1
for negativex, defines a homeomorphismab > 0. Even though the function
defined in (4.20) may fail to be differentiable at 0, subsititu of it into

e"h(x) = h(e'Px), (4.21)

which is (4.13) for this example, shows that it does, in fdefjne a topological
conjugacy wherub > 0. (Note that in no case is this @!-conjugacy, since
eitherh’(0) or (h=1)’(0) does not exist.)

Now, suppose thatb < 0. Does a topological (possibly nondifferentiable)
conjugacy exist? lfib = 0, then (4.21) implies that is constant, which violates
injectivity, so suppose thath < 0. In this case, substituting = 0 ands = 1
into (4.21) implies thak(0) = 0. Fixing x # 0 and lettingz sgnb | —oo in
(4.21), we see that the continuity bfimplies thati(x) = 0, also, which again
violates injectivity.

Summarizing, for # b there is a topological conjugacy of (4.16) and (4.17)
if and only if ab > 0, and these are ndt ' -conjugacies.
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An Example for Maps

Let’s try a similar analysis for maps. Letb € R be distinct constants, and
consider the map#'(x) = ax andG(x) = bx (for x € R). For what(a, b)-
combinations does there exist a homeomorphisnR — R such that

F(h(x)) = h(G(x)) (4.22)

for everyx € R? Cank andi~! be chosen to be differentiable?
For these specific maps, the general equation (4.22) becomes

ah(x) = h(bx). (4.23)

Ifa=00rb =00ra =1o0rb = 1, then injectivity is immediately violated.
Note that, by induction, (4.23) gives

a"h(x) = h(h"x) (4.24)

for everyn € Z. In particular,a®h(x) = h(b*x), so the cases when= —1 or
b = —1 cause the same problems aswhesn 1 orb = 1.
So, from now on, assume thatb ¢ {—1,0, 1}. Observe that:

e Settingx = 0in (4.23) yieldsh(0) = 0.
e If |b| < 1, then fixingx # 0in (4.24) and letting: 1 oo, we havea| < 1.
e If || > 1, we can, similarly, lek | —oco to conclude thala| > 1.

e If b > 0 anda < 0, then (4.23) implies thak(1) andX(b) have opposite
signs even though andb have the same sign; consequently, the Interme-
diate Value Theorem yields a contradiction to injectivity.

e If b < 0anda > 0, then (4.23) gives a similar contradiction.

Thus, the only cases where we could possibly have conjugaify:iandb
are both in the same component of

(—00, —1) U (=1,0) U (0, 1) U (1, 00).

When this condition is met, experimentation (or experi¢scggests trying of
the formh(x) = x|x|?~! for some constanp > 0 (with 2(0) = 0). Thisis a
homeomorphism fronR to R, and plugging it into (4.23) shows that it provides
a conjugacy itz = b|b|?~! or, in other words, if

_loglal
P = ogb|’
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Sincea # b, eitherh or h~! fails to be differentiable ab. Is there some other
formula that provides & '-conjugacy? No, because if there were we could dif-
ferentiate both sides of (4.23) with respectd@and evaluate at = 0 to get
h'(0) = 0, which would mean thath~1)’(0) is undefined.

Exercise 1@efine F : R? — R? by the formula
x|\ _ | —x/2
(G-

(a) Show that the maps and A are topologically conjugate.

and letA = DF(0).

(b) Show that the flows generated by the differential equations
z=F(z)

and
z = Az

are topologically conjugate.

(Hint: Try quadratic conjugacy functions.)

4.7 Smooth Conjugacies

The examples we looked at last time showing that topologicajugacies of-
ten cannot be chosen to be differentiable all involved tw@snar vector fields
with different linearizations at the origin. What about whas in the Hartman-
Grobman Theorem, we are looking for a conjugacy between a (oraffow)
and its linearization? An example of Hartman shows that tmgugacy cannot
always be chosen to i@!.

Hartman’s Example

Consider the system

X =ax
y=(a—y)y+exz
z =—yz,
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wherex > y > 0 ande # 0. We will not cut off this vector field but will instead
confine our attention ta, y, z small. A calculation shows that the tinlemap
F = ¢(1,-) of this system is given by

X ax
F y = |ac(y +exz2) |,
z cz

wherea = ¢* andc = ¢~ 7. Note thatu > ac > 1 > ¢ > 0. The time-1 ma®B
of the linearization of the differential equation is given b

1F)

A local conjugacyH = (f, g, h) of B with F must satisfy

af(x,y,z) = flax,acy,cz)
ch(x,y,z) = h(ax,acy,cz)

for everyx, y, z near0. Writing k(x, z) for k(x,0, z), wherek € {f, g, h}, we
have

af(x,z) = flax,cz) (4.25)
aclg(x,z) +ef(x,2)h(x,z)] = glax,cz) (4.26)
ch(x,z) = h(ax,cz) (4.27)

for everyx, z near0.
Before proceeding further, we state and prove a lemma.

Lemma. Suppose thaj is a continuous real-valued function of a real variable,
defined on an open intervaf centered at the origin. Suppose that there are
constantsy, 8 € R such that

aj(u) = j(Bu) (4.28)

wheneven, Bu € U. Thenif|f] < 1 < |e] or || < 1 < |B], j(u) = 0O for
everyu € Y.

Proof. If || < 1 < |«|, fix u € U and apply (4.28) inductively to get

o j(u) = j(B"u) (4.29)
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for everyn € N. Lettingn 1 oo in (4.29), we see thaf(u) must be zero. If
|o] < 1 < |B], substitutev = Bu into (4.28) to get

aj(Bv) = j(v) (4.30)
for everyv, B~ 1v € U. Fix v € U, and iterate (4.30) to get
o j(B7"v) = j(v) (4.31)
for everyn € N. Lettingn 1 Nin (4.31), we getj(v) = 0. O
Settingx = 0in (4.25) and applying the Lemma gives
f(0,z) =0 (4.32)
for everyz near zero. Setting = 0in (4.27) and applying the Lemma gives

h(x,0) =0 (4.33)

for everyx near zero. Setting = 0 in (4.26), using (4.32), and applying the

Lemma gives
g(0,z) =0 (4.34)

for everyz near zero. If we set = 0 in (4.26), use (4.33), and then differentiate

both sides with respect to, we getcgy (x,0) = g« (ax, 0); applying the Lemma
yields
gx(x,0)=0 (4.35)

for everyx near zero. Setting = 0in (4.34) and using (4.35), we get
g(x,0)=0 (4.36)

for everyx near zero.
Now, using (4.26) and mathematical induction, it can befiestithat

a"c"g(x,z) + nef(x,z)h(x,z)] = g(a"x,c"z) (4.37)
for everyn € N. Similarly, mathematical induction applied to (4.25) give
f(x,z)=a " f(a"x,c"z) (4.38)

for everyn € N. If we substitute (4.38) into (4.37), divide through b¥, and
replacex by a™"x we get

aga"x,z) +nef(x,c"z)h(@"x,z) = c "g(x,c"z2) (4.39)
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for everyn € N.

The existence of, (0, z) andg, (x, 0) along with equations (4.34) and (4.36)
imply thata” g(a™"x,z) andc ™" g(x,c"z) stay bounded as 1 oo. Using this
fact, and letting: 1 oo in (4.39), we get

f(X,O)h(O,Z) =0,

S0 f(x,0) =0o0rh(0,z) = 0. If f(x,0) =0, then, in combination with (4.33)
and (4.36), this tells us thd is not injective in a neighborhood of the origin.
Similarly, if #(0, z) = 0then, in combination with (4.32) and (4.34), this implies
a violation of injectivity, as well.

Poincaré’s Linearization Theorem

Suppose thay : R” — R” is analytic and satisfieg(0) = 0. It is possible to
establish conditions under which there isaanalyticchange of variables that will
turn the nonlinear equation

x = f(x) (4.40)
into its linearization

i = Df(O)u. (4.41)

Definition. Let A1, A5, ..., A, be the eigenvalues aPf(0), listed according to
multiplicity. We say thatDf(0) is resonantif there are nonnegative integers
mi,ma,...,my and anumbes € {1,2,...,n} such that

n
Z my > 2
k=1
and
n
As =D mphg.
k=1

If Df(0) is not resonant, we say that itn®nresonant

Note that in Hartman’s example there is resonance. A studyohal forms
reveals that nonresonance permits us to make changes ableathat remove
nonlinear terms up to any specified order in the right-hadd sf the differen-
tial equation. In order to be able to guarantee tidhhonlinear terms may be
removed, some extra condition beyond nonresonance isreglui
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Definition. We say thailA, A5, ..., A,) € C" satisfy aSiegel conditionf there
are constant€ > 0 andv > 1 such that

¢
k=1 mr)"

>

n
As— > mih
k=1
for all nonnegative integerg, m», ..., m, satisfying

n
Z my > 2.
k=1

Theorem. (Poincag’s Linearization Theorem) Suppose thaf is analytic, and
that all the eigenvalues @b f(0) are nonresonant and either all lie in the open
left half-plane, all lie in the open right half-plane, or ssfiy a Siegel condition.
Then there is a change of variablas= g(x) that is analytic neal0 and that
turns (4.40)into (4.41)near0.
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Invariant Manifolds

5.1 Stable Manifold Theorem: Part 1

The Hartman-Grobman Theorem states that the flow genergtedimooth vec-
tor field in a neighborhood of a hyperbolic equilibrium poiattopologically
conjugate with the flow generated by its linearization. ham’s counterexam-
ple shows that, in general, the conjugacy cannot be takea @' bHowever, the
Stable Manifold Theorem will tell us that there are impottsimuctures for the
two flows that can be matched up by smooth changes of varilabibis section,
we will discuss the Stable Manifold Theorem on an informakleand discuss
two different approaches to proving it.

Let f : Q CR"” — R"beC!, andletp : R x Q@ — Q be the flow generated
by the differential equation

x = f(x). (5.1)
Suppose that is a hyperbolic equilibrium point of (5.1).

Definition. The (global)stable manifoldbf x is the set
We(xg) := {x eQ ‘ lim ¢(t,x) = xo}.
t1oo
Definition. The (global)unstable manifolaf x is the set
W (xo) = {x eQ ] lim o, x) = xo}.
ty—o0

Definition. Given a neighborhoot¥ of x, the localstable manifoldbf xq (rela-
tive tol/) is the set

Wioc(x0) 1= {x el ‘ yt(x) cU and t¥210<p(z,x) = x()}‘
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Definition. Given a neighborhood/ of xq, the localunstable manifoldof xq
(relative tolA) is the set

W (x0) := {x el ‘ y~(x) U and tJLn;o¢(z,x) = Xo}.

Note that:

o Wi.(x0) € W¥(xo), andW.(xo) € W¥(xo).

be(x0) and Wk (xo) are both nonempty, since they each contajn

o W5S(xg) andW¥(x¢) are invariant sets.

(xo) is positively invariant, an (xo) is negatively invariant.

S u
loc loc
o W (x0) is not necessarilyy ¥ (xo) N U, and W,
Wu(X()) Nnu.

oc(x0) is not necessarily

oc(x0) is not necessarily invariant, since it might not be neg#tiirevari-
ant, andW,.(xo) is not necessarily invariant, since it might not be posiyive

invariant. They do, however, possess what is knowrekdive invariance

Definition. A subsetA of a setB is positively invariant relative td if for every
x € Aand every > 0, ¢(t, x) € Awhenever([0,?], x) C B.

Definition. A subsetA of a setB is negatively invariant relative t# if for every
x € Aand every <0, ¢(t,x) € Awhenever([t,0], x) C B.

Definition. A subsetA of a setB is invariant relative toB if it is negatively
invariant relative td3 and positively invariant relative t8.

Ws.(x0) is negatively invariant relative @@ and is therefore invariant relative
toU. Wl.(xo) is positively invariant relative té/ and is therefore invariant
relative tolf.

Recall that gk-)manifoldis a set that is locally homeomorphic to an open
subset ofR¥. Although the word “manifold” appeared in the namedigf.(xo),

oc(x0), W3 (xo), andW™(xo), it is not obvious from the defintions of these sets
that they are, indeed, manifolds. One of the consequendés &table Manifold
Theorem is that, it/ is sufficiently small,W|5.(xo) and W% (xo) are manifolds.
(WS(xo) andW4(xq) are what are known asxmersednanifolds.)

For simplicity, let's now assume that = 0. Let £5 be the stable subspace
of Df(0), and let€* be the unstable subspace Bf (0). If f is linear, then
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Ws(0) = £ andW*(0) = &*. The Stable Manifold Theorem says that in the
nonlinear case not only are the Stable and Unstable Masifaltked manifolds,
but they are tangent ©&° and&¥, respectively, at the origin. This is information
that the Hartman-Grobman Theorem does not provide.

More precisely there are neighborhodd$ of the origin in&S andi/* of
the origin in&* and smooth maps; : U° — U* andh, : U* — U°® such
thaths(0) = hy,(0) = 0 and Dhy(0) = Dhy,(0) = 0 and the local stable and
unstable manifolds di relative tol/* @ U* satisfy

Wise(0) = {x + hs(x) | x e U*}

and
Wiae(0) = {x + hy(x) | x e U¥}.

Furthermore, not only do solutions of (5.1) in the stable ifiedch converge tad
ast 1 oo, they do so exponentially quickly. (A similar statement tenmade
about the unstable manifold.)

Liapunov-Perron Approach

This approach to proving the Stable Manifold Theorem regr{6.1) as
X = Ax + g(x), (5.2)

whereA = Df(0). The Variation of Parameters formula gives
5]
x(tz) = e 27 Ax (1)) 4 / 2794 g(x(s)) ds, (5.3)
n

for everyt, 1, € R. Settingsy = 0 andz, = ¢, and projecting (5.3) ont&*
yields

t
x5(1) = 4 x5 (0) + / s g (x(s)) ds,
0

where the subscriptattached to a quantity denotes the projection of that giyanti
onto&S. If we assume that the solutior(z) lies onW$(0), setr, = ¢, lett; 1 oo,
and project (5.3) onté*, we get

*ull) = - / " g, (x(s)) ds.

Hence, solutions of (5.2) i/ ¢ (0) satisfy the integral equation

t o0
x(1) = €45 x,(0) + / s g (x(s)) ds — / g (x(s)) ds.
0 t
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Now, fix ag € £°, and define a functiondl' by

t o0
(Tx)(t) = e"sa; + / U™ g (x(s)) ds — / =) ug, (x(s)) ds.
0 t

A fixed pointx of this functional will solve (5.2), will have a range comtad in
the stable manifold, and will satisfy;(0) = as. If we seths(as) = x,(0) and
defineh; similarly for other inputs, the graph af will be the stable manifold.

Hadamard Approach

The Hadamard approach uses what is known as a graph transtdere we
define a functional not by an integral but by letting the grapthe input function
move with the flowp and selecting the output function to be the function whose
graph is the image of the original graph after, say, 1 unitroéthas elapsed.

More precisely, supposk is a function from&® to £%. Define its graph
transformF [A] to be the function whose graph is the set

lo(LE+hE) | s e (5.4)

(That (5.4) is the graph of a function fro&¥ to £¥—if we identify £5 x &%
with &% @ £*—is, of course, something that needs to be shown.) Anothgiofva
putting this is that for each € £°,

F[h]((p(1,& + h(§)))s) = (p(1,& + h(§)))u;
in other words,
Flhlomgoe(l,:) o (id+h) = my o p(l1,:) o (id +h),

wherer; and x, are projections ont¢® and &%, respectively. A fixed point
of the graph transform functiondl will be an invariant manifold, and it can be
show that it is, in fact, the stable manifold.

5.2 Stable Manifold Theorem: Part 2

Statements

Given a normed vector space and a positive number, we let X' (r) stand for
the closed ball of radius centered ad in X.
The first theorem refers to the differential equation

X = f(x). (5.5)
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Theorem. (Stable Manifold Theorem)Suppose thaf2 is an open neighbor-
hood of the origin inR”, and / : @ — R” is aC¥ function ¢ > 1) such that
0 is a hyperbolic equilibrium point of5.5). Let&* @ £% be the decomposition
of R" corresponding to the matri®f(0). Then there is a nornj - | on R”,
a numberr > 0, and aC*functions : £5(r) — E%(r) such thath(0) = 0
and Dh(0) = 0 and such that the local stable manifolg;_(0) of O relative to
B(r):=E&%(r) ® E%(r) is the set

{vs + h(vs) | vs € E5(r)}.

Moreover, there is a constant> 0 such that

2:(0) = {v € B0

y*(v) € B(r)and lim e g(1,v) = 0},
ttPoo

Two immediate and obvious corollaries, which we will nottstaxplicitly,
describe the stable manifolds of other equilibrium poinis translation) and
describe unstable manifolds (by time reversal).

We will actually prove this theorem by first proving an analog theorem
for maps (much as we did with the Hartman-Grobman TheorernverGa neigh-
borhood// of a fixed pointp of a mapF, we can define the local stable manifold
of p (relative tolf) as

Wioe(p) := {x eu | F/(x) e Uforeveryj e Nand#g Fl(x) = p},

Theorem. (Stable Manifold Theorem for Maps)Suppose thaf2 is an open
neighborhood of the origin iflR”, and F : @ — € is an invertibleC* function
(k > 1) for which F(0) = 0 and the matrixDF (0) is hyperbolic and invertible.
Let&s @& (= £~ @E™) be the decomposition B corresponding to the matrix
DF(0). Then there is a norrj - || onR”, a number > 0, a numberi € (0, 1),
and aC*function’ : £5(r) — £*(r) such thatz(0) = 0 and DA(0) = 0 and
such that the local stable manifolit? (0) of 0 relative toB(r) := E5(r)®EX(r)
satisfies

|gc(0) = {US + h(vs) | Vs € gs(r)}
— {v e B(r) ‘ FJ (v) € B(r) for everyj e N}

s
loc

- {v e B(r) ‘ FJ(v) € B(r)and | F/ (v)|| < i’ |v] forall j € N}.

Preliminaries

The proof of the Stable Manifold Theorem for Maps will be beakup into a
series of lemmas. Before stating and proving those lemmas)eed to lay a
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foundation by introducing some terminology and notatiod by choosing some
constants.

We know thatF(0) = 0 and DF (0) is hyperbolic. TheR” = &% & &%, n
andr, are the corresponding projection operatérsand&¥ are invariant under
DF(0), and there are constants< 1 andA > 1 such that all of the eigenvalues
of DF(0)|es have magnitude less thanand all of the eigenvalues @ F (0)| g
have magnitude greater than

When we deal with a matrix representation/af'(¢), it will be with respect
to a basis that consists of a basis frfollowed by a basis fo€*. Thus,

Ass(q) ‘ Asu(q)

Aus(q) ‘ Auu(q)

DF(q) =

El

where, for exampled;, (¢) is a matrix representation af; DF (q)|c« In terms
of the basis forf* and the basis fo€*. Note that, by invarianced;, (0) =
Ayus(0) = 0. Furthermore, we can pick our basis vectors so that, vithbeing
the corresponding Euclidean norm of a vecto€fror in £%,

Ass(0)v
| 455(0)] = sup 145 (Ovs]
vs#0 ”Us”

and

m(Ayy(0)) := inf M > A.

w#0  vul|

(The functionalm(-) defined implicitly in the last formula is sometimes called
the minimum normeven though it is not a norm.) For a vectorine R”, let
v = maX|zsv], ||m,v|}. This will be the norm oriR” that will be used
throughout the proof. Note thdi(r) := £°(r) & £%(r) is the closed ball of
radiusr in R” by this norm.

Next, we choose. Fix « > 0. Picke > 0 small enough that

Uteax+e<l<iA—g/a—2e.
Pickr > 0 small enough that i§ € B(r) then

[Ass(@I < w,
m(Ayu(q)) > A,
[Asu(@| < e,

[Aus (@) <e.

IDF(q) = DE(O)]| <,
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andDF(q) is invertible. (We can do this sindé is C!, soDF(-) is continuous.)
Now, define

o0
We = F/(Br).

j=0
and note that¥;’ is the set of all points iB(r) that produce forward semiorbits
(under the discrete dynamical system generated pyhat stay inB(r) for all
forward iterates. By definitionly; (0) € W;*; we will show that these two sets
are, in fact, equal.

Two other types of geometric sets play vital roles in the firamnesand

disks The cones are of two typestableand unstable The stable cone (of
“slope” ) is

s
loc

C*(@) = {v e R" | [myv]| < al|msv]],
and the unstable cone (of “slope) is
C*@):={v e R" | |mvl = allmv]]}.

An unstable disks a set of the form

{Uu + ¥ (vu) | Uy € gu(r)}

for some Lipschitz continuous functiap : £%(r) — £°(r) with Lipschitz con-
stant (less than or equal te)!.

5.3 Stable Manifold Theorem: Part 3

The Action of DF(p) on the Unstable Cone

The first lemma shows that if the derivative of the map is &ublo a point in the
unstable cone, the image is also in the unstable cone.

Lemma. (Linear Invariance of the Unstable Cone)lf p € B(r), then

DF(p)C*(a) € C*(a).

Proof. Let p € B(r) andv € C*(«). Then, if we letvys = 7zv andv, = v,
we havel||vy, || > a||vs]|, SO

|7y DE(p)v| = ||Aus(P)vs + Auu(p)vull
> [[Auu (P)vull — [Aus(p)vs||
> m(Ayu (P Ivull = [Aus (P Vsl = Allvw |l — ellvs]|

> (A =e/a)|vul,
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and

s DE(p)vll = [[Ass(P)vs + Asu(P)vull = [ Ass(P)vsl + [ Asu(p)vul
< [[Ass(P) Hlvs | + 1 Asu (P va | < pllvsll + ellvu |
< (u/a + e)llvull.

Sinced —e/a > a(u/a + ¢),
|mu DE(p)v|| = af|es DF (p)v],

SODF(p)v € C¥(). O

The Action of F on Moving Unstable Cones

The main part of the second lemma is that moving unstablescareepositively
invariant. More precisely, if two points are I5(r) and one of the two points is
in a translate of the unstable cone that is centered at tlemdeaint, then their
images undeF satisfy the same relationship. The lemma also providesasts
on the rates at which the stable and unstable parts of thera@iffte between the
two points contract or expand, respectively.

In this lemma (and later) we use the convention that iind)’ are subsets
of a vector space, then

X+y::{x+y|xe/\,’andyey}.

Lemma. (Moving Unstable Cones)f p,q € B(r) andqg € {p} + C*(«), then:

@) lws(Fg) — F(p)I = (n/a + &)llmulg — p)I;
(b) llmu(F(g) — F(p)ll = A —¢g/a —&)llmulg — p)II;

(©) Fl(q) e {F(p)}+ C*(a).

Proof. We will write differences as integrals (using the Fundarakiibeorem
of Calculus) and use our estimates bi#'(v), for v € B(r), to estimate these
integrals.
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SinceB(r) is convex,

ld
s (F(q) — F(p)Il = ”/0 2, "sFg+ (1 =np)dt

1
_ H /0 7 DF(iq + (1 — D)p)(q — p) di
1
= ”/0 Ass(tqg + (1 —1t)p)ms(q — p) dt
1
+f Asu(tq + (1 = 1) p)my(q — p) dt”
0
1
< fo 1 Ass(tg + (=D p) s (g — p) di
1
+ f 1 Asu(tq + (1 — Pl — p)l s
0
1
< fo llms(q — )l + ellmala — )1 dr < (/e + o)lmu(g — Pl

This gives(a).
Similarly,

7w (F(q) — F(p))|

1
_ ” /0 Ays(tq + (1 — 1) p)s(q — p) dt

1
+/ Auu(tg + (1 —t)p)nu(q—p)dtH
0

1
/0 [Aus(tq + (1 — ) p)s(q — p) di

z

1
fo A OV (g — p) dt

1
- H /0 (Auu(tq + (1 = 1)p) — Auu (O (q — p) dt
1
> (A O) | (g — p)]| /0 1 Aus(tq + (1 — ) p) (g — p)] dt

1
—/0 [ Auu(tq + (1 = 1) p) = Auu () [[l77u (g — Pl dt

= Mimu(qg = Pl —ellms (g — Pl — ellmulg — Pl
> (A —¢e/a=¢)llmulg - p)ll.

This gives(b).
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From (a), (b), and the choice of, we have

|7 (F(q) — F(p)|| = (A —¢/a —¢&)||mu (g — p)l
> (n + ea)|mu(g — p)l
> af|ms(Fg) — F(p)ll,

S0 F(q) — F(p) € C*(x), which means th&k) holds.

5.4 Stable Manifold Theorem: Part 4

Stretching of C! Unstable Disks

The next lemma shows that#f is applied to aC'! unstable diski(e., an unstable
disk that is the graph of @' function), then part of the image gets stretched out
of B(r), but the part that remains in is agair€a unstable disk.

Lemma. (Unstable Disks)Let Dy be aC! unstable disk, and recursively define
Dj = F(Dj_l) N B(r)

for eachj € N. Then eaclD; is aC! unstable disk, and

J
diam (nu (F™ (Di)) <2A—g/a—g)/r (5.6)
i=0
for eachj € N.

Proof. Because of induction, we only need to handle the gase 1. The es-
timate on the diameter of the, projection of the preimage dP; underF is
a consequence of pah) of the lemma on moving invariant cones. THat is
the graph of am~!-Lipschitz functiony; from a subset of*(r) to £5(r) is a
consequence of paft) of that same lemma. Thus, all we need to show is that
dom(yr1) = £%(r) and thaty; is C!.

Let o : E%(r) — &%(r) be theC! function (with Lipschitz constant less
than or equal tec—!) such that

Dy = {Uu + Yo(vu) ‘ Uy € gu(r)}.

Defineg : £%(r) — &Y by the formulag(vy,) = my, F(vy, + ¥o(vy)). If we can
show that for eacly € £“(r) there existsc € £%(r) such that

g(x) =1y, (5.7)
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then we will know that doryr,) = E%(r).

Lety € &%(r) be given. Letl. = A,,(0). Sincem(L) > A, we know
thatL=! € L£(&%,&Y) exists and thal L~ !|| < 1/A. DefineG : %(r) — &
by the formulaG(x) = x — L~ 1(g(x) — y), and note that fixed points a¥
are solutions of (5.7), and vice versa. We shall show ¢hé a contraction and
takes the compact sét(r) into itself and that, therefore, (5.7) has a solution
x € E¥(r).

Note that

Dg(x) = my DF(x + ¥o(x))(I + Do(x))
= Ayu(x + Yo(x)) + Aus(x + Yo(x)) DYo(x),
o)

IDG@)| =1 = L™'Dg(x)|| < IL7HIIL — Dg(x)]

1
= I(”Auu(x + Yo(x)) — Auu (0)||

+ [ Aus(x + Yo 1D Yo (X))
< 1.

€ +¢e/a
- A
The Mean Value Theorem then implies tiiais a contraction.
Now, suppose that € £“(r). Then

G = IGO) + 1G(x) = GO

< I + 1yl + EEE

A
1
< (O + 7+ (s +/e)r).

[lx]

Letp : E5(r) — &"(r) be defined by the formula(vs) = m, F(vs). Since
p(0) = 0 and, for any € E5(r), || Dp(vs)| = ||Aus(vs)]|| < &, the Mean Value
Theorem tells us that

g O)|| = [l F (Yo (O] = llo(o O < &ll¥o(0)|| <er.  (5.8)
Plugging (5.8) into the previous estimate, we see that

1+ ¢&/a+2e
r

G < +er + 7 + (e + e/ayr) = L

<r,

S0G(x) € E¥(r).

That completes the verification that (5.7) has a solutioretmhy € £%(r)
and, therefore, that dofyr;) = £%(r). To finish the proof, we need to show that
V1 is CL. Let g be the restriction of to g—!(D;), and observe that

Y108 =mgo0 F o (I + ¥yp). (5.9)
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We have shown thaf is a bijection ofg~!(D;) with D; and, by the Inverse
Function Theoremg—! is C1. Thus, if we rewrite (5.9) as

Yy = w50 Fo(l +vg)og ™!

we can see thaf, as the composition af ! functions, is indeed!. O

W7 is a Lipschitz Manifold

Recall that,* was defined to be all points in the bfXr) that produced forward
orbits that remain confined withi(r). The next lemma shows that this set is a
manifold.

Lemma. (Nature of W) W} is the graph of a function : £°(r) — £%(r) that
satisfiesi(0) = 0 and that has a Lipschitz constant less than or equal.to

Proof. For eactv; € £¥(r), consider the set
D := {vs} + E¥(r).

D is aC! unstable disk, so by the lemma on unstable disks, the s¥hsEtD
that stays i3(r) for at least; iterations ofF has a diameter less than or equal to
2(A—e/a—e)~/ r. By the continuity ofF, S; is closed. Hence, the subsgy, of

D that stays in3(r) for an unlimited number of iterations @f is the intersection
of a nested collection of closed sets whose diameters agpi@a This means
thatS is a singleton. Call the single point & /1 (vy).

It should be clear thal’,’ is the graph ofi. That/(0) = 0 follows from the
fact that0 € W}, sinceF(0) = 0. If » weren'ta-Lipschitz, then there would
be two pointsp,g € W’ such thatp € {q} + C*(x). Repeated application of
parts(b) and(c) of the lemma on moving unstable cones would imply that either
F/(p)or F/(q) is outside of3(r) for some;j € N, contrary to definition. [

>.(0) is a Lipschitz Manifold

Our next lemma shows that);.(0) = W, and that, in fact, orbits in this set
converge ta@ exponentially. (The constaiit in the statement of the theorem can
be chosentobg + cif ¢ < 1.)

Lemma. (Exponential Decay)lf « < 1, then for eaclp € W?,

IE7(p)Il < (e + &) | pll. (5.10)

In particular, W7 = W (0).
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Proof. Suppose that < 1 andp € W;. By mathematical induction (and the
positive invariance o#}?), it suffices to verify (5.10) forj = 1. Sincea < 1
the last lemma implies that/’ is the graph of al-Lipschitz function. Since
F(p) € W7, we therefore know that

IF (Pl = max{llzs F(p)II. llru F(pI} = ll7ws F(p)II.

Using this and estimating, we find that

1
/ ws DF(tp)p le
0

g
IF(p)Il = “/0 EHSF(ZP) dz“ =

1
- “ /0 [Ass(ip)ts p + Asu(tp)ma p] di

1
S/O [l 4ss @) llzs Il + [ Asu @) 7w pll] dt

< plimspll + ellmupll < (m + o)l pll.

5.5 Stable Manifold Theorem: Part 5
5.(0)isC!
Lemma. (Differentiability) The functiom: : £5(r) — £%(r) for which
0c(0) = {vs + h(vy) | vs € E5(r)}
isC!, andDh(0) = 0.
Proof. Letg € W;’ be given. We will first come up with a candidate for a plane

that is tangent té¥,’ atg, and then we will show that it really works.
For eachj € N and eaclp € W,*, define

C* (p) := [D(F/)(p)| 'C* ().

and let
C*(p) = C*(a).

By definition (and by the invertibility oD F(v) for all v € B(r)), C*/ (p) is the
image of the stable cone under an invertible linear transition. Note that

C*1(p) = [DF(P)]'C*(@) C C*(@) = C*(p)
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by the (proof of the) lemma on linear invariance of the unigtabone. Similarly,

C*?(p) = [D(F?)(p)]"'C*(a) = [DF (F(p)) DF(p)| ' C* (@)
= [DF(p)] ' [DF(F(p)]~'C*(a) = [DF(p)| ' C*!(F(p))
C [DF(p)| "' C*(@) = C*!(p)
and

C*3(p) =

D(F?)(p))"'C*(a) = [DF(F*(p)) DF(F(p))DF(p)]' C*(a)
DF(p)] ' [DF(F(p))]"'[DF(F?(p))| "' C*(a)

= [DF(p)] '[DF(F(p)]~'C* (F*(p))

C [DF(p)] ' [DF(F(p)] ' C*(a) = C*2(p).

—_— —

Recursively, we find that, in particular,
C*%(q) > C*>(q) D C*?*(q) D C*(q) D ---.

The plane that we will show is the tangent plandit$ atq is the intersection

C*2(g) = () € (@)
j=0

of this nested sequence of “cones”.
First, we need to show that this intersectisra plane. Suppose that €
C5J(gq). Thenx € C%(«), so

lws DF (q)x|| = | Ass(q)msx + Asu(q)mux||
=< [[ss@ s x| + [ Asu (@ | mux]] = (1 + o) [|7wsx].
Repeating this sort of estimate, we find that
les D(F7)(g)x|| = |l7ws DF(F/~(9)) DF (F/7%(g)) --- DF ()|
< (u + ea)! ||msx].

On the other hand, if is also inC*/ (q) andngx = 75y, then repeated appli-
cations of the estimates in the lemma on linear invariance@funstable cone
yield

l7wu D(F7)(g)x — mu D(F/)(@)y | = (A — e/e) |rux — muy .
SinceD(F/)(q)C%/(q) = C*(a), it must, therefore, be the case that

(A — /o) llmux — muy |l _

. < 2.
(n + ea)/ [|mrsx||
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This implies that

J
I = muyl < 20 (252 ) . (5.11)
—¢c/a
Letting j 1 oo in (5.11), we see that for eaay € £° there can be no more
than 1 pointx in C5°°(q) satisfying 7;x = vs. On the other hand, each
C*%J(q) contains a plane of dimension difif) (namely, the preimage &f*
underD(F7)(q)), so (since the set of planes of that dimension passing ghrou
the origin is a compact set in the natural topolody);*°(¢) contains a plane, as
well. This means that'®*°(q) is a planeP, that is the graph of a linear function
Ly :& — &¥.
Before we show thaL, = Dh(q), we make a few remarks.

(a) Because&E® C CS/ (0) foreveryj e N, Py = £ andLg = 0.

(b) The estimate (5.11) shows that the size of the largest argjieelen two
vectors inC*/(g) having the same projection ont goes to zero as

J 1 oo.

(c) Also, the estimates in the proof of the lemma on linear imrre of the
unstable cone show that the size of the minimal angle betae®ator in
C*1(F/(q)) and a vector outside af*-°(F/(q)) is bounded away from
zero. Since

C*/(q) = [D(F/)(@)]™'C*(@) = [D(F/ ) ()] C**(F/ (9))
and
CH T (g) = [D(F/ (@) ' C* (@)
= [D(F)) (@] [DF(F/(g)] 7' C* (@)
= [D(F)) (@] CH (F/ (g)),

this also means that the size of the minimal angle betweernctove
C*/T1(g) and a vector outside of */ (¢) is bounded away from zero
(for fixed j).

(d) Thus, sinceC*/*1(g) depends continuously an
Py € CH ) € CH (q)

for a given; if ¢’ is sufficiently close tgz. This means tha®P, depends
continuously ony.
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Now, we show thaDF(q) = L4. Lete > 0 be given. By remarkb) above,
we can choosg € N such that

[muv — Lgmsv| < &|msv] (5.12)

whenevew e C*/(q). By remark(c) above, we know that we can choase> 0
such that ifw € C5/*1(g) and|r| < &[|w|, thenw + r € C5/(q). Because
of the differentiability of F~/~!, we can choosg > 0 such that

/

. . . . &
IF~7"YF/ () +v) =g = [D(FT"HEFE TN < s V]
ID(F/*1)(q)]|
5.1
whenever|v| < n. Define the truncated stable cone

C*(a. ) := C¥ () N7, ' E5 (.

From the continuity offF and thex-Lipschitz continuity ofiz, we know that we
can pické > 0 such that

FIt (vg 4 h(vy)) € {F/ T (q)} + C¥ (e ). (5.14)

whenever|vy — msq|| < 6.
Now, suppose that € C*(«,n). Then (assuminge < 1) we know that
lv]| < n, so (5.13) tells us that
F7=YFI* N g) +v) = g + [DF /D) (F/ @)]v +r (5.15)
=g+ [DFE @] v+ '

for somer satisfying
/

e
Irl = mllvll-
Letw = [D(F/T1)(¢)]"'v. Sincev € C*(«), w € C5/T1(g). Also,
lwll = I[DFE Y@ vl = m((DEFE (@] Hv]

_ vl
IDETF @I

so|r| < &|lw|. Thus, by the choice of, w 4+ r € C*/(q) . Consequently,
(5.15) implies that

FTI7HFI () +v) € {g} + C* (g).
Sincev was an arbitrary element &f* («, ), we have

FIW{FI T (@)} + CP (@, m) € (g} + C* (@) (5.16)
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Setqs := msq, and suppose that, € £5(r) satisfies||vy — ¢s|| < 8. By
(5.14), . .
FIT v + h(vg)) € {F/ T (g)} + C (e, ).

This, the invertibility of F, and (5.16) imply
vs + h(vs) € {g} + C*/ (9),
or, in other words,
vs + h(vs) = g5 — higs) € C*(q).
The estimate (5.12) then tells us that
[ (vs) — h(gs) — Lq(vs —gs)|| < ellvs — g5l

which proves thaDh(q) = L, (sinces was arbitrary).
Remark(d) above implies thaD/(g) depends continuously en soh € C1.
Remark(a) above implies thaD/(0) = 0. O

5.6 Stable Manifold Theorem: Part 6

Higher Differentiability
Lemma. (Higher Differentiability) If F is C¥, thenh is C¥.

Proof. We've already seen that this holds for= 1. We show that it is true for
all k by induction. Lettc > 2, and assume that the lemma workskor 1. Define
anew mapH : R"” x R” — R” x R" by the formula

([

SinceF is Ck, H is Ck—!. Note that

Hz(m):[ F(F(p)) ]:[ F2(p) }

v|) = [DF(F(p)DF(pyw| = [DF)(pyv]”

43 ([pD:[ F(F2(p)) }:[ F3(p) }
v]) = LDF(F2(p)DF)(p)v] = [ DF3)(p)v ]

and, in general, _
(1) [o ]
v D(F’)(p)v]
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Also,

, DF(p) | 0
o ([7]) =1, ’
D2F(p)v | DF(p)

0 DF(0) ‘ 0
o# ([o]) - 7
0 ‘ DF(0)
which is hyperbolic and invertible, sind@F (0) is. Applying the induction hy-
pothesis, we can conclude that the fixed pointoét the origin (inR” x R") has

a local stable manifoldV that isC*~1.
Fix g € W, and note thaf"/ (q) — 0 asj 1 oo and

SO

Py = {v e R" | lim D(F/)(q)v = o}.
Jj1oo
This means that
Py =qveR" [?}]GW}
SinceW has aC*~! dependence o, so doesP,. Hence/: is C¥. 0

Flows

Now we discuss how the Stable Manifold Theorem for maps iespiihe Stable
Manifold Theorem for flows. Givery : Q@ — R” satisfying f(0) = 0, let
F = ¢(1,-), whereg is the flow generated by the differential equation

x = f(x). (5.17)

If /isCk, soisF. Clearly,F is invertible andF (0) = 0. Our earlier discussion
on differentiation with respect to initial conditions tlis that

d
—-Dxp(t. %) = Df(¢(t, x))Dxo(t. x)

and D, ¢(0,x) = I, whereD,, represents differentiation with respectioSet-
ting

g(t) = Dxo(t,x)|x=0
this implies, in particular, that

d
—g() = DI (0)g(1)
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andg(0) =1, so0
g(t) = DS (0)

Settingr = 1, we see that
eP7O = ¢(1) = Dyxo(1,x)|,—g = DxF(x)|x—o = DF(0).

Thus,DF(0) is invertible, and if (5.17) has a hyperbolic equilibriunttz origin
then DF(0) is hyperbolic.

Since F satisfies the hypotheses of the Stable Manifold Theorem fgsn
we know thatF has a local stable manifold,* on some box3(r). Assume that
a < 1 and thatr is small enough that the vector field of (5.17) poimt B(r)
on C%(a) N dB(r). (See the estimates in Section 3.4.) The requirements for a
point to be inW;* are no more restrictive then the requirements to be in thed loc
stable manifold/V; of the origin with respect to the flow, S¢/; € W°.

We claim that, in fact, these two sets are equal. Supposesaiteeyot. Then
there is a poiny € W, \ W;. Letx(r) be the solution of (5.17) satisfying
x(0) = gq. Since lim 4 F/(g) = 0 and, in a neighborhood of the origin, there
is a bound on the factor by which(z) can grow in 1 unit of time, we know that
x(t) — 0 ast 1 oo. Among other things, this implies that

(@) x(r) ¢ W7 for somer > 0, and
(b) x(r) € W7 for all ¢ sufficiently large.

SinceW,’ is a closed set and is continuous(a) and(b) say that we can pick
to be the earliest time such thatr) € W, for everyt > 1.

Now, consider the location of(¢) for ¢ in the interval[tg — 1,7p). Since
x(0) € W7, we know thatx(j) € W, for everyj € N. In particular, we can
choose € [tp — 1,19) such thatx(¢1) € W,*. By definition ofzy, we can choose
tp € (t1.1p) such thatc(z2) ¢ W,°. By the continuity ofx and the closedness of
W7, we can pickss to the be the last time beforg such thatx(13) € W,°. By
definition of WS, if t € [to — 1,20) andx(z) ¢ W7, thenx(¢t) ¢ B(r); hence,
x(t) must leavel3(r) at timer = t3. But this contradicts the fact that the vector
field points intoB(r) at x(¢3), sincex(t3) € C*(«) N dB(r). This contradiction
implies that no poiny € W,° \ W; exists;i.e, W7 = W;.

The exponential decay of solutions of the flow on the locdllstananifold is
a consequence of the similar decay estimate for the mapg alth the observa-
tion that, neab, there is a bound to the factor by which a solution can grown in
1 unit of time.
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5.7 Center Manifolds
Definition
Recall that for the linear differential equation
% = Ax (5.18)
the corresponding invariant subspaéés £°, and£€ had the characterizations

E¥ = U{xeR”

lim |e—¢fetAx| = o},

c>0 ty—oo
& = U{x e R" | lim e e!4x| = o},
c>0 tfoo
and
g = ﬂ{x eR" | lm |e¢let x| = lim e e!4x| = o}.
ty—oo t1oo
c>0
The Stable Manifold Theorem tells us that for the nonlingfiegkntial equation

x = f(x), (5.19)

with f(0) = 0, the stable manifold¥®(0) and the unstable manifold’*(0)
have characterizations similar & and&*, respectively:

W (0) = U{x € R”

c>0

lim [ o(t, x)| = o},
t1oo

and
WH(0) = U{x eR"
c>0

whereg is the flow generated by (5.19). (This was only verified whendtui-
librium point at the origin was hyperbolic, but a similaruésholds in general.)

Is there a useful way to modify the characterizationféfsimilarly to get
a characterization of eenter manifoldi¥ ¢(0)? Not really. The main problem
is that the characterizations 6f and&* only depend on théocal behavior of
solutions when they are near the origin, but the charaetiioiz of £¢ depends
on the behavior of solutions that are, possibly, far fil@m

Still, the idea of a center manifold as some sort of nonlire@alogue of
£¢€(0) is useful. Here’s one widely-used definition:

lim |e oz, x)| = 0},
lim Je™"g (e, 0] = 0f

Definition. Let A = Df(0). A center manifold# € (0) of the equilbrium poind
of (5.19) is an invariant manifold whose dimension equatsdimension of the
invariant subspacé“ of (5.18) and which is tangent &f at the origin.
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Nonuniqueness

While the fact that stable and unstable manifolds are rea#pifolds is a theo-
rem (namely, the Stable Manifold Theorem), a center mathifola manifoldby
definition Also, note that we refer tthe stable manifold anthe unstable mani-
fold, but we refer taa center manifold. This is because center manifolds are not
necessarily unique. An extremely simple example of norugmngss (commonly
credited to Kelley) is the planar system

X =x?
y=-y.

Clearly, £¢ is the x-axis, and solving the system explicitly reveals that foy an
constant € R the curve

{(x,y) e R? ‘ x <0andy :cel/x} U {(x,O) € R? | X ZO}

is a center manifold.

Existence

There is a Center Manifold Theorem just like there was a Stitanifold The-
orem. However, the goal of the Center Manifold Theorem ista@haracterize
a center manifold; that is done by the definition. The Centanifbld Theorem
asserts thexistenceof a center manifold.

We will not state this theorem precisely nor prove it, but vae give some
indication how the proof of existence of a center manifoldjimigo. Suppose
that none of the eigenvalues &ff(0) have real part equal te, wherex is a
given real number. Then we can split the eigenvalues up mtosets: Those
with real part less than and those with real part greater thanLet £~ be the
vector space spanned by the generalized eigenvectorsponding to the first
set of eigenvalues, and I€t" be the vector space spanned by the generalized
eigenvectors corresponding to the second set of eigersialliere cut off f so
that it is stays nearly linear throughdRt, then an analysis very much like that in
the proof of the Stable Manifold Theorem can be done to calecthat there are
invariant manifolds called thpseudo-stable manifoldnd thepseudo-unstable
manifold that are tangent, respectively, fo and£* at the origin. Solutions
x(¢) in the first manifold satisfyy =%’ x(r) — 0 ast 1 oo, and solutions in the
second manifold satisfy~*’x(r) — 0 ast | —oo.

Now, suppose thak is chosen to be negative but larger than the real part
of the eigenvalues with negative real part. The correspangseudo-unstable
manifold is called aenter-unstable manifoldnd is writtenW <*(0). If, on the
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other hand, we choose to be between zero and all the positive real parts of
eigenvalues, then the resulting pseudo-stable manifoballed acenter-stable
manifoldand is writtenW ¢5(0). It turns out that

W(0) := WES(0) N WE(0)

is a center manifold.

Center Manifold as a Graph

Since a center manifold/’ € (0) is tangent t&€* at the origin it can, at least locally,
be represented as the graph of a function £¢ — &5 @ &*. Suppose, for
simplicity, that (5.19) can be rewritten in the form

X =Ax+ F(x,y)

, (5.20)
Yy =By +G(x,y),

wherex € £¢,y € £F @ &Y, the eigenvalues ofl all have zero real part, all of
the eigenvalues aB have nonzero real part, aitlandG are higher order terms.
Then, for pointsy + y lying on W€(0), y = h(x). Inserting that into (5.20) and
using the chain rule, we get

Dh(x)[Ax + F(x,h(x))] = Dh(x)x = y = Bh(x) + G(x, h(x)).
Thus, if we define an operatav! by the formula
(M) (x) := Dp(x)[Ax + F(x,¢9(x))] — Bop(x) — G(x, p(x)),

the functionk whose graph is the center manifold is a solution of the eqnati
Mh = 0.

5.8 Computing and Using Center Manifolds

Approximation
Recall that we projected our equation oétoand ontcS® & £ to get the system

X =Ax+ F(x,y)

) (5.21)
Yy =By +G(x,y),

and that we were looking for a functidn: £¢ — &5 @ £ satisfying(Mh) = 0,
where

(M) (x) := Dp(x)[Ax + F(x,$(x))] = Bp(x) — G(x.¢(x)).
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Except in the simplest of cases we have no hope of trying t@agetxplicit
formula for i, but because of the following theorem of Carr we can appratém
h to arbitrarily high orders.

Theorem. (Carr) Let¢ be aC! mapping of a neighborhood of the origin Ri*
into R” that satisfiegp(0) = 0 and D¢ (0) = 0. Suppose that

(M) (x) = O(Ix|7)

asx — 0 for some constanj > 1. Then

|h(x) = ¢(x)] = O(|x|?)

asx — 0.

Stability
If we puty = h(x) in the first equation in (5.20), we get theduced equation

% = Ax + F(x, h(x)), (5.22)

which describes the evolution of th# coordinate of solutions on the center
manifold. Another theorem of Carr’s states that if all thgesivalues ofD f(0)
are in the closed left half-plane, then the stability typehaf origin as an equi-
librium solution of (5.21) (Lyapunov stable, asymptotigadtable, or unstable)
matches the stability type of the origin as an equilibriurtuson of (5.22).

These results of Carr are sometimes useful in computingt#idisy type of
the origin. Consider, for example, the following system:

X =xy +ax3+by%x
y = —y 4+ cx? + dx?y,
wherex andy are real variables and b, ¢, andd are real parameters. We know

that there is a center manifold, tangent to thaxis at the origin, that is (locally)
of the formy = h(x). The reduced equation on the center manifold is

% = xh(x) + ax® + b[h(x)]*x. (5.23)

To determine the stability of the origin in (5.23) (and, @fere, in the origi-
nal system) we need to approximate Therefore, we consider the operajot
defined by

(M) (x) = ¢' () [x$(x) +ax® + b(p(x))*x] + §(x) — ex® — dx?¢(x),
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and seek polynomiap (satisfying¢(0) = ¢’(0) = 0) for which the quantity
(Mg)(x) is of high order inx. By inspection, if¢(x) = cx? then(M¢)(x) =
O(x*), soh(x) = cx? + O(x*), and (5.23) becomes

x = (a+c)x3+ 0.

Hence, the origin is asymptotically stablei-c¢ < 0 and is unstable i +c¢ > 0.
What about the borderline case wher- ¢ = 0? Suppose that + ¢ = 0 and
let's go back and try a differert, namely, one of the formp(x) = cx? + kx*.
Plugging this in, we find thatM¢)(x) = (k — cd)x* + O(x°®), so if we choose
k = cd then(M¢)(x) = O(x®); thus,h(x) = cx? + cdx* 4+ O(x°). Inserting
this in (5.23), we get

% = (cd + bc®)x® + 0(x7),

so the origin is asymptotically stabledt! + bc? < 0 (anda + ¢ = 0) and is
unstable ifcd + bc? > 0 (anda + ¢ = 0).

Whatifa+c = 0 anded +bc? = 0? Suppose that these two conditions hold,
and considep of the forme (x) = cx? + cdx* + kx® for somek € R yet to be
determined. Calculating, we discover thiat(¢)(x) = (k — b%c3)x® + O(x?),
so by choosing: = b2¢3, we see thab(x) = cx? + cdx* + b2c3x® + O(x®).
Inserting this in (5.23), we see that {f+ ¢ = 0 andcd + bc? = 0)

x =-b2c3x" + 0(x°).

Hence, ifa + ¢ = c¢d + be? = 0 andb?c3 > 0 then the origin is asymptotically
stable, and it: + ¢ = c¢d + bc? = 0 andb?c3 < 0 then the origin is unstable.

It can be checked that in the remaining borderline easec = cd + bc? =
b?%c3 =0, h(x) = cx? and the reduced equation is simply= 0. Hence, in this
case, the origin is Lyapunov stable, but not asymptoticstiyple.

Bifurcation Theory

Bifurcation theory studies fundamental changes in thecira of the solutions
of a differential equation or a dynamical system in respdonsghange in a pa-
rameter. Consider the parametrized equation

X = F(x,¢), (5.24)

wherex € R” is a variable and € R? is a parameter. Suppose that0,s) = 0
for everye, that the equilibrium solution at = 0 is stable wherr = 0, and
that we are interested in the possibility of persistentcstmes €.g9, equilibria or
periodic orbits) bifurcating out of the origin asis made nonzero. This means
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that all the eigenvalues @, F' (0, 0) have nonpositive real part, so we can project
(5.24) onto complementary subspace®6fand get the equivalent system

u=Au—+ f(u,v,¢)
V= Bv+g(u,v,e),

with the eigenvalues afl lying on the imaginary axis and the eigenvaluesBof
lying in the open right half-plane. Since the parametdoes not depend on time,
we can append the equatiér= 0 to get the expanded system

u=Au—+ f(u,v,¢)
V= Bv+gu,v,e) (5.25)
£=0.

The Center Manifold Theorem asserts the existence of arcerarifold for the
origin that is locally given by pointéu, v, ¢) satisfying an equation of the form

v =h(u,z¢).

Furthermore, a theorem of Carr says that every solutian), v(z), €) of (5.25)
for which (1(0), v(0), ¢) is sufficiently close to zero converges exponentially
quickly to a solution on the center manifold ast oco. In particular, no per-
sistent structure near the origin lies off the center maahiéd this expanded sys-
tem. Hence, it suffices to consider persistent structunethélower-dimensional
equation

u=Au+ f(u,h(u,e),e).
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Periodic Orbits

6.1 Poincale-Bendixson Theorem

Definition. A periodic orbit of a continuous dynamical systegnis a set of the
form

{o@t. p) |t €[0.T]}

for some timeT and pointp satisfyinge(T, p) = p. If this set is a singleton,
we say that the periodic orbit degenerate

Theorem. (Poincag-Bendixson)Every nonempty, compa@tlimit set of aC'!
planar flow that does not contain an equilibrium point is a degenerate peri-
odic orbit.

We will prove this theorem by means of 4 lemmas. Throughoutdigcus-
sion, we will be referring to ! planar flowg and the corresponding vector
field f.

Definition. If S is a line segment ilR? and p1, p»,... is a (possibly finite) se-
gquence of paoints lying o, then we say that this sequencerisnotone or§ if

(pj — pj—1) - (p2 — p1) = O forevery; > 2.

Definition. A (possibly finite) sequenceq, p», ... of points on a trajectoryi.g.,
an orbit) 7 of ¢ is said to bemonotone or/ if we can choose a poirng and
timesr; <1, <--- such thatp(z;, p) = p, for each;.

Definition. A transversalof ¢ is a line segmens such thatf is not tangent to
S at any point ofS.

Lemma. If a (possibly finite) sequence of points, p», ... lies on the intersec-
tion of a transversalS and a trajectory7’, and the sequence is monotone®n
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then it is monotone o8.

Proof. Let p be a point on7. SinceS is closed andf is nowhere tangent
to S, the timest at whichg(¢, p) € S form an increasing sequence (possibly
biinfinite). Consequently, if the lemma fails then theretareess; < t, < t3 and
distinct pointsp; = ¢(t;, p) € S,i € {1,2, 3}, such that

{r1. p2.p3} = o(t1.13].p) NS

and ps is betweernp; and p,. Note that the union of the line segménip, from

p1 to p, with the curvep([t1, 12], p) is a simple closed curve in the plane, so by
the Jordan Curve Theorem it has an “insideand an “outside’®. Assuming,
without loss of generality, that pointsinto Z all along the “interior” ofpy p2,
we get a picture something like:

1%}

Note that
TUpip2 Uoe(t1,12]. p)

is a positively invariant set, so, in particular, it contir([t., 3], p). But the fact
that ps is betweerp; andp, implies thatf (p3) points intoZ, sop(t3—e¢, p) € O
for e small and positive. This contradiction implies that the treanholds. [

The proof of the next lemma uses something calldlbwa box A flow box
is a (topological) box such that points into the box along one side, points out
of the box along the opposite side, and is tangent to the otwesides, and the
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restriction ofy to the box is conjugate to unidirectional, constant-vejotiow.
The existence of a flow box around any regular poinid§ a consequence of
the C"-rectification Theorem.

Lemma. No w-limit set intersects a transversal in more than one point.

Proof. Suppose that for some pointand some transversal, w(x) intersectsS

at two distinct pointsp; and p,. Sincep; and p, are on a transversal, they are
regular points, so we can choose disjoint subinter§alandsS, of S containing,
respectively,p; and p,, and, for some > 0, define flow boxe#3; and5, by

B := {go(t,x) | t €l—e¢],x € Si}.

Now, the fact thatp,, p» € w(x) means that we can pick an increasing se-
guence of times;, 15, ... such thatp(z;, x) € By if j is odd andp(t;, x) € B>
if j is even. In fact, because of the nature of the flowBinand 5,, we can as-
sume thatp(z;, x) € S for each;. Although the sequenag(?1, x), ¢(t2, x), . ..
is monotone on the trajectof := y(x), it is not monotone o5, contradicting
the previous lemma. O

Definition. An w-limit point of a point p is an element ol (p).
Lemma. Everyw-limit point of anw-limit point lies on a periodic orbit.

Proof. Suppose thap € w(g) andg € w(r). If pis a singular point, then it
obviously lies on a (degenerate) periodic orbit, so suppbatp is a regular
point. PickS to be a transversal containiryg in its “interior”. By putting a
suitable flow box aroungh, we see that, since € w(g), the solution beginning
atg must repeatedly cros$. Butg € w(r) andw-limit sets are invariant, so the
solution beginning a remains confined withi(r). Sincew(r) NS contains at
most one point, the solution beginningeamust repeatedly crosS at the same
point; i.e., ¢ lies on a periodic orbit. Sincg € w(g), p must lie on this same
periodic orbit. O

Lemma. If an w-limit setw(x) contains a nondegenerate periodic orit then
w(x) ="7P.

Proof. Fix ¢ € P. PickT > 0 such thatp(T,q) = ¢g. Lete > 0 be given.
By continuous dependence, we can pick 0 such thate(z, y) — ¢(t,9)| < ¢
whenever € [0,37/2] and|y — ¢g| < §. Pick a transversa$ of length less than
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6 with ¢ in its “interior”, and create a flow box

B:= {go(t,u) ‘ ues,te [—p,p]}

for somep € (0,7/2]. By continuity of¢(T,-), we know that we can pick a
subintervalS’ of S that containg; and that satisfieg(7, S’) C B. Lett; be the
jth smallest element of

{t=0]p(.x)eS}.

BecauseS’ is a transversal angl € w(x), thet; are well-defined and increase
to infinity asj 1 co. Also, by the lemma on monotonicityp(z;, x) — ¢| is a
decreasing function of.

Note that for each € N, (T, ¢(¢;, x)) € B, so, by construction af ands,
o(t,o(T, p(t;,x))) € S for somet € [-T/2,T/2]. Pick such a. The lemma
on monotonicity implies that

o(t.o(T.¢(tj.x)) € S'.
This, in turn, impliesthat + 7 + ¢; € {t1,12,...}, SO
tiq1—t; <t+T <3T/2. (6.1)
Now, let > #; be given. Then € [t;,7;4+1) for somej > 1. For this,

lp(t, x) — ot —t;,q)| = ot —1j, 0, x)) — @t —tj,q)| <e,

since, by (6.1)|t —¢;| < |tj4+1 —t;| < 3T/2 and since, becausg?;,x) € S’ €
S, lg — (. x)| < 8.
Sincee was arbitrary, we have shown that

im d(p(t.x).P) = 0.
tToo

Thus,P = w(x), as was claimed. O

Now, we get to the proof of the Poincaré-Bendixson Theotsgifi Suppose
w(x) is compact and nonempty. Pigk € w(x). Sincey™(p) is contained in
the compact sab(x), we knoww(p) is nonempty, so we can piak € w(p).
Note thatg is anw-limit point of anw-limit point, so, by the third lemmay lies
on a periodic orbitP. Sincew(p) is invariant,? € w(p) € w(x). If w(x)
contains no equilibrium point, theR is nondegenerate, so, by the fourth lemma,
w(x) ="P.



Lienard’s Equation

6.2 Lienard’s Equation

Suppose we have a simple electrical circuit with a resistorjnductor, and a
capacitor as shown.

Kirchhoff’s current law tells us that
i =ig = —ic, (6.2)
and Kirchhoff’s voltage law tells us that the correspondigiage drops satisfy
Ve = Vi + Vg. (6.3)

By definition of the capacitanc€,

dVe
C— =ic, 6.4
5, —lc (6.4)
and by Faraday’s Law
dig,
L— =1V, 6.5
T i (6.5)

where L is the inductance of the inductor. We assume that the redistraves
nonlinearly and satisfies the generalized form of Ohm’s Law:

Vg = F(iR). (6.6)
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Letx =iz and f(u) := F’(u). By (6.5),

1
(=~
X LL

so by (6.3), (6.4), (6.6), and (6.2)
1dv, _ 1

. . 1 /1 dig
= =—(Ve—Vg) =~ =ic — Flin) =2
X=,— 7 Ve =Vp) L(Clc (ir) dt)

— 1 (g0 - rwi)
Hence,

L] . 1
x+zf(x)x+ﬁx—0.

By rescaling f andt (or, equivalently, by choosing units judiciously), we get
Lienard’s Equation
X4+ f(x)x+x=0.

We will study Lienard’s Equation under the following assuiops onF and

f:

(i) F(0)=0;

(i) f is Lipschitz continuous;

(i) Fis odd;

(iv) F(x) »> ooasx 1 oo;

(v) forsomeg > 0, F(B) = 0 andF is positive and increasing diff, co);
(vi) for somex > 0, F(x) = 0 and F is negative orn(0, o).

Assumption(vi) corresponds to the existence of a region of negative resis-
tance. Apparently, there are semiconductors called “tudioeles” that behave

this way.
By settingy = X+ F(x), we can rewrite Lienard’s Equation as the first-order
system
v F
*=y (x) 6.7)
y = —X.

Definition. A limit cyclefor a flow is a nondegenerate periodic orBithat is the
w-limit set or thex-limit set of some pointy ¢ P.
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Lienard’s Equation

Theorem. (Lienard’s Theorem)The flow generated b§6.7) has at least one
limit cycle. Ifa = B then this limit cycle is the only nondegenerate periodic
orbit, and it is thew-limit set of all points other than the origin.

The significance of Lienard’s Theorem can be seen by conpé&ignard’s
Equation with the linear equation that would have resulfede had assumed
a linear resistor. Such linear RCL circuits can have osmla with arbitrary
amplitude. Lienard’s Theorem says that, under suitablethgses, a nonlinear
resistor selects oscillations of one particular amplitude

We will prove the first half of Lienard’s Theorem by finding angpact, pos-
itively invariant region that does not contain an equilioni point and then using
the Poincaré-Bendixson Theorem. Note that the origin esahly equilibrium
point of (6.7). Since

d . .
(74 y?) = 2(xk + y) = —2xF (x),

assumptior(vi) implies that fore small,R? \ B(0, ¢) is positively invariant.

The nullclinesx = 0 andy = F(x) of (6.7) (.e. curves along which the
flow is either vertical or horizontal) separate the plane four regionsA, B, C,
andD, and the general direction of flow in those regions is as sHmlow. Note
that away from the origin, the speed of trajectories is bednblelow, so every
solution of (6.7) exceptx, y) = (0,0) passes throught, B, C, andD in suc-
cession an infinite number of times as it circles around tigiroin a clockwise
direction.

/ AN
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6. PERIODIC ORBITS

We claim that if a solution starts at a poitY, yo) that is high enough up on
the positivey-axis, then the first poinf0, yo) it hits on the negativey-axis is
closer to the origin thel0, yo) was. Assume, for the moment, that this claim is
true. LetS; be the orbit segment connectiii@, yo) to (0, yo). Because of the
symmetry in (6.7) implied by Assumptid(ii) , the set

Sy = {(x,y) e R? | (—x,—y) € S1}

is also an orbit segment. Let
S3:={(0.y) e R* | —Jo < y < yo}.

Ss:=1{(0,y) € R? | —yo <y < Jo},
and let
Ss = {(x,y) e R? | x? + y* = &%},

for some smalk. Then it is not hard to see that;_,S; is the boundary of a
compact, positively invariant region that does not congairequilibrium point.

Yo

—

—JYo

—

—JYo

To verify the claim, we will use the functioR(x, y) := (x% + »?)/2, and
show that ifyg is large enough (ang, is as defined above) then

R(07 yO) > R(Ov _)70)
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Lienard’s Theorem

6.3 Lienard’s Theorem

Recall, that we're going to estimate the chang®¢f, y) := (x2 + y?)/2 along
the orbit segment connectir{f, yo) to (0, yo). Notice that if the pointa, ) and
the point(c, d) lie on the same trajectory then

(c.d)
R(c,d)— R(a,b) = / dR.
(a.b)
(The integral is a line integral.) Sinde = —x F(x), if y is a function ofx along
the orbit segment connecting, b) to (¢, d), then

B _ CE _ ¢ —xF(x)
R(c,d) R(a,b)—/a )_Cdx /aiy(x)—F(x)dx' (6.8)

If, on the other handy is a function ofy along the orbit segment connecting
(a,b)to(c,d), then

B (TR [T F ()
R(c,d) R(a,b)—/b y_dy—/b 0 dy
d
:/b F(x(y))dy. (6.9)

We will chop the orbit segment connectig@, yo) to (0, yo) up into pieces and
use (6.8) and (6.9) to estimate the chadgR in R along each piece and, there-
fore, along the whole orbit segment.

Leto = B + 1, and let

B = sup |F(x)|.

0<x<o

Consider the region
R:={(x,y) eR*|x €[0,0].y € [B +0,00)}.

INR,

yl__x _¢
dx y—F(x) o
hence, ifyy > B + 20, then the corresponding trajectory must eRithrough

its right boundary, say, at the poitd, y,). Similarly, if yo < —B — 20, then

the trajectory it lies on must have last previously hit thelc = o at a point

(0, ¥o). Now, assume that g — oo, yo — —oo. (If not, then the claim clearly
holds.) Based on this assumption we know that we can pickuevakr y, and

a corresponding value fgr, that are both larger thaB + 2o in absolute value,
and conclude that the orbit segment connecting them loo&btatively like:

’
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6. PERIODIC ORBITS

(07)’0)
(vaa)/ \

(0, yo)

We will estimateA R on the entire orbit segment fro, yg) to (0, yo) by
considering separately, the orbit segment fr@myy) to (o, y5), the segment
from (o, y5) t0 (0, ¥5), and the segment froffw, j,) to (0, o).

First, consider the first segment. On this segmentytiieordinate is a func-
tion y(x) of the x-coordinate. Thus,

9 _xF
|R(a,yo)—R(0’y°)|:/0 yoc;f(;()x)dx‘

o —xF o
0o |y(x)—F(x) o Yo—B—o0o
2
:&_)0
yo—B—o

asyp — oo. A similar estimate shows thaR (0, yo) — R(0, )| — 0 as
Yo — OQ.

On the middle segment, we know that theoordinate is a functiow (y) of
the y-coordinatey. Hence,

Vo
R©.50) ~ R@yo) = [ FGx())dy = ~lye = FolFl0) > —oc
Yo
asygp —> 00.
Putting these three estimates together, we see that

R(0, o) — R(0, yo) — —o0
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Lienard’s Theorem

asyg — 00, S0|yo| < |yo| If yo is sufficiently large. This shows that the orbit
connecting these two points forms part of the boundary ofrapaxt, positively
invariant set that surrounds (but omits) the origin. By tlwgnParé-Bendixson
Theorem, there must be a limit cycle in this set.

Now for the second half of Lienard’s Theorem. We need to shuat if
o = B (i.e, If F has a unique positive zero) then the limit cycle whose excste
we've deduced is the only nondegenerate periodic orbit tatlracts all points
other than the origin. If we can show the uniqueness of thé tiyctle, then the
fact that we can make our compact, positively invariant sdaege as we want
and make the hole cut out of its center as small as we want mvplyi that it
attracts all points other than the origin. Note also, thatahservations on the
general direction of the flow imply that any nondegeneratgode& orbit must
circle the origin in the clockwise direction.

So, suppose that = g and consider, as before, orbit segments that start on
the positivey-axis at a point(0, yo) and end on the negative-axis at a point
(0, yo). Such orbit segments are “nested” and fill up the open rigtitdtane.
We need to show that only one of them satisfigs= —yo. In other words, we
claim that there is only one segment that gives

R(Ov .)70) - R(Ov yO) =0.

Now, if such a segment hits theaxis on[0, 8], thenx < g all along that
segment, and’(x) < 0 with equality only if (x, y) = (8,0). Let x(y) be the
x-coordinate as a function of and observe that

Yo
R(0. 50) — R(0. yo) = / F(x(y))dy > 0. (6.10)
Yo

We claim that for values ofy generating orbits intersecting tlveaxis in(8, co),
R(0, o) — R(0, yg) is a strictly decreasing function gf,. In combination with
(6.10) (and the fact thak (0, yo) — R(0, yo) < 0 if yq is sufficiently large), this
will finish the proof.

Consider 2 orbits (whose coordinates we denatey) and (X, Y)) that in-
tersect thec-axis in(B, co) and contain selected points as shown in the following
diagram.
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6. PERIODIC ORBITS

(O’ YO)\I (,3, Y'B)

(A.yp)

(. p)

(0, o) ;\(ﬁ -
: 1B

(07 }70)/'

Note that

R(0,Yo) — R(0,Yo) = R(0,Yo) — R(B. ¥p)
+ R(B.Yp) — R(i. 7p)
+ R(u,yg) — R(A, yg) (6.11)
+ R(A,yp) — R(B.Yp)
+ R(B,Yg) — R(0, Yo)
= A1+ Ay + Az 4+ Ay + As.

Let X(Y) andx(y) give, respectively, the first coordinate of a point on the
outer and inner orbit segments as a function of the secondlicabe. Similarly,
let Y(X) and y(x) give the second coordinates as functions of the first coordi-
nates (on the segments where that's possible). Estimat@@nd that

_ [P _XFX) O xF) o
Al_/ﬂ Y(X)— F(X) dX</ﬂ 7o) — Fo F = RO R(ﬂ’(;’ﬂl)zv)

Yg
Ay = / F(X(Y)dY <0, (6.13)
7]

Vs Vs
Az = / F(X(Y))dY < / F(x(y))dy = R(B,yp) — R(B,yp), (6.14)
yB yB

yB

Ay = / F(X(Y))dY <0, (6.15)
Yg

150



Lienard’s Theorem

and

— P —XF(X) B —xF(x) _
s /o Yo - Foo T /0 v — Foy T RO - R(o(,syz;.)

By plugging, (6.12), (6.13), (6.14), (6.15), and (6.16pi(6.11), we see that

R(0,Yy) — R(0, Yp)
< [R(0, yo) — R(B,yp)] + 0
+ [R(B,Yp) — R(B,yp)] + 0
+ [R(B, yp) — R(0, yo)]
= R(0, yo) — R(0, yo).

This gives the claimed monotonicity and completes the proof
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